Properties

Label 6144.cs
Order \( 2^{11} \cdot 3 \)
Exponent \( 2^{3} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{13} \cdot 3 \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \)
Perm deg. $16$
Trans deg. $16$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 16 | (1,12,13,6,4,9,16,8)(2,11,14,5,3,10,15,7), (1,10,5,14,2,9,6,13)(3,11,7,16,4,12,8,15) >;
 
Copy content gap:G := Group( (1,12,13,6,4,9,16,8)(2,11,14,5,3,10,15,7), (1,10,5,14,2,9,6,13)(3,11,7,16,4,12,8,15) );
 
Copy content sage:G = PermutationGroup(['(1,12,13,6,4,9,16,8)(2,11,14,5,3,10,15,7)', '(1,10,5,14,2,9,6,13)(3,11,7,16,4,12,8,15)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2265837730384965232541078989955708772450302364447241138862508943959353691200344641582028698788811205648859767460727116113804435216750849439719075677886617823656592489591040,6144)'); a = G.1; b = G.3; c = G.4; d = G.5; e = G.6; f = G.7; g = G.9; h = G.10; i = G.11; j = G.12;
 

Group information

Description:$C_2^6.(C_4\times S_4)$
Order: \(6144\)\(\medspace = 2^{11} \cdot 3 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2^7.(D_4\times S_4)$, of order \(24576\)\(\medspace = 2^{13} \cdot 3 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 11, $C_3$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and monomial (hence solvable).

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12
Elements 1 367 128 2576 896 1152 1024 6144
Conjugacy classes   1 19 1 30 5 3 4 63
Divisions 1 19 1 22 5 2 2 52
Autjugacy classes 1 16 1 15 4 2 1 40

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 2 3 4 6 8 12 16 24
Irr. complex chars.   8 4 8 8 8 8 12 2 5 63
Irr. rational chars. 4 4 4 5 8 8 9 3 7 52

Minimal presentations

Permutation degree:$16$
Transitive degree:$16$
Rank: $2$
Inequivalent generating pairs: $288$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 8 8 8
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j \mid b^{2}=c^{3}=d^{2}=e^{2}=f^{4}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([12, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 24, 37165, 45650, 22982, 142467, 105615, 1947, 230404, 29536, 57988, 24700, 46661, 147761, 37613, 27041, 3077, 479814, 165330, 34302, 17682, 3750, 570, 246, 73735, 62216, 72596, 155552, 62576, 3092, 1376, 23049, 380170, 114070, 32122, 4822, 114059, 290327, 3935, 12167]); a,b,c,d,e,f,g,h,i,j := Explode([G.1, G.3, G.4, G.5, G.6, G.7, G.9, G.10, G.11, G.12]); AssignNames(~G, ["a", "a2", "b", "c", "d", "e", "f", "f2", "g", "h", "i", "j"]);
 
Copy content gap:G := PcGroupCode(2265837730384965232541078989955708772450302364447241138862508943959353691200344641582028698788811205648859767460727116113804435216750849439719075677886617823656592489591040,6144); a := G.1; b := G.3; c := G.4; d := G.5; e := G.6; f := G.7; g := G.9; h := G.10; i := G.11; j := G.12;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2265837730384965232541078989955708772450302364447241138862508943959353691200344641582028698788811205648859767460727116113804435216750849439719075677886617823656592489591040,6144)'); a = G.1; b = G.3; c = G.4; d = G.5; e = G.6; f = G.7; g = G.9; h = G.10; i = G.11; j = G.12;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2265837730384965232541078989955708772450302364447241138862508943959353691200344641582028698788811205648859767460727116113804435216750849439719075677886617823656592489591040,6144)'); a = G.1; b = G.3; c = G.4; d = G.5; e = G.6; f = G.7; g = G.9; h = G.10; i = G.11; j = G.12;
 
Permutation group:Degree $16$ $\langle(1,12,13,6,4,9,16,8)(2,11,14,5,3,10,15,7), (1,10,5,14,2,9,6,13)(3,11,7,16,4,12,8,15)\rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 16 | (1,12,13,6,4,9,16,8)(2,11,14,5,3,10,15,7), (1,10,5,14,2,9,6,13)(3,11,7,16,4,12,8,15) >;
 
Copy content gap:G := Group( (1,12,13,6,4,9,16,8)(2,11,14,5,3,10,15,7), (1,10,5,14,2,9,6,13)(3,11,7,16,4,12,8,15) );
 
Copy content sage:G = PermutationGroup(['(1,12,13,6,4,9,16,8)(2,11,14,5,3,10,15,7)', '(1,10,5,14,2,9,6,13)(3,11,7,16,4,12,8,15)'])
 
Transitive group: 16T1661 16T1667 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: $(C_2^7.S_4)$ $\,\rtimes\,$ $C_2$ $(C_2^6:S_4)$ $\,\rtimes\,$ $C_4$ $(C_2^6.S_4)$ $\,\rtimes\,$ $C_4$ $(C_2^6:C_4)$ $\,\rtimes\,$ $S_4$ all 8
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Non-split product: $(C_2^7:S_4)$ . $C_2$ $C_2^7$ . $(C_2\times S_4)$ $C_2^6$ . $(C_4\times S_4)$ $C_2^4$ . $(C_2\wr S_4)$ all 12

Elements of the group are displayed as permutations of degree 16.

Homology

Abelianization: $C_{2} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{4}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 181542 subgroups in 5724 conjugacy classes, 22 normal, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $C_2^5.(C_4\times S_4)$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_2^6:A_4$ $G/G' \simeq$ $C_2\times C_4$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2^7$ $G/\Phi \simeq$ $C_2\times S_4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2^7.C_2^3$ $G/\operatorname{Fit} \simeq$ $S_3$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_2^6.(C_4\times S_4)$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2$ $G/\operatorname{soc} \simeq$ $C_2^5.(C_4\times S_4)$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $(C_2^2\times D_4^2).D_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3$

Subgroup diagram and profile

Series

Derived series $C_2^6.(C_4\times S_4)$ $\rhd$ $C_2^6:A_4$ $\rhd$ $C_4^2:C_2^4$ $\rhd$ $C_2^2$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_2^6.(C_4\times S_4)$ $\rhd$ $C_2^6.(C_4\times A_4)$ $\rhd$ $C_2^7:A_4$ $\rhd$ $C_2^6:A_4$ $\rhd$ $C_4^2:C_2^4$ $\rhd$ $C_2^6$ $\rhd$ $C_2^4$ $\rhd$ $C_2^2$ $\rhd$ $C_2$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_2^6.(C_4\times S_4)$ $\rhd$ $C_2^6:A_4$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2$ $\lhd$ $C_2^2$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 4 larger groups in the database.

This group is a maximal quotient of 4 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $63 \times 63$ character table. Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $52 \times 52$ rational character table.