/* Group 58320.bb downloaded from the LMFDB on 08 November 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPerm := PermutationGroup< 15 | (10,11,12)(13,14,15), (10,12,11), (7,9,8)(10,11,12), (1,2,3,4,5)(7,10,15,9,11,14,8,12,13), (7,14,11)(8,15,10)(9,13,12), (5,6)(7,10,15,9,11,14,8,12,13) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_58320_bb := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := false, metacyclic := false, monomial := false, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := false, supersolvable := false>; /* Character Table */ G:= GPerm; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 15, G!(5,6)>,< 2, 15, G!(1,2)(3,4)(5,6)>,< 2, 45, G!(2,6)(3,4)>,< 3, 1, G!(7,9,8)(10,11,12)(13,15,14)>,< 3, 1, G!(7,8,9)(10,12,11)(13,14,15)>,< 3, 3, G!(13,15,14)>,< 3, 3, G!(13,14,15)>,< 3, 3, G!(10,12,11)(13,15,14)>,< 3, 3, G!(10,11,12)(13,14,15)>,< 3, 3, G!(10,12,11)(13,14,15)>,< 3, 3, G!(10,11,12)(13,15,14)>,< 3, 3, G!(7,9,8)(10,12,11)(13,15,14)>,< 3, 3, G!(7,8,9)(10,11,12)(13,14,15)>,< 3, 9, G!(7,13,10)(8,14,12)(9,15,11)>,< 3, 9, G!(7,10,13)(8,12,14)(9,11,15)>,< 3, 40, G!(4,6,5)>,< 3, 40, G!(1,3,5)(2,4,6)>,< 3, 40, G!(4,6,5)(7,9,8)(10,11,12)(13,15,14)>,< 3, 40, G!(4,5,6)(7,8,9)(10,12,11)(13,14,15)>,< 3, 40, G!(1,3,5)(2,4,6)(7,9,8)(10,11,12)(13,15,14)>,< 3, 40, G!(1,5,3)(2,6,4)(7,8,9)(10,12,11)(13,14,15)>,< 3, 120, G!(1,5,6)(7,9,8)>,< 3, 120, G!(1,6,5)(7,8,9)>,< 3, 120, G!(1,2,5)(3,4,6)(7,9,8)(13,14,15)>,< 3, 120, G!(1,5,2)(3,6,4)(7,8,9)(13,15,14)>,< 3, 120, G!(1,5,3)(10,12,11)(13,14,15)>,< 3, 120, G!(1,3,5)(10,11,12)(13,15,14)>,< 3, 120, G!(1,2,6)(3,5,4)(7,8,9)(10,11,12)(13,15,14)>,< 3, 120, G!(1,6,2)(3,4,5)(7,9,8)(10,12,11)(13,14,15)>,< 3, 120, G!(1,3,5)(7,8,9)(13,15,14)>,< 3, 120, G!(1,5,3)(7,9,8)(13,14,15)>,< 3, 120, G!(1,4,6)(2,3,5)(7,9,8)>,< 3, 120, G!(1,6,4)(2,5,3)(7,8,9)>,< 3, 120, G!(1,6,3)(7,8,9)(10,11,12)(13,15,14)>,< 3, 120, G!(1,3,6)(7,9,8)(10,12,11)(13,14,15)>,< 3, 120, G!(1,6,2)(3,4,5)(7,8,9)(10,12,11)>,< 3, 120, G!(1,2,6)(3,5,4)(7,9,8)(10,11,12)>,< 3, 360, G!(1,6,5)(2,3,4)(7,10,14)(8,12,15)(9,11,13)>,< 3, 360, G!(1,5,6)(2,4,3)(7,14,10)(8,15,12)(9,13,11)>,< 3, 360, G!(1,2,3)(7,10,14)(8,12,15)(9,11,13)>,< 3, 360, G!(1,3,2)(7,14,10)(8,15,12)(9,13,11)>,< 4, 90, G!(1,5)(2,3,6,4)>,< 4, 90, G!(2,5,6,4)>,< 5, 144, G!(2,6,4,5,3)>,< 6, 15, G!(5,6)(7,8,9)(10,12,11)(13,14,15)>,< 6, 15, G!(5,6)(7,9,8)(10,11,12)(13,15,14)>,< 6, 15, G!(1,2)(3,4)(5,6)(7,8,9)(10,12,11)(13,14,15)>,< 6, 15, G!(1,2)(3,4)(5,6)(7,9,8)(10,11,12)(13,15,14)>,< 6, 45, G!(5,6)(13,14,15)>,< 6, 45, G!(5,6)(13,15,14)>,< 6, 45, G!(5,6)(10,11,12)(13,14,15)>,< 6, 45, G!(5,6)(10,12,11)(13,15,14)>,< 6, 45, G!(5,6)(10,11,12)(13,15,14)>,< 6, 45, G!(5,6)(10,12,11)(13,14,15)>,< 6, 45, G!(5,6)(7,8,9)(10,11,12)(13,14,15)>,< 6, 45, G!(5,6)(7,8,9)(10,11,12)(13,15,14)>,< 6, 45, G!(1,2)(3,4)(5,6)(13,14,15)>,< 6, 45, G!(1,2)(3,4)(5,6)(13,15,14)>,< 6, 45, G!(1,2)(3,4)(5,6)(10,11,12)(13,14,15)>,< 6, 45, G!(1,2)(3,4)(5,6)(10,12,11)(13,15,14)>,< 6, 45, G!(1,2)(3,4)(5,6)(10,11,12)(13,15,14)>,< 6, 45, G!(1,2)(3,4)(5,6)(10,12,11)(13,14,15)>,< 6, 45, G!(1,2)(3,4)(5,6)(7,8,9)(10,11,12)(13,14,15)>,< 6, 45, G!(1,2)(3,4)(5,6)(7,8,9)(10,11,12)(13,15,14)>,< 6, 45, G!(2,6)(3,4)(7,9,8)(10,11,12)(13,15,14)>,< 6, 45, G!(2,6)(3,4)(7,8,9)(10,12,11)(13,14,15)>,< 6, 120, G!(2,3)(4,5,6)>,< 6, 120, G!(1,2,3,4,5,6)>,< 6, 120, G!(2,3)(4,5,6)(7,8,9)(10,12,11)(13,14,15)>,< 6, 120, G!(2,3)(4,5,6)(7,9,8)(10,11,12)(13,15,14)>,< 6, 120, G!(1,2,3,4,5,6)(7,8,9)(10,12,11)(13,14,15)>,< 6, 120, G!(1,2,3,4,5,6)(7,9,8)(10,11,12)(13,15,14)>,< 6, 135, G!(5,6)(7,10,13)(8,12,14)(9,11,15)>,< 6, 135, G!(5,6)(7,13,10)(8,14,12)(9,15,11)>,< 6, 135, G!(1,2)(3,4)(5,6)(7,10,13)(8,12,14)(9,11,15)>,< 6, 135, G!(1,2)(3,4)(5,6)(7,13,10)(8,14,12)(9,15,11)>,< 6, 135, G!(2,6)(4,5)(7,8,9)(10,11,12)(13,14,15)>,< 6, 135, G!(2,6)(4,5)(7,9,8)(10,12,11)(13,15,14)>,< 6, 135, G!(1,3)(4,5)(13,15,14)>,< 6, 135, G!(1,3)(4,5)(13,14,15)>,< 6, 135, G!(1,6)(2,5)(7,8,9)(10,11,12)>,< 6, 135, G!(1,6)(2,5)(7,9,8)(10,12,11)>,< 6, 135, G!(2,6)(4,5)(7,9,8)(13,15,14)>,< 6, 135, G!(2,6)(4,5)(7,8,9)(13,14,15)>,< 6, 360, G!(1,6,5)(2,3)(7,8,9)>,< 6, 360, G!(1,5,6)(2,3)(7,9,8)>,< 6, 360, G!(1,6,2,3,5,4)(7,8,9)(13,15,14)>,< 6, 360, G!(1,4,5,3,2,6)(7,9,8)(13,14,15)>,< 6, 360, G!(1,3,5)(4,6)(10,11,12)(13,15,14)>,< 6, 360, G!(1,5,3)(4,6)(10,12,11)(13,14,15)>,< 6, 360, G!(1,5,2,4,6,3)(7,9,8)(10,12,11)(13,14,15)>,< 6, 360, G!(1,3,6,4,2,5)(7,8,9)(10,11,12)(13,15,14)>,< 6, 360, G!(1,5,3)(2,4)(7,9,8)(13,14,15)>,< 6, 360, G!(1,3,5)(2,4)(7,8,9)(13,15,14)>,< 6, 360, G!(1,3,4,5,6,2)(7,8,9)>,< 6, 360, G!(1,2,6,5,4,3)(7,9,8)>,< 6, 360, G!(1,3,6)(2,4)(7,9,8)(10,12,11)(13,14,15)>,< 6, 360, G!(1,6,3)(2,4)(7,8,9)(10,11,12)(13,15,14)>,< 6, 360, G!(1,4,6,5,2,3)(7,9,8)(10,11,12)>,< 6, 360, G!(1,3,2,5,6,4)(7,8,9)(10,12,11)>,< 6, 405, G!(1,6)(3,4)(7,14,11)(8,15,10)(9,13,12)>,< 6, 405, G!(1,6)(3,4)(7,11,14)(8,10,15)(9,12,13)>,< 6, 1080, G!(1,4,6,2,5,3)(7,14,10)(8,15,12)(9,13,11)>,< 6, 1080, G!(1,3,5,2,6,4)(7,10,14)(8,12,15)(9,11,13)>,< 6, 1080, G!(1,3,2)(5,6)(7,14,10)(8,15,12)(9,13,11)>,< 6, 1080, G!(1,2,3)(5,6)(7,10,14)(8,12,15)(9,11,13)>,< 9, 9, G!(7,13,12,9,15,10,8,14,11)>,< 9, 9, G!(7,11,14,8,10,15,9,12,13)>,< 9, 9, G!(7,13,11,8,14,10,9,15,12)>,< 9, 9, G!(7,12,15,9,10,14,8,11,13)>,< 9, 360, G!(1,5,4)(2,6,3)(7,11,14,9,12,13,8,10,15)>,< 9, 360, G!(1,4,5)(2,3,6)(7,15,10,8,13,12,9,14,11)>,< 9, 360, G!(1,4,3)(7,11,13,9,12,15,8,10,14)>,< 9, 360, G!(1,3,4)(7,14,10,8,15,12,9,13,11)>,< 9, 360, G!(1,3,5)(7,15,12,9,14,10,8,13,11)>,< 9, 360, G!(1,5,3)(7,11,13,8,10,14,9,12,15)>,< 9, 360, G!(1,5,3)(2,4,6)(7,13,11,9,15,12,8,14,10)>,< 9, 360, G!(1,3,5)(2,6,4)(7,10,14,8,12,15,9,11,13)>,< 12, 90, G!(1,5)(2,4,6,3)(7,8,9)(10,12,11)(13,14,15)>,< 12, 90, G!(1,5)(2,3,6,4)(7,9,8)(10,11,12)(13,15,14)>,< 12, 90, G!(2,4,5,3)(7,8,9)(10,12,11)(13,14,15)>,< 12, 90, G!(2,3,5,4)(7,9,8)(10,11,12)(13,15,14)>,< 12, 270, G!(2,4,6,5)(7,9,8)(10,12,11)(13,15,14)>,< 12, 270, G!(2,5,6,4)(7,8,9)(10,11,12)(13,14,15)>,< 12, 270, G!(1,4,3,5)(2,6)(13,14,15)>,< 12, 270, G!(1,5,3,4)(2,6)(13,15,14)>,< 12, 270, G!(1,5,6,2)(7,9,8)(10,12,11)>,< 12, 270, G!(1,2,6,5)(7,8,9)(10,11,12)>,< 12, 270, G!(1,6,3,5)(2,4)(7,8,9)(10,11,12)(13,14,15)>,< 12, 270, G!(1,5,3,6)(2,4)(7,9,8)(10,12,11)(13,15,14)>,< 12, 270, G!(2,5,6,4)(7,8,9)(13,14,15)>,< 12, 270, G!(2,4,6,5)(7,9,8)(13,15,14)>,< 12, 270, G!(1,2)(3,4,5,6)(10,12,11)(13,14,15)>,< 12, 270, G!(1,2)(3,6,5,4)(10,11,12)(13,15,14)>,< 12, 270, G!(1,2,5,6)(3,4)(10,11,12)(13,14,15)>,< 12, 270, G!(1,6,5,2)(3,4)(10,12,11)(13,15,14)>,< 12, 270, G!(1,3,6,2)(7,9,8)>,< 12, 270, G!(1,2,6,3)(7,8,9)>,< 12, 810, G!(1,4,6,3)(7,11,14)(8,10,15)(9,12,13)>,< 12, 810, G!(1,3,6,4)(7,14,11)(8,15,10)(9,13,12)>,< 12, 810, G!(1,4,3,6)(2,5)(7,14,10)(8,15,12)(9,13,11)>,< 12, 810, G!(1,6,3,4)(2,5)(7,10,14)(8,12,15)(9,11,13)>,< 15, 144, G!(1,6,3,4,2)(7,8,9)(10,12,11)(13,14,15)>,< 15, 144, G!(1,2,4,3,6)(7,9,8)(10,11,12)(13,15,14)>,< 15, 432, G!(1,3,4,2,6)(13,14,15)>,< 15, 432, G!(1,6,2,4,3)(13,15,14)>,< 15, 432, G!(1,6,3,2,5)(10,11,12)(13,15,14)>,< 15, 432, G!(1,5,2,3,6)(10,12,11)(13,14,15)>,< 15, 432, G!(1,4,2,6,3)(10,11,12)(13,14,15)>,< 15, 432, G!(1,3,6,2,4)(10,12,11)(13,15,14)>,< 15, 432, G!(1,5,3,6,2)(7,8,9)(10,11,12)(13,15,14)>,< 15, 432, G!(1,2,6,3,5)(7,9,8)(10,12,11)(13,14,15)>,< 15, 1296, G!(2,4,3,6,5)(7,15,10)(8,13,12)(9,14,11)>,< 15, 1296, G!(2,5,6,3,4)(7,10,15)(8,12,13)(9,11,14)>,< 18, 135, G!(5,6)(7,10,13,8,12,14,9,11,15)>,< 18, 135, G!(5,6)(7,13,11,9,15,12,8,14,10)>,< 18, 135, G!(5,6)(7,10,13,9,11,15,8,12,14)>,< 18, 135, G!(5,6)(7,13,12,8,14,11,9,15,10)>,< 18, 135, G!(1,2)(3,4)(5,6)(7,10,13,8,12,14,9,11,15)>,< 18, 135, G!(1,2)(3,4)(5,6)(7,13,11,9,15,12,8,14,10)>,< 18, 135, G!(1,2)(3,4)(5,6)(7,10,13,9,11,15,8,12,14)>,< 18, 135, G!(1,2)(3,4)(5,6)(7,13,12,8,14,11,9,15,10)>,< 18, 405, G!(2,6)(3,4)(7,11,15,9,12,14,8,10,13)>,< 18, 405, G!(2,6)(3,4)(7,13,10,8,14,12,9,15,11)>,< 18, 405, G!(1,4)(2,5)(7,15,10,9,14,11,8,13,12)>,< 18, 405, G!(1,4)(2,5)(7,12,13,8,11,14,9,10,15)>,< 18, 1080, G!(1,3,5,2,4,6)(7,13,11,8,14,10,9,15,12)>,< 18, 1080, G!(1,6,4,2,5,3)(7,12,15,9,10,14,8,11,13)>,< 18, 1080, G!(1,3,4)(2,5)(7,15,11,8,13,10,9,14,12)>,< 18, 1080, G!(1,4,3)(2,5)(7,12,14,9,10,13,8,11,15)>,< 18, 1080, G!(1,5,3)(4,6)(7,10,15,8,12,13,9,11,14)>,< 18, 1080, G!(1,3,5)(4,6)(7,14,11,9,13,12,8,15,10)>,< 18, 1080, G!(1,2,5,4,3,6)(7,12,13,8,11,14,9,10,15)>,< 18, 1080, G!(1,6,3,4,5,2)(7,15,10,9,14,11,8,13,12)>,< 36, 810, G!(1,5)(2,3,6,4)(7,14,11,8,15,10,9,13,12)>,< 36, 810, G!(1,5)(2,4,6,3)(7,12,13,9,10,15,8,11,14)>,< 36, 810, G!(2,3,5,4)(7,14,10,8,15,12,9,13,11)>,< 36, 810, G!(2,4,5,3)(7,11,13,9,12,15,8,10,14)>,< 36, 810, G!(1,2,4,5)(7,11,15,8,10,13,9,12,14)>,< 36, 810, G!(1,5,4,2)(7,14,12,9,13,10,8,15,11)>,< 36, 810, G!(1,4)(2,3,5,6)(7,11,13,8,10,14,9,12,15)>,< 36, 810, G!(1,4)(2,6,5,3)(7,15,12,9,14,10,8,13,11)>,< 45, 1296, G!(1,3,2,6,4)(7,13,11,8,14,10,9,15,12)>,< 45, 1296, G!(1,4,6,2,3)(7,12,15,9,10,14,8,11,13)>,< 45, 1296, G!(1,3,2,6,4)(7,13,11,9,15,12,8,14,10)>,< 45, 1296, G!(1,4,6,2,3)(7,10,14,8,12,15,9,11,13)>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,K.1^-1,1,1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,K.1,K.1,K.1^-1,1,K.1,K.1^-1,1,K.1^-1,K.1,1,K.1,K.1^-1,K.1^-1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1,K.1,1,K.1^-1,K.1^-1,1,K.1^-1,K.1^-1,K.1^-1,1,1,K.1,1,K.1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,1,K.1,K.1,K.1,K.1,K.1^-1,1,K.1,K.1,1,K.1^-1,K.1^-1,K.1,1,K.1,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1,1,1,K.1^-1,1,K.1,1,K.1^-1,1,1,1,1,1,K.1,1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,1,K.1,K.1^-1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1,K.1,K.1^-1,K.1^-1,1,K.1,K.1^-1,1,K.1^-1,K.1,K.1^-1,K.1,1,K.1,1,1,1,K.1^-1,K.1,K.1^-1,1,1,1,1,K.1^-1,K.1^-1,1,K.1,K.1,1,1,1,1,K.1^-1,K.1,K.1^-1,1,K.1,K.1^-1,1,K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,K.1,1,1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,1,1,K.1^-1,K.1^-1,K.1,1,K.1^-1,K.1,1,K.1,K.1^-1,1,K.1^-1,K.1,K.1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,1,K.1,K.1,1,K.1,K.1,K.1,1,1,K.1^-1,1,K.1^-1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1,K.1,1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,1,K.1^-1,K.1^-1,1,K.1,K.1,K.1^-1,1,K.1^-1,1,K.1^-1,K.1,K.1,K.1,K.1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1^-1,1,1,K.1,1,K.1^-1,1,K.1,1,1,1,1,1,K.1^-1,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,1,K.1^-1,K.1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1^-1,K.1^-1,K.1,K.1,1,K.1^-1,K.1,1,K.1,K.1^-1,K.1,K.1^-1,1,K.1^-1,1,1,1,K.1,K.1^-1,K.1,1,1,1,1,K.1,K.1,1,K.1^-1,K.1^-1,1,1,1,1,K.1,K.1^-1,K.1,1,K.1^-1,K.1,1,K.1^-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,K.1^-1,1,1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,1,1,K.1,K.1,K.1^-1,1,K.1,K.1^-1,1,K.1^-1,K.1,1,K.1,K.1^-1,K.1^-1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1,K.1,1,K.1^-1,K.1^-1,1,K.1^-1,K.1^-1,K.1^-1,1,1,K.1,1,K.1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,1,K.1,K.1,1,K.1^-1,K.1^-1,K.1,1,K.1,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1^-1,K.1,1,K.1,K.1,1,K.1^-1,1,K.1^-1,1,1,1,1,1,1,K.1,1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,1,K.1,K.1^-1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1,K.1,K.1^-1,K.1^-1,1,K.1,K.1^-1,1,K.1,K.1^-1,1,1,K.1,1,K.1,K.1^-1,K.1^-1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1,1,1,K.1^-1,K.1^-1,K.1,K.1^-1,1,1,1,K.1,1,1,K.1^-1,1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,K.1,1,1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,1,1,K.1^-1,K.1^-1,K.1,1,K.1^-1,K.1,1,K.1,K.1^-1,1,K.1^-1,K.1,K.1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,1,K.1,K.1,1,K.1,K.1,K.1,1,1,K.1^-1,1,K.1^-1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1,K.1^-1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,1,K.1^-1,K.1^-1,1,K.1,K.1,K.1^-1,1,K.1^-1,1,K.1^-1,K.1,K.1,K.1,K.1,1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1,K.1^-1,1,K.1^-1,K.1^-1,1,K.1,1,K.1,1,1,1,1,1,1,K.1^-1,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,1,K.1^-1,K.1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1^-1,K.1^-1,K.1,K.1,1,K.1^-1,K.1,1,K.1^-1,K.1,1,1,K.1^-1,1,K.1^-1,K.1,K.1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1^-1,1,1,K.1,K.1,K.1^-1,K.1,1,1,1,K.1^-1,1,1,K.1,1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,K.1^-1,1,1,K.1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,1,1,1,1,K.1,K.1,K.1^-1,1,K.1,K.1^-1,1,K.1^-1,K.1,1,K.1,K.1^-1,K.1^-1,1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1,K.1,1,K.1^-1,K.1^-1,1,K.1^-1,K.1^-1,K.1^-1,1,1,K.1,1,K.1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1^-1,1,1,K.1,1,K.1,1,1,1,K.1,K.1,1,K.1^-1,K.1^-1,K.1,1,K.1,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,1,K.1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,1,1,1,1,1,K.1,1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,1,K.1,K.1^-1,1,K.1,K.1^-1,1,1,1,1,1,1,K.1,K.1,K.1^-1,K.1^-1,1,K.1,K.1^-1,1,1,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,K.1,1,1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,1,1,K.1^-1,K.1^-1,K.1,1,K.1^-1,K.1,1,K.1,K.1^-1,1,K.1^-1,K.1,K.1,1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,1,K.1,K.1,1,K.1,K.1,K.1,1,1,K.1^-1,1,K.1^-1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1,1,1,K.1^-1,1,K.1^-1,1,1,1,K.1^-1,K.1^-1,1,K.1,K.1,K.1^-1,1,K.1^-1,1,K.1^-1,K.1,K.1,K.1,K.1,1,K.1^-1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,1,1,1,1,1,K.1^-1,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,1,K.1^-1,K.1,1,K.1^-1,K.1,1,1,1,1,1,1,K.1^-1,K.1^-1,K.1,K.1,1,K.1^-1,K.1,1,1,1,K.1^-1,K.1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,1,1,K.1,1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,1,1,K.1^-1,1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,-1,1,1,1,K.1^-1,1,1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,K.1,K.1,K.1^-1,1,K.1,K.1^-1,1,K.1^-1,K.1,1,K.1,K.1^-1,K.1^-1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,1,-1,1,-1,-1,-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1,-1*K.1^-1,-1*K.1^-1,1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1,1,-1*K.1,-1,-1*K.1,-1,-1,-1,-1,-1,-1,K.1,K.1^-1,K.1^-1,K.1^-1,-1*K.1^-1,1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1^-1,1,-1*K.1,-1*K.1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,1,1,K.1,1,1,K.1^-1,1,K.1,1,K.1^-1,-1,1,1,-1,1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1,K.1,-1*K.1^-1,1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,1,1,K.1,K.1,K.1^-1,K.1^-1,1,K.1,K.1^-1,1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1,-1,-1,-1*K.1^-1,K.1,K.1^-1,1,1,-1,-1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,-1*K.1,-1,1,-1,-1,K.1^-1,K.1,-1*K.1^-1,1,-1*K.1,K.1^-1,1,K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,-1,1,1,1,K.1,1,1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,1,1,K.1^-1,K.1^-1,K.1,1,K.1^-1,K.1,1,K.1,K.1^-1,1,K.1^-1,K.1,K.1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,-1,1,-1,-1,-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,-1*K.1,1,-1*K.1,-1*K.1,-1*K.1,-1,1,-1*K.1^-1,-1,-1*K.1^-1,-1,-1,-1,-1,-1,-1,K.1^-1,K.1,K.1,K.1,-1*K.1,1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,1,1,K.1^-1,1,1,K.1,1,K.1^-1,1,K.1,-1,1,1,-1,1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,K.1,-1*K.1,-1,K.1^-1,-1*K.1,1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,1,1,K.1^-1,K.1^-1,K.1,K.1,1,K.1^-1,K.1,1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1,-1,-1,-1*K.1,K.1^-1,K.1,1,1,-1,-1,-1*K.1,-1*K.1,-1,-1*K.1^-1,-1*K.1^-1,-1,1,-1,-1,K.1,K.1^-1,-1*K.1,1,-1*K.1^-1,K.1,1,K.1^-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,-1,1,1,1,K.1^-1,1,1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,1,1,K.1,K.1,K.1^-1,1,K.1,K.1^-1,1,K.1^-1,K.1,1,K.1,K.1^-1,K.1^-1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,1,-1,1,-1,-1,-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1,-1*K.1^-1,-1*K.1^-1,1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1,1,-1*K.1,-1,-1*K.1,-1,-1,-1,-1,-1,-1,K.1,K.1^-1,K.1^-1,K.1^-1,-1*K.1,1,K.1,-1*K.1^-1,K.1,-1*K.1^-1,-1*K.1,1,-1*K.1,-1*K.1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,1,1,K.1^-1,K.1,1,K.1,K.1,1,K.1^-1,1,K.1^-1,1,-1,1,1,-1,1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1,K.1,-1*K.1^-1,1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,1,1,K.1,K.1,K.1^-1,K.1^-1,1,K.1,K.1^-1,1,K.1,K.1^-1,-1,-1,-1*K.1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1,1,1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1,-1,-1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,1,1,-1,K.1,-1,1,K.1^-1,1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,-1,1,1,1,K.1,1,1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,1,1,K.1^-1,K.1^-1,K.1,1,K.1^-1,K.1,1,K.1,K.1^-1,1,K.1^-1,K.1,K.1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,-1,1,-1,-1,-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,-1*K.1,1,-1*K.1,-1*K.1,-1*K.1,-1,1,-1*K.1^-1,-1,-1*K.1^-1,-1,-1,-1,-1,-1,-1,K.1^-1,K.1,K.1,K.1,-1*K.1^-1,1,K.1^-1,-1*K.1,K.1^-1,-1*K.1,-1*K.1^-1,1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1,-1*K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,1,1,K.1,K.1^-1,1,K.1^-1,K.1^-1,1,K.1,1,K.1,1,-1,1,1,-1,1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,K.1,-1*K.1,-1,K.1^-1,-1*K.1,1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,1,1,K.1^-1,K.1^-1,K.1,K.1,1,K.1^-1,K.1,1,K.1^-1,K.1,-1,-1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1,1,1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1^-1,-1,-1,-1*K.1,K.1,-1*K.1^-1,-1*K.1,1,1,-1,K.1^-1,-1,1,K.1,1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,-1,1,1,1,K.1^-1,1,1,K.1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,1,1,1,1,K.1,K.1,K.1^-1,1,K.1,K.1^-1,1,K.1^-1,K.1,1,K.1,K.1^-1,K.1^-1,1,K.1^-1,K.1,1,1,1,1,1,-1,1,-1,-1,-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1,-1*K.1^-1,-1*K.1^-1,1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1,1,-1*K.1,-1,-1*K.1,-1,-1,-1,-1,-1,-1,K.1,K.1^-1,K.1^-1,K.1^-1,-1,1,K.1,-1,K.1,-1,-1,1,-1*K.1,-1*K.1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,1,1,-1,-1,-1,-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,-1,1,1,-1,1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1,K.1,-1*K.1^-1,1,K.1,K.1^-1,-1,-1,1,1,1,1,K.1,K.1,K.1^-1,K.1^-1,1,K.1,K.1^-1,1,1,1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,K.1,K.1,K.1^-1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,-1,1,1,1,K.1,1,1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,1,1,K.1^-1,K.1^-1,K.1,1,K.1^-1,K.1,1,K.1,K.1^-1,1,K.1^-1,K.1,K.1,1,K.1,K.1^-1,1,1,1,1,1,-1,1,-1,-1,-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,-1*K.1,1,-1*K.1,-1*K.1,-1*K.1,-1,1,-1*K.1^-1,-1,-1*K.1^-1,-1,-1,-1,-1,-1,-1,K.1^-1,K.1,K.1,K.1,-1,1,K.1^-1,-1,K.1^-1,-1,-1,1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1,-1*K.1^-1,1,1,-1,-1,-1,-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,-1,1,1,-1,1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,K.1,-1*K.1,-1,K.1^-1,-1*K.1,1,K.1^-1,K.1,-1,-1,1,1,1,1,K.1^-1,K.1^-1,K.1,K.1,1,K.1^-1,K.1,1,1,1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,-1*K.1^-1,K.1,-1*K.1,K.1^-1,K.1^-1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1*K.1^-1,1,1,-1*K.1,1,-1*K.1,-1*K.1^-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1,-1,1,1,1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,K.1,-1*K.1^-1,K.1,K.1^-1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1*K.1,1,1,-1*K.1^-1,1,-1*K.1^-1,-1*K.1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1,-1,1,1,1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,K.1^-1,-1*K.1,K.1^-1,K.1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,3,3,0,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,3,3,3,3,3,3,0,0,0,3*K.1^-1,0,0,3*K.1,0,0,3*K.1^-1,0,0,0,3*K.1,0,0,0,0,0,0,3,3,3,3,3,3,3,3*K.1^-1,0,0,0,0,0,3*K.1,0,0,3,0,0,0,3*K.1^-1,3,0,3*K.1,0,3,3,3,3,3,3,0,0,0,0,0,3*K.1,0,0,0,0,0,3*K.1^-1,0,0,3*K.1,0,0,0,3*K.1^-1,0,3*K.1^-1,0,0,0,0,0,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3*K.1,0,3*K.1^-1,0,0,0,0,0,0,0,3*K.1,0,0,3*K.1^-1,0,0,0,0,0,0,3,3,0,0,0,0,3*K.1,0,0,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,3,3,0,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,3,3,3,3,3,3,0,0,0,3*K.1,0,0,3*K.1^-1,0,0,3*K.1,0,0,0,3*K.1^-1,0,0,0,0,0,0,3,3,3,3,3,3,3,3*K.1,0,0,0,0,0,3*K.1^-1,0,0,3,0,0,0,3*K.1,3,0,3*K.1^-1,0,3,3,3,3,3,3,0,0,0,0,0,3*K.1^-1,0,0,0,0,0,3*K.1,0,0,3*K.1^-1,0,0,0,3*K.1,0,3*K.1,0,0,0,0,0,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3*K.1^-1,0,3*K.1,0,0,0,0,0,0,0,3*K.1^-1,0,0,3*K.1,0,0,0,0,0,0,3,3,0,0,0,0,3*K.1^-1,0,0,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,3*K.1^-1,3*K.1,-2-K.1,0,0,-1-2*K.1,1+2*K.1,-1+K.1,2+K.1,1-K.1,0,0,3*K.1^-1,3*K.1^-1,3*K.1,3,3*K.1,3,-1-2*K.1,2+K.1,-2-K.1,0,-1+K.1,1+2*K.1,0,-2-K.1,-1-2*K.1,0,-1+K.1,1-K.1,1+2*K.1,0,1-K.1,2+K.1,0,0,0,0,3,3,3,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,0,1-K.1,-1-2*K.1,-1-2*K.1,2+K.1,-1+K.1,0,1+2*K.1,-2-K.1,3*K.1^-1,1+2*K.1,-2-K.1,1-K.1,0,3*K.1,-1+K.1,0,2+K.1,3,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3,2+K.1,1+2*K.1,-2-K.1,1-K.1,0,0,-1-2*K.1,0,-1+K.1,0,0,0,2+K.1,-1+K.1,0,-2-K.1,1-K.1,-1+K.1,0,-1-2*K.1,0,2+K.1,-2-K.1,1+2*K.1,1+2*K.1,1-K.1,0,-1-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1,0,-1+K.1,0,1+2*K.1,2+K.1,-1-2*K.1,-1+K.1,1+2*K.1,-2-K.1,-2-K.1,0,-1-2*K.1,1-K.1,0,2+K.1,1-K.1,0,0,0,0,3*K.1,3*K.1^-1,2+K.1,-1-2*K.1,1-K.1,1+2*K.1,0,-1+K.1,-2-K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,3*K.1,3*K.1^-1,-1+K.1,0,0,1+2*K.1,-1-2*K.1,-2-K.1,1-K.1,2+K.1,0,0,3*K.1,3*K.1,3*K.1^-1,3,3*K.1^-1,3,1+2*K.1,1-K.1,-1+K.1,0,-2-K.1,-1-2*K.1,0,-1+K.1,1+2*K.1,0,-2-K.1,2+K.1,-1-2*K.1,0,2+K.1,1-K.1,0,0,0,0,3,3,3,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,0,2+K.1,1+2*K.1,1+2*K.1,1-K.1,-2-K.1,0,-1-2*K.1,-1+K.1,3*K.1,-1-2*K.1,-1+K.1,2+K.1,0,3*K.1^-1,-2-K.1,0,1-K.1,3,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3,1-K.1,-1-2*K.1,-1+K.1,2+K.1,0,0,1+2*K.1,0,-2-K.1,0,0,0,1-K.1,-2-K.1,0,-1+K.1,2+K.1,-2-K.1,0,1+2*K.1,0,1-K.1,-1+K.1,-1-2*K.1,-1-2*K.1,2+K.1,0,1+2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1,3*K.1,3*K.1^-1,3*K.1^-1,0,-2-K.1,0,-1-2*K.1,1-K.1,1+2*K.1,-2-K.1,-1-2*K.1,-1+K.1,-1+K.1,0,1+2*K.1,2+K.1,0,1-K.1,2+K.1,0,0,0,0,3*K.1^-1,3*K.1,1-K.1,1+2*K.1,2+K.1,-1-2*K.1,0,-2-K.1,-1+K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,3*K.1^-1,3*K.1,1+2*K.1,0,0,2+K.1,1-K.1,-1-2*K.1,-1+K.1,-2-K.1,0,0,3*K.1^-1,3*K.1^-1,3*K.1,3,3*K.1,3,2+K.1,-1+K.1,1+2*K.1,0,-1-2*K.1,1-K.1,0,1+2*K.1,2+K.1,0,-1-2*K.1,-2-K.1,1-K.1,0,-2-K.1,-1+K.1,0,0,0,0,3,3,3,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,0,-2-K.1,2+K.1,2+K.1,-1+K.1,-1-2*K.1,0,1-K.1,1+2*K.1,3*K.1^-1,1-K.1,1+2*K.1,-2-K.1,0,3*K.1,-1-2*K.1,0,-1+K.1,3,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3,-1+K.1,1-K.1,1+2*K.1,-2-K.1,0,0,2+K.1,0,-1-2*K.1,0,0,0,-1+K.1,-1-2*K.1,0,1+2*K.1,-2-K.1,-1-2*K.1,0,2+K.1,0,-1+K.1,1+2*K.1,1-K.1,1-K.1,-2-K.1,0,2+K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1,0,-1-2*K.1,0,1-K.1,-1+K.1,2+K.1,-1-2*K.1,1-K.1,1+2*K.1,1+2*K.1,0,2+K.1,-2-K.1,0,-1+K.1,-2-K.1,0,0,0,0,3*K.1,3*K.1^-1,-1+K.1,2+K.1,-2-K.1,1-K.1,0,-1-2*K.1,1+2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,3*K.1,3*K.1^-1,-1-2*K.1,0,0,1-K.1,2+K.1,1+2*K.1,-2-K.1,-1+K.1,0,0,3*K.1,3*K.1,3*K.1^-1,3,3*K.1^-1,3,1-K.1,-2-K.1,-1-2*K.1,0,1+2*K.1,2+K.1,0,-1-2*K.1,1-K.1,0,1+2*K.1,-1+K.1,2+K.1,0,-1+K.1,-2-K.1,0,0,0,0,3,3,3,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,0,-1+K.1,1-K.1,1-K.1,-2-K.1,1+2*K.1,0,2+K.1,-1-2*K.1,3*K.1,2+K.1,-1-2*K.1,-1+K.1,0,3*K.1^-1,1+2*K.1,0,-2-K.1,3,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3,-2-K.1,2+K.1,-1-2*K.1,-1+K.1,0,0,1-K.1,0,1+2*K.1,0,0,0,-2-K.1,1+2*K.1,0,-1-2*K.1,-1+K.1,1+2*K.1,0,1-K.1,0,-2-K.1,-1-2*K.1,2+K.1,2+K.1,-1+K.1,0,1-K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1,3*K.1,3*K.1^-1,3*K.1^-1,0,1+2*K.1,0,2+K.1,-2-K.1,1-K.1,1+2*K.1,2+K.1,-1-2*K.1,-1-2*K.1,0,1-K.1,-1+K.1,0,-2-K.1,-1+K.1,0,0,0,0,3*K.1^-1,3*K.1,-2-K.1,1-K.1,-1+K.1,2+K.1,0,1+2*K.1,-1-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,3*K.1^-1,3*K.1,1-K.1,0,0,-1+K.1,-2-K.1,2+K.1,-1-2*K.1,1+2*K.1,0,0,3*K.1^-1,3*K.1^-1,3*K.1,3,3*K.1,3,-1+K.1,-1-2*K.1,1-K.1,0,2+K.1,-2-K.1,0,1-K.1,-1+K.1,0,2+K.1,1+2*K.1,-2-K.1,0,1+2*K.1,-1-2*K.1,0,0,0,0,3,3,3,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,0,1+2*K.1,-1+K.1,-1+K.1,-1-2*K.1,2+K.1,0,-2-K.1,1-K.1,3*K.1^-1,-2-K.1,1-K.1,1+2*K.1,0,3*K.1,2+K.1,0,-1-2*K.1,3,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3,-1-2*K.1,-2-K.1,1-K.1,1+2*K.1,0,0,-1+K.1,0,2+K.1,0,0,0,-1-2*K.1,2+K.1,0,1-K.1,1+2*K.1,2+K.1,0,-1+K.1,0,-1-2*K.1,1-K.1,-2-K.1,-2-K.1,1+2*K.1,0,-1+K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1,0,2+K.1,0,-2-K.1,-1-2*K.1,-1+K.1,2+K.1,-2-K.1,1-K.1,1-K.1,0,-1+K.1,1+2*K.1,0,-1-2*K.1,1+2*K.1,0,0,0,0,3*K.1,3*K.1^-1,-1-2*K.1,-1+K.1,1+2*K.1,-2-K.1,0,2+K.1,1-K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,3*K.1,3*K.1^-1,2+K.1,0,0,-2-K.1,-1+K.1,1-K.1,1+2*K.1,-1-2*K.1,0,0,3*K.1,3*K.1,3*K.1^-1,3,3*K.1^-1,3,-2-K.1,1+2*K.1,2+K.1,0,1-K.1,-1+K.1,0,2+K.1,-2-K.1,0,1-K.1,-1-2*K.1,-1+K.1,0,-1-2*K.1,1+2*K.1,0,0,0,0,3,3,3,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,0,-1-2*K.1,-2-K.1,-2-K.1,1+2*K.1,1-K.1,0,-1+K.1,2+K.1,3*K.1,-1+K.1,2+K.1,-1-2*K.1,0,3*K.1^-1,1-K.1,0,1+2*K.1,3,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3,1+2*K.1,-1+K.1,2+K.1,-1-2*K.1,0,0,-2-K.1,0,1-K.1,0,0,0,1+2*K.1,1-K.1,0,2+K.1,-1-2*K.1,1-K.1,0,-2-K.1,0,1+2*K.1,2+K.1,-1+K.1,-1+K.1,-1-2*K.1,0,-2-K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1,3*K.1,3*K.1^-1,3*K.1^-1,0,1-K.1,0,-1+K.1,1+2*K.1,-2-K.1,1-K.1,-1+K.1,2+K.1,2+K.1,0,-2-K.1,-1-2*K.1,0,1+2*K.1,-1-2*K.1,0,0,0,0,3*K.1^-1,3*K.1,1+2*K.1,-2-K.1,-1-2*K.1,-1+K.1,0,1-K.1,2+K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,-3,-3,3,3,3,0,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,3,3,3,3,3,3,0,0,0,3*K.1^-1,0,0,3*K.1,0,0,3*K.1^-1,0,0,0,3*K.1,0,0,0,0,0,0,3,-3,3,-3,-3,-3,-3,-3*K.1^-1,0,0,0,0,0,-3*K.1,0,0,3,0,0,0,-3*K.1^-1,3,0,-3*K.1,0,-3,-3,-3,-3,-3,-3,0,0,0,0,0,3*K.1,0,0,0,0,0,3*K.1^-1,0,0,-3*K.1,0,0,0,-3*K.1^-1,0,-3*K.1^-1,0,0,0,0,0,-3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3,3,-3,3*K.1,0,-3*K.1^-1,0,0,0,0,0,0,0,-3*K.1,0,0,3*K.1^-1,0,0,0,0,0,0,3,3,0,0,0,0,3*K.1,0,0,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,-3,-3,3,3,3,0,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,3,3,3,3,3,3,0,0,0,3*K.1,0,0,3*K.1^-1,0,0,3*K.1,0,0,0,3*K.1^-1,0,0,0,0,0,0,3,-3,3,-3,-3,-3,-3,-3*K.1,0,0,0,0,0,-3*K.1^-1,0,0,3,0,0,0,-3*K.1,3,0,-3*K.1^-1,0,-3,-3,-3,-3,-3,-3,0,0,0,0,0,3*K.1^-1,0,0,0,0,0,3*K.1,0,0,-3*K.1^-1,0,0,0,-3*K.1,0,-3*K.1,0,0,0,0,0,-3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3,3,-3,3*K.1^-1,0,-3*K.1,0,0,0,0,0,0,0,-3*K.1^-1,0,0,3*K.1,0,0,0,0,0,0,3,3,0,0,0,0,3*K.1^-1,0,0,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,-3,-3,3,3*K.1^-1,3*K.1,-2-K.1,0,0,-1-2*K.1,1+2*K.1,-1+K.1,2+K.1,1-K.1,0,0,3*K.1^-1,3*K.1^-1,3*K.1,3,3*K.1,3,-1-2*K.1,2+K.1,-2-K.1,0,-1+K.1,1+2*K.1,0,-2-K.1,-1-2*K.1,0,-1+K.1,1-K.1,1+2*K.1,0,1-K.1,2+K.1,0,0,0,0,3,-3,3,-3*K.1,-3*K.1^-1,-3*K.1,-3*K.1^-1,0,-1+K.1,1+2*K.1,1+2*K.1,-2-K.1,1-K.1,0,-1-2*K.1,2+K.1,3*K.1^-1,-1-2*K.1,2+K.1,-1+K.1,0,3*K.1,1-K.1,0,-2-K.1,-3,-3*K.1^-1,-3*K.1,-3*K.1,-3*K.1^-1,-3,2+K.1,1+2*K.1,-2-K.1,1-K.1,0,0,-1-2*K.1,0,-1+K.1,0,0,0,-2-K.1,1-K.1,0,2+K.1,-1+K.1,1-K.1,0,1+2*K.1,0,-2-K.1,2+K.1,-1-2*K.1,-1-2*K.1,-1+K.1,0,1+2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1^-1,3*K.1^-1,3*K.1,-3*K.1,0,1-K.1,0,-1-2*K.1,-2-K.1,1+2*K.1,-1+K.1,1+2*K.1,-2-K.1,2+K.1,0,-1-2*K.1,-1+K.1,0,2+K.1,1-K.1,0,0,0,0,3*K.1,3*K.1^-1,2+K.1,-1-2*K.1,1-K.1,1+2*K.1,0,-1+K.1,-2-K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,-3,-3,3,3*K.1,3*K.1^-1,-1+K.1,0,0,1+2*K.1,-1-2*K.1,-2-K.1,1-K.1,2+K.1,0,0,3*K.1,3*K.1,3*K.1^-1,3,3*K.1^-1,3,1+2*K.1,1-K.1,-1+K.1,0,-2-K.1,-1-2*K.1,0,-1+K.1,1+2*K.1,0,-2-K.1,2+K.1,-1-2*K.1,0,2+K.1,1-K.1,0,0,0,0,3,-3,3,-3*K.1^-1,-3*K.1,-3*K.1^-1,-3*K.1,0,-2-K.1,-1-2*K.1,-1-2*K.1,-1+K.1,2+K.1,0,1+2*K.1,1-K.1,3*K.1,1+2*K.1,1-K.1,-2-K.1,0,3*K.1^-1,2+K.1,0,-1+K.1,-3,-3*K.1,-3*K.1^-1,-3*K.1^-1,-3*K.1,-3,1-K.1,-1-2*K.1,-1+K.1,2+K.1,0,0,1+2*K.1,0,-2-K.1,0,0,0,-1+K.1,2+K.1,0,1-K.1,-2-K.1,2+K.1,0,-1-2*K.1,0,-1+K.1,1-K.1,1+2*K.1,1+2*K.1,-2-K.1,0,-1-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1,3*K.1,3*K.1^-1,-3*K.1^-1,0,2+K.1,0,1+2*K.1,-1+K.1,-1-2*K.1,-2-K.1,-1-2*K.1,-1+K.1,1-K.1,0,1+2*K.1,-2-K.1,0,1-K.1,2+K.1,0,0,0,0,3*K.1^-1,3*K.1,1-K.1,1+2*K.1,2+K.1,-1-2*K.1,0,-2-K.1,-1+K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,-3,-3,3,3*K.1^-1,3*K.1,1+2*K.1,0,0,2+K.1,1-K.1,-1-2*K.1,-1+K.1,-2-K.1,0,0,3*K.1^-1,3*K.1^-1,3*K.1,3,3*K.1,3,2+K.1,-1+K.1,1+2*K.1,0,-1-2*K.1,1-K.1,0,1+2*K.1,2+K.1,0,-1-2*K.1,-2-K.1,1-K.1,0,-2-K.1,-1+K.1,0,0,0,0,3,-3,3,-3*K.1,-3*K.1^-1,-3*K.1,-3*K.1^-1,0,2+K.1,-2-K.1,-2-K.1,1-K.1,1+2*K.1,0,-1+K.1,-1-2*K.1,3*K.1^-1,-1+K.1,-1-2*K.1,2+K.1,0,3*K.1,1+2*K.1,0,1-K.1,-3,-3*K.1^-1,-3*K.1,-3*K.1,-3*K.1^-1,-3,-1+K.1,1-K.1,1+2*K.1,-2-K.1,0,0,2+K.1,0,-1-2*K.1,0,0,0,1-K.1,1+2*K.1,0,-1-2*K.1,2+K.1,1+2*K.1,0,-2-K.1,0,1-K.1,-1-2*K.1,-1+K.1,-1+K.1,2+K.1,0,-2-K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1^-1,3*K.1^-1,3*K.1,-3*K.1,0,1+2*K.1,0,-1+K.1,1-K.1,-2-K.1,-1-2*K.1,1-K.1,1+2*K.1,-1-2*K.1,0,2+K.1,2+K.1,0,-1+K.1,-2-K.1,0,0,0,0,3*K.1,3*K.1^-1,-1+K.1,2+K.1,-2-K.1,1-K.1,0,-1-2*K.1,1+2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,-3,-3,3,3*K.1,3*K.1^-1,-1-2*K.1,0,0,1-K.1,2+K.1,1+2*K.1,-2-K.1,-1+K.1,0,0,3*K.1,3*K.1,3*K.1^-1,3,3*K.1^-1,3,1-K.1,-2-K.1,-1-2*K.1,0,1+2*K.1,2+K.1,0,-1-2*K.1,1-K.1,0,1+2*K.1,-1+K.1,2+K.1,0,-1+K.1,-2-K.1,0,0,0,0,3,-3,3,-3*K.1^-1,-3*K.1,-3*K.1^-1,-3*K.1,0,1-K.1,-1+K.1,-1+K.1,2+K.1,-1-2*K.1,0,-2-K.1,1+2*K.1,3*K.1,-2-K.1,1+2*K.1,1-K.1,0,3*K.1^-1,-1-2*K.1,0,2+K.1,-3,-3*K.1,-3*K.1^-1,-3*K.1^-1,-3*K.1,-3,-2-K.1,2+K.1,-1-2*K.1,-1+K.1,0,0,1-K.1,0,1+2*K.1,0,0,0,2+K.1,-1-2*K.1,0,1+2*K.1,1-K.1,-1-2*K.1,0,-1+K.1,0,2+K.1,1+2*K.1,-2-K.1,-2-K.1,1-K.1,0,-1+K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1,3*K.1,3*K.1^-1,-3*K.1^-1,0,-1-2*K.1,0,-2-K.1,2+K.1,-1+K.1,1+2*K.1,2+K.1,-1-2*K.1,1+2*K.1,0,1-K.1,1-K.1,0,-2-K.1,-1+K.1,0,0,0,0,3*K.1^-1,3*K.1,-2-K.1,1-K.1,-1+K.1,2+K.1,0,1+2*K.1,-1-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,-3,-3,3,3*K.1^-1,3*K.1,1-K.1,0,0,-1+K.1,-2-K.1,2+K.1,-1-2*K.1,1+2*K.1,0,0,3*K.1^-1,3*K.1^-1,3*K.1,3,3*K.1,3,-1+K.1,-1-2*K.1,1-K.1,0,2+K.1,-2-K.1,0,1-K.1,-1+K.1,0,2+K.1,1+2*K.1,-2-K.1,0,1+2*K.1,-1-2*K.1,0,0,0,0,3,-3,3,-3*K.1,-3*K.1^-1,-3*K.1,-3*K.1^-1,0,-1-2*K.1,1-K.1,1-K.1,1+2*K.1,-2-K.1,0,2+K.1,-1+K.1,3*K.1^-1,2+K.1,-1+K.1,-1-2*K.1,0,3*K.1,-2-K.1,0,1+2*K.1,-3,-3*K.1^-1,-3*K.1,-3*K.1,-3*K.1^-1,-3,-1-2*K.1,-2-K.1,1-K.1,1+2*K.1,0,0,-1+K.1,0,2+K.1,0,0,0,1+2*K.1,-2-K.1,0,-1+K.1,-1-2*K.1,-2-K.1,0,1-K.1,0,1+2*K.1,-1+K.1,2+K.1,2+K.1,-1-2*K.1,0,1-K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1^-1,3*K.1^-1,3*K.1,-3*K.1,0,-2-K.1,0,2+K.1,1+2*K.1,1-K.1,2+K.1,-2-K.1,1-K.1,-1+K.1,0,-1+K.1,-1-2*K.1,0,-1-2*K.1,1+2*K.1,0,0,0,0,3*K.1,3*K.1^-1,-1-2*K.1,-1+K.1,1+2*K.1,-2-K.1,0,2+K.1,1-K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,-3,-3,3,3*K.1,3*K.1^-1,2+K.1,0,0,-2-K.1,-1+K.1,1-K.1,1+2*K.1,-1-2*K.1,0,0,3*K.1,3*K.1,3*K.1^-1,3,3*K.1^-1,3,-2-K.1,1+2*K.1,2+K.1,0,1-K.1,-1+K.1,0,2+K.1,-2-K.1,0,1-K.1,-1-2*K.1,-1+K.1,0,-1-2*K.1,1+2*K.1,0,0,0,0,3,-3,3,-3*K.1^-1,-3*K.1,-3*K.1^-1,-3*K.1,0,1+2*K.1,2+K.1,2+K.1,-1-2*K.1,-1+K.1,0,1-K.1,-2-K.1,3*K.1,1-K.1,-2-K.1,1+2*K.1,0,3*K.1^-1,-1+K.1,0,-1-2*K.1,-3,-3*K.1,-3*K.1^-1,-3*K.1^-1,-3*K.1,-3,1+2*K.1,-1+K.1,2+K.1,-1-2*K.1,0,0,-2-K.1,0,1-K.1,0,0,0,-1-2*K.1,-1+K.1,0,-2-K.1,1+2*K.1,-1+K.1,0,2+K.1,0,-1-2*K.1,-2-K.1,1-K.1,1-K.1,1+2*K.1,0,2+K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1,3*K.1,3*K.1^-1,-3*K.1^-1,0,-1+K.1,0,1-K.1,-1-2*K.1,2+K.1,1-K.1,-1+K.1,2+K.1,-2-K.1,0,-2-K.1,1+2*K.1,0,1+2*K.1,-1-2*K.1,0,0,0,0,3*K.1^-1,3*K.1,1+2*K.1,-2-K.1,-1-2*K.1,-1+K.1,0,1-K.1,2+K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[5, -1, 3, 1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2, -1, 2, -1, -1, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, -1, -1, 2, -1, 2, -1, -1, 1, 0, -1, -1, 3, 3, 3, -1, 3, -1, -1, 3, -1, 3, -1, 1, -1, 3, 3, -1, 1, -1, 3, 3, -1, -1, 0, -1, 0, 0, 1, 1, 1, 1, 3, 1, 1, 3, 1, -1, -1, 1, 0, 0, 0, -1, 0, -1, -1, 0, 0, -1, 0, -1, 0, -1, -1, -1, 1, 1, -1, -1, 0, 0, 5, 5, 5, 5, 2, 2, -1, -1, -1, -1, 2, 2, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 3, 3, 3, -1, 3, 1, 1, 1, 1, 0, -1, -1, 0, 0, 0, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[5, 3, -1, 1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, -1, 2, -1, 2, 2, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, 2, 2, -1, 2, -1, 2, -1, 1, 0, 3, 3, -1, -1, -1, 3, -1, 3, 3, -1, 3, -1, 3, 1, 3, -1, -1, 3, 1, 3, -1, -1, 0, 0, -1, 0, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 3, 3, 1, -1, -1, -1, 0, -1, 0, 0, -1, -1, 0, -1, 0, -1, 0, 0, 0, 1, 1, 0, 0, -1, -1, 5, 5, 5, 5, -1, -1, 2, 2, 2, 2, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, -1, -1, -1, 3, -1, 1, 1, 1, 1, -1, 0, 0, -1, -1, -1, 0, 0, -1, 1, 1, -1, -1, 1, -1, 1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[5, -3, 1, 1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, -1, 2, -1, 2, 2, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, 2, 2, -1, 2, -1, 2, -1, -1, 0, -3, -3, 1, 1, 1, -3, 1, -3, -3, 1, -3, 1, -3, 1, -3, 1, 1, -3, 1, -3, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -3, -3, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 5, 5, 5, 5, -1, -1, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, 1, 1, 1, -3, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[5, 1, -3, 1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2, -1, 2, -1, -1, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, -1, -1, 2, -1, 2, -1, -1, -1, 0, 1, 1, -3, -3, -3, 1, -3, 1, 1, -3, 1, -3, 1, 1, 1, -3, -3, 1, 1, 1, -3, -3, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, -3, 1, 1, -3, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 5, 5, 5, 5, 2, 2, -1, -1, -1, -1, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, -3, -3, -3, 1, -3, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,-1,3,1,5,5,5*K.1^-1,5,5,5*K.1,5*K.1^-1,5*K.1,5*K.1,5*K.1^-1,5*K.1^-1,5*K.1,2,-1,2,-1,-1,2,2*K.1,2*K.1,2*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,2,2*K.1,2*K.1^-1,2*K.1^-1,2,-1*K.1^-1,-1*K.1,2*K.1^-1,-1*K.1,2*K.1,-1*K.1^-1,-1,1,0,-1,-1,3,3,3,-1*K.1^-1,3*K.1,-1*K.1,-1*K.1,3*K.1,-1,3*K.1^-1,-1*K.1^-1,1,-1*K.1^-1,3*K.1^-1,3*K.1^-1,-1,1,-1*K.1,3,3*K.1,-1,-1,0,-1,0,0,K.1,K.1^-1,K.1^-1,K.1^-1,3*K.1^-1,1,K.1,3*K.1,K.1,-1*K.1,-1*K.1^-1,1,0,0,0,-1*K.1^-1,0,-1*K.1,-1,0,0,-1*K.1,0,-1*K.1^-1,0,-1*K.1^-1,-1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,0,0,5*K.1,5*K.1^-1,5,5,2*K.1,2,-1,-1*K.1^-1,-1,-1*K.1,2,2*K.1^-1,1,-1,-1,1,-1,K.1,1,K.1^-1,K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,1,-1*K.1,K.1^-1,-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1,3*K.1,3,3,-1,3*K.1^-1,K.1,K.1^-1,1,1,0,-1,-1*K.1^-1,0,0,0,-1*K.1,-1,-1,1,1,-1*K.1^-1,-1*K.1,K.1^-1,-1,K.1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,-1,3,1,5,5,5*K.1,5,5,5*K.1^-1,5*K.1,5*K.1^-1,5*K.1^-1,5*K.1,5*K.1,5*K.1^-1,2,-1,2,-1,-1,2,2*K.1^-1,2*K.1^-1,2*K.1,-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1*K.1^-1,2,2*K.1^-1,2*K.1,2*K.1,2,-1*K.1,-1*K.1^-1,2*K.1,-1*K.1^-1,2*K.1^-1,-1*K.1,-1,1,0,-1,-1,3,3,3,-1*K.1,3*K.1^-1,-1*K.1^-1,-1*K.1^-1,3*K.1^-1,-1,3*K.1,-1*K.1,1,-1*K.1,3*K.1,3*K.1,-1,1,-1*K.1^-1,3,3*K.1^-1,-1,-1,0,-1,0,0,K.1^-1,K.1,K.1,K.1,3*K.1,1,K.1^-1,3*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,1,0,0,0,-1*K.1,0,-1*K.1^-1,-1,0,0,-1*K.1^-1,0,-1*K.1,0,-1*K.1,-1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,0,0,5*K.1^-1,5*K.1,5,5,2*K.1^-1,2,-1,-1*K.1,-1,-1*K.1^-1,2,2*K.1,1,-1,-1,1,-1,K.1^-1,1,K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,1,-1*K.1^-1,K.1,-1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1,3*K.1^-1,3,3,-1,3*K.1,K.1^-1,K.1,1,1,0,-1,-1*K.1,0,0,0,-1*K.1^-1,-1,-1,1,1,-1*K.1,-1*K.1^-1,K.1,-1,K.1^-1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,-1,3,1,5,5,5*K.1^-1,5,5,5*K.1,5*K.1^-1,5*K.1,5*K.1,5*K.1^-1,5*K.1,5*K.1^-1,2,-1,2,-1,-1,2,2*K.1,2*K.1,2*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,2,2*K.1,2*K.1^-1,2*K.1^-1,2,-1*K.1^-1,-1*K.1,2*K.1,-1*K.1^-1,2*K.1^-1,-1*K.1,-1,1,0,-1,-1,3,3,3,-1*K.1^-1,3*K.1,-1*K.1,-1*K.1,3*K.1,-1,3*K.1^-1,-1*K.1^-1,1,-1*K.1^-1,3*K.1^-1,3*K.1^-1,-1,1,-1*K.1,3,3*K.1,-1,-1,0,-1,0,0,K.1,K.1^-1,K.1^-1,K.1^-1,3*K.1,1,K.1,3*K.1^-1,K.1,-1*K.1^-1,-1*K.1,1,0,0,0,-1*K.1^-1,0,-1*K.1,-1,0,0,-1*K.1,0,-1*K.1^-1,0,-1*K.1^-1,-1,-1*K.1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,0,0,5,5,5*K.1^-1,5*K.1,2,2*K.1,-1*K.1,-1,-1*K.1^-1,-1,2*K.1^-1,2,1,-1,-1,1,-1,K.1,1,K.1^-1,K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,1,-1*K.1,K.1^-1,-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1*K.1,3,3*K.1,3*K.1^-1,-1*K.1^-1,3,1,1,K.1,K.1^-1,0,-1*K.1,-1,0,0,0,-1,-1*K.1^-1,-1*K.1^-1,K.1,K.1^-1,-1,-1,1,-1*K.1,1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,-1,3,1,5,5,5*K.1,5,5,5*K.1^-1,5*K.1,5*K.1^-1,5*K.1^-1,5*K.1,5*K.1^-1,5*K.1,2,-1,2,-1,-1,2,2*K.1^-1,2*K.1^-1,2*K.1,-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1*K.1^-1,2,2*K.1^-1,2*K.1,2*K.1,2,-1*K.1,-1*K.1^-1,2*K.1^-1,-1*K.1,2*K.1,-1*K.1^-1,-1,1,0,-1,-1,3,3,3,-1*K.1,3*K.1^-1,-1*K.1^-1,-1*K.1^-1,3*K.1^-1,-1,3*K.1,-1*K.1,1,-1*K.1,3*K.1,3*K.1,-1,1,-1*K.1^-1,3,3*K.1^-1,-1,-1,0,-1,0,0,K.1^-1,K.1,K.1,K.1,3*K.1^-1,1,K.1^-1,3*K.1,K.1^-1,-1*K.1,-1*K.1^-1,1,0,0,0,-1*K.1,0,-1*K.1^-1,-1,0,0,-1*K.1^-1,0,-1*K.1,0,-1*K.1,-1,-1*K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,0,0,5,5,5*K.1,5*K.1^-1,2,2*K.1^-1,-1*K.1^-1,-1,-1*K.1,-1,2*K.1,2,1,-1,-1,1,-1,K.1^-1,1,K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,1,-1*K.1^-1,K.1,-1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1*K.1^-1,3,3*K.1^-1,3*K.1,-1*K.1,3,1,1,K.1^-1,K.1,0,-1*K.1^-1,-1,0,0,0,-1,-1*K.1,-1*K.1,K.1^-1,K.1,-1,-1,1,-1*K.1^-1,1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,-1,3,1,5,5,5*K.1^-1,5,5,5*K.1,5*K.1^-1,5*K.1,5*K.1,5*K.1^-1,5,5,2,-1,2,-1,-1,2,2*K.1,2*K.1,2*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,2,2*K.1,2*K.1^-1,2*K.1^-1,2,-1*K.1^-1,-1*K.1,2,-1,2,-1,-1,1,0,-1,-1,3,3,3,-1*K.1^-1,3*K.1,-1*K.1,-1*K.1,3*K.1,-1,3*K.1^-1,-1*K.1^-1,1,-1*K.1^-1,3*K.1^-1,3*K.1^-1,-1,1,-1*K.1,3,3*K.1,-1,-1,0,-1,0,0,K.1,K.1^-1,K.1^-1,K.1^-1,3,1,K.1,3,K.1,-1,-1,1,0,0,0,-1*K.1^-1,0,-1*K.1,-1,0,0,-1*K.1,0,-1*K.1^-1,0,-1*K.1^-1,-1,-1*K.1,1,1,-1,-1,0,0,5*K.1^-1,5*K.1,5*K.1,5*K.1^-1,2*K.1^-1,2*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,2*K.1,2*K.1,1,-1,-1,1,-1,K.1,1,K.1^-1,K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,1,-1*K.1,K.1^-1,-1,-1*K.1,-1*K.1^-1,1,1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1^-1,3*K.1^-1,3*K.1^-1,3*K.1,-1*K.1,3*K.1,K.1^-1,K.1,K.1^-1,K.1,0,-1*K.1^-1,-1*K.1,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,K.1,-1*K.1^-1,K.1^-1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,-1,3,1,5,5,5*K.1,5,5,5*K.1^-1,5*K.1,5*K.1^-1,5*K.1^-1,5*K.1,5,5,2,-1,2,-1,-1,2,2*K.1^-1,2*K.1^-1,2*K.1,-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1*K.1^-1,2,2*K.1^-1,2*K.1,2*K.1,2,-1*K.1,-1*K.1^-1,2,-1,2,-1,-1,1,0,-1,-1,3,3,3,-1*K.1,3*K.1^-1,-1*K.1^-1,-1*K.1^-1,3*K.1^-1,-1,3*K.1,-1*K.1,1,-1*K.1,3*K.1,3*K.1,-1,1,-1*K.1^-1,3,3*K.1^-1,-1,-1,0,-1,0,0,K.1^-1,K.1,K.1,K.1,3,1,K.1^-1,3,K.1^-1,-1,-1,1,0,0,0,-1*K.1,0,-1*K.1^-1,-1,0,0,-1*K.1^-1,0,-1*K.1,0,-1*K.1,-1,-1*K.1^-1,1,1,-1,-1,0,0,5*K.1,5*K.1^-1,5*K.1^-1,5*K.1,2*K.1,2*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,2*K.1^-1,2*K.1^-1,1,-1,-1,1,-1,K.1^-1,1,K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,1,-1*K.1^-1,K.1,-1,-1*K.1^-1,-1*K.1,1,1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1,3*K.1,3*K.1,3*K.1^-1,-1*K.1^-1,3*K.1^-1,K.1,K.1^-1,K.1,K.1^-1,0,-1*K.1,-1*K.1^-1,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1,K.1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,-1,3,1,5,5,5,5,5,5,5,5,5,5,5*K.1^-1,5*K.1,2,-1,2,-1,-1,2,2,2,2,-1,-1,-1,-1,-1,-1,2,2,2,2,2,-1,-1,2*K.1^-1,-1*K.1,2*K.1,-1*K.1^-1,-1,1,0,-1,-1,3,3,3,-1,3,-1,-1,3,-1,3,-1,1,-1,3,3,-1,1,-1,3,3,-1,-1,0,-1,0,0,1,1,1,1,3*K.1^-1,1,1,3*K.1,1,-1*K.1,-1*K.1^-1,1,0,0,0,-1,0,-1,-1,0,0,-1,0,-1,0,-1,-1,-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,0,0,5*K.1^-1,5*K.1,5*K.1^-1,5*K.1,2*K.1^-1,2*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,2*K.1^-1,2*K.1,1,-1,-1,1,-1,1,1,1,1,1,-1,-1,-1,1,1,-1,1,-1,-1,-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1,3*K.1^-1,3*K.1,3*K.1^-1,-1*K.1^-1,3*K.1,K.1^-1,K.1,K.1,K.1^-1,0,-1*K.1,-1*K.1,0,0,0,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1,K.1^-1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,-1,3,1,5,5,5,5,5,5,5,5,5,5,5*K.1,5*K.1^-1,2,-1,2,-1,-1,2,2,2,2,-1,-1,-1,-1,-1,-1,2,2,2,2,2,-1,-1,2*K.1,-1*K.1^-1,2*K.1^-1,-1*K.1,-1,1,0,-1,-1,3,3,3,-1,3,-1,-1,3,-1,3,-1,1,-1,3,3,-1,1,-1,3,3,-1,-1,0,-1,0,0,1,1,1,1,3*K.1,1,1,3*K.1^-1,1,-1*K.1^-1,-1*K.1,1,0,0,0,-1,0,-1,-1,0,0,-1,0,-1,0,-1,-1,-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,0,0,5*K.1,5*K.1^-1,5*K.1,5*K.1^-1,2*K.1,2*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,2*K.1,2*K.1^-1,1,-1,-1,1,-1,1,1,1,1,1,-1,-1,-1,1,1,-1,1,-1,-1,-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1^-1,3*K.1,3*K.1^-1,3*K.1,-1*K.1,3*K.1^-1,K.1,K.1^-1,K.1^-1,K.1,0,-1*K.1^-1,-1*K.1^-1,0,0,0,-1*K.1,-1*K.1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,K.1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,3,-1,1,5,5,5*K.1^-1,5,5,5*K.1,5*K.1^-1,5*K.1,5*K.1,5*K.1^-1,5*K.1^-1,5*K.1,-1,2,-1,2,2,-1,-1*K.1,-1*K.1,-1*K.1^-1,2,2*K.1,2*K.1^-1,2,2*K.1^-1,2*K.1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1,2*K.1^-1,2*K.1,-1*K.1^-1,2*K.1,-1*K.1,2*K.1^-1,-1,1,0,3,3,-1,-1,-1,3*K.1^-1,-1*K.1,3*K.1,3*K.1,-1*K.1,3,-1*K.1^-1,3*K.1^-1,1,3*K.1^-1,-1*K.1^-1,-1*K.1^-1,3,1,3*K.1,-1,-1*K.1,0,0,-1,0,-1,-1,K.1,K.1^-1,K.1^-1,K.1^-1,-1*K.1^-1,1,K.1,-1*K.1,K.1,3*K.1,3*K.1^-1,1,-1*K.1,-1*K.1,-1,0,-1*K.1^-1,0,0,-1*K.1,-1,0,-1*K.1^-1,0,-1*K.1^-1,0,0,0,K.1^-1,K.1,0,0,-1*K.1^-1,-1*K.1,5*K.1,5*K.1^-1,5,5,-1*K.1,-1,2,2*K.1^-1,2,2*K.1,-1,-1*K.1^-1,1,-1,-1,1,-1,K.1,1,K.1^-1,K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,1,-1*K.1,K.1^-1,-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-1,3*K.1,3,-1*K.1,-1,-1,3,-1*K.1^-1,K.1,K.1^-1,1,1,-1,0,0,-1*K.1^-1,-1,-1*K.1,0,0,-1,1,1,-1*K.1^-1,-1*K.1,K.1^-1,-1,K.1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,3,-1,1,5,5,5*K.1,5,5,5*K.1^-1,5*K.1,5*K.1^-1,5*K.1^-1,5*K.1,5*K.1,5*K.1^-1,-1,2,-1,2,2,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,2,2*K.1^-1,2*K.1,2,2*K.1,2*K.1^-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1,2*K.1,2*K.1^-1,-1*K.1,2*K.1^-1,-1*K.1^-1,2*K.1,-1,1,0,3,3,-1,-1,-1,3*K.1,-1*K.1^-1,3*K.1^-1,3*K.1^-1,-1*K.1^-1,3,-1*K.1,3*K.1,1,3*K.1,-1*K.1,-1*K.1,3,1,3*K.1^-1,-1,-1*K.1^-1,0,0,-1,0,-1,-1,K.1^-1,K.1,K.1,K.1,-1*K.1,1,K.1^-1,-1*K.1^-1,K.1^-1,3*K.1^-1,3*K.1,1,-1*K.1^-1,-1*K.1^-1,-1,0,-1*K.1,0,0,-1*K.1^-1,-1,0,-1*K.1,0,-1*K.1,0,0,0,K.1,K.1^-1,0,0,-1*K.1,-1*K.1^-1,5*K.1^-1,5*K.1,5,5,-1*K.1^-1,-1,2,2*K.1,2,2*K.1^-1,-1,-1*K.1,1,-1,-1,1,-1,K.1^-1,1,K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,1,-1*K.1^-1,K.1,-1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1,3*K.1^-1,3,-1*K.1^-1,-1,-1,3,-1*K.1,K.1^-1,K.1,1,1,-1,0,0,-1*K.1,-1,-1*K.1^-1,0,0,-1,1,1,-1*K.1,-1*K.1^-1,K.1,-1,K.1^-1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,3,-1,1,5,5,5*K.1^-1,5,5,5*K.1,5*K.1^-1,5*K.1,5*K.1,5*K.1^-1,5*K.1,5*K.1^-1,-1,2,-1,2,2,-1,-1*K.1,-1*K.1,-1*K.1^-1,2,2*K.1,2*K.1^-1,2,2*K.1^-1,2*K.1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1,2*K.1^-1,2*K.1,-1*K.1,2*K.1^-1,-1*K.1^-1,2*K.1,-1,1,0,3,3,-1,-1,-1,3*K.1^-1,-1*K.1,3*K.1,3*K.1,-1*K.1,3,-1*K.1^-1,3*K.1^-1,1,3*K.1^-1,-1*K.1^-1,-1*K.1^-1,3,1,3*K.1,-1,-1*K.1,0,0,-1,0,-1,-1,K.1,K.1^-1,K.1^-1,K.1^-1,-1*K.1,1,K.1,-1*K.1^-1,K.1,3*K.1^-1,3*K.1,1,-1*K.1,-1*K.1,-1,0,-1*K.1^-1,0,0,-1*K.1,-1,0,-1*K.1^-1,0,-1*K.1^-1,0,0,0,K.1,K.1^-1,0,0,-1*K.1,-1*K.1^-1,5,5,5*K.1^-1,5*K.1,-1,-1*K.1,2*K.1,2,2*K.1^-1,2,-1*K.1^-1,-1,1,-1,-1,1,-1,K.1,1,K.1^-1,K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,1,-1*K.1,K.1^-1,-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3*K.1,-1,-1*K.1,-1*K.1^-1,3*K.1^-1,-1,1,1,K.1,K.1^-1,-1*K.1^-1,0,0,-1,-1*K.1,-1,0,0,-1*K.1^-1,K.1,K.1^-1,-1,-1,1,-1*K.1,1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,3,-1,1,5,5,5*K.1,5,5,5*K.1^-1,5*K.1,5*K.1^-1,5*K.1^-1,5*K.1,5*K.1^-1,5*K.1,-1,2,-1,2,2,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,2,2*K.1^-1,2*K.1,2,2*K.1,2*K.1^-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1,2*K.1,2*K.1^-1,-1*K.1^-1,2*K.1,-1*K.1,2*K.1^-1,-1,1,0,3,3,-1,-1,-1,3*K.1,-1*K.1^-1,3*K.1^-1,3*K.1^-1,-1*K.1^-1,3,-1*K.1,3*K.1,1,3*K.1,-1*K.1,-1*K.1,3,1,3*K.1^-1,-1,-1*K.1^-1,0,0,-1,0,-1,-1,K.1^-1,K.1,K.1,K.1,-1*K.1^-1,1,K.1^-1,-1*K.1,K.1^-1,3*K.1,3*K.1^-1,1,-1*K.1^-1,-1*K.1^-1,-1,0,-1*K.1,0,0,-1*K.1^-1,-1,0,-1*K.1,0,-1*K.1,0,0,0,K.1^-1,K.1,0,0,-1*K.1^-1,-1*K.1,5,5,5*K.1,5*K.1^-1,-1,-1*K.1^-1,2*K.1^-1,2,2*K.1,2,-1*K.1,-1,1,-1,-1,1,-1,K.1^-1,1,K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,1,-1*K.1^-1,K.1,-1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3*K.1^-1,-1,-1*K.1^-1,-1*K.1,3*K.1,-1,1,1,K.1^-1,K.1,-1*K.1,0,0,-1,-1*K.1^-1,-1,0,0,-1*K.1,K.1^-1,K.1,-1,-1,1,-1*K.1^-1,1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,3,-1,1,5,5,5*K.1^-1,5,5,5*K.1,5*K.1^-1,5*K.1,5*K.1,5*K.1^-1,5,5,-1,2,-1,2,2,-1,-1*K.1,-1*K.1,-1*K.1^-1,2,2*K.1,2*K.1^-1,2,2*K.1^-1,2*K.1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1,2*K.1^-1,2*K.1,-1,2,-1,2,-1,1,0,3,3,-1,-1,-1,3*K.1^-1,-1*K.1,3*K.1,3*K.1,-1*K.1,3,-1*K.1^-1,3*K.1^-1,1,3*K.1^-1,-1*K.1^-1,-1*K.1^-1,3,1,3*K.1,-1,-1*K.1,0,0,-1,0,-1,-1,K.1,K.1^-1,K.1^-1,K.1^-1,-1,1,K.1,-1,K.1,3,3,1,-1*K.1,-1*K.1,-1,0,-1*K.1^-1,0,0,-1*K.1,-1,0,-1*K.1^-1,0,-1*K.1^-1,0,0,0,1,1,0,0,-1,-1,5*K.1^-1,5*K.1,5*K.1,5*K.1^-1,-1*K.1^-1,-1*K.1^-1,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,-1*K.1,-1*K.1,1,-1,-1,1,-1,K.1,1,K.1^-1,K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,1,-1*K.1,K.1^-1,-1,-1*K.1,-1*K.1^-1,1,1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1,3*K.1^-1,3*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,3*K.1,-1*K.1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1,0,0,-1*K.1,-1*K.1^-1,-1*K.1^-1,0,0,-1*K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,K.1,-1*K.1^-1,K.1^-1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,3,-1,1,5,5,5*K.1,5,5,5*K.1^-1,5*K.1,5*K.1^-1,5*K.1^-1,5*K.1,5,5,-1,2,-1,2,2,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,2,2*K.1^-1,2*K.1,2,2*K.1,2*K.1^-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1,2*K.1,2*K.1^-1,-1,2,-1,2,-1,1,0,3,3,-1,-1,-1,3*K.1,-1*K.1^-1,3*K.1^-1,3*K.1^-1,-1*K.1^-1,3,-1*K.1,3*K.1,1,3*K.1,-1*K.1,-1*K.1,3,1,3*K.1^-1,-1,-1*K.1^-1,0,0,-1,0,-1,-1,K.1^-1,K.1,K.1,K.1,-1,1,K.1^-1,-1,K.1^-1,3,3,1,-1*K.1^-1,-1*K.1^-1,-1,0,-1*K.1,0,0,-1*K.1^-1,-1,0,-1*K.1,0,-1*K.1,0,0,0,1,1,0,0,-1,-1,5*K.1,5*K.1^-1,5*K.1^-1,5*K.1,-1*K.1,-1*K.1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,-1*K.1^-1,-1*K.1^-1,1,-1,-1,1,-1,K.1^-1,1,K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,1,-1*K.1^-1,K.1,-1,-1*K.1^-1,-1*K.1,1,1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-1,3*K.1,3*K.1,-1*K.1,-1*K.1,-1*K.1^-1,3*K.1^-1,-1*K.1^-1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1^-1,0,0,-1*K.1^-1,-1*K.1,-1*K.1,0,0,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1,K.1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,3,-1,1,5,5,5,5,5,5,5,5,5,5,5*K.1^-1,5*K.1,-1,2,-1,2,2,-1,-1,-1,-1,2,2,2,2,2,2,-1,-1,-1,-1,-1,2,2,-1*K.1^-1,2*K.1,-1*K.1,2*K.1^-1,-1,1,0,3,3,-1,-1,-1,3,-1,3,3,-1,3,-1,3,1,3,-1,-1,3,1,3,-1,-1,0,0,-1,0,-1,-1,1,1,1,1,-1*K.1^-1,1,1,-1*K.1,1,3*K.1,3*K.1^-1,1,-1,-1,-1,0,-1,0,0,-1,-1,0,-1,0,-1,0,0,0,K.1^-1,K.1,0,0,-1*K.1^-1,-1*K.1,5*K.1^-1,5*K.1,5*K.1^-1,5*K.1,-1*K.1^-1,-1*K.1,2*K.1,2*K.1,2*K.1^-1,2*K.1^-1,-1*K.1^-1,-1*K.1,1,-1,-1,1,-1,1,1,1,1,1,-1,-1,-1,1,1,-1,1,-1,-1,-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1,3*K.1^-1,3*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,3*K.1^-1,-1*K.1,K.1^-1,K.1,K.1,K.1^-1,-1*K.1^-1,0,0,-1*K.1,-1*K.1,-1*K.1^-1,0,0,-1*K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1,K.1^-1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,3,-1,1,5,5,5,5,5,5,5,5,5,5,5*K.1,5*K.1^-1,-1,2,-1,2,2,-1,-1,-1,-1,2,2,2,2,2,2,-1,-1,-1,-1,-1,2,2,-1*K.1,2*K.1^-1,-1*K.1^-1,2*K.1,-1,1,0,3,3,-1,-1,-1,3,-1,3,3,-1,3,-1,3,1,3,-1,-1,3,1,3,-1,-1,0,0,-1,0,-1,-1,1,1,1,1,-1*K.1,1,1,-1*K.1^-1,1,3*K.1^-1,3*K.1,1,-1,-1,-1,0,-1,0,0,-1,-1,0,-1,0,-1,0,0,0,K.1,K.1^-1,0,0,-1*K.1,-1*K.1^-1,5*K.1,5*K.1^-1,5*K.1,5*K.1^-1,-1*K.1,-1*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1,-1*K.1,-1*K.1^-1,1,-1,-1,1,-1,1,1,1,1,1,-1,-1,-1,1,1,-1,1,-1,-1,-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-1,3*K.1,3*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,3*K.1,-1*K.1^-1,K.1,K.1^-1,K.1^-1,K.1,-1*K.1,0,0,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,0,-1*K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,K.1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,-3,1,1,5,5,5*K.1^-1,5,5,5*K.1,5*K.1^-1,5*K.1,5*K.1,5*K.1^-1,5*K.1^-1,5*K.1,-1,2,-1,2,2,-1,-1*K.1,-1*K.1,-1*K.1^-1,2,2*K.1,2*K.1^-1,2,2*K.1^-1,2*K.1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1,2*K.1^-1,2*K.1,-1*K.1^-1,2*K.1,-1*K.1,2*K.1^-1,-1,-1,0,-3,-3,1,1,1,-3*K.1^-1,K.1,-3*K.1,-3*K.1,K.1,-3,K.1^-1,-3*K.1^-1,1,-3*K.1^-1,K.1^-1,K.1^-1,-3,1,-3*K.1,1,K.1,0,0,1,0,1,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,1,K.1,K.1,K.1,-3*K.1,-3*K.1^-1,1,K.1,K.1,1,0,K.1^-1,0,0,K.1,1,0,K.1^-1,0,K.1^-1,0,0,0,K.1^-1,K.1,0,0,K.1^-1,K.1,5*K.1,5*K.1^-1,5,5,-1*K.1,-1,2,2*K.1^-1,2,2*K.1,-1,-1*K.1^-1,-1,-1,-1,-1,-1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1^-1,-3*K.1,-3,K.1,1,1,-3,K.1^-1,K.1,K.1^-1,1,1,1,0,0,K.1^-1,1,K.1,0,0,-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1*K.1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,-3,1,1,5,5,5*K.1,5,5,5*K.1^-1,5*K.1,5*K.1^-1,5*K.1^-1,5*K.1,5*K.1,5*K.1^-1,-1,2,-1,2,2,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,2,2*K.1^-1,2*K.1,2,2*K.1,2*K.1^-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1,2*K.1,2*K.1^-1,-1*K.1,2*K.1^-1,-1*K.1^-1,2*K.1,-1,-1,0,-3,-3,1,1,1,-3*K.1,K.1^-1,-3*K.1^-1,-3*K.1^-1,K.1^-1,-3,K.1,-3*K.1,1,-3*K.1,K.1,K.1,-3,1,-3*K.1^-1,1,K.1^-1,0,0,1,0,1,1,K.1^-1,K.1,K.1,K.1,K.1,1,K.1^-1,K.1^-1,K.1^-1,-3*K.1^-1,-3*K.1,1,K.1^-1,K.1^-1,1,0,K.1,0,0,K.1^-1,1,0,K.1,0,K.1,0,0,0,K.1,K.1^-1,0,0,K.1,K.1^-1,5*K.1^-1,5*K.1,5,5,-1*K.1^-1,-1,2,2*K.1,2,2*K.1^-1,-1,-1*K.1,-1,-1,-1,-1,-1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1,-3*K.1^-1,-3,K.1^-1,1,1,-3,K.1,K.1^-1,K.1,1,1,1,0,0,K.1,1,K.1^-1,0,0,-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1*K.1^-1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,-3,1,1,5,5,5*K.1^-1,5,5,5*K.1,5*K.1^-1,5*K.1,5*K.1,5*K.1^-1,5*K.1,5*K.1^-1,-1,2,-1,2,2,-1,-1*K.1,-1*K.1,-1*K.1^-1,2,2*K.1,2*K.1^-1,2,2*K.1^-1,2*K.1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1,2*K.1^-1,2*K.1,-1*K.1,2*K.1^-1,-1*K.1^-1,2*K.1,-1,-1,0,-3,-3,1,1,1,-3*K.1^-1,K.1,-3*K.1,-3*K.1,K.1,-3,K.1^-1,-3*K.1^-1,1,-3*K.1^-1,K.1^-1,K.1^-1,-3,1,-3*K.1,1,K.1,0,0,1,0,1,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,1,K.1,K.1^-1,K.1,-3*K.1^-1,-3*K.1,1,K.1,K.1,1,0,K.1^-1,0,0,K.1,1,0,K.1^-1,0,K.1^-1,0,0,0,K.1,K.1^-1,0,0,K.1,K.1^-1,5,5,5*K.1^-1,5*K.1,-1,-1*K.1,2*K.1,2,2*K.1^-1,2,-1*K.1^-1,-1,-1,-1,-1,-1,-1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,-3*K.1,1,K.1,K.1^-1,-3*K.1^-1,1,1,1,K.1,K.1^-1,K.1^-1,0,0,1,K.1,1,0,0,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1,-1,-1*K.1,-1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,-3,1,1,5,5,5*K.1,5,5,5*K.1^-1,5*K.1,5*K.1^-1,5*K.1^-1,5*K.1,5*K.1^-1,5*K.1,-1,2,-1,2,2,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,2,2*K.1^-1,2*K.1,2,2*K.1,2*K.1^-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1,2*K.1,2*K.1^-1,-1*K.1^-1,2*K.1,-1*K.1,2*K.1^-1,-1,-1,0,-3,-3,1,1,1,-3*K.1,K.1^-1,-3*K.1^-1,-3*K.1^-1,K.1^-1,-3,K.1,-3*K.1,1,-3*K.1,K.1,K.1,-3,1,-3*K.1^-1,1,K.1^-1,0,0,1,0,1,1,K.1^-1,K.1,K.1,K.1,K.1^-1,1,K.1^-1,K.1,K.1^-1,-3*K.1,-3*K.1^-1,1,K.1^-1,K.1^-1,1,0,K.1,0,0,K.1^-1,1,0,K.1,0,K.1,0,0,0,K.1^-1,K.1,0,0,K.1^-1,K.1,5,5,5*K.1,5*K.1^-1,-1,-1*K.1^-1,2*K.1^-1,2,2*K.1,2,-1*K.1,-1,-1,-1,-1,-1,-1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,-3*K.1^-1,1,K.1^-1,K.1,-3*K.1,1,1,1,K.1^-1,K.1,K.1,0,0,1,K.1^-1,1,0,0,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1,-1,-1*K.1^-1,-1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,-3,1,1,5,5,5*K.1^-1,5,5,5*K.1,5*K.1^-1,5*K.1,5*K.1,5*K.1^-1,5,5,-1,2,-1,2,2,-1,-1*K.1,-1*K.1,-1*K.1^-1,2,2*K.1,2*K.1^-1,2,2*K.1^-1,2*K.1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1,2*K.1^-1,2*K.1,-1,2,-1,2,-1,-1,0,-3,-3,1,1,1,-3*K.1^-1,K.1,-3*K.1,-3*K.1,K.1,-3,K.1^-1,-3*K.1^-1,1,-3*K.1^-1,K.1^-1,K.1^-1,-3,1,-3*K.1,1,K.1,0,0,1,0,1,1,K.1,K.1^-1,K.1^-1,K.1^-1,1,1,K.1,1,K.1,-3,-3,1,K.1,K.1,1,0,K.1^-1,0,0,K.1,1,0,K.1^-1,0,K.1^-1,0,0,0,1,1,0,0,1,1,5*K.1^-1,5*K.1,5*K.1,5*K.1^-1,-1*K.1^-1,-1*K.1^-1,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,-1*K.1,-1*K.1,-1,-1,-1,-1,-1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1,-3*K.1^-1,-3*K.1^-1,K.1^-1,K.1^-1,K.1,-3*K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,0,0,K.1,K.1^-1,K.1^-1,0,0,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,-3,1,1,5,5,5*K.1,5,5,5*K.1^-1,5*K.1,5*K.1^-1,5*K.1^-1,5*K.1,5,5,-1,2,-1,2,2,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,2,2*K.1^-1,2*K.1,2,2*K.1,2*K.1^-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1,2*K.1,2*K.1^-1,-1,2,-1,2,-1,-1,0,-3,-3,1,1,1,-3*K.1,K.1^-1,-3*K.1^-1,-3*K.1^-1,K.1^-1,-3,K.1,-3*K.1,1,-3*K.1,K.1,K.1,-3,1,-3*K.1^-1,1,K.1^-1,0,0,1,0,1,1,K.1^-1,K.1,K.1,K.1,1,1,K.1^-1,1,K.1^-1,-3,-3,1,K.1^-1,K.1^-1,1,0,K.1,0,0,K.1^-1,1,0,K.1,0,K.1,0,0,0,1,1,0,0,1,1,5*K.1,5*K.1^-1,5*K.1^-1,5*K.1,-1*K.1,-1*K.1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,-1*K.1^-1,-1*K.1^-1,-1,-1,-1,-1,-1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1^-1,-3*K.1,-3*K.1,K.1,K.1,K.1^-1,-3*K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,0,0,K.1^-1,K.1,K.1,0,0,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,-3,1,1,5,5,5,5,5,5,5,5,5,5,5*K.1^-1,5*K.1,-1,2,-1,2,2,-1,-1,-1,-1,2,2,2,2,2,2,-1,-1,-1,-1,-1,2,2,-1*K.1^-1,2*K.1,-1*K.1,2*K.1^-1,-1,-1,0,-3,-3,1,1,1,-3,1,-3,-3,1,-3,1,-3,1,-3,1,1,-3,1,-3,1,1,0,0,1,0,1,1,1,1,1,1,K.1^-1,1,1,K.1,1,-3*K.1,-3*K.1^-1,1,1,1,1,0,1,0,0,1,1,0,1,0,1,0,0,0,K.1^-1,K.1,0,0,K.1^-1,K.1,5*K.1^-1,5*K.1,5*K.1^-1,5*K.1,-1*K.1^-1,-1*K.1,2*K.1,2*K.1,2*K.1^-1,2*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1,-3*K.1^-1,-3*K.1,K.1^-1,K.1,K.1^-1,-3*K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,0,0,K.1,K.1,K.1^-1,0,0,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,-3,1,1,5,5,5,5,5,5,5,5,5,5,5*K.1,5*K.1^-1,-1,2,-1,2,2,-1,-1,-1,-1,2,2,2,2,2,2,-1,-1,-1,-1,-1,2,2,-1*K.1,2*K.1^-1,-1*K.1^-1,2*K.1,-1,-1,0,-3,-3,1,1,1,-3,1,-3,-3,1,-3,1,-3,1,-3,1,1,-3,1,-3,1,1,0,0,1,0,1,1,1,1,1,1,K.1,1,1,K.1^-1,1,-3*K.1^-1,-3*K.1,1,1,1,1,0,1,0,0,1,1,0,1,0,1,0,0,0,K.1,K.1^-1,0,0,K.1,K.1^-1,5*K.1,5*K.1^-1,5*K.1,5*K.1^-1,-1*K.1,-1*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1,-1*K.1,-1*K.1^-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1^-1,-3*K.1,-3*K.1^-1,K.1,K.1^-1,K.1,-3*K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,0,0,K.1^-1,K.1^-1,K.1,0,0,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,1,-3,1,5,5,5*K.1^-1,5,5,5*K.1,5*K.1^-1,5*K.1,5*K.1,5*K.1^-1,5*K.1^-1,5*K.1,2,-1,2,-1,-1,2,2*K.1,2*K.1,2*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,2,2*K.1,2*K.1^-1,2*K.1^-1,2,-1*K.1^-1,-1*K.1,2*K.1^-1,-1*K.1,2*K.1,-1*K.1^-1,-1,-1,0,1,1,-3,-3,-3,K.1^-1,-3*K.1,K.1,K.1,-3*K.1,1,-3*K.1^-1,K.1^-1,1,K.1^-1,-3*K.1^-1,-3*K.1^-1,1,1,K.1,-3,-3*K.1,1,1,0,1,0,0,K.1,K.1^-1,K.1^-1,K.1^-1,-3*K.1^-1,1,K.1,-3*K.1,K.1,K.1,K.1^-1,1,0,0,0,K.1^-1,0,K.1,1,0,0,K.1,0,K.1^-1,0,K.1^-1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,0,0,5*K.1,5*K.1^-1,5,5,2*K.1,2,-1,-1*K.1^-1,-1,-1*K.1,2,2*K.1^-1,-1,-1,-1,-1,-1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-1,K.1,1,-3*K.1,-3,-3,1,-3*K.1^-1,K.1,K.1^-1,1,1,0,1,K.1^-1,0,0,0,K.1,1,-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1*K.1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,1,-3,1,5,5,5*K.1,5,5,5*K.1^-1,5*K.1,5*K.1^-1,5*K.1^-1,5*K.1,5*K.1,5*K.1^-1,2,-1,2,-1,-1,2,2*K.1^-1,2*K.1^-1,2*K.1,-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1*K.1^-1,2,2*K.1^-1,2*K.1,2*K.1,2,-1*K.1,-1*K.1^-1,2*K.1,-1*K.1^-1,2*K.1^-1,-1*K.1,-1,-1,0,1,1,-3,-3,-3,K.1,-3*K.1^-1,K.1^-1,K.1^-1,-3*K.1^-1,1,-3*K.1,K.1,1,K.1,-3*K.1,-3*K.1,1,1,K.1^-1,-3,-3*K.1^-1,1,1,0,1,0,0,K.1^-1,K.1,K.1,K.1,-3*K.1,1,K.1^-1,-3*K.1^-1,K.1^-1,K.1^-1,K.1,1,0,0,0,K.1,0,K.1^-1,1,0,0,K.1^-1,0,K.1,0,K.1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,0,0,5*K.1^-1,5*K.1,5,5,2*K.1^-1,2,-1,-1*K.1,-1,-1*K.1^-1,2,2*K.1,-1,-1,-1,-1,-1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,K.1,K.1^-1,1,-3*K.1^-1,-3,-3,1,-3*K.1,K.1^-1,K.1,1,1,0,1,K.1,0,0,0,K.1^-1,1,-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1*K.1^-1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,1,-3,1,5,5,5*K.1^-1,5,5,5*K.1,5*K.1^-1,5*K.1,5*K.1,5*K.1^-1,5*K.1,5*K.1^-1,2,-1,2,-1,-1,2,2*K.1,2*K.1,2*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,2,2*K.1,2*K.1^-1,2*K.1^-1,2,-1*K.1^-1,-1*K.1,2*K.1,-1*K.1^-1,2*K.1^-1,-1*K.1,-1,-1,0,1,1,-3,-3,-3,K.1^-1,-3*K.1,K.1,K.1,-3*K.1,1,-3*K.1^-1,K.1^-1,1,K.1^-1,-3*K.1^-1,-3*K.1^-1,1,1,K.1,-3,-3*K.1,1,1,0,1,0,0,K.1,K.1^-1,K.1^-1,K.1^-1,-3*K.1,1,K.1,-3*K.1^-1,K.1,K.1^-1,K.1,1,0,0,0,K.1^-1,0,K.1,1,0,0,K.1,0,K.1^-1,0,K.1^-1,1,K.1,K.1,K.1^-1,K.1,K.1^-1,0,0,5,5,5*K.1^-1,5*K.1,2,2*K.1,-1*K.1,-1,-1*K.1^-1,-1,2*K.1^-1,2,-1,-1,-1,-1,-1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,K.1,-3,-3*K.1,-3*K.1^-1,K.1^-1,-3,1,1,K.1,K.1^-1,0,K.1,1,0,0,0,1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1,-1,-1*K.1,-1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,1,-3,1,5,5,5*K.1,5,5,5*K.1^-1,5*K.1,5*K.1^-1,5*K.1^-1,5*K.1,5*K.1^-1,5*K.1,2,-1,2,-1,-1,2,2*K.1^-1,2*K.1^-1,2*K.1,-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1*K.1^-1,2,2*K.1^-1,2*K.1,2*K.1,2,-1*K.1,-1*K.1^-1,2*K.1^-1,-1*K.1,2*K.1,-1*K.1^-1,-1,-1,0,1,1,-3,-3,-3,K.1,-3*K.1^-1,K.1^-1,K.1^-1,-3*K.1^-1,1,-3*K.1,K.1,1,K.1,-3*K.1,-3*K.1,1,1,K.1^-1,-3,-3*K.1^-1,1,1,0,1,0,0,K.1^-1,K.1,K.1,K.1,-3*K.1^-1,1,K.1^-1,-3*K.1,K.1^-1,K.1,K.1^-1,1,0,0,0,K.1,0,K.1^-1,1,0,0,K.1^-1,0,K.1,0,K.1,1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,0,0,5,5,5*K.1,5*K.1^-1,2,2*K.1^-1,-1*K.1^-1,-1,-1*K.1,-1,2*K.1,2,-1,-1,-1,-1,-1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,K.1^-1,-3,-3*K.1^-1,-3*K.1,K.1,-3,1,1,K.1^-1,K.1,0,K.1^-1,1,0,0,0,1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1,-1,-1*K.1^-1,-1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,1,-3,1,5,5,5*K.1^-1,5,5,5*K.1,5*K.1^-1,5*K.1,5*K.1,5*K.1^-1,5,5,2,-1,2,-1,-1,2,2*K.1,2*K.1,2*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,2,2*K.1,2*K.1^-1,2*K.1^-1,2,-1*K.1^-1,-1*K.1,2,-1,2,-1,-1,-1,0,1,1,-3,-3,-3,K.1^-1,-3*K.1,K.1,K.1,-3*K.1,1,-3*K.1^-1,K.1^-1,1,K.1^-1,-3*K.1^-1,-3*K.1^-1,1,1,K.1,-3,-3*K.1,1,1,0,1,0,0,K.1,K.1^-1,K.1^-1,K.1^-1,-3,1,K.1,-3,K.1,1,1,1,0,0,0,K.1^-1,0,K.1,1,0,0,K.1,0,K.1^-1,0,K.1^-1,1,K.1,1,1,1,1,0,0,5*K.1^-1,5*K.1,5*K.1,5*K.1^-1,2*K.1^-1,2*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,2*K.1,2*K.1,-1,-1,-1,-1,-1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,K.1,K.1^-1,K.1^-1,-3*K.1^-1,-3*K.1^-1,-3*K.1,K.1,-3*K.1,K.1^-1,K.1,K.1^-1,K.1,0,K.1^-1,K.1,0,0,0,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,1,-3,1,5,5,5*K.1,5,5,5*K.1^-1,5*K.1,5*K.1^-1,5*K.1^-1,5*K.1,5,5,2,-1,2,-1,-1,2,2*K.1^-1,2*K.1^-1,2*K.1,-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1*K.1^-1,2,2*K.1^-1,2*K.1,2*K.1,2,-1*K.1,-1*K.1^-1,2,-1,2,-1,-1,-1,0,1,1,-3,-3,-3,K.1,-3*K.1^-1,K.1^-1,K.1^-1,-3*K.1^-1,1,-3*K.1,K.1,1,K.1,-3*K.1,-3*K.1,1,1,K.1^-1,-3,-3*K.1^-1,1,1,0,1,0,0,K.1^-1,K.1,K.1,K.1,-3,1,K.1^-1,-3,K.1^-1,1,1,1,0,0,0,K.1,0,K.1^-1,1,0,0,K.1^-1,0,K.1,0,K.1,1,K.1^-1,1,1,1,1,0,0,5*K.1,5*K.1^-1,5*K.1^-1,5*K.1,2*K.1,2*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,2*K.1^-1,2*K.1^-1,-1,-1,-1,-1,-1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-1,K.1,K.1,-3*K.1,-3*K.1,-3*K.1^-1,K.1^-1,-3*K.1^-1,K.1,K.1^-1,K.1,K.1^-1,0,K.1,K.1^-1,0,0,0,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,1,-3,1,5,5,5,5,5,5,5,5,5,5,5*K.1^-1,5*K.1,2,-1,2,-1,-1,2,2,2,2,-1,-1,-1,-1,-1,-1,2,2,2,2,2,-1,-1,2*K.1^-1,-1*K.1,2*K.1,-1*K.1^-1,-1,-1,0,1,1,-3,-3,-3,1,-3,1,1,-3,1,-3,1,1,1,-3,-3,1,1,1,-3,-3,1,1,0,1,0,0,1,1,1,1,-3*K.1^-1,1,1,-3*K.1,1,K.1,K.1^-1,1,0,0,0,1,0,1,1,0,0,1,0,1,0,1,1,1,K.1^-1,K.1,K.1^-1,K.1,0,0,5*K.1^-1,5*K.1,5*K.1^-1,5*K.1,2*K.1^-1,2*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,2*K.1^-1,2*K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,K.1,K.1^-1,K.1,-3*K.1^-1,-3*K.1,-3*K.1^-1,K.1^-1,-3*K.1,K.1^-1,K.1,K.1,K.1^-1,0,K.1,K.1,0,0,0,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,1,-3,1,5,5,5,5,5,5,5,5,5,5,5*K.1,5*K.1^-1,2,-1,2,-1,-1,2,2,2,2,-1,-1,-1,-1,-1,-1,2,2,2,2,2,-1,-1,2*K.1,-1*K.1^-1,2*K.1^-1,-1*K.1,-1,-1,0,1,1,-3,-3,-3,1,-3,1,1,-3,1,-3,1,1,1,-3,-3,1,1,1,-3,-3,1,1,0,1,0,0,1,1,1,1,-3*K.1,1,1,-3*K.1^-1,1,K.1^-1,K.1,1,0,0,0,1,0,1,1,0,0,1,0,1,0,1,1,1,K.1,K.1^-1,K.1,K.1^-1,0,0,5*K.1,5*K.1^-1,5*K.1,5*K.1^-1,2*K.1,2*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,2*K.1,2*K.1^-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-1,K.1,K.1^-1,-3*K.1,-3*K.1^-1,-3*K.1,K.1,-3*K.1^-1,K.1,K.1^-1,K.1^-1,K.1,0,K.1^-1,K.1^-1,0,0,0,K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[9, 3, 3, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 3, 3, 3, 3, 1, 3, 3, 3, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 3, 1, 1, 3, 1, 3, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[9, -3, -3, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, 1, -3, -3, -3, -3, 1, -3, -3, -3, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, -3, 1, 1, -3, 1, -3, -3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -3, -3, -3, -3, -3, -3, -3, -3, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,3,3,1,9,9,9*K.1^-1,9,9,9*K.1,9*K.1^-1,9*K.1,9*K.1,9*K.1^-1,9*K.1^-1,9*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,3,3,3,3,3,3*K.1^-1,3*K.1,3*K.1,3*K.1,3*K.1,3,3*K.1^-1,3*K.1^-1,1,3*K.1^-1,3*K.1^-1,3*K.1^-1,3,1,3*K.1,3,3*K.1,0,0,0,0,0,0,K.1,K.1^-1,K.1^-1,K.1^-1,3*K.1^-1,1,K.1,3*K.1,K.1,3*K.1,3*K.1^-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-1,K.1,0,0,0,0,9*K.1,9*K.1^-1,9,9,0,0,0,0,0,0,0,0,-1,1,1,-1,1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1,K.1,-1*K.1^-1,1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,-1,-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,3*K.1^-1,3*K.1,3,3*K.1,3,3,3,3*K.1^-1,K.1,K.1^-1,1,1,0,0,0,0,0,0,0,0,1,-1,-1,K.1^-1,K.1,-1*K.1^-1,1,-1*K.1,-1*K.1^-1,-1,-1*K.1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,3,3,1,9,9,9*K.1,9,9,9*K.1^-1,9*K.1,9*K.1^-1,9*K.1^-1,9*K.1,9*K.1,9*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,3,3,3,3,3,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1^-1,3*K.1^-1,3,3*K.1,3*K.1,1,3*K.1,3*K.1,3*K.1,3,1,3*K.1^-1,3,3*K.1^-1,0,0,0,0,0,0,K.1^-1,K.1,K.1,K.1,3*K.1,1,K.1^-1,3*K.1^-1,K.1^-1,3*K.1^-1,3*K.1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1,K.1^-1,0,0,0,0,9*K.1^-1,9*K.1,9,9,0,0,0,0,0,0,0,0,-1,1,1,-1,1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,K.1,-1*K.1,-1,K.1^-1,-1*K.1,1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,-1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1*K.1^-1,3*K.1,3*K.1^-1,3,3*K.1^-1,3,3,3,3*K.1,K.1^-1,K.1,1,1,0,0,0,0,0,0,0,0,1,-1,-1,K.1,K.1^-1,-1*K.1,1,-1*K.1^-1,-1*K.1,-1,-1*K.1^-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,3,3,1,9,9,9*K.1^-1,9,9,9*K.1,9*K.1^-1,9*K.1,9*K.1,9*K.1^-1,9*K.1,9*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,3,3,3,3,3,3*K.1^-1,3*K.1,3*K.1,3*K.1,3*K.1,3,3*K.1^-1,3*K.1^-1,1,3*K.1^-1,3*K.1^-1,3*K.1^-1,3,1,3*K.1,3,3*K.1,0,0,0,0,0,0,K.1,K.1^-1,K.1^-1,K.1^-1,3*K.1,1,K.1,3*K.1^-1,K.1,3*K.1^-1,3*K.1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1,K.1^-1,0,0,0,0,9,9,9*K.1^-1,9*K.1,0,0,0,0,0,0,0,0,-1,1,1,-1,1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1,K.1,-1*K.1^-1,1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,-1,-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,3,3,3*K.1,3,3*K.1,3*K.1^-1,3*K.1^-1,3,1,1,K.1,K.1^-1,0,0,0,0,0,0,0,0,K.1^-1,-1*K.1,-1*K.1^-1,1,1,-1,K.1,-1,-1,-1*K.1^-1,-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,3,3,1,9,9,9*K.1,9,9,9*K.1^-1,9*K.1,9*K.1^-1,9*K.1^-1,9*K.1,9*K.1^-1,9*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,3,3,3,3,3,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1^-1,3*K.1^-1,3,3*K.1,3*K.1,1,3*K.1,3*K.1,3*K.1,3,1,3*K.1^-1,3,3*K.1^-1,0,0,0,0,0,0,K.1^-1,K.1,K.1,K.1,3*K.1^-1,1,K.1^-1,3*K.1,K.1^-1,3*K.1,3*K.1^-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-1,K.1,0,0,0,0,9,9,9*K.1,9*K.1^-1,0,0,0,0,0,0,0,0,-1,1,1,-1,1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,K.1,-1*K.1,-1,K.1^-1,-1*K.1,1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,-1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1,-1*K.1^-1,-1*K.1,3,3,3*K.1^-1,3,3*K.1^-1,3*K.1,3*K.1,3,1,1,K.1^-1,K.1,0,0,0,0,0,0,0,0,K.1,-1*K.1^-1,-1*K.1,1,1,-1,K.1^-1,-1,-1,-1*K.1,-1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,3,3,1,9,9,9*K.1^-1,9,9,9*K.1,9*K.1^-1,9*K.1,9*K.1,9*K.1^-1,9,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,3,3,3,3,3,3*K.1^-1,3*K.1,3*K.1,3*K.1,3*K.1,3,3*K.1^-1,3*K.1^-1,1,3*K.1^-1,3*K.1^-1,3*K.1^-1,3,1,3*K.1,3,3*K.1,0,0,0,0,0,0,K.1,K.1^-1,K.1^-1,K.1^-1,3,1,K.1,3,K.1,3,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,9*K.1^-1,9*K.1,9*K.1,9*K.1^-1,0,0,0,0,0,0,0,0,-1,1,1,-1,1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1,K.1,-1*K.1^-1,1,K.1,K.1^-1,-1,-1,1,1,-1,-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1,-1,-1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1,3*K.1,K.1^-1,K.1,K.1^-1,K.1,0,0,0,0,0,0,0,0,K.1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,3,3,1,9,9,9*K.1,9,9,9*K.1^-1,9*K.1,9*K.1^-1,9*K.1^-1,9*K.1,9,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,3,3,3,3,3,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1^-1,3*K.1^-1,3,3*K.1,3*K.1,1,3*K.1,3*K.1,3*K.1,3,1,3*K.1^-1,3,3*K.1^-1,0,0,0,0,0,0,K.1^-1,K.1,K.1,K.1,3,1,K.1^-1,3,K.1^-1,3,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,9*K.1,9*K.1^-1,9*K.1^-1,9*K.1,0,0,0,0,0,0,0,0,-1,1,1,-1,1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,K.1,-1*K.1,-1,K.1^-1,-1*K.1,1,K.1^-1,K.1,-1,-1,1,1,-1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1,-1,-1,3*K.1^-1,3*K.1,3*K.1,3*K.1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1^-1,K.1,K.1^-1,K.1,K.1^-1,0,0,0,0,0,0,0,0,K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,-1*K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,3,3,1,9,9,9,9,9,9,9,9,9,9,9*K.1^-1,9*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,3,3,3,3,3,3,3,3,3,3,3,3,3,1,3,3,3,3,1,3,3,3,0,0,0,0,0,0,1,1,1,1,3*K.1^-1,1,1,3*K.1,1,3*K.1,3*K.1^-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-1,K.1,0,0,0,0,9*K.1^-1,9*K.1,9*K.1^-1,9*K.1,0,0,0,0,0,0,0,0,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1,-1,1,1,1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^-1,-1*K.1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,K.1^-1,K.1,K.1,K.1^-1,0,0,0,0,0,0,0,0,K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,3,3,1,9,9,9,9,9,9,9,9,9,9,9*K.1,9*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,3,3,3,3,3,3,3,3,3,3,3,3,3,1,3,3,3,3,1,3,3,3,0,0,0,0,0,0,1,1,1,1,3*K.1,1,1,3*K.1^-1,1,3*K.1^-1,3*K.1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1,K.1^-1,0,0,0,0,9*K.1,9*K.1^-1,9*K.1,9*K.1^-1,0,0,0,0,0,0,0,0,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1,-1,1,1,1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1,-1*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,K.1,K.1^-1,K.1^-1,K.1,0,0,0,0,0,0,0,0,K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,-3,-3,1,9,9,9*K.1^-1,9,9,9*K.1,9*K.1^-1,9*K.1,9*K.1,9*K.1^-1,9*K.1^-1,9*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,-3,-3,-3,-3,-3,-3*K.1^-1,-3*K.1,-3*K.1,-3*K.1,-3*K.1,-3,-3*K.1^-1,-3*K.1^-1,1,-3*K.1^-1,-3*K.1^-1,-3*K.1^-1,-3,1,-3*K.1,-3,-3*K.1,0,0,0,0,0,0,K.1,K.1^-1,K.1^-1,K.1^-1,-3*K.1^-1,1,K.1,-3*K.1,K.1,-3*K.1,-3*K.1^-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-1,K.1,0,0,0,0,9*K.1,9*K.1^-1,9,9,0,0,0,0,0,0,0,0,1,1,1,1,1,K.1,1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,1,K.1,K.1^-1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,-1,-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,-3*K.1^-1,-3*K.1,-3,-3*K.1,-3,-3,-3,-3*K.1^-1,K.1,K.1^-1,1,1,0,0,0,0,0,0,0,0,1,1,1,K.1^-1,K.1,K.1^-1,1,K.1,-1*K.1^-1,-1,-1*K.1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,-3,-3,1,9,9,9*K.1,9,9,9*K.1^-1,9*K.1,9*K.1^-1,9*K.1^-1,9*K.1,9*K.1,9*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,-3,-3,-3,-3,-3,-3*K.1,-3*K.1^-1,-3*K.1^-1,-3*K.1^-1,-3*K.1^-1,-3,-3*K.1,-3*K.1,1,-3*K.1,-3*K.1,-3*K.1,-3,1,-3*K.1^-1,-3,-3*K.1^-1,0,0,0,0,0,0,K.1^-1,K.1,K.1,K.1,-3*K.1,1,K.1^-1,-3*K.1^-1,K.1^-1,-3*K.1^-1,-3*K.1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1,K.1^-1,0,0,0,0,9*K.1^-1,9*K.1,9,9,0,0,0,0,0,0,0,0,1,1,1,1,1,K.1^-1,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,1,K.1^-1,K.1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,-1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1*K.1^-1,-3*K.1,-3*K.1^-1,-3,-3*K.1^-1,-3,-3,-3,-3*K.1,K.1^-1,K.1,1,1,0,0,0,0,0,0,0,0,1,1,1,K.1,K.1^-1,K.1,1,K.1^-1,-1*K.1,-1,-1*K.1^-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,-3,-3,1,9,9,9*K.1^-1,9,9,9*K.1,9*K.1^-1,9*K.1,9*K.1,9*K.1^-1,9*K.1,9*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,-3,-3,-3,-3,-3,-3*K.1^-1,-3*K.1,-3*K.1,-3*K.1,-3*K.1,-3,-3*K.1^-1,-3*K.1^-1,1,-3*K.1^-1,-3*K.1^-1,-3*K.1^-1,-3,1,-3*K.1,-3,-3*K.1,0,0,0,0,0,0,K.1,K.1^-1,K.1^-1,K.1^-1,-3*K.1,1,K.1,-3*K.1^-1,K.1,-3*K.1^-1,-3*K.1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1,K.1^-1,0,0,0,0,9,9,9*K.1^-1,9*K.1,0,0,0,0,0,0,0,0,1,1,1,1,1,K.1,1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,1,K.1,K.1^-1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,-1,-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-3,-3,-3*K.1,-3,-3*K.1,-3*K.1^-1,-3*K.1^-1,-3,1,1,K.1,K.1^-1,0,0,0,0,0,0,0,0,K.1^-1,K.1,K.1^-1,1,1,1,K.1,1,-1,-1*K.1^-1,-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,-3,-3,1,9,9,9*K.1,9,9,9*K.1^-1,9*K.1,9*K.1^-1,9*K.1^-1,9*K.1,9*K.1^-1,9*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,-3,-3,-3,-3,-3,-3*K.1,-3*K.1^-1,-3*K.1^-1,-3*K.1^-1,-3*K.1^-1,-3,-3*K.1,-3*K.1,1,-3*K.1,-3*K.1,-3*K.1,-3,1,-3*K.1^-1,-3,-3*K.1^-1,0,0,0,0,0,0,K.1^-1,K.1,K.1,K.1,-3*K.1^-1,1,K.1^-1,-3*K.1,K.1^-1,-3*K.1,-3*K.1^-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-1,K.1,0,0,0,0,9,9,9*K.1,9*K.1^-1,0,0,0,0,0,0,0,0,1,1,1,1,1,K.1^-1,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,1,K.1^-1,K.1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,-1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-3,-3,-3*K.1^-1,-3,-3*K.1^-1,-3*K.1,-3*K.1,-3,1,1,K.1^-1,K.1,0,0,0,0,0,0,0,0,K.1,K.1^-1,K.1,1,1,1,K.1^-1,1,-1,-1*K.1,-1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,-3,-3,1,9,9,9*K.1^-1,9,9,9*K.1,9*K.1^-1,9*K.1,9*K.1,9*K.1^-1,9,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,-3,-3,-3,-3,-3,-3*K.1^-1,-3*K.1,-3*K.1,-3*K.1,-3*K.1,-3,-3*K.1^-1,-3*K.1^-1,1,-3*K.1^-1,-3*K.1^-1,-3*K.1^-1,-3,1,-3*K.1,-3,-3*K.1,0,0,0,0,0,0,K.1,K.1^-1,K.1^-1,K.1^-1,-3,1,K.1,-3,K.1,-3,-3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,9*K.1^-1,9*K.1,9*K.1,9*K.1^-1,0,0,0,0,0,0,0,0,1,1,1,1,1,K.1,1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,1,K.1,K.1^-1,1,K.1,K.1^-1,1,1,1,1,-1,-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1,-1,-1,-3*K.1,-3*K.1^-1,-3*K.1^-1,-3*K.1^-1,-3*K.1^-1,-3*K.1,-3*K.1,-3*K.1,K.1^-1,K.1,K.1^-1,K.1,0,0,0,0,0,0,0,0,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,-3,-3,1,9,9,9*K.1,9,9,9*K.1^-1,9*K.1,9*K.1^-1,9*K.1^-1,9*K.1,9,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,-3,-3,-3,-3,-3,-3*K.1,-3*K.1^-1,-3*K.1^-1,-3*K.1^-1,-3*K.1^-1,-3,-3*K.1,-3*K.1,1,-3*K.1,-3*K.1,-3*K.1,-3,1,-3*K.1^-1,-3,-3*K.1^-1,0,0,0,0,0,0,K.1^-1,K.1,K.1,K.1,-3,1,K.1^-1,-3,K.1^-1,-3,-3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,9*K.1,9*K.1^-1,9*K.1^-1,9*K.1,0,0,0,0,0,0,0,0,1,1,1,1,1,K.1^-1,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,1,K.1^-1,K.1,1,K.1^-1,K.1,1,1,1,1,-1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1,-1,-1,-3*K.1^-1,-3*K.1,-3*K.1,-3*K.1,-3*K.1,-3*K.1^-1,-3*K.1^-1,-3*K.1^-1,K.1,K.1^-1,K.1,K.1^-1,0,0,0,0,0,0,0,0,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,-3,-3,1,9,9,9,9,9,9,9,9,9,9,9*K.1^-1,9*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,1,-3,-3,-3,-3,1,-3,-3,-3,0,0,0,0,0,0,1,1,1,1,-3*K.1^-1,1,1,-3*K.1,1,-3*K.1,-3*K.1^-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-1,K.1,0,0,0,0,9*K.1^-1,9*K.1,9*K.1^-1,9*K.1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^-1,-1*K.1,-3*K.1,-3*K.1^-1,-3*K.1,-3*K.1^-1,-3*K.1,-3*K.1^-1,-3*K.1^-1,-3*K.1,K.1^-1,K.1,K.1,K.1^-1,0,0,0,0,0,0,0,0,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,-3,-3,1,9,9,9,9,9,9,9,9,9,9,9*K.1,9*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,1,-3,-3,-3,-3,1,-3,-3,-3,0,0,0,0,0,0,1,1,1,1,-3*K.1,1,1,-3*K.1^-1,1,-3*K.1^-1,-3*K.1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1,K.1^-1,0,0,0,0,9*K.1,9*K.1^-1,9*K.1,9*K.1^-1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1,-1*K.1^-1,-3*K.1^-1,-3*K.1,-3*K.1^-1,-3*K.1,-3*K.1^-1,-3*K.1,-3*K.1,-3*K.1^-1,K.1,K.1^-1,K.1^-1,K.1,0,0,0,0,0,0,0,0,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[10, -2, 2, -2, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, -2, -2, 2, 2, 2, -2, 2, -2, -2, 2, -2, 2, -2, -2, -2, 2, 2, -2, -2, -2, 2, 2, 1, 1, -1, 1, -1, -1, -2, -2, -2, -2, 2, -2, -2, 2, -2, -2, -2, -2, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -2, -2, 1, 1, -1, -1, 10, 10, 10, 10, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 2, 2, 2, -2, 2, -2, -2, -2, -2, -1, 1, 1, -1, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[10, 2, -2, -2, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 2, 2, -2, -2, -2, 2, -2, 2, 2, -2, 2, -2, 2, -2, 2, -2, -2, 2, -2, 2, -2, -2, -1, -1, 1, -1, 1, 1, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, -2, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -2, -2, -1, -1, 1, 1, 10, 10, 10, 10, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, -2, -2, -2, 2, -2, -2, -2, -2, -2, 1, -1, -1, 1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,-2,2,-2,10,10,10*K.1^-1,10,10,10*K.1,10*K.1^-1,10*K.1,10*K.1,10*K.1^-1,10*K.1^-1,10*K.1,1,1,1,1,1,1,K.1,K.1,K.1^-1,1,K.1,K.1^-1,1,K.1^-1,K.1,1,K.1,K.1^-1,K.1^-1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,0,0,0,-2,-2,2,2,2,-2*K.1^-1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2,2*K.1^-1,-2*K.1^-1,-2,-2*K.1^-1,2*K.1^-1,2*K.1^-1,-2,-2,-2*K.1,2,2*K.1,1,1,-1,1,-1,-1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1^-1,2*K.1^-1,-2,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1^-1,-2,-1*K.1,-1*K.1,-1,K.1^-1,-1*K.1^-1,K.1,1,-1*K.1,-1,K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1^-1,1,K.1,-2*K.1^-1,-2*K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,10*K.1,10*K.1^-1,10,10,K.1,1,1,K.1^-1,1,K.1,1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-1,-2*K.1,-2,2*K.1,2,2,-2,2*K.1^-1,-2*K.1,-2*K.1^-1,-2,-2,-1,1,K.1^-1,-1*K.1^-1,-1,-1*K.1,K.1,1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,-2,2,-2,10,10,10*K.1,10,10,10*K.1^-1,10*K.1,10*K.1^-1,10*K.1^-1,10*K.1,10*K.1,10*K.1^-1,1,1,1,1,1,1,K.1^-1,K.1^-1,K.1,1,K.1^-1,K.1,1,K.1,K.1^-1,1,K.1^-1,K.1,K.1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,0,0,0,-2,-2,2,2,2,-2*K.1,2*K.1^-1,-2*K.1^-1,-2*K.1^-1,2*K.1^-1,-2,2*K.1,-2*K.1,-2,-2*K.1,2*K.1,2*K.1,-2,-2,-2*K.1^-1,2,2*K.1^-1,1,1,-1,1,-1,-1,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2,-2*K.1^-1,2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2,-1*K.1^-1,-1*K.1^-1,-1,K.1,-1*K.1,K.1^-1,1,-1*K.1^-1,-1,K.1^-1,-1*K.1,K.1,-1*K.1,K.1,1,K.1^-1,-2*K.1,-2*K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,10*K.1^-1,10*K.1,10,10,K.1^-1,1,1,K.1,1,K.1^-1,1,K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1^-1,-2,2*K.1^-1,2,2,-2,2*K.1,-2*K.1^-1,-2*K.1,-2,-2,-1,1,K.1,-1*K.1,-1,-1*K.1^-1,K.1^-1,1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,-2,2,-2,10,10,10*K.1^-1,10,10,10*K.1,10*K.1^-1,10*K.1,10*K.1,10*K.1^-1,10*K.1,10*K.1^-1,1,1,1,1,1,1,K.1,K.1,K.1^-1,1,K.1,K.1^-1,1,K.1^-1,K.1,1,K.1,K.1^-1,K.1^-1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,0,0,0,-2,-2,2,2,2,-2*K.1^-1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2,2*K.1^-1,-2*K.1^-1,-2,-2*K.1^-1,2*K.1^-1,2*K.1^-1,-2,-2,-2*K.1,2,2*K.1,1,1,-1,1,-1,-1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1^-1,2*K.1,-2,-2*K.1,2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,-2,-1*K.1,-1*K.1,-1,K.1^-1,-1*K.1^-1,K.1,1,-1*K.1,-1,K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1^-1,1,K.1,-2*K.1,-2*K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,10,10,10*K.1^-1,10*K.1,1,K.1,K.1,1,K.1^-1,1,K.1^-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2*K.1,2,2*K.1,2*K.1^-1,-2*K.1^-1,2,-2,-2,-2*K.1,-2*K.1^-1,-1*K.1^-1,K.1,1,-1,-1*K.1,-1,1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,-2,2,-2,10,10,10*K.1,10,10,10*K.1^-1,10*K.1,10*K.1^-1,10*K.1^-1,10*K.1,10*K.1^-1,10*K.1,1,1,1,1,1,1,K.1^-1,K.1^-1,K.1,1,K.1^-1,K.1,1,K.1,K.1^-1,1,K.1^-1,K.1,K.1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,0,0,0,-2,-2,2,2,2,-2*K.1,2*K.1^-1,-2*K.1^-1,-2*K.1^-1,2*K.1^-1,-2,2*K.1,-2*K.1,-2,-2*K.1,2*K.1,2*K.1,-2,-2,-2*K.1^-1,2,2*K.1^-1,1,1,-1,1,-1,-1,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1,2*K.1^-1,-2,-2*K.1^-1,2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2,-1*K.1^-1,-1*K.1^-1,-1,K.1,-1*K.1,K.1^-1,1,-1*K.1^-1,-1,K.1^-1,-1*K.1,K.1,-1*K.1,K.1,1,K.1^-1,-2*K.1^-1,-2*K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,10,10,10*K.1,10*K.1^-1,1,K.1^-1,K.1^-1,1,K.1,1,K.1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2*K.1^-1,2,2*K.1^-1,2*K.1,-2*K.1,2,-2,-2,-2*K.1^-1,-2*K.1,-1*K.1,K.1^-1,1,-1,-1*K.1^-1,-1,1,K.1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,-2,2,-2,10,10,10*K.1^-1,10,10,10*K.1,10*K.1^-1,10*K.1,10*K.1,10*K.1^-1,10,10,1,1,1,1,1,1,K.1,K.1,K.1^-1,1,K.1,K.1^-1,1,K.1^-1,K.1,1,K.1,K.1^-1,K.1^-1,1,K.1^-1,K.1,1,1,1,1,0,0,0,-2,-2,2,2,2,-2*K.1^-1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2,2*K.1^-1,-2*K.1^-1,-2,-2*K.1^-1,2*K.1^-1,2*K.1^-1,-2,-2,-2*K.1,2,2*K.1,1,1,-1,1,-1,-1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1^-1,2,-2,-2*K.1,2,-2*K.1,-2,-2,-2,-1*K.1,-1*K.1,-1,K.1^-1,-1*K.1^-1,K.1,1,-1*K.1,-1,K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1^-1,1,K.1,-2,-2,1,1,-1,-1,10*K.1^-1,10*K.1,10*K.1,10*K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1^-1,-2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1,-2*K.1,2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,-1*K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,-2,2,-2,10,10,10*K.1,10,10,10*K.1^-1,10*K.1,10*K.1^-1,10*K.1^-1,10*K.1,10,10,1,1,1,1,1,1,K.1^-1,K.1^-1,K.1,1,K.1^-1,K.1,1,K.1,K.1^-1,1,K.1^-1,K.1,K.1,1,K.1,K.1^-1,1,1,1,1,0,0,0,-2,-2,2,2,2,-2*K.1,2*K.1^-1,-2*K.1^-1,-2*K.1^-1,2*K.1^-1,-2,2*K.1,-2*K.1,-2,-2*K.1,2*K.1,2*K.1,-2,-2,-2*K.1^-1,2,2*K.1^-1,1,1,-1,1,-1,-1,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1,2,-2,-2*K.1^-1,2,-2*K.1^-1,-2,-2,-2,-1*K.1^-1,-1*K.1^-1,-1,K.1,-1*K.1,K.1^-1,1,-1*K.1^-1,-1,K.1^-1,-1*K.1,K.1,-1*K.1,K.1,1,K.1^-1,-2,-2,1,1,-1,-1,10*K.1,10*K.1^-1,10*K.1^-1,10*K.1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1^-1,-2*K.1^-1,2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,-2,2,-2,10,10,10,10,10,10,10,10,10,10,10*K.1^-1,10*K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,0,0,0,-2,-2,2,2,2,-2,2,-2,-2,2,-2,2,-2,-2,-2,2,2,-2,-2,-2,2,2,1,1,-1,1,-1,-1,-2,-2,-2,-2,2*K.1^-1,-2,-2,2*K.1,-2,-2*K.1,-2*K.1^-1,-2,-1,-1,-1,1,-1,1,1,-1,-1,1,-1,1,-1,1,1,1,-2*K.1^-1,-2*K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,10*K.1^-1,10*K.1,10*K.1^-1,10*K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1^-1,-2*K.1,2*K.1^-1,2*K.1,2*K.1^-1,-2*K.1^-1,2*K.1,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-1,-1*K.1^-1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,-2,2,-2,10,10,10,10,10,10,10,10,10,10,10*K.1,10*K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,0,0,0,-2,-2,2,2,2,-2,2,-2,-2,2,-2,2,-2,-2,-2,2,2,-2,-2,-2,2,2,1,1,-1,1,-1,-1,-2,-2,-2,-2,2*K.1,-2,-2,2*K.1^-1,-2,-2*K.1^-1,-2*K.1,-2,-1,-1,-1,1,-1,1,1,-1,-1,1,-1,1,-1,1,1,1,-2*K.1,-2*K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,10*K.1,10*K.1^-1,10*K.1,10*K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-1,-2*K.1,-2*K.1^-1,2*K.1,2*K.1^-1,2*K.1,-2*K.1,2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1,-1*K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,K.1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,2,-2,-2,10,10,10*K.1^-1,10,10,10*K.1,10*K.1^-1,10*K.1,10*K.1,10*K.1^-1,10*K.1^-1,10*K.1,1,1,1,1,1,1,K.1,K.1,K.1^-1,1,K.1,K.1^-1,1,K.1^-1,K.1,1,K.1,K.1^-1,K.1^-1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,0,0,0,2,2,-2,-2,-2,2*K.1^-1,-2*K.1,2*K.1,2*K.1,-2*K.1,2,-2*K.1^-1,2*K.1^-1,-2,2*K.1^-1,-2*K.1^-1,-2*K.1^-1,2,-2,2*K.1,-2,-2*K.1,-1,-1,1,-1,1,1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1^-1,-2,K.1,K.1,1,-1*K.1^-1,K.1^-1,-1*K.1,-1,K.1,1,-1*K.1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1,-1*K.1,-2*K.1^-1,-2*K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,10*K.1,10*K.1^-1,10,10,K.1,1,1,K.1^-1,1,K.1,1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1,2,-2*K.1,-2,-2,2,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2,-2,1,-1,-1*K.1^-1,K.1^-1,1,K.1,-1*K.1,-1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,2,-2,-2,10,10,10*K.1,10,10,10*K.1^-1,10*K.1,10*K.1^-1,10*K.1^-1,10*K.1,10*K.1,10*K.1^-1,1,1,1,1,1,1,K.1^-1,K.1^-1,K.1,1,K.1^-1,K.1,1,K.1,K.1^-1,1,K.1^-1,K.1,K.1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,0,0,0,2,2,-2,-2,-2,2*K.1,-2*K.1^-1,2*K.1^-1,2*K.1^-1,-2*K.1^-1,2,-2*K.1,2*K.1,-2,2*K.1,-2*K.1,-2*K.1,2,-2,2*K.1^-1,-2,-2*K.1^-1,-1,-1,1,-1,1,1,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2,-2*K.1^-1,-2*K.1^-1,-2*K.1^-1,2*K.1^-1,2*K.1,-2,K.1^-1,K.1^-1,1,-1*K.1,K.1,-1*K.1^-1,-1,K.1^-1,1,-1*K.1^-1,K.1,-1*K.1,K.1,-1*K.1,-1,-1*K.1^-1,-2*K.1,-2*K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,10*K.1^-1,10*K.1,10,10,K.1^-1,1,1,K.1,1,K.1^-1,1,K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-1,2,-2*K.1^-1,-2,-2,2,-2*K.1,-2*K.1^-1,-2*K.1,-2,-2,1,-1,-1*K.1,K.1,1,K.1^-1,-1*K.1^-1,-1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,2,-2,-2,10,10,10*K.1^-1,10,10,10*K.1,10*K.1^-1,10*K.1,10*K.1,10*K.1^-1,10*K.1,10*K.1^-1,1,1,1,1,1,1,K.1,K.1,K.1^-1,1,K.1,K.1^-1,1,K.1^-1,K.1,1,K.1,K.1^-1,K.1^-1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,0,0,0,2,2,-2,-2,-2,2*K.1^-1,-2*K.1,2*K.1,2*K.1,-2*K.1,2,-2*K.1^-1,2*K.1^-1,-2,2*K.1^-1,-2*K.1^-1,-2*K.1^-1,2,-2,2*K.1,-2,-2*K.1,-1,-1,1,-1,1,1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2,-2*K.1,-2*K.1^-1,-2*K.1,2*K.1^-1,2*K.1,-2,K.1,K.1,1,-1*K.1^-1,K.1^-1,-1*K.1,-1,K.1,1,-1*K.1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1,-1*K.1,-2*K.1,-2*K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,10,10,10*K.1^-1,10*K.1,1,K.1,K.1,1,K.1^-1,1,K.1^-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2*K.1,-2,-2*K.1,-2*K.1^-1,2*K.1^-1,-2,-2,-2,-2*K.1,-2*K.1^-1,K.1^-1,-1*K.1,-1,1,K.1,1,-1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,2,-2,-2,10,10,10*K.1,10,10,10*K.1^-1,10*K.1,10*K.1^-1,10*K.1^-1,10*K.1,10*K.1^-1,10*K.1,1,1,1,1,1,1,K.1^-1,K.1^-1,K.1,1,K.1^-1,K.1,1,K.1,K.1^-1,1,K.1^-1,K.1,K.1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,0,0,0,2,2,-2,-2,-2,2*K.1,-2*K.1^-1,2*K.1^-1,2*K.1^-1,-2*K.1^-1,2,-2*K.1,2*K.1,-2,2*K.1,-2*K.1,-2*K.1,2,-2,2*K.1^-1,-2,-2*K.1^-1,-1,-1,1,-1,1,1,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1,-2*K.1^-1,-2,-2*K.1^-1,-2*K.1,-2*K.1^-1,2*K.1,2*K.1^-1,-2,K.1^-1,K.1^-1,1,-1*K.1,K.1,-1*K.1^-1,-1,K.1^-1,1,-1*K.1^-1,K.1,-1*K.1,K.1,-1*K.1,-1,-1*K.1^-1,-2*K.1^-1,-2*K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,10,10,10*K.1,10*K.1^-1,1,K.1^-1,K.1^-1,1,K.1,1,K.1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2*K.1^-1,-2,-2*K.1^-1,-2*K.1,2*K.1,-2,-2,-2,-2*K.1^-1,-2*K.1,K.1,-1*K.1^-1,-1,1,K.1^-1,1,-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,2,-2,-2,10,10,10*K.1^-1,10,10,10*K.1,10*K.1^-1,10*K.1,10*K.1,10*K.1^-1,10,10,1,1,1,1,1,1,K.1,K.1,K.1^-1,1,K.1,K.1^-1,1,K.1^-1,K.1,1,K.1,K.1^-1,K.1^-1,1,K.1^-1,K.1,1,1,1,1,0,0,0,2,2,-2,-2,-2,2*K.1^-1,-2*K.1,2*K.1,2*K.1,-2*K.1,2,-2*K.1^-1,2*K.1^-1,-2,2*K.1^-1,-2*K.1^-1,-2*K.1^-1,2,-2,2*K.1,-2,-2*K.1,-1,-1,1,-1,1,1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2,-2,-2*K.1,-2,-2*K.1,2,2,-2,K.1,K.1,1,-1*K.1^-1,K.1^-1,-1*K.1,-1,K.1,1,-1*K.1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1,-1*K.1,-2,-2,-1,-1,1,1,10*K.1^-1,10*K.1,10*K.1,10*K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-1,2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2*K.1,2*K.1,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,K.1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,2,-2,-2,10,10,10*K.1,10,10,10*K.1^-1,10*K.1,10*K.1^-1,10*K.1^-1,10*K.1,10,10,1,1,1,1,1,1,K.1^-1,K.1^-1,K.1,1,K.1^-1,K.1,1,K.1,K.1^-1,1,K.1^-1,K.1,K.1,1,K.1,K.1^-1,1,1,1,1,0,0,0,2,2,-2,-2,-2,2*K.1,-2*K.1^-1,2*K.1^-1,2*K.1^-1,-2*K.1^-1,2,-2*K.1,2*K.1,-2,2*K.1,-2*K.1,-2*K.1,2,-2,2*K.1^-1,-2,-2*K.1^-1,-1,-1,1,-1,1,1,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1,-2,-2,-2*K.1^-1,-2,-2*K.1^-1,2,2,-2,K.1^-1,K.1^-1,1,-1*K.1,K.1,-1*K.1^-1,-1,K.1^-1,1,-1*K.1^-1,K.1,-1*K.1,K.1,-1*K.1,-1,-1*K.1^-1,-2,-2,-1,-1,1,1,10*K.1,10*K.1^-1,10*K.1^-1,10*K.1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1^-1,2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,2,-2,-2,10,10,10,10,10,10,10,10,10,10,10*K.1^-1,10*K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,0,0,0,2,2,-2,-2,-2,2,-2,2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,-2,-1,-1,1,-1,1,1,-2,-2,-2,-2,-2*K.1^-1,-2,-2,-2*K.1,-2,2*K.1,2*K.1^-1,-2,1,1,1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,-1,-1,-2*K.1^-1,-2*K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,10*K.1^-1,10*K.1,10*K.1^-1,10*K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-1,2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-1,K.1^-1,-1*K.1,-1*K.1,K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,2,-2,-2,10,10,10,10,10,10,10,10,10,10,10*K.1,10*K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,0,0,0,2,2,-2,-2,-2,2,-2,2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,-2,-1,-1,1,-1,1,1,-2,-2,-2,-2,-2*K.1,-2,-2,-2*K.1^-1,-2,2*K.1^-1,2*K.1,-2,1,1,1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,-1,-1,-2*K.1,-2*K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,10*K.1,10*K.1^-1,10*K.1,10*K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1,2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1,K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,-3,9,3,15*K.1^-1,15*K.1,-10-5*K.1,0,0,-5-10*K.1,5+10*K.1,-5+5*K.1,10+5*K.1,5-5*K.1,0,0,6*K.1^-1,-3*K.1^-1,6*K.1,-3,-3*K.1,6,-2-4*K.1,4+2*K.1,-4-2*K.1,0,1-K.1,-1-2*K.1,0,2+K.1,1+2*K.1,0,-2+2*K.1,2-2*K.1,2+4*K.1,0,-1+K.1,-2-K.1,0,0,0,0,-3,3,0,-3*K.1,-3*K.1^-1,9*K.1,9*K.1^-1,0,-1+K.1,-3-6*K.1,1+2*K.1,-2-K.1,-3+3*K.1,0,3+6*K.1,2+K.1,3*K.1^-1,-1-2*K.1,-6-3*K.1,3-3*K.1,0,3*K.1,1-K.1,0,6+3*K.1,-3,-3*K.1^-1,0,-3*K.1,0,0,2+K.1,1+2*K.1,-2-K.1,1-K.1,0,0,-1-2*K.1,0,-1+K.1,0,0,0,0,0,0,2+K.1,0,1-K.1,0,0,0,-2-K.1,0,-1-2*K.1,0,-1+K.1,0,1+2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-1,-3*K.1^-1,-3*K.1,3*K.1,0,-1+K.1,0,1+2*K.1,2+K.1,-1-2*K.1,1-K.1,-1-2*K.1,2+K.1,-2-K.1,0,1+2*K.1,1-K.1,0,-2-K.1,-1+K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,-3,9,3,15*K.1,15*K.1^-1,-5+5*K.1,0,0,5+10*K.1,-5-10*K.1,-10-5*K.1,5-5*K.1,10+5*K.1,0,0,6*K.1,-3*K.1,6*K.1^-1,-3,-3*K.1^-1,6,2+4*K.1,2-2*K.1,-2+2*K.1,0,2+K.1,1+2*K.1,0,1-K.1,-1-2*K.1,0,-4-2*K.1,4+2*K.1,-2-4*K.1,0,-2-K.1,-1+K.1,0,0,0,0,-3,3,0,-3*K.1^-1,-3*K.1,9*K.1^-1,9*K.1,0,-2-K.1,3+6*K.1,-1-2*K.1,-1+K.1,-6-3*K.1,0,-3-6*K.1,1-K.1,3*K.1,1+2*K.1,-3+3*K.1,6+3*K.1,0,3*K.1^-1,2+K.1,0,3-3*K.1,-3,-3*K.1,0,-3*K.1^-1,0,0,1-K.1,-1-2*K.1,-1+K.1,2+K.1,0,0,1+2*K.1,0,-2-K.1,0,0,0,0,0,0,1-K.1,0,2+K.1,0,0,0,-1+K.1,0,1+2*K.1,0,-2-K.1,0,-1-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1,-3*K.1,-3*K.1^-1,3*K.1^-1,0,-2-K.1,0,-1-2*K.1,1-K.1,1+2*K.1,2+K.1,1+2*K.1,1-K.1,-1+K.1,0,-1-2*K.1,2+K.1,0,-1+K.1,-2-K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,-3,9,3,15*K.1^-1,15*K.1,5+10*K.1,0,0,10+5*K.1,5-5*K.1,-5-10*K.1,-5+5*K.1,-10-5*K.1,0,0,6*K.1^-1,-3*K.1^-1,6*K.1,-3,-3*K.1,6,4+2*K.1,-2+2*K.1,2+4*K.1,0,1+2*K.1,-1+K.1,0,-1-2*K.1,-2-K.1,0,-2-4*K.1,-4-2*K.1,2-2*K.1,0,2+K.1,1-K.1,0,0,0,0,-3,3,0,-3*K.1,-3*K.1^-1,9*K.1,9*K.1^-1,0,2+K.1,6+3*K.1,-2-K.1,1-K.1,-3-6*K.1,0,3-3*K.1,-1-2*K.1,3*K.1^-1,-1+K.1,3+6*K.1,-6-3*K.1,0,3*K.1,1+2*K.1,0,-3+3*K.1,-3,-3*K.1^-1,0,-3*K.1,0,0,-1+K.1,1-K.1,1+2*K.1,-2-K.1,0,0,2+K.1,0,-1-2*K.1,0,0,0,0,0,0,-1-2*K.1,0,1+2*K.1,0,0,0,1-K.1,0,-1+K.1,0,2+K.1,0,-2-K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-1,-3*K.1^-1,-3*K.1,3*K.1,0,-1-2*K.1,0,1-K.1,-1+K.1,2+K.1,1+2*K.1,-1+K.1,-1-2*K.1,1+2*K.1,0,-2-K.1,-2-K.1,0,1-K.1,2+K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,-3,9,3,15*K.1,15*K.1^-1,-5-10*K.1,0,0,5-5*K.1,10+5*K.1,5+10*K.1,-10-5*K.1,-5+5*K.1,0,0,6*K.1,-3*K.1,6*K.1^-1,-3,-3*K.1^-1,6,2-2*K.1,-4-2*K.1,-2-4*K.1,0,-1-2*K.1,-2-K.1,0,1+2*K.1,-1+K.1,0,2+4*K.1,-2+2*K.1,4+2*K.1,0,1-K.1,2+K.1,0,0,0,0,-3,3,0,-3*K.1^-1,-3*K.1,9*K.1^-1,9*K.1,0,1-K.1,3-3*K.1,-1+K.1,2+K.1,3+6*K.1,0,6+3*K.1,1+2*K.1,3*K.1,-2-K.1,-3-6*K.1,-3+3*K.1,0,3*K.1^-1,-1-2*K.1,0,-6-3*K.1,-3,-3*K.1,0,-3*K.1^-1,0,0,-2-K.1,2+K.1,-1-2*K.1,-1+K.1,0,0,1-K.1,0,1+2*K.1,0,0,0,0,0,0,1+2*K.1,0,-1-2*K.1,0,0,0,2+K.1,0,-2-K.1,0,1-K.1,0,-1+K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1,-3*K.1,-3*K.1^-1,3*K.1^-1,0,1+2*K.1,0,2+K.1,-2-K.1,1-K.1,-1-2*K.1,-2-K.1,1+2*K.1,-1-2*K.1,0,-1+K.1,-1+K.1,0,2+K.1,1-K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,-3,9,3,15*K.1^-1,15*K.1,5-5*K.1,0,0,-5+5*K.1,-10-5*K.1,10+5*K.1,-5-10*K.1,5+10*K.1,0,0,6*K.1^-1,-3*K.1^-1,6*K.1,-3,-3*K.1,6,-2+2*K.1,-2-4*K.1,2-2*K.1,0,-2-K.1,2+K.1,0,-1+K.1,1-K.1,0,4+2*K.1,2+4*K.1,-4-2*K.1,0,-1-2*K.1,1+2*K.1,0,0,0,0,-3,3,0,-3*K.1,-3*K.1^-1,9*K.1,9*K.1^-1,0,-1-2*K.1,-3+3*K.1,1-K.1,1+2*K.1,6+3*K.1,0,-6-3*K.1,-1+K.1,3*K.1^-1,2+K.1,3-3*K.1,3+6*K.1,0,3*K.1,-2-K.1,0,-3-6*K.1,-3,-3*K.1^-1,0,-3*K.1,0,0,-1-2*K.1,-2-K.1,1-K.1,1+2*K.1,0,0,-1+K.1,0,2+K.1,0,0,0,0,0,0,-1+K.1,0,-2-K.1,0,0,0,1+2*K.1,0,2+K.1,0,-1-2*K.1,0,1-K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-1,-3*K.1^-1,-3*K.1,3*K.1,0,2+K.1,0,-2-K.1,-1-2*K.1,-1+K.1,-2-K.1,2+K.1,-1+K.1,1-K.1,0,1-K.1,1+2*K.1,0,1+2*K.1,-1-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,-3,9,3,15*K.1,15*K.1^-1,10+5*K.1,0,0,-10-5*K.1,-5+5*K.1,5-5*K.1,5+10*K.1,-5-10*K.1,0,0,6*K.1,-3*K.1,6*K.1^-1,-3,-3*K.1^-1,6,-4-2*K.1,2+4*K.1,4+2*K.1,0,-1+K.1,1-K.1,0,-2-K.1,2+K.1,0,2-2*K.1,-2-4*K.1,-2+2*K.1,0,1+2*K.1,-1-2*K.1,0,0,0,0,-3,3,0,-3*K.1^-1,-3*K.1,9*K.1^-1,9*K.1,0,1+2*K.1,-6-3*K.1,2+K.1,-1-2*K.1,3-3*K.1,0,-3+3*K.1,-2-K.1,3*K.1,1-K.1,6+3*K.1,-3-6*K.1,0,3*K.1^-1,-1+K.1,0,3+6*K.1,-3,-3*K.1,0,-3*K.1^-1,0,0,1+2*K.1,-1+K.1,2+K.1,-1-2*K.1,0,0,-2-K.1,0,1-K.1,0,0,0,0,0,0,-2-K.1,0,-1+K.1,0,0,0,-1-2*K.1,0,1-K.1,0,1+2*K.1,0,2+K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1,-3*K.1,-3*K.1^-1,3*K.1^-1,0,1-K.1,0,-1+K.1,1+2*K.1,-2-K.1,-1+K.1,1-K.1,-2-K.1,2+K.1,0,2+K.1,-1-2*K.1,0,-1-2*K.1,1+2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,-3,9,3,15,15,0,15*K.1^-1,15*K.1,0,0,0,0,0,0,0,6,-3,6,-3,-3,6,0,0,0,-3*K.1^-1,0,0,-3*K.1,0,0,6*K.1^-1,0,0,0,6*K.1,0,0,0,0,0,0,-3,3,0,-3,-3,9,9,9*K.1^-1,0,0,0,0,0,-3*K.1,0,0,3,0,0,0,-3*K.1^-1,3,0,9*K.1,0,-3,-3,0,-3,0,0,0,0,0,0,0,3*K.1,0,0,0,0,0,3*K.1^-1,0,0,0,0,0,0,-3*K.1^-1,0,0,0,0,0,0,0,-3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3,-3,3,-3*K.1,0,3*K.1^-1,0,0,0,0,0,0,0,3*K.1,0,0,-3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,-3,9,3,15,15,0,15*K.1,15*K.1^-1,0,0,0,0,0,0,0,6,-3,6,-3,-3,6,0,0,0,-3*K.1,0,0,-3*K.1^-1,0,0,6*K.1,0,0,0,6*K.1^-1,0,0,0,0,0,0,-3,3,0,-3,-3,9,9,9*K.1,0,0,0,0,0,-3*K.1^-1,0,0,3,0,0,0,-3*K.1,3,0,9*K.1^-1,0,-3,-3,0,-3,0,0,0,0,0,0,0,3*K.1^-1,0,0,0,0,0,3*K.1,0,0,0,0,0,0,-3*K.1,0,0,0,0,0,0,0,-3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3,-3,3,-3*K.1^-1,0,3*K.1,0,0,0,0,0,0,0,3*K.1^-1,0,0,-3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,9,-3,3,15*K.1^-1,15*K.1,-10-5*K.1,0,0,-5-10*K.1,5+10*K.1,-5+5*K.1,10+5*K.1,5-5*K.1,0,0,-3*K.1^-1,6*K.1^-1,-3*K.1,6,6*K.1,-3,1+2*K.1,-2-K.1,2+K.1,0,-2+2*K.1,2+4*K.1,0,-4-2*K.1,-2-4*K.1,0,1-K.1,-1+K.1,-1-2*K.1,0,2-2*K.1,4+2*K.1,0,0,0,0,-3,3,0,9*K.1,9*K.1^-1,-3*K.1,-3*K.1^-1,0,3-3*K.1,1+2*K.1,-3-6*K.1,6+3*K.1,1-K.1,0,-1-2*K.1,-6-3*K.1,3*K.1^-1,3+6*K.1,2+K.1,-1+K.1,0,3*K.1,-3+3*K.1,0,-2-K.1,0,0,-3*K.1,0,-3*K.1^-1,-3,2+K.1,1+2*K.1,-2-K.1,1-K.1,0,0,-1-2*K.1,0,-1+K.1,0,0,0,-2-K.1,1-K.1,0,0,-1+K.1,0,0,1+2*K.1,0,0,2+K.1,0,-1-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-1,-3*K.1^-1,-3*K.1,3*K.1,0,-1+K.1,0,1+2*K.1,2+K.1,-1-2*K.1,1-K.1,-1-2*K.1,2+K.1,-2-K.1,0,1+2*K.1,1-K.1,0,-2-K.1,-1+K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,9,-3,3,15*K.1,15*K.1^-1,-5+5*K.1,0,0,5+10*K.1,-5-10*K.1,-10-5*K.1,5-5*K.1,10+5*K.1,0,0,-3*K.1,6*K.1,-3*K.1^-1,6,6*K.1^-1,-3,-1-2*K.1,-1+K.1,1-K.1,0,-4-2*K.1,-2-4*K.1,0,-2+2*K.1,2+4*K.1,0,2+K.1,-2-K.1,1+2*K.1,0,4+2*K.1,2-2*K.1,0,0,0,0,-3,3,0,9*K.1^-1,9*K.1,-3*K.1^-1,-3*K.1,0,6+3*K.1,-1-2*K.1,3+6*K.1,3-3*K.1,2+K.1,0,1+2*K.1,-3+3*K.1,3*K.1,-3-6*K.1,1-K.1,-2-K.1,0,3*K.1^-1,-6-3*K.1,0,-1+K.1,0,0,-3*K.1^-1,0,-3*K.1,-3,1-K.1,-1-2*K.1,-1+K.1,2+K.1,0,0,1+2*K.1,0,-2-K.1,0,0,0,-1+K.1,2+K.1,0,0,-2-K.1,0,0,-1-2*K.1,0,0,1-K.1,0,1+2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1,-3*K.1,-3*K.1^-1,3*K.1^-1,0,-2-K.1,0,-1-2*K.1,1-K.1,1+2*K.1,2+K.1,1+2*K.1,1-K.1,-1+K.1,0,-1-2*K.1,2+K.1,0,-1+K.1,-2-K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,9,-3,3,15*K.1^-1,15*K.1,5+10*K.1,0,0,10+5*K.1,5-5*K.1,-5-10*K.1,-5+5*K.1,-10-5*K.1,0,0,-3*K.1^-1,6*K.1^-1,-3*K.1,6,6*K.1,-3,-2-K.1,1-K.1,-1-2*K.1,0,-2-4*K.1,2-2*K.1,0,2+4*K.1,4+2*K.1,0,1+2*K.1,2+K.1,-1+K.1,0,-4-2*K.1,-2+2*K.1,0,0,0,0,-3,3,0,9*K.1,9*K.1^-1,-3*K.1,-3*K.1^-1,0,-6-3*K.1,-2-K.1,6+3*K.1,-3+3*K.1,1+2*K.1,0,-1+K.1,3+6*K.1,3*K.1^-1,3-3*K.1,-1-2*K.1,2+K.1,0,3*K.1,-3-6*K.1,0,1-K.1,0,0,-3*K.1,0,-3*K.1^-1,-3,-1+K.1,1-K.1,1+2*K.1,-2-K.1,0,0,2+K.1,0,-1-2*K.1,0,0,0,1-K.1,1+2*K.1,0,0,2+K.1,0,0,-2-K.1,0,0,-1-2*K.1,0,-1+K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-1,-3*K.1^-1,-3*K.1,3*K.1,0,-1-2*K.1,0,1-K.1,-1+K.1,2+K.1,1+2*K.1,-1+K.1,-1-2*K.1,1+2*K.1,0,-2-K.1,-2-K.1,0,1-K.1,2+K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,9,-3,3,15*K.1,15*K.1^-1,-5-10*K.1,0,0,5-5*K.1,10+5*K.1,5+10*K.1,-10-5*K.1,-5+5*K.1,0,0,-3*K.1,6*K.1,-3*K.1^-1,6,6*K.1^-1,-3,-1+K.1,2+K.1,1+2*K.1,0,2+4*K.1,4+2*K.1,0,-2-4*K.1,2-2*K.1,0,-1-2*K.1,1-K.1,-2-K.1,0,-2+2*K.1,-4-2*K.1,0,0,0,0,-3,3,0,9*K.1^-1,9*K.1,-3*K.1^-1,-3*K.1,0,-3+3*K.1,-1+K.1,3-3*K.1,-6-3*K.1,-1-2*K.1,0,-2-K.1,-3-6*K.1,3*K.1,6+3*K.1,1+2*K.1,1-K.1,0,3*K.1^-1,3+6*K.1,0,2+K.1,0,0,-3*K.1^-1,0,-3*K.1,-3,-2-K.1,2+K.1,-1-2*K.1,-1+K.1,0,0,1-K.1,0,1+2*K.1,0,0,0,2+K.1,-1-2*K.1,0,0,1-K.1,0,0,-1+K.1,0,0,1+2*K.1,0,-2-K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1,-3*K.1,-3*K.1^-1,3*K.1^-1,0,1+2*K.1,0,2+K.1,-2-K.1,1-K.1,-1-2*K.1,-2-K.1,1+2*K.1,-1-2*K.1,0,-1+K.1,-1+K.1,0,2+K.1,1-K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,9,-3,3,15*K.1^-1,15*K.1,5-5*K.1,0,0,-5+5*K.1,-10-5*K.1,10+5*K.1,-5-10*K.1,5+10*K.1,0,0,-3*K.1^-1,6*K.1^-1,-3*K.1,6,6*K.1,-3,1-K.1,1+2*K.1,-1+K.1,0,4+2*K.1,-4-2*K.1,0,2-2*K.1,-2+2*K.1,0,-2-K.1,-1-2*K.1,2+K.1,0,2+4*K.1,-2-4*K.1,0,0,0,0,-3,3,0,9*K.1,9*K.1^-1,-3*K.1,-3*K.1^-1,0,3+6*K.1,1-K.1,-3+3*K.1,-3-6*K.1,-2-K.1,0,2+K.1,3-3*K.1,3*K.1^-1,-6-3*K.1,-1+K.1,-1-2*K.1,0,3*K.1,6+3*K.1,0,1+2*K.1,0,0,-3*K.1,0,-3*K.1^-1,-3,-1-2*K.1,-2-K.1,1-K.1,1+2*K.1,0,0,-1+K.1,0,2+K.1,0,0,0,1+2*K.1,-2-K.1,0,0,-1-2*K.1,0,0,1-K.1,0,0,-1+K.1,0,2+K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-1,-3*K.1^-1,-3*K.1,3*K.1,0,2+K.1,0,-2-K.1,-1-2*K.1,-1+K.1,-2-K.1,2+K.1,-1+K.1,1-K.1,0,1-K.1,1+2*K.1,0,1+2*K.1,-1-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,9,-3,3,15*K.1,15*K.1^-1,10+5*K.1,0,0,-10-5*K.1,-5+5*K.1,5-5*K.1,5+10*K.1,-5-10*K.1,0,0,-3*K.1,6*K.1,-3*K.1^-1,6,6*K.1^-1,-3,2+K.1,-1-2*K.1,-2-K.1,0,2-2*K.1,-2+2*K.1,0,4+2*K.1,-4-2*K.1,0,-1+K.1,1+2*K.1,1-K.1,0,-2-4*K.1,2+4*K.1,0,0,0,0,-3,3,0,9*K.1^-1,9*K.1,-3*K.1^-1,-3*K.1,0,-3-6*K.1,2+K.1,-6-3*K.1,3+6*K.1,-1+K.1,0,1-K.1,6+3*K.1,3*K.1,-3+3*K.1,-2-K.1,1+2*K.1,0,3*K.1^-1,3-3*K.1,0,-1-2*K.1,0,0,-3*K.1^-1,0,-3*K.1,-3,1+2*K.1,-1+K.1,2+K.1,-1-2*K.1,0,0,-2-K.1,0,1-K.1,0,0,0,-1-2*K.1,-1+K.1,0,0,1+2*K.1,0,0,2+K.1,0,0,-2-K.1,0,1-K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1,-3*K.1,-3*K.1^-1,3*K.1^-1,0,1-K.1,0,-1+K.1,1+2*K.1,-2-K.1,-1+K.1,1-K.1,-2-K.1,2+K.1,0,2+K.1,-1-2*K.1,0,-1-2*K.1,1+2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,9,-3,3,15,15,0,15*K.1^-1,15*K.1,0,0,0,0,0,0,0,-3,6,-3,6,6,-3,0,0,0,6*K.1^-1,0,0,6*K.1,0,0,-3*K.1^-1,0,0,0,-3*K.1,0,0,0,0,0,0,-3,3,0,9,9,-3,-3,-3*K.1^-1,0,0,0,0,0,9*K.1,0,0,3,0,0,0,9*K.1^-1,3,0,-3*K.1,0,0,0,-3,0,-3,-3,0,0,0,0,0,3*K.1,0,0,0,0,0,3*K.1^-1,0,0,-3*K.1,0,0,0,0,0,-3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3,-3,3,-3*K.1,0,3*K.1^-1,0,0,0,0,0,0,0,3*K.1,0,0,-3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,9,-3,3,15,15,0,15*K.1,15*K.1^-1,0,0,0,0,0,0,0,-3,6,-3,6,6,-3,0,0,0,6*K.1,0,0,6*K.1^-1,0,0,-3*K.1,0,0,0,-3*K.1^-1,0,0,0,0,0,0,-3,3,0,9,9,-3,-3,-3*K.1,0,0,0,0,0,9*K.1^-1,0,0,3,0,0,0,9*K.1,3,0,-3*K.1^-1,0,0,0,-3,0,-3,-3,0,0,0,0,0,3*K.1^-1,0,0,0,0,0,3*K.1,0,0,-3*K.1^-1,0,0,0,0,0,-3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3,-3,3,-3*K.1^-1,0,3*K.1,0,0,0,0,0,0,0,3*K.1^-1,0,0,-3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,-9,3,3,15*K.1^-1,15*K.1,-10-5*K.1,0,0,-5-10*K.1,5+10*K.1,-5+5*K.1,10+5*K.1,5-5*K.1,0,0,-3*K.1^-1,6*K.1^-1,-3*K.1,6,6*K.1,-3,1+2*K.1,-2-K.1,2+K.1,0,-2+2*K.1,2+4*K.1,0,-4-2*K.1,-2-4*K.1,0,1-K.1,-1+K.1,-1-2*K.1,0,2-2*K.1,4+2*K.1,0,0,0,0,-3,-3,0,-9*K.1,-9*K.1^-1,3*K.1,3*K.1^-1,0,-3+3*K.1,-1-2*K.1,3+6*K.1,-6-3*K.1,-1+K.1,0,1+2*K.1,6+3*K.1,3*K.1^-1,-3-6*K.1,-2-K.1,1-K.1,0,3*K.1,3-3*K.1,0,2+K.1,0,0,3*K.1,0,3*K.1^-1,3,2+K.1,1+2*K.1,-2-K.1,1-K.1,0,0,-1-2*K.1,0,-1+K.1,0,0,0,2+K.1,-1+K.1,0,0,1-K.1,0,0,-1-2*K.1,0,0,-2-K.1,0,1+2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1^-1,-3*K.1^-1,-3*K.1,-3*K.1,0,1-K.1,0,-1-2*K.1,-2-K.1,1+2*K.1,1-K.1,-1-2*K.1,2+K.1,2+K.1,0,1+2*K.1,-1+K.1,0,-2-K.1,-1+K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,-9,3,3,15*K.1,15*K.1^-1,-5+5*K.1,0,0,5+10*K.1,-5-10*K.1,-10-5*K.1,5-5*K.1,10+5*K.1,0,0,-3*K.1,6*K.1,-3*K.1^-1,6,6*K.1^-1,-3,-1-2*K.1,-1+K.1,1-K.1,0,-4-2*K.1,-2-4*K.1,0,-2+2*K.1,2+4*K.1,0,2+K.1,-2-K.1,1+2*K.1,0,4+2*K.1,2-2*K.1,0,0,0,0,-3,-3,0,-9*K.1^-1,-9*K.1,3*K.1^-1,3*K.1,0,-6-3*K.1,1+2*K.1,-3-6*K.1,-3+3*K.1,-2-K.1,0,-1-2*K.1,3-3*K.1,3*K.1,3+6*K.1,-1+K.1,2+K.1,0,3*K.1^-1,6+3*K.1,0,1-K.1,0,0,3*K.1^-1,0,3*K.1,3,1-K.1,-1-2*K.1,-1+K.1,2+K.1,0,0,1+2*K.1,0,-2-K.1,0,0,0,1-K.1,-2-K.1,0,0,2+K.1,0,0,1+2*K.1,0,0,-1+K.1,0,-1-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1,-3*K.1,-3*K.1^-1,-3*K.1^-1,0,2+K.1,0,1+2*K.1,-1+K.1,-1-2*K.1,2+K.1,1+2*K.1,1-K.1,1-K.1,0,-1-2*K.1,-2-K.1,0,-1+K.1,-2-K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,-9,3,3,15*K.1^-1,15*K.1,5+10*K.1,0,0,10+5*K.1,5-5*K.1,-5-10*K.1,-5+5*K.1,-10-5*K.1,0,0,-3*K.1^-1,6*K.1^-1,-3*K.1,6,6*K.1,-3,-2-K.1,1-K.1,-1-2*K.1,0,-2-4*K.1,2-2*K.1,0,2+4*K.1,4+2*K.1,0,1+2*K.1,2+K.1,-1+K.1,0,-4-2*K.1,-2+2*K.1,0,0,0,0,-3,-3,0,-9*K.1,-9*K.1^-1,3*K.1,3*K.1^-1,0,6+3*K.1,2+K.1,-6-3*K.1,3-3*K.1,-1-2*K.1,0,1-K.1,-3-6*K.1,3*K.1^-1,-3+3*K.1,1+2*K.1,-2-K.1,0,3*K.1,3+6*K.1,0,-1+K.1,0,0,3*K.1,0,3*K.1^-1,3,-1+K.1,1-K.1,1+2*K.1,-2-K.1,0,0,2+K.1,0,-1-2*K.1,0,0,0,-1+K.1,-1-2*K.1,0,0,-2-K.1,0,0,2+K.1,0,0,1+2*K.1,0,1-K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1^-1,-3*K.1^-1,-3*K.1,-3*K.1,0,1+2*K.1,0,-1+K.1,1-K.1,-2-K.1,1+2*K.1,-1+K.1,-1-2*K.1,-1-2*K.1,0,-2-K.1,2+K.1,0,1-K.1,2+K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,-9,3,3,15*K.1,15*K.1^-1,-5-10*K.1,0,0,5-5*K.1,10+5*K.1,5+10*K.1,-10-5*K.1,-5+5*K.1,0,0,-3*K.1,6*K.1,-3*K.1^-1,6,6*K.1^-1,-3,-1+K.1,2+K.1,1+2*K.1,0,2+4*K.1,4+2*K.1,0,-2-4*K.1,2-2*K.1,0,-1-2*K.1,1-K.1,-2-K.1,0,-2+2*K.1,-4-2*K.1,0,0,0,0,-3,-3,0,-9*K.1^-1,-9*K.1,3*K.1^-1,3*K.1,0,3-3*K.1,1-K.1,-3+3*K.1,6+3*K.1,1+2*K.1,0,2+K.1,3+6*K.1,3*K.1,-6-3*K.1,-1-2*K.1,-1+K.1,0,3*K.1^-1,-3-6*K.1,0,-2-K.1,0,0,3*K.1^-1,0,3*K.1,3,-2-K.1,2+K.1,-1-2*K.1,-1+K.1,0,0,1-K.1,0,1+2*K.1,0,0,0,-2-K.1,1+2*K.1,0,0,-1+K.1,0,0,1-K.1,0,0,-1-2*K.1,0,2+K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1,-3*K.1,-3*K.1^-1,-3*K.1^-1,0,-1-2*K.1,0,-2-K.1,2+K.1,-1+K.1,-1-2*K.1,-2-K.1,1+2*K.1,1+2*K.1,0,-1+K.1,1-K.1,0,2+K.1,1-K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,-9,3,3,15*K.1^-1,15*K.1,5-5*K.1,0,0,-5+5*K.1,-10-5*K.1,10+5*K.1,-5-10*K.1,5+10*K.1,0,0,-3*K.1^-1,6*K.1^-1,-3*K.1,6,6*K.1,-3,1-K.1,1+2*K.1,-1+K.1,0,4+2*K.1,-4-2*K.1,0,2-2*K.1,-2+2*K.1,0,-2-K.1,-1-2*K.1,2+K.1,0,2+4*K.1,-2-4*K.1,0,0,0,0,-3,-3,0,-9*K.1,-9*K.1^-1,3*K.1,3*K.1^-1,0,-3-6*K.1,-1+K.1,3-3*K.1,3+6*K.1,2+K.1,0,-2-K.1,-3+3*K.1,3*K.1^-1,6+3*K.1,1-K.1,1+2*K.1,0,3*K.1,-6-3*K.1,0,-1-2*K.1,0,0,3*K.1,0,3*K.1^-1,3,-1-2*K.1,-2-K.1,1-K.1,1+2*K.1,0,0,-1+K.1,0,2+K.1,0,0,0,-1-2*K.1,2+K.1,0,0,1+2*K.1,0,0,-1+K.1,0,0,1-K.1,0,-2-K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1^-1,-3*K.1^-1,-3*K.1,-3*K.1,0,-2-K.1,0,2+K.1,1+2*K.1,1-K.1,-2-K.1,2+K.1,-1+K.1,-1+K.1,0,1-K.1,-1-2*K.1,0,1+2*K.1,-1-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,-9,3,3,15*K.1,15*K.1^-1,10+5*K.1,0,0,-10-5*K.1,-5+5*K.1,5-5*K.1,5+10*K.1,-5-10*K.1,0,0,-3*K.1,6*K.1,-3*K.1^-1,6,6*K.1^-1,-3,2+K.1,-1-2*K.1,-2-K.1,0,2-2*K.1,-2+2*K.1,0,4+2*K.1,-4-2*K.1,0,-1+K.1,1+2*K.1,1-K.1,0,-2-4*K.1,2+4*K.1,0,0,0,0,-3,-3,0,-9*K.1^-1,-9*K.1,3*K.1^-1,3*K.1,0,3+6*K.1,-2-K.1,6+3*K.1,-3-6*K.1,1-K.1,0,-1+K.1,-6-3*K.1,3*K.1,3-3*K.1,2+K.1,-1-2*K.1,0,3*K.1^-1,-3+3*K.1,0,1+2*K.1,0,0,3*K.1^-1,0,3*K.1,3,1+2*K.1,-1+K.1,2+K.1,-1-2*K.1,0,0,-2-K.1,0,1-K.1,0,0,0,1+2*K.1,1-K.1,0,0,-1-2*K.1,0,0,-2-K.1,0,0,2+K.1,0,-1+K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1,-3*K.1,-3*K.1^-1,-3*K.1^-1,0,-1+K.1,0,1-K.1,-1-2*K.1,2+K.1,-1+K.1,1-K.1,-2-K.1,-2-K.1,0,2+K.1,1+2*K.1,0,-1-2*K.1,1+2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,-9,3,3,15,15,0,15*K.1^-1,15*K.1,0,0,0,0,0,0,0,-3,6,-3,6,6,-3,0,0,0,6*K.1^-1,0,0,6*K.1,0,0,-3*K.1^-1,0,0,0,-3*K.1,0,0,0,0,0,0,-3,-3,0,-9,-9,3,3,3*K.1^-1,0,0,0,0,0,-9*K.1,0,0,3,0,0,0,-9*K.1^-1,3,0,3*K.1,0,0,0,3,0,3,3,0,0,0,0,0,3*K.1,0,0,0,0,0,3*K.1^-1,0,0,3*K.1,0,0,0,0,0,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,-3,-3,-3*K.1,0,-3*K.1^-1,0,0,0,0,0,0,0,-3*K.1,0,0,-3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,-9,3,3,15,15,0,15*K.1,15*K.1^-1,0,0,0,0,0,0,0,-3,6,-3,6,6,-3,0,0,0,6*K.1,0,0,6*K.1^-1,0,0,-3*K.1,0,0,0,-3*K.1^-1,0,0,0,0,0,0,-3,-3,0,-9,-9,3,3,3*K.1,0,0,0,0,0,-9*K.1^-1,0,0,3,0,0,0,-9*K.1,3,0,3*K.1^-1,0,0,0,3,0,3,3,0,0,0,0,0,3*K.1^-1,0,0,0,0,0,3*K.1,0,0,3*K.1^-1,0,0,0,0,0,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,-3,-3,-3*K.1^-1,0,-3*K.1,0,0,0,0,0,0,0,-3*K.1^-1,0,0,-3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,3,-9,3,15*K.1^-1,15*K.1,-10-5*K.1,0,0,-5-10*K.1,5+10*K.1,-5+5*K.1,10+5*K.1,5-5*K.1,0,0,6*K.1^-1,-3*K.1^-1,6*K.1,-3,-3*K.1,6,-2-4*K.1,4+2*K.1,-4-2*K.1,0,1-K.1,-1-2*K.1,0,2+K.1,1+2*K.1,0,-2+2*K.1,2-2*K.1,2+4*K.1,0,-1+K.1,-2-K.1,0,0,0,0,-3,-3,0,3*K.1,3*K.1^-1,-9*K.1,-9*K.1^-1,0,1-K.1,3+6*K.1,-1-2*K.1,2+K.1,3-3*K.1,0,-3-6*K.1,-2-K.1,3*K.1^-1,1+2*K.1,6+3*K.1,-3+3*K.1,0,3*K.1,-1+K.1,0,-6-3*K.1,3,3*K.1^-1,0,3*K.1,0,0,2+K.1,1+2*K.1,-2-K.1,1-K.1,0,0,-1-2*K.1,0,-1+K.1,0,0,0,0,0,0,-2-K.1,0,-1+K.1,0,0,0,2+K.1,0,1+2*K.1,0,1-K.1,0,-1-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1^-1,-3*K.1^-1,-3*K.1,-3*K.1,0,1-K.1,0,-1-2*K.1,-2-K.1,1+2*K.1,1-K.1,-1-2*K.1,2+K.1,2+K.1,0,1+2*K.1,-1+K.1,0,-2-K.1,-1+K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,3,-9,3,15*K.1,15*K.1^-1,-5+5*K.1,0,0,5+10*K.1,-5-10*K.1,-10-5*K.1,5-5*K.1,10+5*K.1,0,0,6*K.1,-3*K.1,6*K.1^-1,-3,-3*K.1^-1,6,2+4*K.1,2-2*K.1,-2+2*K.1,0,2+K.1,1+2*K.1,0,1-K.1,-1-2*K.1,0,-4-2*K.1,4+2*K.1,-2-4*K.1,0,-2-K.1,-1+K.1,0,0,0,0,-3,-3,0,3*K.1^-1,3*K.1,-9*K.1^-1,-9*K.1,0,2+K.1,-3-6*K.1,1+2*K.1,1-K.1,6+3*K.1,0,3+6*K.1,-1+K.1,3*K.1,-1-2*K.1,3-3*K.1,-6-3*K.1,0,3*K.1^-1,-2-K.1,0,-3+3*K.1,3,3*K.1,0,3*K.1^-1,0,0,1-K.1,-1-2*K.1,-1+K.1,2+K.1,0,0,1+2*K.1,0,-2-K.1,0,0,0,0,0,0,-1+K.1,0,-2-K.1,0,0,0,1-K.1,0,-1-2*K.1,0,2+K.1,0,1+2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1,-3*K.1,-3*K.1^-1,-3*K.1^-1,0,2+K.1,0,1+2*K.1,-1+K.1,-1-2*K.1,2+K.1,1+2*K.1,1-K.1,1-K.1,0,-1-2*K.1,-2-K.1,0,-1+K.1,-2-K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,3,-9,3,15*K.1^-1,15*K.1,5+10*K.1,0,0,10+5*K.1,5-5*K.1,-5-10*K.1,-5+5*K.1,-10-5*K.1,0,0,6*K.1^-1,-3*K.1^-1,6*K.1,-3,-3*K.1,6,4+2*K.1,-2+2*K.1,2+4*K.1,0,1+2*K.1,-1+K.1,0,-1-2*K.1,-2-K.1,0,-2-4*K.1,-4-2*K.1,2-2*K.1,0,2+K.1,1-K.1,0,0,0,0,-3,-3,0,3*K.1,3*K.1^-1,-9*K.1,-9*K.1^-1,0,-2-K.1,-6-3*K.1,2+K.1,-1+K.1,3+6*K.1,0,-3+3*K.1,1+2*K.1,3*K.1^-1,1-K.1,-3-6*K.1,6+3*K.1,0,3*K.1,-1-2*K.1,0,3-3*K.1,3,3*K.1^-1,0,3*K.1,0,0,-1+K.1,1-K.1,1+2*K.1,-2-K.1,0,0,2+K.1,0,-1-2*K.1,0,0,0,0,0,0,1+2*K.1,0,-1-2*K.1,0,0,0,-1+K.1,0,1-K.1,0,-2-K.1,0,2+K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1^-1,-3*K.1^-1,-3*K.1,-3*K.1,0,1+2*K.1,0,-1+K.1,1-K.1,-2-K.1,1+2*K.1,-1+K.1,-1-2*K.1,-1-2*K.1,0,-2-K.1,2+K.1,0,1-K.1,2+K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,3,-9,3,15*K.1,15*K.1^-1,-5-10*K.1,0,0,5-5*K.1,10+5*K.1,5+10*K.1,-10-5*K.1,-5+5*K.1,0,0,6*K.1,-3*K.1,6*K.1^-1,-3,-3*K.1^-1,6,2-2*K.1,-4-2*K.1,-2-4*K.1,0,-1-2*K.1,-2-K.1,0,1+2*K.1,-1+K.1,0,2+4*K.1,-2+2*K.1,4+2*K.1,0,1-K.1,2+K.1,0,0,0,0,-3,-3,0,3*K.1^-1,3*K.1,-9*K.1^-1,-9*K.1,0,-1+K.1,-3+3*K.1,1-K.1,-2-K.1,-3-6*K.1,0,-6-3*K.1,-1-2*K.1,3*K.1,2+K.1,3+6*K.1,3-3*K.1,0,3*K.1^-1,1+2*K.1,0,6+3*K.1,3,3*K.1,0,3*K.1^-1,0,0,-2-K.1,2+K.1,-1-2*K.1,-1+K.1,0,0,1-K.1,0,1+2*K.1,0,0,0,0,0,0,-1-2*K.1,0,1+2*K.1,0,0,0,-2-K.1,0,2+K.1,0,-1+K.1,0,1-K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1,-3*K.1,-3*K.1^-1,-3*K.1^-1,0,-1-2*K.1,0,-2-K.1,2+K.1,-1+K.1,-1-2*K.1,-2-K.1,1+2*K.1,1+2*K.1,0,-1+K.1,1-K.1,0,2+K.1,1-K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,3,-9,3,15*K.1^-1,15*K.1,5-5*K.1,0,0,-5+5*K.1,-10-5*K.1,10+5*K.1,-5-10*K.1,5+10*K.1,0,0,6*K.1^-1,-3*K.1^-1,6*K.1,-3,-3*K.1,6,-2+2*K.1,-2-4*K.1,2-2*K.1,0,-2-K.1,2+K.1,0,-1+K.1,1-K.1,0,4+2*K.1,2+4*K.1,-4-2*K.1,0,-1-2*K.1,1+2*K.1,0,0,0,0,-3,-3,0,3*K.1,3*K.1^-1,-9*K.1,-9*K.1^-1,0,1+2*K.1,3-3*K.1,-1+K.1,-1-2*K.1,-6-3*K.1,0,6+3*K.1,1-K.1,3*K.1^-1,-2-K.1,-3+3*K.1,-3-6*K.1,0,3*K.1,2+K.1,0,3+6*K.1,3,3*K.1^-1,0,3*K.1,0,0,-1-2*K.1,-2-K.1,1-K.1,1+2*K.1,0,0,-1+K.1,0,2+K.1,0,0,0,0,0,0,1-K.1,0,2+K.1,0,0,0,-1-2*K.1,0,-2-K.1,0,1+2*K.1,0,-1+K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1^-1,-3*K.1^-1,-3*K.1,-3*K.1,0,-2-K.1,0,2+K.1,1+2*K.1,1-K.1,-2-K.1,2+K.1,-1+K.1,-1+K.1,0,1-K.1,-1-2*K.1,0,1+2*K.1,-1-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,3,-9,3,15*K.1,15*K.1^-1,10+5*K.1,0,0,-10-5*K.1,-5+5*K.1,5-5*K.1,5+10*K.1,-5-10*K.1,0,0,6*K.1,-3*K.1,6*K.1^-1,-3,-3*K.1^-1,6,-4-2*K.1,2+4*K.1,4+2*K.1,0,-1+K.1,1-K.1,0,-2-K.1,2+K.1,0,2-2*K.1,-2-4*K.1,-2+2*K.1,0,1+2*K.1,-1-2*K.1,0,0,0,0,-3,-3,0,3*K.1^-1,3*K.1,-9*K.1^-1,-9*K.1,0,-1-2*K.1,6+3*K.1,-2-K.1,1+2*K.1,-3+3*K.1,0,3-3*K.1,2+K.1,3*K.1,-1+K.1,-6-3*K.1,3+6*K.1,0,3*K.1^-1,1-K.1,0,-3-6*K.1,3,3*K.1,0,3*K.1^-1,0,0,1+2*K.1,-1+K.1,2+K.1,-1-2*K.1,0,0,-2-K.1,0,1-K.1,0,0,0,0,0,0,2+K.1,0,1-K.1,0,0,0,1+2*K.1,0,-1+K.1,0,-1-2*K.1,0,-2-K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1,-3*K.1,-3*K.1^-1,-3*K.1^-1,0,-1+K.1,0,1-K.1,-1-2*K.1,2+K.1,-1+K.1,1-K.1,-2-K.1,-2-K.1,0,2+K.1,1+2*K.1,0,-1-2*K.1,1+2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,3,-9,3,15,15,0,15*K.1^-1,15*K.1,0,0,0,0,0,0,0,6,-3,6,-3,-3,6,0,0,0,-3*K.1^-1,0,0,-3*K.1,0,0,6*K.1^-1,0,0,0,6*K.1,0,0,0,0,0,0,-3,-3,0,3,3,-9,-9,-9*K.1^-1,0,0,0,0,0,3*K.1,0,0,3,0,0,0,3*K.1^-1,3,0,-9*K.1,0,3,3,0,3,0,0,0,0,0,0,0,3*K.1,0,0,0,0,0,3*K.1^-1,0,0,0,0,0,0,3*K.1^-1,0,0,0,0,0,0,0,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,-3,-3,-3*K.1,0,-3*K.1^-1,0,0,0,0,0,0,0,-3*K.1,0,0,-3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,3,-9,3,15,15,0,15*K.1,15*K.1^-1,0,0,0,0,0,0,0,6,-3,6,-3,-3,6,0,0,0,-3*K.1,0,0,-3*K.1^-1,0,0,6*K.1,0,0,0,6*K.1^-1,0,0,0,0,0,0,-3,-3,0,3,3,-9,-9,-9*K.1,0,0,0,0,0,3*K.1^-1,0,0,3,0,0,0,3*K.1,3,0,-9*K.1^-1,0,3,3,0,3,0,0,0,0,0,0,0,3*K.1^-1,0,0,0,0,0,3*K.1,0,0,0,0,0,0,3*K.1,0,0,0,0,0,0,0,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,-3,-3,-3*K.1^-1,0,-3*K.1,0,0,0,0,0,0,0,-3*K.1^-1,0,0,-3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[16, 0, 0, 0, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 16, 16, 16, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |16,0,0,0,16,16,16*K.1^-1,16,16,16*K.1,16*K.1^-1,16*K.1,16*K.1,16*K.1^-1,16*K.1^-1,16*K.1,-2,-2,-2,-2,-2,-2,-2*K.1,-2*K.1,-2*K.1^-1,-2,-2*K.1,-2*K.1^-1,-2,-2*K.1^-1,-2*K.1,-2,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16*K.1,16*K.1^-1,16,16,-2*K.1,-2,-2,-2*K.1^-1,-2,-2*K.1,-2,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,K.1,K.1,K.1^-1,K.1^-1,1,K.1,K.1^-1,1,K.1^-1,K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-1,1,K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |16,0,0,0,16,16,16*K.1,16,16,16*K.1^-1,16*K.1,16*K.1^-1,16*K.1^-1,16*K.1,16*K.1,16*K.1^-1,-2,-2,-2,-2,-2,-2,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2,-2*K.1^-1,-2*K.1,-2,-2*K.1,-2*K.1^-1,-2,-2*K.1^-1,-2*K.1,-2*K.1,-2,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16*K.1^-1,16*K.1,16,16,-2*K.1^-1,-2,-2,-2*K.1,-2,-2*K.1^-1,-2,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,K.1^-1,K.1^-1,K.1,K.1,1,K.1^-1,K.1,1,K.1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1,1,K.1^-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |16,0,0,0,16,16,16*K.1^-1,16,16,16*K.1,16*K.1^-1,16*K.1,16*K.1,16*K.1^-1,16*K.1,16*K.1^-1,-2,-2,-2,-2,-2,-2,-2*K.1,-2*K.1,-2*K.1^-1,-2,-2*K.1,-2*K.1^-1,-2,-2*K.1^-1,-2*K.1,-2,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,16,16*K.1^-1,16*K.1,-2,-2*K.1,-2*K.1,-2,-2*K.1^-1,-2,-2*K.1^-1,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,K.1,K.1,K.1^-1,K.1^-1,1,K.1,K.1^-1,1,K.1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,K.1^-1,1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |16,0,0,0,16,16,16*K.1,16,16,16*K.1^-1,16*K.1,16*K.1^-1,16*K.1^-1,16*K.1,16*K.1^-1,16*K.1,-2,-2,-2,-2,-2,-2,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2,-2*K.1^-1,-2*K.1,-2,-2*K.1,-2*K.1^-1,-2,-2*K.1^-1,-2*K.1,-2*K.1,-2,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,16,16*K.1,16*K.1^-1,-2,-2*K.1^-1,-2*K.1^-1,-2,-2*K.1,-2,-2*K.1,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,K.1^-1,K.1^-1,K.1,K.1,1,K.1^-1,K.1,1,K.1^-1,K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,K.1,1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |16,0,0,0,16,16,16*K.1^-1,16,16,16*K.1,16*K.1^-1,16*K.1,16*K.1,16*K.1^-1,16,16,-2,-2,-2,-2,-2,-2,-2*K.1,-2*K.1,-2*K.1^-1,-2,-2*K.1,-2*K.1^-1,-2,-2*K.1^-1,-2*K.1,-2,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2,-2*K.1^-1,-2*K.1,-2,-2,-2,-2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16*K.1^-1,16*K.1,16*K.1,16*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,K.1,K.1,K.1^-1,K.1^-1,1,K.1,K.1^-1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1,K.1,K.1^-1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |16,0,0,0,16,16,16*K.1,16,16,16*K.1^-1,16*K.1,16*K.1^-1,16*K.1^-1,16*K.1,16,16,-2,-2,-2,-2,-2,-2,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2,-2*K.1^-1,-2*K.1,-2,-2*K.1,-2*K.1^-1,-2,-2*K.1^-1,-2*K.1,-2*K.1,-2,-2*K.1,-2*K.1^-1,-2,-2,-2,-2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16*K.1,16*K.1^-1,16*K.1^-1,16*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,K.1^-1,K.1^-1,K.1,K.1,1,K.1^-1,K.1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-1,K.1^-1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |16,0,0,0,16,16,16,16,16,16,16,16,16,16,16*K.1^-1,16*K.1,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16*K.1^-1,16*K.1,16*K.1^-1,16*K.1,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1,K.1^-1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |16,0,0,0,16,16,16,16,16,16,16,16,16,16,16*K.1,16*K.1^-1,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16*K.1,16*K.1^-1,16*K.1,16*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-1,K.1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |27,9,9,3,27*K.1^-1,27*K.1,-18-9*K.1,0,0,-9-18*K.1,9+18*K.1,-9+9*K.1,18+9*K.1,9-9*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3,-3,9*K.1,9*K.1^-1,9*K.1,9*K.1^-1,0,3-3*K.1,-3-6*K.1,-3-6*K.1,6+3*K.1,-3+3*K.1,0,3+6*K.1,-6-3*K.1,3*K.1^-1,3+6*K.1,-6-3*K.1,3-3*K.1,0,3*K.1,-3+3*K.1,0,6+3*K.1,0,0,0,0,0,0,2+K.1,1+2*K.1,-2-K.1,1-K.1,0,0,-1-2*K.1,0,-1+K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1^-1,3*K.1^-1,3*K.1,-3*K.1,0,1-K.1,0,-1-2*K.1,-2-K.1,1+2*K.1,-1+K.1,1+2*K.1,-2-K.1,2+K.1,0,-1-2*K.1,-1+K.1,0,2+K.1,1-K.1,0,0,0,0,-3*K.1,-3*K.1^-1,-2-K.1,1+2*K.1,-1+K.1,-1-2*K.1,0,1-K.1,2+K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |27,9,9,3,27*K.1,27*K.1^-1,-9+9*K.1,0,0,9+18*K.1,-9-18*K.1,-18-9*K.1,9-9*K.1,18+9*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3,-3,9*K.1^-1,9*K.1,9*K.1^-1,9*K.1,0,6+3*K.1,3+6*K.1,3+6*K.1,3-3*K.1,-6-3*K.1,0,-3-6*K.1,-3+3*K.1,3*K.1,-3-6*K.1,-3+3*K.1,6+3*K.1,0,3*K.1^-1,-6-3*K.1,0,3-3*K.1,0,0,0,0,0,0,1-K.1,-1-2*K.1,-1+K.1,2+K.1,0,0,1+2*K.1,0,-2-K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1,3*K.1,3*K.1^-1,-3*K.1^-1,0,2+K.1,0,1+2*K.1,-1+K.1,-1-2*K.1,-2-K.1,-1-2*K.1,-1+K.1,1-K.1,0,1+2*K.1,-2-K.1,0,1-K.1,2+K.1,0,0,0,0,-3*K.1^-1,-3*K.1,-1+K.1,-1-2*K.1,-2-K.1,1+2*K.1,0,2+K.1,1-K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |27,9,9,3,27*K.1^-1,27*K.1,9+18*K.1,0,0,18+9*K.1,9-9*K.1,-9-18*K.1,-9+9*K.1,-18-9*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3,-3,9*K.1,9*K.1^-1,9*K.1,9*K.1^-1,0,-6-3*K.1,6+3*K.1,6+3*K.1,-3+3*K.1,-3-6*K.1,0,3-3*K.1,3+6*K.1,3*K.1^-1,3-3*K.1,3+6*K.1,-6-3*K.1,0,3*K.1,-3-6*K.1,0,-3+3*K.1,0,0,0,0,0,0,-1+K.1,1-K.1,1+2*K.1,-2-K.1,0,0,2+K.1,0,-1-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1^-1,3*K.1^-1,3*K.1,-3*K.1,0,1+2*K.1,0,-1+K.1,1-K.1,-2-K.1,-1-2*K.1,1-K.1,1+2*K.1,-1-2*K.1,0,2+K.1,2+K.1,0,-1+K.1,-2-K.1,0,0,0,0,-3*K.1,-3*K.1^-1,1-K.1,-2-K.1,2+K.1,-1+K.1,0,1+2*K.1,-1-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |27,9,9,3,27*K.1,27*K.1^-1,-9-18*K.1,0,0,9-9*K.1,18+9*K.1,9+18*K.1,-18-9*K.1,-9+9*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3,-3,9*K.1^-1,9*K.1,9*K.1^-1,9*K.1,0,-3+3*K.1,3-3*K.1,3-3*K.1,-6-3*K.1,3+6*K.1,0,6+3*K.1,-3-6*K.1,3*K.1,6+3*K.1,-3-6*K.1,-3+3*K.1,0,3*K.1^-1,3+6*K.1,0,-6-3*K.1,0,0,0,0,0,0,-2-K.1,2+K.1,-1-2*K.1,-1+K.1,0,0,1-K.1,0,1+2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1,3*K.1,3*K.1^-1,-3*K.1^-1,0,-1-2*K.1,0,-2-K.1,2+K.1,-1+K.1,1+2*K.1,2+K.1,-1-2*K.1,1+2*K.1,0,1-K.1,1-K.1,0,-2-K.1,-1+K.1,0,0,0,0,-3*K.1^-1,-3*K.1,2+K.1,-1+K.1,1-K.1,-2-K.1,0,-1-2*K.1,1+2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |27,9,9,3,27*K.1^-1,27*K.1,9-9*K.1,0,0,-9+9*K.1,-18-9*K.1,18+9*K.1,-9-18*K.1,9+18*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3,-3,9*K.1,9*K.1^-1,9*K.1,9*K.1^-1,0,3+6*K.1,-3+3*K.1,-3+3*K.1,-3-6*K.1,6+3*K.1,0,-6-3*K.1,3-3*K.1,3*K.1^-1,-6-3*K.1,3-3*K.1,3+6*K.1,0,3*K.1,6+3*K.1,0,-3-6*K.1,0,0,0,0,0,0,-1-2*K.1,-2-K.1,1-K.1,1+2*K.1,0,0,-1+K.1,0,2+K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1^-1,3*K.1^-1,3*K.1,-3*K.1,0,-2-K.1,0,2+K.1,1+2*K.1,1-K.1,2+K.1,-2-K.1,1-K.1,-1+K.1,0,-1+K.1,-1-2*K.1,0,-1-2*K.1,1+2*K.1,0,0,0,0,-3*K.1,-3*K.1^-1,1+2*K.1,1-K.1,-1-2*K.1,2+K.1,0,-2-K.1,-1+K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |27,9,9,3,27*K.1,27*K.1^-1,18+9*K.1,0,0,-18-9*K.1,-9+9*K.1,9-9*K.1,9+18*K.1,-9-18*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3,-3,9*K.1^-1,9*K.1,9*K.1^-1,9*K.1,0,-3-6*K.1,-6-3*K.1,-6-3*K.1,3+6*K.1,3-3*K.1,0,-3+3*K.1,6+3*K.1,3*K.1,-3+3*K.1,6+3*K.1,-3-6*K.1,0,3*K.1^-1,3-3*K.1,0,3+6*K.1,0,0,0,0,0,0,1+2*K.1,-1+K.1,2+K.1,-1-2*K.1,0,0,-2-K.1,0,1-K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1,3*K.1,3*K.1^-1,-3*K.1^-1,0,-1+K.1,0,1-K.1,-1-2*K.1,2+K.1,1-K.1,-1+K.1,2+K.1,-2-K.1,0,-2-K.1,1+2*K.1,0,1+2*K.1,-1-2*K.1,0,0,0,0,-3*K.1^-1,-3*K.1,-1-2*K.1,2+K.1,1+2*K.1,1-K.1,0,-1+K.1,-2-K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |27,9,9,3,27,27,0,27*K.1^-1,27*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3,-3,9,9,9,9,9*K.1^-1,0,0,0,0,0,9*K.1,0,0,3,0,0,0,9*K.1^-1,3,0,9*K.1,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1,0,0,0,0,0,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3,3,-3,3*K.1,0,-3*K.1^-1,0,0,0,0,0,0,0,-3*K.1,0,0,3*K.1^-1,0,0,0,0,0,0,-3,-3,0,0,0,0,-3*K.1,0,0,-3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |27,9,9,3,27,27,0,27*K.1,27*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3,-3,9,9,9,9,9*K.1,0,0,0,0,0,9*K.1^-1,0,0,3,0,0,0,9*K.1,3,0,9*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-1,0,0,0,0,0,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3,3,-3,3*K.1^-1,0,-3*K.1,0,0,0,0,0,0,0,-3*K.1^-1,0,0,3*K.1,0,0,0,0,0,0,-3,-3,0,0,0,0,-3*K.1^-1,0,0,-3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |27,-9,-9,3,27*K.1^-1,27*K.1,-18-9*K.1,0,0,-9-18*K.1,9+18*K.1,-9+9*K.1,18+9*K.1,9-9*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,-3,-9*K.1,-9*K.1^-1,-9*K.1,-9*K.1^-1,0,-3+3*K.1,3+6*K.1,3+6*K.1,-6-3*K.1,3-3*K.1,0,-3-6*K.1,6+3*K.1,3*K.1^-1,-3-6*K.1,6+3*K.1,-3+3*K.1,0,3*K.1,3-3*K.1,0,-6-3*K.1,0,0,0,0,0,0,2+K.1,1+2*K.1,-2-K.1,1-K.1,0,0,-1-2*K.1,0,-1+K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1,0,-1+K.1,0,1+2*K.1,2+K.1,-1-2*K.1,-1+K.1,1+2*K.1,-2-K.1,-2-K.1,0,-1-2*K.1,1-K.1,0,2+K.1,1-K.1,0,0,0,0,-3*K.1,-3*K.1^-1,-2-K.1,1+2*K.1,-1+K.1,-1-2*K.1,0,1-K.1,2+K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |27,-9,-9,3,27*K.1,27*K.1^-1,-9+9*K.1,0,0,9+18*K.1,-9-18*K.1,-18-9*K.1,9-9*K.1,18+9*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,-3,-9*K.1^-1,-9*K.1,-9*K.1^-1,-9*K.1,0,-6-3*K.1,-3-6*K.1,-3-6*K.1,-3+3*K.1,6+3*K.1,0,3+6*K.1,3-3*K.1,3*K.1,3+6*K.1,3-3*K.1,-6-3*K.1,0,3*K.1^-1,6+3*K.1,0,-3+3*K.1,0,0,0,0,0,0,1-K.1,-1-2*K.1,-1+K.1,2+K.1,0,0,1+2*K.1,0,-2-K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1,3*K.1,3*K.1^-1,3*K.1^-1,0,-2-K.1,0,-1-2*K.1,1-K.1,1+2*K.1,-2-K.1,-1-2*K.1,-1+K.1,-1+K.1,0,1+2*K.1,2+K.1,0,1-K.1,2+K.1,0,0,0,0,-3*K.1^-1,-3*K.1,-1+K.1,-1-2*K.1,-2-K.1,1+2*K.1,0,2+K.1,1-K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |27,-9,-9,3,27*K.1^-1,27*K.1,9+18*K.1,0,0,18+9*K.1,9-9*K.1,-9-18*K.1,-9+9*K.1,-18-9*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,-3,-9*K.1,-9*K.1^-1,-9*K.1,-9*K.1^-1,0,6+3*K.1,-6-3*K.1,-6-3*K.1,3-3*K.1,3+6*K.1,0,-3+3*K.1,-3-6*K.1,3*K.1^-1,-3+3*K.1,-3-6*K.1,6+3*K.1,0,3*K.1,3+6*K.1,0,3-3*K.1,0,0,0,0,0,0,-1+K.1,1-K.1,1+2*K.1,-2-K.1,0,0,2+K.1,0,-1-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1,0,-1-2*K.1,0,1-K.1,-1+K.1,2+K.1,-1-2*K.1,1-K.1,1+2*K.1,1+2*K.1,0,2+K.1,-2-K.1,0,-1+K.1,-2-K.1,0,0,0,0,-3*K.1,-3*K.1^-1,1-K.1,-2-K.1,2+K.1,-1+K.1,0,1+2*K.1,-1-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |27,-9,-9,3,27*K.1,27*K.1^-1,-9-18*K.1,0,0,9-9*K.1,18+9*K.1,9+18*K.1,-18-9*K.1,-9+9*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,-3,-9*K.1^-1,-9*K.1,-9*K.1^-1,-9*K.1,0,3-3*K.1,-3+3*K.1,-3+3*K.1,6+3*K.1,-3-6*K.1,0,-6-3*K.1,3+6*K.1,3*K.1,-6-3*K.1,3+6*K.1,3-3*K.1,0,3*K.1^-1,-3-6*K.1,0,6+3*K.1,0,0,0,0,0,0,-2-K.1,2+K.1,-1-2*K.1,-1+K.1,0,0,1-K.1,0,1+2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1,3*K.1,3*K.1^-1,3*K.1^-1,0,1+2*K.1,0,2+K.1,-2-K.1,1-K.1,1+2*K.1,2+K.1,-1-2*K.1,-1-2*K.1,0,1-K.1,-1+K.1,0,-2-K.1,-1+K.1,0,0,0,0,-3*K.1^-1,-3*K.1,2+K.1,-1+K.1,1-K.1,-2-K.1,0,-1-2*K.1,1+2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |27,-9,-9,3,27*K.1^-1,27*K.1,9-9*K.1,0,0,-9+9*K.1,-18-9*K.1,18+9*K.1,-9-18*K.1,9+18*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,-3,-9*K.1,-9*K.1^-1,-9*K.1,-9*K.1^-1,0,-3-6*K.1,3-3*K.1,3-3*K.1,3+6*K.1,-6-3*K.1,0,6+3*K.1,-3+3*K.1,3*K.1^-1,6+3*K.1,-3+3*K.1,-3-6*K.1,0,3*K.1,-6-3*K.1,0,3+6*K.1,0,0,0,0,0,0,-1-2*K.1,-2-K.1,1-K.1,1+2*K.1,0,0,-1+K.1,0,2+K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1,0,2+K.1,0,-2-K.1,-1-2*K.1,-1+K.1,2+K.1,-2-K.1,1-K.1,1-K.1,0,-1+K.1,1+2*K.1,0,-1-2*K.1,1+2*K.1,0,0,0,0,-3*K.1,-3*K.1^-1,1+2*K.1,1-K.1,-1-2*K.1,2+K.1,0,-2-K.1,-1+K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |27,-9,-9,3,27*K.1,27*K.1^-1,18+9*K.1,0,0,-18-9*K.1,-9+9*K.1,9-9*K.1,9+18*K.1,-9-18*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,-3,-9*K.1^-1,-9*K.1,-9*K.1^-1,-9*K.1,0,3+6*K.1,6+3*K.1,6+3*K.1,-3-6*K.1,-3+3*K.1,0,3-3*K.1,-6-3*K.1,3*K.1,3-3*K.1,-6-3*K.1,3+6*K.1,0,3*K.1^-1,-3+3*K.1,0,-3-6*K.1,0,0,0,0,0,0,1+2*K.1,-1+K.1,2+K.1,-1-2*K.1,0,0,-2-K.1,0,1-K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1,3*K.1,3*K.1^-1,3*K.1^-1,0,1-K.1,0,-1+K.1,1+2*K.1,-2-K.1,1-K.1,-1+K.1,2+K.1,2+K.1,0,-2-K.1,-1-2*K.1,0,1+2*K.1,-1-2*K.1,0,0,0,0,-3*K.1^-1,-3*K.1,-1-2*K.1,2+K.1,1+2*K.1,1-K.1,0,-1+K.1,-2-K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |27,-9,-9,3,27,27,0,27*K.1^-1,27*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,-3,-9,-9,-9,-9,-9*K.1^-1,0,0,0,0,0,-9*K.1,0,0,3,0,0,0,-9*K.1^-1,3,0,-9*K.1,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1,0,0,0,0,0,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3*K.1,0,3*K.1^-1,0,0,0,0,0,0,0,3*K.1,0,0,3*K.1^-1,0,0,0,0,0,0,-3,-3,0,0,0,0,-3*K.1,0,0,-3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |27,-9,-9,3,27,27,0,27*K.1,27*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,-3,-9,-9,-9,-9,-9*K.1,0,0,0,0,0,-9*K.1^-1,0,0,3,0,0,0,-9*K.1,3,0,-9*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-1,0,0,0,0,0,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3*K.1^-1,0,3*K.1,0,0,0,0,0,0,0,3*K.1^-1,0,0,3*K.1,0,0,0,0,0,0,-3,-3,0,0,0,0,-3*K.1^-1,0,0,-3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |30,-6,6,-6,30*K.1^-1,30*K.1,-20-10*K.1,0,0,-10-20*K.1,10+20*K.1,-10+10*K.1,20+10*K.1,10-10*K.1,0,0,3*K.1^-1,3*K.1^-1,3*K.1,3,3*K.1,3,-1-2*K.1,2+K.1,-2-K.1,0,-1+K.1,1+2*K.1,0,-2-K.1,-1-2*K.1,0,-1+K.1,1-K.1,1+2*K.1,0,1-K.1,2+K.1,0,0,0,0,0,0,0,-6*K.1,-6*K.1^-1,6*K.1,6*K.1^-1,0,-2+2*K.1,-2-4*K.1,2+4*K.1,-4-2*K.1,-2+2*K.1,0,2+4*K.1,4+2*K.1,-6*K.1^-1,-2-4*K.1,-4-2*K.1,2-2*K.1,0,-6*K.1,2-2*K.1,0,4+2*K.1,3,3*K.1^-1,-3*K.1,3*K.1,-3*K.1^-1,-3,-4-2*K.1,-2-4*K.1,4+2*K.1,-2+2*K.1,0,0,2+4*K.1,0,2-2*K.1,0,0,0,-2-K.1,1-K.1,0,-2-K.1,-1+K.1,-1+K.1,0,1+2*K.1,0,2+K.1,2+K.1,1+2*K.1,-1-2*K.1,1-K.1,0,-1-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |30,-6,6,-6,30*K.1,30*K.1^-1,-10+10*K.1,0,0,10+20*K.1,-10-20*K.1,-20-10*K.1,10-10*K.1,20+10*K.1,0,0,3*K.1,3*K.1,3*K.1^-1,3,3*K.1^-1,3,1+2*K.1,1-K.1,-1+K.1,0,-2-K.1,-1-2*K.1,0,-1+K.1,1+2*K.1,0,-2-K.1,2+K.1,-1-2*K.1,0,2+K.1,1-K.1,0,0,0,0,0,0,0,-6*K.1^-1,-6*K.1,6*K.1^-1,6*K.1,0,-4-2*K.1,2+4*K.1,-2-4*K.1,-2+2*K.1,-4-2*K.1,0,-2-4*K.1,2-2*K.1,-6*K.1,2+4*K.1,-2+2*K.1,4+2*K.1,0,-6*K.1^-1,4+2*K.1,0,2-2*K.1,3,3*K.1,-3*K.1^-1,3*K.1^-1,-3*K.1,-3,-2+2*K.1,2+4*K.1,2-2*K.1,-4-2*K.1,0,0,-2-4*K.1,0,4+2*K.1,0,0,0,-1+K.1,2+K.1,0,-1+K.1,-2-K.1,-2-K.1,0,-1-2*K.1,0,1-K.1,1-K.1,-1-2*K.1,1+2*K.1,2+K.1,0,1+2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |30,-6,6,-6,30*K.1^-1,30*K.1,10+20*K.1,0,0,20+10*K.1,10-10*K.1,-10-20*K.1,-10+10*K.1,-20-10*K.1,0,0,3*K.1^-1,3*K.1^-1,3*K.1,3,3*K.1,3,2+K.1,-1+K.1,1+2*K.1,0,-1-2*K.1,1-K.1,0,1+2*K.1,2+K.1,0,-1-2*K.1,-2-K.1,1-K.1,0,-2-K.1,-1+K.1,0,0,0,0,0,0,0,-6*K.1,-6*K.1^-1,6*K.1,6*K.1^-1,0,4+2*K.1,4+2*K.1,-4-2*K.1,2-2*K.1,-2-4*K.1,0,2-2*K.1,-2-4*K.1,-6*K.1^-1,-2+2*K.1,2+4*K.1,-4-2*K.1,0,-6*K.1,2+4*K.1,0,-2+2*K.1,3,3*K.1^-1,-3*K.1,3*K.1,-3*K.1^-1,-3,2-2*K.1,-2+2*K.1,-2-4*K.1,4+2*K.1,0,0,-4-2*K.1,0,2+4*K.1,0,0,0,1-K.1,1+2*K.1,0,1+2*K.1,2+K.1,-1-2*K.1,0,-2-K.1,0,-1+K.1,-1-2*K.1,1-K.1,-1+K.1,-2-K.1,0,2+K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |30,-6,6,-6,30*K.1,30*K.1^-1,-10-20*K.1,0,0,10-10*K.1,20+10*K.1,10+20*K.1,-20-10*K.1,-10+10*K.1,0,0,3*K.1,3*K.1,3*K.1^-1,3,3*K.1^-1,3,1-K.1,-2-K.1,-1-2*K.1,0,1+2*K.1,2+K.1,0,-1-2*K.1,1-K.1,0,1+2*K.1,-1+K.1,2+K.1,0,-1+K.1,-2-K.1,0,0,0,0,0,0,0,-6*K.1^-1,-6*K.1,6*K.1^-1,6*K.1,0,2-2*K.1,2-2*K.1,-2+2*K.1,4+2*K.1,2+4*K.1,0,4+2*K.1,2+4*K.1,-6*K.1,-4-2*K.1,-2-4*K.1,-2+2*K.1,0,-6*K.1^-1,-2-4*K.1,0,-4-2*K.1,3,3*K.1,-3*K.1^-1,3*K.1^-1,-3*K.1,-3,4+2*K.1,-4-2*K.1,2+4*K.1,2-2*K.1,0,0,-2+2*K.1,0,-2-4*K.1,0,0,0,2+K.1,-1-2*K.1,0,-1-2*K.1,1-K.1,1+2*K.1,0,-1+K.1,0,-2-K.1,1+2*K.1,2+K.1,-2-K.1,-1+K.1,0,1-K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |30,-6,6,-6,30*K.1^-1,30*K.1,10-10*K.1,0,0,-10+10*K.1,-20-10*K.1,20+10*K.1,-10-20*K.1,10+20*K.1,0,0,3*K.1^-1,3*K.1^-1,3*K.1,3,3*K.1,3,-1+K.1,-1-2*K.1,1-K.1,0,2+K.1,-2-K.1,0,1-K.1,-1+K.1,0,2+K.1,1+2*K.1,-2-K.1,0,1+2*K.1,-1-2*K.1,0,0,0,0,0,0,0,-6*K.1,-6*K.1^-1,6*K.1,6*K.1^-1,0,-2-4*K.1,-2+2*K.1,2-2*K.1,2+4*K.1,4+2*K.1,0,-4-2*K.1,-2+2*K.1,-6*K.1^-1,4+2*K.1,2-2*K.1,2+4*K.1,0,-6*K.1,-4-2*K.1,0,-2-4*K.1,3,3*K.1^-1,-3*K.1,3*K.1,-3*K.1^-1,-3,2+4*K.1,4+2*K.1,-2+2*K.1,-2-4*K.1,0,0,2-2*K.1,0,-4-2*K.1,0,0,0,1+2*K.1,-2-K.1,0,1-K.1,-1-2*K.1,2+K.1,0,1-K.1,0,-1-2*K.1,-1+K.1,-2-K.1,2+K.1,1+2*K.1,0,-1+K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |30,-6,6,-6,30*K.1,30*K.1^-1,20+10*K.1,0,0,-20-10*K.1,-10+10*K.1,10-10*K.1,10+20*K.1,-10-20*K.1,0,0,3*K.1,3*K.1,3*K.1^-1,3,3*K.1^-1,3,-2-K.1,1+2*K.1,2+K.1,0,1-K.1,-1+K.1,0,2+K.1,-2-K.1,0,1-K.1,-1-2*K.1,-1+K.1,0,-1-2*K.1,1+2*K.1,0,0,0,0,0,0,0,-6*K.1^-1,-6*K.1,6*K.1^-1,6*K.1,0,2+4*K.1,-4-2*K.1,4+2*K.1,-2-4*K.1,2-2*K.1,0,-2+2*K.1,-4-2*K.1,-6*K.1,2-2*K.1,4+2*K.1,-2-4*K.1,0,-6*K.1^-1,-2+2*K.1,0,2+4*K.1,3,3*K.1,-3*K.1^-1,3*K.1^-1,-3*K.1,-3,-2-4*K.1,2-2*K.1,-4-2*K.1,2+4*K.1,0,0,4+2*K.1,0,-2+2*K.1,0,0,0,-1-2*K.1,-1+K.1,0,2+K.1,1+2*K.1,1-K.1,0,2+K.1,0,1+2*K.1,-2-K.1,-1+K.1,1-K.1,-1-2*K.1,0,-2-K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |30,-6,6,-6,30,30,0,30*K.1^-1,30*K.1,0,0,0,0,0,0,0,3,3,3,3,3,3,0,0,0,3*K.1^-1,0,0,3*K.1,0,0,3*K.1^-1,0,0,0,3*K.1,0,0,0,0,0,0,0,0,0,-6,-6,6,6,6*K.1^-1,0,0,0,0,0,-6*K.1,0,0,-6,0,0,0,-6*K.1^-1,-6,0,6*K.1,0,3,3,-3,3,-3,-3,0,0,0,0,0,-6*K.1,0,0,0,0,0,-6*K.1^-1,0,0,-3*K.1,0,0,0,3*K.1^-1,0,-3*K.1^-1,0,0,0,0,0,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |30,-6,6,-6,30,30,0,30*K.1,30*K.1^-1,0,0,0,0,0,0,0,3,3,3,3,3,3,0,0,0,3*K.1,0,0,3*K.1^-1,0,0,3*K.1,0,0,0,3*K.1^-1,0,0,0,0,0,0,0,0,0,-6,-6,6,6,6*K.1,0,0,0,0,0,-6*K.1^-1,0,0,-6,0,0,0,-6*K.1,-6,0,6*K.1^-1,0,3,3,-3,3,-3,-3,0,0,0,0,0,-6*K.1^-1,0,0,0,0,0,-6*K.1,0,0,-3*K.1^-1,0,0,0,3*K.1,0,-3*K.1,0,0,0,0,0,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |30,6,-6,-6,30*K.1^-1,30*K.1,-20-10*K.1,0,0,-10-20*K.1,10+20*K.1,-10+10*K.1,20+10*K.1,10-10*K.1,0,0,3*K.1^-1,3*K.1^-1,3*K.1,3,3*K.1,3,-1-2*K.1,2+K.1,-2-K.1,0,-1+K.1,1+2*K.1,0,-2-K.1,-1-2*K.1,0,-1+K.1,1-K.1,1+2*K.1,0,1-K.1,2+K.1,0,0,0,0,0,0,0,6*K.1,6*K.1^-1,-6*K.1,-6*K.1^-1,0,2-2*K.1,2+4*K.1,-2-4*K.1,4+2*K.1,2-2*K.1,0,-2-4*K.1,-4-2*K.1,-6*K.1^-1,2+4*K.1,4+2*K.1,-2+2*K.1,0,-6*K.1,-2+2*K.1,0,-4-2*K.1,-3,-3*K.1^-1,3*K.1,-3*K.1,3*K.1^-1,3,-4-2*K.1,-2-4*K.1,4+2*K.1,-2+2*K.1,0,0,2+4*K.1,0,2-2*K.1,0,0,0,2+K.1,-1+K.1,0,2+K.1,1-K.1,1-K.1,0,-1-2*K.1,0,-2-K.1,-2-K.1,-1-2*K.1,1+2*K.1,-1+K.1,0,1+2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |30,6,-6,-6,30*K.1,30*K.1^-1,-10+10*K.1,0,0,10+20*K.1,-10-20*K.1,-20-10*K.1,10-10*K.1,20+10*K.1,0,0,3*K.1,3*K.1,3*K.1^-1,3,3*K.1^-1,3,1+2*K.1,1-K.1,-1+K.1,0,-2-K.1,-1-2*K.1,0,-1+K.1,1+2*K.1,0,-2-K.1,2+K.1,-1-2*K.1,0,2+K.1,1-K.1,0,0,0,0,0,0,0,6*K.1^-1,6*K.1,-6*K.1^-1,-6*K.1,0,4+2*K.1,-2-4*K.1,2+4*K.1,2-2*K.1,4+2*K.1,0,2+4*K.1,-2+2*K.1,-6*K.1,-2-4*K.1,2-2*K.1,-4-2*K.1,0,-6*K.1^-1,-4-2*K.1,0,-2+2*K.1,-3,-3*K.1,3*K.1^-1,-3*K.1^-1,3*K.1,3,-2+2*K.1,2+4*K.1,2-2*K.1,-4-2*K.1,0,0,-2-4*K.1,0,4+2*K.1,0,0,0,1-K.1,-2-K.1,0,1-K.1,2+K.1,2+K.1,0,1+2*K.1,0,-1+K.1,-1+K.1,1+2*K.1,-1-2*K.1,-2-K.1,0,-1-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |30,6,-6,-6,30*K.1^-1,30*K.1,10+20*K.1,0,0,20+10*K.1,10-10*K.1,-10-20*K.1,-10+10*K.1,-20-10*K.1,0,0,3*K.1^-1,3*K.1^-1,3*K.1,3,3*K.1,3,2+K.1,-1+K.1,1+2*K.1,0,-1-2*K.1,1-K.1,0,1+2*K.1,2+K.1,0,-1-2*K.1,-2-K.1,1-K.1,0,-2-K.1,-1+K.1,0,0,0,0,0,0,0,6*K.1,6*K.1^-1,-6*K.1,-6*K.1^-1,0,-4-2*K.1,-4-2*K.1,4+2*K.1,-2+2*K.1,2+4*K.1,0,-2+2*K.1,2+4*K.1,-6*K.1^-1,2-2*K.1,-2-4*K.1,4+2*K.1,0,-6*K.1,-2-4*K.1,0,2-2*K.1,-3,-3*K.1^-1,3*K.1,-3*K.1,3*K.1^-1,3,2-2*K.1,-2+2*K.1,-2-4*K.1,4+2*K.1,0,0,-4-2*K.1,0,2+4*K.1,0,0,0,-1+K.1,-1-2*K.1,0,-1-2*K.1,-2-K.1,1+2*K.1,0,2+K.1,0,1-K.1,1+2*K.1,-1+K.1,1-K.1,2+K.1,0,-2-K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |30,6,-6,-6,30*K.1,30*K.1^-1,-10-20*K.1,0,0,10-10*K.1,20+10*K.1,10+20*K.1,-20-10*K.1,-10+10*K.1,0,0,3*K.1,3*K.1,3*K.1^-1,3,3*K.1^-1,3,1-K.1,-2-K.1,-1-2*K.1,0,1+2*K.1,2+K.1,0,-1-2*K.1,1-K.1,0,1+2*K.1,-1+K.1,2+K.1,0,-1+K.1,-2-K.1,0,0,0,0,0,0,0,6*K.1^-1,6*K.1,-6*K.1^-1,-6*K.1,0,-2+2*K.1,-2+2*K.1,2-2*K.1,-4-2*K.1,-2-4*K.1,0,-4-2*K.1,-2-4*K.1,-6*K.1,4+2*K.1,2+4*K.1,2-2*K.1,0,-6*K.1^-1,2+4*K.1,0,4+2*K.1,-3,-3*K.1,3*K.1^-1,-3*K.1^-1,3*K.1,3,4+2*K.1,-4-2*K.1,2+4*K.1,2-2*K.1,0,0,-2+2*K.1,0,-2-4*K.1,0,0,0,-2-K.1,1+2*K.1,0,1+2*K.1,-1+K.1,-1-2*K.1,0,1-K.1,0,2+K.1,-1-2*K.1,-2-K.1,2+K.1,1-K.1,0,-1+K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |30,6,-6,-6,30*K.1^-1,30*K.1,10-10*K.1,0,0,-10+10*K.1,-20-10*K.1,20+10*K.1,-10-20*K.1,10+20*K.1,0,0,3*K.1^-1,3*K.1^-1,3*K.1,3,3*K.1,3,-1+K.1,-1-2*K.1,1-K.1,0,2+K.1,-2-K.1,0,1-K.1,-1+K.1,0,2+K.1,1+2*K.1,-2-K.1,0,1+2*K.1,-1-2*K.1,0,0,0,0,0,0,0,6*K.1,6*K.1^-1,-6*K.1,-6*K.1^-1,0,2+4*K.1,2-2*K.1,-2+2*K.1,-2-4*K.1,-4-2*K.1,0,4+2*K.1,2-2*K.1,-6*K.1^-1,-4-2*K.1,-2+2*K.1,-2-4*K.1,0,-6*K.1,4+2*K.1,0,2+4*K.1,-3,-3*K.1^-1,3*K.1,-3*K.1,3*K.1^-1,3,2+4*K.1,4+2*K.1,-2+2*K.1,-2-4*K.1,0,0,2-2*K.1,0,-4-2*K.1,0,0,0,-1-2*K.1,2+K.1,0,-1+K.1,1+2*K.1,-2-K.1,0,-1+K.1,0,1+2*K.1,1-K.1,2+K.1,-2-K.1,-1-2*K.1,0,1-K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |30,6,-6,-6,30*K.1,30*K.1^-1,20+10*K.1,0,0,-20-10*K.1,-10+10*K.1,10-10*K.1,10+20*K.1,-10-20*K.1,0,0,3*K.1,3*K.1,3*K.1^-1,3,3*K.1^-1,3,-2-K.1,1+2*K.1,2+K.1,0,1-K.1,-1+K.1,0,2+K.1,-2-K.1,0,1-K.1,-1-2*K.1,-1+K.1,0,-1-2*K.1,1+2*K.1,0,0,0,0,0,0,0,6*K.1^-1,6*K.1,-6*K.1^-1,-6*K.1,0,-2-4*K.1,4+2*K.1,-4-2*K.1,2+4*K.1,-2+2*K.1,0,2-2*K.1,4+2*K.1,-6*K.1,-2+2*K.1,-4-2*K.1,2+4*K.1,0,-6*K.1^-1,2-2*K.1,0,-2-4*K.1,-3,-3*K.1,3*K.1^-1,-3*K.1^-1,3*K.1,3,-2-4*K.1,2-2*K.1,-4-2*K.1,2+4*K.1,0,0,4+2*K.1,0,-2+2*K.1,0,0,0,1+2*K.1,1-K.1,0,-2-K.1,-1-2*K.1,-1+K.1,0,-2-K.1,0,-1-2*K.1,2+K.1,1-K.1,-1+K.1,1+2*K.1,0,2+K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |30,6,-6,-6,30,30,0,30*K.1^-1,30*K.1,0,0,0,0,0,0,0,3,3,3,3,3,3,0,0,0,3*K.1^-1,0,0,3*K.1,0,0,3*K.1^-1,0,0,0,3*K.1,0,0,0,0,0,0,0,0,0,6,6,-6,-6,-6*K.1^-1,0,0,0,0,0,6*K.1,0,0,-6,0,0,0,6*K.1^-1,-6,0,-6*K.1,0,-3,-3,3,-3,3,3,0,0,0,0,0,-6*K.1,0,0,0,0,0,-6*K.1^-1,0,0,3*K.1,0,0,0,-3*K.1^-1,0,3*K.1^-1,0,0,0,0,0,-3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |30,6,-6,-6,30,30,0,30*K.1,30*K.1^-1,0,0,0,0,0,0,0,3,3,3,3,3,3,0,0,0,3*K.1,0,0,3*K.1^-1,0,0,3*K.1,0,0,0,3*K.1^-1,0,0,0,0,0,0,0,0,0,6,6,-6,-6,-6*K.1,0,0,0,0,0,6*K.1^-1,0,0,-6,0,0,0,6*K.1,-6,0,-6*K.1^-1,0,-3,-3,3,-3,3,3,0,0,0,0,0,-6*K.1^-1,0,0,0,0,0,-6*K.1,0,0,3*K.1^-1,0,0,0,-3*K.1,0,3*K.1,0,0,0,0,0,-3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |48,0,0,0,48*K.1^-1,48*K.1,-32-16*K.1,0,0,-16-32*K.1,16+32*K.1,-16+16*K.1,32+16*K.1,16-16*K.1,0,0,-6*K.1^-1,-6*K.1^-1,-6*K.1,-6,-6*K.1,-6,2+4*K.1,-4-2*K.1,4+2*K.1,0,2-2*K.1,-2-4*K.1,0,4+2*K.1,2+4*K.1,0,2-2*K.1,-2+2*K.1,-2-4*K.1,0,-2+2*K.1,-4-2*K.1,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1,3*K.1^-1,2+K.1,-1-2*K.1,1-K.1,1+2*K.1,0,-1+K.1,-2-K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |48,0,0,0,48*K.1,48*K.1^-1,-16+16*K.1,0,0,16+32*K.1,-16-32*K.1,-32-16*K.1,16-16*K.1,32+16*K.1,0,0,-6*K.1,-6*K.1,-6*K.1^-1,-6,-6*K.1^-1,-6,-2-4*K.1,-2+2*K.1,2-2*K.1,0,4+2*K.1,2+4*K.1,0,2-2*K.1,-2-4*K.1,0,4+2*K.1,-4-2*K.1,2+4*K.1,0,-4-2*K.1,-2+2*K.1,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-1,3*K.1,1-K.1,1+2*K.1,2+K.1,-1-2*K.1,0,-2-K.1,-1+K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |48,0,0,0,48*K.1^-1,48*K.1,16+32*K.1,0,0,32+16*K.1,16-16*K.1,-16-32*K.1,-16+16*K.1,-32-16*K.1,0,0,-6*K.1^-1,-6*K.1^-1,-6*K.1,-6,-6*K.1,-6,-4-2*K.1,2-2*K.1,-2-4*K.1,0,2+4*K.1,-2+2*K.1,0,-2-4*K.1,-4-2*K.1,0,2+4*K.1,4+2*K.1,-2+2*K.1,0,4+2*K.1,2-2*K.1,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1,3*K.1^-1,-1+K.1,2+K.1,-2-K.1,1-K.1,0,-1-2*K.1,1+2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |48,0,0,0,48*K.1,48*K.1^-1,-16-32*K.1,0,0,16-16*K.1,32+16*K.1,16+32*K.1,-32-16*K.1,-16+16*K.1,0,0,-6*K.1,-6*K.1,-6*K.1^-1,-6,-6*K.1^-1,-6,-2+2*K.1,4+2*K.1,2+4*K.1,0,-2-4*K.1,-4-2*K.1,0,2+4*K.1,-2+2*K.1,0,-2-4*K.1,2-2*K.1,-4-2*K.1,0,2-2*K.1,4+2*K.1,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-1,3*K.1,-2-K.1,1-K.1,-1+K.1,2+K.1,0,1+2*K.1,-1-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |48,0,0,0,48*K.1^-1,48*K.1,16-16*K.1,0,0,-16+16*K.1,-32-16*K.1,32+16*K.1,-16-32*K.1,16+32*K.1,0,0,-6*K.1^-1,-6*K.1^-1,-6*K.1,-6,-6*K.1,-6,2-2*K.1,2+4*K.1,-2+2*K.1,0,-4-2*K.1,4+2*K.1,0,-2+2*K.1,2-2*K.1,0,-4-2*K.1,-2-4*K.1,4+2*K.1,0,-2-4*K.1,2+4*K.1,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1,3*K.1^-1,-1-2*K.1,-1+K.1,1+2*K.1,-2-K.1,0,2+K.1,1-K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |48,0,0,0,48*K.1,48*K.1^-1,32+16*K.1,0,0,-32-16*K.1,-16+16*K.1,16-16*K.1,16+32*K.1,-16-32*K.1,0,0,-6*K.1,-6*K.1,-6*K.1^-1,-6,-6*K.1^-1,-6,4+2*K.1,-2-4*K.1,-4-2*K.1,0,-2+2*K.1,2-2*K.1,0,-4-2*K.1,4+2*K.1,0,-2+2*K.1,2+4*K.1,2-2*K.1,0,2+4*K.1,-2-4*K.1,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-1,3*K.1,1+2*K.1,-2-K.1,-1-2*K.1,-1+K.1,0,1-K.1,2+K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |48,0,0,0,48,48,0,48*K.1^-1,48*K.1,0,0,0,0,0,0,0,-6,-6,-6,-6,-6,-6,0,0,0,-6*K.1^-1,0,0,-6*K.1,0,0,-6*K.1^-1,0,0,0,-6*K.1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,0,0,0,0,3*K.1,0,0,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |48,0,0,0,48,48,0,48*K.1,48*K.1^-1,0,0,0,0,0,0,0,-6,-6,-6,-6,-6,-6,0,0,0,-6*K.1,0,0,-6*K.1^-1,0,0,-6*K.1,0,0,0,-6*K.1^-1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,0,0,0,0,3*K.1^-1,0,0,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_58320_bb:= KnownIrreducibles(CR);