/* Group 64.127 downloaded from the LMFDB on 25 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([6, 2, 2, 2, 2, 2, 2, 24, 73, 31, 489, 69, 88]); a,b,c := Explode([GPC.1, GPC.2, GPC.4]); AssignNames(~GPC, ["a", "b", "b2", "c", "c2", "c4"]); GPerm := PermutationGroup< 16 | (1,2,5,4,3,6,8,7)(9,10,12,14)(11,15,16,13), (1,3)(2,6)(4,7)(5,8)(9,11,12,16)(10,13,14,15), (1,4,5,6,3,7,8,2), (9,12)(10,14)(11,16)(13,15), (1,5,3,8)(2,4,6,7)(9,12)(10,14)(11,16)(13,15), (1,3)(2,6)(4,7)(5,8) >; GLFp := MatrixGroup< 4, GF(5) | [[4, 0, 0, 0, 0, 4, 0, 0, 0, 0, 4, 0, 0, 0, 0, 4], [2, 0, 0, 0, 4, 3, 2, 3, 2, 3, 3, 4, 2, 3, 1, 1], [4, 0, 0, 0, 1, 3, 3, 3, 1, 4, 2, 1, 0, 0, 0, 1], [4, 0, 0, 0, 3, 1, 4, 0, 1, 4, 2, 3, 2, 3, 1, 1], [1, 1, 4, 4, 3, 0, 1, 1, 1, 1, 0, 4, 0, 0, 0, 1], [2, 0, 0, 0, 2, 3, 0, 0, 1, 0, 3, 1, 0, 0, 0, 2]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_64_127 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := true, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, b^2>,< 2, 1, b^2*c^4>,< 2, 1, c^4>,< 4, 1, c^2>,< 4, 1, c^6>,< 4, 1, b^2*c^2>,< 4, 1, b^2*c^6>,< 4, 2, a>,< 4, 2, a*c^4>,< 4, 2, a*c^2>,< 4, 2, a*c^6>,< 4, 4, b>,< 4, 4, b*c^2>,< 4, 4, a*b>,< 4, 4, a*b*c^2>,< 8, 2, c>,< 8, 2, c^3>,< 8, 2, b^2*c>,< 8, 2, b^2*c^3>,< 8, 2, a*c>,< 8, 2, a*c^3>,< 8, 2, a*c^7>,< 8, 2, a*c^5>,< 8, 4, b*c>,< 8, 4, b*c^3>,< 8, 4, a*b*c>,< 8, 4, a*b*c^3>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1,1,-1,1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1,1,-1,1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,-1,1,-1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,-1,1,-1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,1,1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,-1,-1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,-1,-1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, 2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 0, 0, 0, 0, -2, 2, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, 2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 0, 0, 0, 0, 2, -2, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,-2,-2,-2*K.1,2*K.1,-2*K.1,2*K.1,-2,2,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,-2,-2,2*K.1,-2*K.1,2*K.1,-2*K.1,-2,2,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,-2,-2,-2*K.1,2*K.1,-2*K.1,2*K.1,2,-2,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,-2,-2,2*K.1,-2*K.1,2*K.1,-2*K.1,2,-2,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,-2,-2,2,2,0,0,0,0,0,0,0,0,-2*K.1,2*K.1,0,0,0,0,2*K.1,-2*K.1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,-2,-2,2,2,0,0,0,0,0,0,0,0,2*K.1,-2*K.1,0,0,0,0,-2*K.1,2*K.1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,2,-2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1^3,2*K.1^3,2*K.1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,2,-2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,0,0,0,0,0,0,0,0,0,0,2*K.1^3,2*K.1,-2*K.1,-2*K.1^3,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,2,-2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1^3,-2*K.1^3,-2*K.1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,2,-2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,0,0,0,0,0,0,0,0,0,0,-2*K.1^3,-2*K.1,2*K.1,2*K.1^3,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_64_127:= KnownIrreducibles(CR);