/* Group 6144.hg downloaded from the LMFDB on 04 February 2026. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([12, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 12528, 10897, 61, 116498, 1731, 112911, 55467, 53284, 123856, 60868, 358565, 183617, 92693, 5513, 7397, 209, 369799, 89299, 37759, 1987, 554696, 230708, 146480, 25100, 8696, 4388, 1604, 320, 195849, 97941, 72033, 114058, 152086, 28546, 378443, 284279, 28115, 16199, 1835]); a,b,c,d,e,f,g,h,i := Explode([GPC.1, GPC.2, GPC.4, GPC.5, GPC.6, GPC.8, GPC.9, GPC.11, GPC.12]); AssignNames(~GPC, ["a", "b", "b2", "c", "d", "e", "e2", "f", "g", "g2", "h", "i"]); GPerm := PermutationGroup< 24 | (1,12,20)(2,11,19)(3,10,18)(4,9,17)(5,14,23,6,13,24)(7,15,21,8,16,22), (1,13,22,2,14,21)(3,15,23,4,16,24)(5,11,18,6,12,17)(7,10,19,8,9,20), (1,17,5,24,2,18,6,23)(3,19,7,22,4,20,8,21)(9,16,11,13)(10,15,12,14) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_6144_hg := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := false, metacyclic := false, nilpotent := false, perfect := false, quasisimple := false, rational := true, solvable := true, supersolvable := false>; /* Character Table */ G:= GPerm; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, G!(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)>,< 2, 3, G!(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)>,< 2, 3, G!(17,18)(19,20)(21,22)(23,24)>,< 2, 4, G!(5,6)(7,8)(13,14)(15,16)(21,22)(23,24)>,< 2, 4, G!(5,6)(7,8)(9,10)(11,12)(21,22)(23,24)>,< 2, 6, G!(21,22)(23,24)>,< 2, 6, G!(11,12)(15,16)(19,20)(23,24)>,< 2, 6, G!(11,12)(15,16)(17,18)(21,22)>,< 2, 6, G!(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)>,< 2, 6, G!(3,4)(7,8)(9,10)(11,12)(13,14)(15,16)(19,20)(21,22)>,< 2, 6, G!(3,4)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(23,24)>,< 2, 6, G!(1,2)(7,8)(11,12)(13,14)(21,22)(23,24)>,< 2, 6, G!(1,2)(5,6)(9,10)(11,12)(19,20)(21,22)>,< 2, 12, G!(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)>,< 2, 12, G!(11,12)(13,14)(19,20)(21,22)>,< 2, 12, G!(5,6)(7,8)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)>,< 2, 12, G!(5,6)(7,8)(11,12)(15,16)(17,18)(21,22)>,< 2, 12, G!(5,6)(7,8)(11,12)(13,14)(17,18)(23,24)>,< 2, 12, G!(3,4)(7,8)(11,12)(15,16)(17,18)(19,20)(21,22)(23,24)>,< 2, 12, G!(3,4)(7,8)(11,12)(15,16)(17,18)(19,20)>,< 2, 12, G!(9,10)(11,12)(17,18)(19,20)>,< 2, 24, G!(11,12)(15,16)(19,20)(21,22)>,< 2, 24, G!(5,6)(7,8)(11,12)(15,16)(19,20)(21,22)>,< 2, 24, G!(5,6)(7,8)(11,12)(13,14)(17,18)(21,22)>,< 2, 24, G!(3,4)(7,8)(11,12)(13,14)(17,18)(19,20)(21,22)(23,24)>,< 2, 24, G!(1,3)(2,4)(5,7)(6,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,24)(20,23)>,< 2, 24, G!(1,3)(2,4)(5,8)(6,7)(9,13)(10,14)(11,16)(12,15)(17,21)(18,22)(19,23)(20,24)>,< 2, 24, G!(1,3)(2,4)(5,7)(6,8)(9,14)(10,13)(11,15)(12,16)(17,22)(18,21)(19,24)(20,23)>,< 2, 24, G!(1,6)(2,5)(3,7)(4,8)(9,11)(10,12)(13,15)(14,16)(17,24)(18,23)(19,21)(20,22)>,< 2, 48, G!(5,7)(6,8)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,24)(16,23)>,< 2, 48, G!(5,7)(6,8)(9,17)(10,18)(11,20)(12,19)(13,21)(14,22)(15,23)(16,24)>,< 2, 48, G!(1,2)(3,4)(5,7)(6,8)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,24)(16,23)>,< 2, 48, G!(1,2)(3,4)(5,7)(6,8)(9,17)(10,18)(11,20)(12,19)(13,21)(14,22)(15,23)(16,24)>,< 3, 512, G!(1,19,11)(2,20,12)(3,17,9)(4,18,10)(5,23,13)(6,24,14)(7,21,16)(8,22,15)>,< 4, 24, G!(1,3)(2,4)(5,7)(6,8)(9,13,10,14)(11,15,12,16)(17,21,18,22)(19,24,20,23)>,< 4, 24, G!(1,3)(2,4)(5,8)(6,7)(9,13,10,14)(11,16,12,15)(17,21,18,22)(19,23,20,24)>,< 4, 24, G!(1,7,2,8)(3,6,4,5)(9,15,10,16)(11,13,12,14)(17,19)(18,20)(21,24)(22,23)>,< 4, 24, G!(1,4)(2,3)(5,8)(6,7)(9,14,10,13)(11,15,12,16)(17,22,18,21)(19,24,20,23)>,< 4, 48, G!(5,7)(6,8)(9,17,10,18)(11,19,12,20)(13,21,14,22)(15,24,16,23)>,< 4, 48, G!(5,7)(6,8)(9,17,10,18)(11,20,12,19)(13,21,14,22)(15,23,16,24)>,< 4, 48, G!(1,2)(3,4)(5,7)(6,8)(9,17,10,18)(11,19,12,20)(13,21,14,22)(15,24,16,23)>,< 4, 48, G!(1,2)(3,4)(5,7)(6,8)(9,17,10,18)(11,20,12,19)(13,21,14,22)(15,23,16,24)>,< 4, 48, G!(1,3)(2,4)(5,7)(6,8)(9,13)(10,14)(11,15)(12,16)(17,21,18,22)(19,24,20,23)>,< 4, 48, G!(1,3)(2,4)(5,7)(6,8)(9,13)(10,14)(11,16)(12,15)(17,21,18,22)(19,23,20,24)>,< 4, 48, G!(1,3)(2,4)(5,8)(6,7)(9,13)(10,14)(11,15)(12,16)(17,21,18,22)(19,24,20,23)>,< 4, 48, G!(1,3)(2,4)(5,8)(6,7)(9,13)(10,14)(11,16)(12,15)(17,21,18,22)(19,23,20,24)>,< 4, 48, G!(1,3,2,4)(5,7,6,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)>,< 4, 48, G!(1,3,2,4)(5,7,6,8)(9,13)(10,14)(11,15)(12,16)(17,21,18,22)(19,23,20,24)>,< 4, 48, G!(1,3,2,4)(5,7,6,8)(9,13,10,14)(11,15,12,16)(17,21)(18,22)(19,23)(20,24)>,< 4, 48, G!(1,3,2,4)(5,7,6,8)(9,13,10,14)(11,15,12,16)(17,21,18,22)(19,23,20,24)>,< 4, 48, G!(1,3,2,4)(5,7,6,8)(9,13)(10,14)(11,16)(12,15)(17,21)(18,22)(19,24)(20,23)>,< 4, 48, G!(1,3,2,4)(5,7,6,8)(9,13)(10,14)(11,16)(12,15)(17,21,18,22)(19,24,20,23)>,< 4, 48, G!(1,3,2,4)(5,7,6,8)(9,13,10,14)(11,16,12,15)(17,21)(18,22)(19,24)(20,23)>,< 4, 48, G!(1,3,2,4)(5,7,6,8)(9,13,10,14)(11,16,12,15)(17,21,18,22)(19,24,20,23)>,< 4, 96, G!(1,13)(2,14)(3,16,4,15)(5,10)(6,9)(7,12,8,11)(17,19,18,20)(23,24)>,< 4, 96, G!(5,7)(6,8)(9,17,10,18)(11,19,12,20)(13,21)(14,22)(15,24)(16,23)>,< 4, 96, G!(1,12,2,11)(3,9)(4,10)(5,15)(6,16)(7,13,8,14)(19,20)(21,23,22,24)>,< 4, 96, G!(3,4)(5,8,6,7)(9,17,10,18)(11,19)(12,20)(13,21)(14,22)(15,24,16,23)>,< 4, 96, G!(1,20)(2,19)(3,17)(4,18)(5,21,6,22)(7,24,8,23)(9,10)(11,12)(13,15)(14,16)>,< 4, 96, G!(1,2)(3,4)(5,7)(6,8)(9,18)(10,17)(11,19)(12,20)(13,21,14,22)(15,23,16,24)>,< 4, 96, G!(1,20,2,19)(3,18)(4,17)(5,22)(6,21)(7,24,8,23)(9,10)(13,15,14,16)>,< 4, 96, G!(1,21)(2,22)(3,24,4,23)(5,19)(6,20)(7,18,8,17)(9,11,10,12)(13,14)>,< 4, 96, G!(1,19)(2,20)(3,18)(4,17)(5,21,6,22)(7,24,8,23)(13,16)(14,15)>,< 4, 96, G!(1,4,2,3)(5,6)(9,22)(10,21)(11,23,12,24)(13,18,14,17)(15,20)(16,19)>,< 4, 96, G!(1,22,2,21)(3,23)(4,24)(5,20,6,19)(7,17)(8,18)(9,11,10,12)(15,16)>,< 4, 96, G!(1,19)(2,20)(3,18,4,17)(5,22)(6,21)(7,23,8,24)(11,12)(13,15,14,16)>,< 4, 192, G!(1,8,3,6)(2,7,4,5)(9,20,14,23)(10,19,13,24)(11,18,15,21)(12,17,16,22)>,< 4, 192, G!(1,24,6,17)(2,23,5,18)(3,22,7,20)(4,21,8,19)(9,13,11,15)(10,14,12,16)>,< 4, 192, G!(1,18,6,24)(2,17,5,23)(3,19,7,22)(4,20,8,21)(9,16,12,13)(10,15,11,14)>,< 4, 192, G!(1,5,4,8)(2,6,3,7)(9,24,14,19)(10,23,13,20)(11,22,15,17)(12,21,16,18)>,< 6, 512, G!(1,11,19)(2,12,20)(3,9,17)(4,10,18)(5,14,23,6,13,24)(7,15,21,8,16,22)>,< 6, 512, G!(1,16,18,2,15,17)(3,13,19,4,14,20)(5,10,21,6,9,22)(7,12,24,8,11,23)>,< 6, 512, G!(1,16,17)(2,15,18)(3,13,19)(4,14,20)(5,9,22,6,10,21)(7,11,24,8,12,23)>,< 8, 192, G!(1,9,7,15,2,10,8,16)(3,11,6,13,4,12,5,14)(17,24,19,21)(18,23,20,22)>,< 8, 192, G!(1,5,4,8)(2,6,3,7)(9,23,14,19,10,24,13,20)(11,22,15,18,12,21,16,17)>,< 8, 192, G!(1,18,5,24,2,17,6,23)(3,19,7,21,4,20,8,22)(9,15,11,14)(10,16,12,13)>,< 8, 192, G!(1,16,7,9,2,15,8,10)(3,13,6,12,4,14,5,11)(17,21,19,24)(18,22,20,23)>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, -1, 2, 2, 2, 2, 2, 2, 0, 2, 2, 0, 2, 2, 2, 2, 2, 0, 2, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, -2, 2, 2, 2, 2, -2, 2, -2, -2, 2, -2, -2, 2, -2, 2, 2, 0, 0, 0, 0, -1, -2, -2, 2, 2, 2, 2, 0, -2, 2, 0, -2, -2, -2, 2, -2, 0, 2, 0, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, 3, 3, -1, -1, -1, -1, -1, -1, 3, 3, -1, -1, -1, -1, 3, 3, -1, 3, -1, -1, -1, -1, 3, -1, 3, -1, 1, 1, 1, 1, 0, 3, 3, -1, -1, -1, -1, 1, -1, 3, 1, -1, 3, -1, -1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 0, 0, 0, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, 3, 3, -1, -1, -1, -1, -1, -1, 3, 3, -1, -1, -1, -1, 3, 3, -1, 3, 3, -1, -1, 3, -1, -1, -1, -1, 1, 1, 1, 1, 0, -1, -1, 3, 3, -1, 3, 1, -1, -1, 1, -1, -1, -1, -1, 3, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 0, 0, 0, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, 3, 3, -1, -1, 3, 3, -1, -1, -1, -1, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, 3, 3, -1, -1, -1, 1, 1, 1, 1, 0, 3, -1, 3, -1, -1, -1, 1, -1, -1, 1, 3, -1, -1, 3, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 0, 0, 0, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, 3, 3, -1, -1, 3, 3, -1, -1, -1, -1, 3, 3, 3, -1, -1, -1, -1, -1, 3, -1, -1, -1, -1, -1, 3, -1, 1, 1, 1, 1, 0, -1, 3, -1, 3, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 3, 1, 3, -1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 0, 0, 0, -1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, 3, 3, 3, 3, -1, -1, 3, 3, -1, -1, -1, -1, -1, 3, -1, -1, 3, -1, -1, -1, -1, 3, -1, -1, 3, -1, 1, 1, 1, 1, 0, -1, 3, 3, -1, -1, -1, 1, 3, -1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 3, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 0, 0, 0, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, 3, 3, 3, 3, -1, -1, 3, 3, -1, -1, -1, -1, -1, 3, -1, -1, 3, -1, 3, -1, -1, -1, 3, -1, -1, -1, 1, 1, 1, 1, 0, 3, -1, -1, 3, 3, -1, 1, -1, -1, 1, -1, -1, 3, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 0, 0, 0, -1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, -1, 3, 3, -1, -1, 3, -1, 3, 1, 1, 1, 1, 0, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 0, 0, 0, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, 3, 3, -1, -1, -1, -1, -1, -1, 3, 3, -1, -1, -1, -1, 3, 3, -1, 3, -1, -1, -1, -1, 3, -1, 3, -1, -1, -1, -1, -1, 0, 3, 3, -1, -1, -1, -1, -1, -1, 3, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 0, 0, 0, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, 3, 3, -1, -1, -1, -1, -1, -1, 3, 3, -1, -1, -1, -1, 3, 3, -1, 3, 3, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, -1, 0, -1, -1, 3, 3, -1, 3, -1, -1, -1, -1, -1, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 0, 0, 0, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, 3, 3, -1, -1, 3, 3, -1, -1, -1, -1, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, 3, 3, -1, -1, -1, -1, -1, -1, -1, 0, 3, -1, 3, -1, -1, -1, -1, -1, -1, -1, 3, -1, -1, 3, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 0, 0, 0, -1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, 3, 3, -1, -1, 3, 3, -1, -1, -1, -1, 3, 3, 3, -1, -1, -1, -1, -1, 3, -1, -1, -1, -1, -1, 3, -1, -1, -1, -1, -1, 0, -1, 3, -1, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 3, -1, 3, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 0, 0, 0, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, 3, 3, 3, 3, -1, -1, 3, 3, -1, -1, -1, -1, -1, 3, -1, -1, 3, -1, -1, -1, -1, 3, -1, -1, 3, -1, -1, -1, -1, -1, 0, -1, 3, 3, -1, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 3, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 0, 0, 0, -1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, 3, 3, 3, 3, -1, -1, 3, 3, -1, -1, -1, -1, -1, 3, -1, -1, 3, -1, 3, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, 0, 3, -1, -1, 3, 3, -1, -1, -1, -1, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 0, 0, 0, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, -1, 3, 3, -1, -1, 3, -1, 3, -1, -1, -1, -1, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -3, -3, -3, -3, -3, -3, -3, -3, 3, 3, -3, 3, 3, 3, 3, -3, 3, -3, 1, 3, -3, 1, -1, -3, -1, 3, -1, 1, 1, -1, 0, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 0, 0, 0, -1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -3, -3, -3, -3, -3, -3, -3, -3, 3, 3, -3, 3, 3, 3, 3, -3, 3, -3, 1, 3, -3, 1, -1, -3, -1, 3, 1, -1, -1, 1, 0, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 0, 0, 0, 1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -3, -3, -3, -3, 1, 1, -3, -3, -1, -1, 1, -1, -1, 3, -1, 1, 3, 1, -3, -1, 1, 1, 3, 1, -1, -1, -1, 1, 1, -1, 0, -3, 1, -1, 3, 3, -1, -1, 1, -1, -1, 1, 1, -3, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 0, 0, 0, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -3, -3, -3, -3, 1, 1, -3, -3, -1, -1, 1, -1, -1, 3, -1, 1, 3, 1, -3, -1, 1, 1, 3, 1, -1, -1, 1, -1, -1, 1, 0, -3, 1, -1, 3, 3, -1, 1, 1, -1, 1, 1, 1, -3, -1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 0, 0, 0, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -3, -3, -3, -3, 1, 1, -3, -3, -1, -1, 1, -1, -1, 3, -1, 1, 3, 1, 1, -1, 1, -3, -1, 1, 3, -1, -1, 1, 1, -1, 0, 1, -3, 3, -1, -1, -1, -1, -3, -1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 3, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, 0, 0, 0, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -3, -3, -3, -3, 1, 1, -3, -3, -1, -1, 1, -1, -1, 3, -1, 1, 3, 1, 1, -1, 1, -3, -1, 1, 3, -1, 1, -1, -1, 1, 0, 1, -3, 3, -1, -1, -1, 1, -3, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 3, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 0, 0, 0, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -3, -3, 1, 1, -3, -3, 1, 1, -1, -1, -3, 3, 3, -1, -1, 1, -1, 1, -3, -1, 1, 1, -1, 1, 3, -1, -1, 1, 1, -1, 0, 1, -3, -1, 3, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 3, 1, -3, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 0, 0, 0, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -3, -3, 1, 1, -3, -3, 1, 1, -1, -1, -3, 3, 3, -1, -1, 1, -1, 1, -3, -1, 1, 1, -1, 1, 3, -1, 1, -1, -1, 1, 0, 1, -3, -1, 3, -1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 3, -1, -3, -1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 0, 0, 0, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -3, -3, 1, 1, -3, -3, 1, 1, -1, -1, -3, 3, 3, -1, -1, 1, -1, 1, 1, -1, 1, -3, 3, 1, -1, -1, -1, 1, 1, -1, 0, -3, 1, 3, -1, -1, -1, -1, 1, -1, -1, -3, 1, 1, 3, 1, 1, -1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, 0, 0, 0, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -3, -3, 1, 1, -3, -3, 1, 1, -1, -1, -3, 3, 3, -1, -1, 1, -1, 1, 1, -1, 1, -3, 3, 1, -1, -1, 1, -1, -1, 1, 0, -3, 1, 3, -1, -1, -1, 1, 1, -1, 1, -3, 1, 1, 3, 1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1, -1, 0, 0, 0, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -3, -3, 1, 1, 1, 1, 1, 1, 3, 3, 1, -1, -1, -1, 3, -3, -1, -3, -3, -1, 1, -3, -1, 1, -1, -1, -1, 1, 1, -1, 0, 1, 1, 3, 3, -1, 3, -1, 1, -1, -1, 1, 1, 1, -1, -3, 1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 0, 0, 0, 1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -3, -3, 1, 1, 1, 1, 1, 1, 3, 3, 1, -1, -1, -1, 3, -3, -1, -3, -3, -1, 1, -3, -1, 1, -1, -1, 1, -1, -1, 1, 0, 1, 1, 3, 3, -1, 3, 1, 1, -1, 1, 1, 1, 1, -1, -3, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 0, 0, 0, -1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -3, -3, 1, 1, 1, 1, 1, 1, 3, 3, 1, -1, -1, -1, 3, -3, -1, -3, 1, -1, 1, 1, 3, 1, 3, -1, -1, 1, 1, -1, 0, -3, -3, -1, -1, -1, -1, -1, 1, 3, -1, 1, -3, 1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 0, 0, 0, -1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -3, -3, 1, 1, 1, 1, 1, 1, 3, 3, 1, -1, -1, -1, 3, -3, -1, -3, 1, -1, 1, 1, 3, 1, 3, -1, 1, -1, -1, 1, 0, -3, -3, -1, -1, -1, -1, 1, 1, 3, 1, 1, -3, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 0, 0, 0, 1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, -4, 4, -4, -4, 4, 4, -4, 0, 0, -4, 4, 0, 0, 0, 0, 0, -4, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, -2, 2, 1, 0, 0, 0, 0, 0, 0, -2, 0, 0, 2, 0, 0, 0, 0, 0, -2, 0, 2, 0, 0, 0, 0, 0, -2, 0, 0, -2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 1, -1, -1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, -4, 4, -4, -4, 4, 4, -4, 0, 0, -4, 4, 0, 0, 0, 0, 0, -4, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, -2, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, -2, 0, 0, 0, 0, 0, 2, 0, -2, 0, 0, 0, 0, 0, 2, 0, 0, 2, -2, 0, -2, 0, 0, 0, 0, 0, 0, 1, -1, -1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, -4, 4, -4, 4, -4, -4, 4, 0, 0, 4, -4, 0, 0, 0, 0, 0, -4, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, 2, 1, 0, 0, 0, 0, 0, 0, -2, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, -2, 0, 0, 0, 0, 0, 2, 0, 0, -2, -2, 0, 2, 0, 0, 0, 0, 0, 0, -1, 1, -1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, -4, 4, -4, 4, -4, -4, 4, 0, 0, 4, -4, 0, 0, 0, 0, 0, -4, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, -2, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, -2, 0, 0, 0, 0, 0, -2, 0, 2, 0, 0, 0, 0, 0, -2, 0, 0, 2, 2, 0, -2, 0, 0, 0, 0, 0, 0, -1, 1, -1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 6, 6, 6, 6, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, -2, -2, 2, 6, 2, 0, 0, 0, 0, 0, -2, 6, -2, -2, 2, 2, 0, -2, -2, 0, 2, -2, 2, 2, 2, 0, -2, 0, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 6, 6, 6, 6, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, -2, 6, 2, -2, 2, 0, 0, 0, 0, 0, 6, -2, -2, -2, -2, 2, 0, 2, -2, 0, -2, -2, -2, -2, 2, 0, 2, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 6, 6, 6, 6, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, 6, -2, 2, -2, 2, 0, 0, 0, 0, 0, -2, -2, 6, -2, 2, -2, 0, -2, 2, 0, -2, 2, 2, -2, -2, 0, 2, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 6, 6, 6, 6, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 6, 2, 2, -2, -2, 2, -2, 2, 0, 0, 0, 0, 0, -2, -2, -2, 6, -2, -2, 0, 2, 2, 0, 2, 2, -2, 2, -2, 0, -2, 0, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 6, 6, 6, 6, -2, -2, -2, -2, -2, -2, 6, 6, -2, -2, -2, -2, 6, 6, -2, 6, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, -2, -2, -2, -2, 2, -2, 0, 2, -2, 0, 2, -2, 2, 2, -2, 0, 2, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 6, 6, 6, 6, -2, -2, 6, 6, -2, -2, -2, -2, 6, 6, 6, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, -2, -2, -2, -2, 2, 2, 0, 2, 2, 0, -2, 2, 2, -2, 2, 0, -2, 0, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 6, 6, 6, 6, 6, 6, -2, -2, 6, 6, -2, -2, -2, -2, -2, 6, -2, -2, 6, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, 2, 0, -2, 2, 0, 2, 2, -2, 2, 2, 0, 2, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 6, 6, -6, -6, -6, -6, 2, 2, -6, -6, -2, -2, 2, -2, -2, 6, -2, 2, 6, 2, 2, -2, 2, 2, -2, 2, -2, -2, 0, 0, 0, 0, 0, 2, 2, -2, -2, -2, 2, 0, 2, 2, 0, -2, -2, 2, 2, -2, 0, 2, 0, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 6, 6, -6, -6, 2, 2, -6, -6, 2, 2, -2, -2, -6, 6, 6, -2, -2, 2, -2, 2, 2, -2, 2, 2, -2, 2, -2, -2, 0, 0, 0, 0, 0, 2, 2, -2, -2, 2, 2, 0, -2, 2, 0, 2, -2, -2, -2, -2, 0, -2, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 6, 6, -6, -6, 2, 2, 2, 2, 2, 2, -2, -2, 2, -2, -2, -2, -2, 2, -2, 2, -6, 2, -2, 2, -2, -2, -2, 2, 0, 0, 0, 0, 0, 2, 2, -2, 6, -2, -2, 0, -2, 2, 0, -2, -2, 2, 2, 2, 0, -2, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 6, 6, -6, -6, 2, 2, 2, 2, 2, 2, -2, -2, 2, -2, -2, -2, -2, 2, -2, 2, 2, 2, -2, -6, -2, -2, -2, 2, 0, 0, 0, 0, 0, 2, 2, 6, -2, 2, -2, 0, 2, 2, 0, 2, -2, -2, -2, 2, 0, 2, 0, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 6, 6, -6, -6, 2, 2, 2, 2, 2, 2, -2, -2, 2, -2, -2, -2, -2, 2, -2, 2, 2, 2, -2, 2, -2, -2, 6, 2, 0, 0, 0, 0, 0, 2, -6, -2, -2, 2, 2, 0, 2, -2, 0, -2, 2, -2, 2, -2, 0, -2, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 6, 6, -6, -6, 2, 2, 2, 2, 2, 2, -2, -2, 2, -2, -2, -2, -2, 2, -2, 2, 2, 2, -2, 2, 6, -2, -2, 2, 0, 0, 0, 0, 0, -6, 2, -2, -2, -2, 2, 0, -2, -2, 0, 2, 2, 2, -2, -2, 0, 2, 0, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 6, 6, -6, -6, 2, 2, 2, 2, 2, 2, 6, 6, 2, -2, -2, -2, 6, -6, -2, -6, 2, -2, 2, 2, -2, 2, -2, -2, 0, 0, 0, 0, 0, 2, 2, -2, -2, 2, -2, 0, -2, -2, 0, -2, 2, -2, 2, 2, 0, 2, 0, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, -8, 8, -8, -8, 8, 8, -8, 0, 0, -8, 8, 0, 0, 0, 0, 0, -8, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, -8, 8, -8, 8, -8, -8, 8, 0, 0, 8, -8, 0, 0, 0, 0, 0, -8, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, 12, -4, -4, 0, 0, -4, -4, 4, 4, 4, 4, -4, 12, -4, 0, 0, 0, -4, 0, 0, 0, 0, 0, 4, 0, 0, -4, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, -2, 0, 0, 0, 0, 0, -2, 0, -2, 0, 0, 2, 0, -2, 0, 2, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, 12, -4, -4, 0, 0, -4, -4, 4, 4, 4, 4, 12, -4, -4, 0, 0, 0, -4, 0, 0, 0, 0, 0, -4, 0, 0, 4, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, -2, 0, 0, 0, 0, 0, -2, 0, -2, 0, 0, -2, 0, 2, 0, -2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, 12, -4, -4, 0, 0, 4, 4, -4, -4, -4, -4, -4, 12, 4, 0, 0, 0, -4, 0, 0, 0, 0, 0, -4, 0, 0, 4, 0, 0, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, -2, 0, -2, 0, 0, -2, 0, -2, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, 12, -4, -4, 0, 0, 4, 4, -4, -4, -4, -4, -4, 12, 4, 0, 0, 0, -4, 0, 0, 0, 0, 0, -4, 0, 0, 4, 0, 0, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, -2, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 2, 0, 2, 0, -2, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, 12, -4, -4, 0, 0, 4, 4, -4, -4, -4, -4, 12, -4, 4, 0, 0, 0, -4, 0, 0, 0, 0, 0, 4, 0, 0, -4, 0, 0, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, -2, 0, -2, 0, 0, 2, 0, 2, 0, -2, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, 12, -4, -4, 0, 0, 4, 4, -4, -4, -4, -4, 12, -4, 4, 0, 0, 0, -4, 0, 0, 0, 0, 0, 4, 0, 0, -4, 0, 0, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, -2, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, -2, 0, -2, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, 12, -4, -4, 0, 0, -4, -4, 4, 4, 4, 4, -4, 12, -4, 0, 0, 0, -4, 0, 0, 0, 0, 0, 4, 0, 0, -4, 0, 0, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, -2, 0, 2, 0, -2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, 12, -4, -4, 0, 0, -4, -4, 4, 4, 4, 4, 12, -4, -4, 0, 0, 0, -4, 0, 0, 0, 0, 0, -4, 0, 0, 4, 0, 0, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 2, 0, -2, 0, 2, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, -12, 12, -12, -12, 12, -4, 4, 0, 0, 4, -4, 0, 0, 0, 0, 0, 4, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 2, 0, 0, 0, 0, 0, -2, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, -2, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, -12, 12, -12, -12, 12, -4, 4, 0, 0, 4, -4, 0, 0, 0, 0, 0, 4, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, -2, 0, 0, 0, 0, 0, 2, 0, -2, 0, 0, 0, 0, 0, -2, 0, 0, -2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, -12, 12, -12, 12, -12, 4, -4, 0, 0, -4, 4, 0, 0, 0, 0, 0, 4, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, -2, 0, 0, 0, 0, 0, -2, 0, 0, 2, 2, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, -12, 12, -12, 12, -12, 4, -4, 0, 0, -4, 4, 0, 0, 0, 0, 0, 4, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, -2, 0, 0, 0, 0, 0, -2, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, -2, -2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, -12, -4, 4, 0, 0, -4, 4, -8, 8, -4, 4, 0, 0, 0, 4, -4, 0, 0, 4, 0, -4, 0, 4, 0, 0, 0, 0, 0, -4, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, -2, 0, 0, 0, 0, 0, 2, 0, -2, 0, 0, 0, 2, 0, 0, 0, -2, 0, 0, -2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, -12, -4, 4, 0, 0, -4, 4, -8, 8, -4, 4, 0, 0, 0, 4, -4, 0, 0, 4, 0, -4, 0, 4, 0, 0, 0, 0, 0, -4, 2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 2, 0, 0, 0, 0, 0, -2, 0, 2, 0, 0, 0, -2, 0, 0, 0, 2, 0, 0, 2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, -12, -4, 4, 0, 0, -4, 4, 8, -8, -4, 4, 0, 0, 0, 4, -4, 0, 0, 4, 0, -4, 0, -4, 0, 0, 0, 0, 0, 4, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, -2, 0, 0, 0, 0, 0, 2, 0, -2, 0, 0, 0, -2, 0, 0, 0, 2, 0, 0, 2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, -12, -4, 4, 0, 0, -4, 4, 8, -8, -4, 4, 0, 0, 0, 4, -4, 0, 0, 4, 0, -4, 0, -4, 0, 0, 0, 0, 0, 4, 2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 2, 0, 0, 0, 0, 0, -2, 0, 2, 0, 0, 0, 2, 0, 0, 0, -2, 0, 0, -2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, -12, -4, 4, 0, 0, 4, -4, -8, 8, 4, -4, 0, 0, 0, 4, -4, 0, 0, -4, 0, 4, 0, -4, 0, 0, 0, 0, 0, 4, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, -2, 0, 0, 0, 0, 0, -2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, -2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, -12, -4, 4, 0, 0, 4, -4, -8, 8, 4, -4, 0, 0, 0, 4, -4, 0, 0, -4, 0, 4, 0, -4, 0, 0, 0, 0, 0, 4, 2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, -2, 0, 0, 0, -2, 0, 0, 0, -2, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, -12, -4, 4, 0, 0, 4, -4, 8, -8, 4, -4, 0, 0, 0, 4, -4, 0, 0, -4, 0, 4, 0, 4, 0, 0, 0, 0, 0, -4, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, -2, 0, 0, 0, 0, 0, -2, 0, 2, 0, 0, 0, -2, 0, 0, 0, -2, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, -12, -4, 4, 0, 0, 4, -4, 8, -8, 4, -4, 0, 0, 0, 4, -4, 0, 0, -4, 0, 4, 0, 4, 0, 0, 0, 0, 0, -4, 2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, -2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, -2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[24, 24, -8, -8, 0, 0, -8, -8, -8, -8, 8, 8, -8, -8, 8, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[24, 24, -8, -8, 0, 0, 8, 8, 8, 8, -8, -8, -8, -8, -8, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[24, -24, -8, 8, 0, 0, -8, 8, 0, 0, -8, 8, 0, 0, 0, -8, 8, 0, 0, -8, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[24, -24, -8, 8, 0, 0, 8, -8, 0, 0, 8, -8, 0, 0, 0, -8, 8, 0, 0, 8, 0, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_6144_hg:= KnownIrreducibles(CR);