/* Group 576.8673 downloaded from the LMFDB on 28 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([8, -2, -2, -3, -2, 2, -2, 2, -3, 41, 587, 211, 252, 380, 6925, 4053, 14798, 6070, 166, 12303]); a,b,c,d,e,f := Explode([GPC.1, GPC.2, GPC.4, GPC.5, GPC.6, GPC.7]); AssignNames(~GPC, ["a", "b", "b2", "c", "d", "e", "f", "f2"]); GPerm := PermutationGroup< 13 | (10,11)(12,13), (12,13), (2,4,3)(6,8,7), (1,2)(3,4)(5,6)(7,8), (1,3)(2,4)(5,7)(6,8), (1,3)(2,4), (1,4)(2,3), (9,10,11) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_576_8673 := rec< RF | Agroup := true, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := false>; /* Character Table */ G:= GPerm; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, G!(12,13)>,< 2, 3, G!(5,6)(7,8)>,< 2, 3, G!(5,6)(7,8)(12,13)>,< 2, 3, G!(1,2)(3,4)>,< 2, 3, G!(1,2)(3,4)(12,13)>,< 2, 3, G!(1,2)(3,4)(5,6)(7,8)>,< 2, 3, G!(1,2)(3,4)(5,6)(7,8)(12,13)>,< 2, 3, G!(1,2)(3,4)(5,7)(6,8)>,< 2, 3, G!(1,2)(3,4)(5,7)(6,8)(12,13)>,< 2, 3, G!(1,2)(3,4)(5,8)(6,7)>,< 2, 3, G!(1,2)(3,4)(5,8)(6,7)(12,13)>,< 2, 3, G!(10,11)(12,13)>,< 2, 3, G!(9,10)>,< 2, 9, G!(5,6)(7,8)(10,11)>,< 2, 9, G!(5,6)(7,8)(10,11)(12,13)>,< 2, 9, G!(1,2)(3,4)(10,11)>,< 2, 9, G!(1,2)(3,4)(10,11)(12,13)>,< 2, 9, G!(1,2)(3,4)(5,6)(7,8)(10,11)>,< 2, 9, G!(1,2)(3,4)(5,6)(7,8)(10,11)(12,13)>,< 2, 9, G!(1,2)(3,4)(5,7)(6,8)(10,11)>,< 2, 9, G!(1,2)(3,4)(5,7)(6,8)(10,11)(12,13)>,< 2, 9, G!(1,2)(3,4)(5,8)(6,7)(10,11)>,< 2, 9, G!(1,2)(3,4)(5,8)(6,7)(10,11)(12,13)>,< 3, 2, G!(9,11,10)>,< 3, 16, G!(2,4,3)(6,8,7)>,< 3, 16, G!(2,3,4)(6,7,8)>,< 3, 32, G!(1,2,4)(5,6,8)(9,11,10)>,< 3, 32, G!(1,4,2)(5,8,6)(9,10,11)>,< 6, 2, G!(9,10,11)(12,13)>,< 6, 6, G!(5,6)(7,8)(9,10,11)>,< 6, 6, G!(5,6)(7,8)(9,10,11)(12,13)>,< 6, 6, G!(1,2)(3,4)(9,10,11)>,< 6, 6, G!(1,2)(3,4)(9,10,11)(12,13)>,< 6, 6, G!(1,2)(3,4)(5,6)(7,8)(9,10,11)>,< 6, 6, G!(1,2)(3,4)(5,6)(7,8)(9,10,11)(12,13)>,< 6, 6, G!(1,2)(3,4)(5,7)(6,8)(9,10,11)>,< 6, 6, G!(1,2)(3,4)(5,7)(6,8)(9,10,11)(12,13)>,< 6, 6, G!(1,2)(3,4)(5,8)(6,7)(9,10,11)>,< 6, 6, G!(1,2)(3,4)(5,8)(6,7)(9,10,11)(12,13)>,< 6, 16, G!(2,3,4)(6,7,8)(12,13)>,< 6, 16, G!(2,4,3)(6,8,7)(12,13)>,< 6, 32, G!(1,4,2)(5,8,6)(9,10,11)(12,13)>,< 6, 32, G!(1,2,4)(5,6,8)(9,11,10)(12,13)>,< 6, 48, G!(1,4,3)(5,8,7)(10,11)(12,13)>,< 6, 48, G!(1,3,4)(5,7,8)(10,11)(12,13)>,< 6, 48, G!(1,4,2)(5,8,6)(9,10)>,< 6, 48, G!(1,2,4)(5,6,8)(9,10)>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,K.1^-1,K.1,K.1,K.1^-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,K.1,K.1^-1,K.1^-1,K.1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,1,K.1^-1,K.1,K.1,K.1^-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,1,K.1,K.1^-1,K.1^-1,K.1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, -1, -1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 0, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 2, 2, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -2, -2, 1, 1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,2,2,0,0,2,2,0,0,0,0,0,0,0,0,0,0,-1,2*K.1^-1,2*K.1,-1*K.1,-1*K.1^-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,2*K.1,2*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,2,2,0,0,2,2,0,0,0,0,0,0,0,0,0,0,-1,2*K.1,2*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,2*K.1^-1,2*K.1,-1*K.1,-1*K.1^-1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,2,-2,2,-2,2,-2,2,-2,0,0,2,-2,0,0,0,0,0,0,0,0,0,0,-1,2*K.1^-1,2*K.1,-1*K.1,-1*K.1^-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-2*K.1,-2*K.1^-1,K.1^-1,K.1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,2,-2,2,-2,2,-2,2,-2,0,0,2,-2,0,0,0,0,0,0,0,0,0,0,-1,2*K.1,2*K.1^-1,-1*K.1^-1,-1*K.1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-2*K.1^-1,-2*K.1,K.1,K.1^-1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[3, 3, -1, -1, -1, -1, -1, -1, -1, -1, 3, 3, 3, 3, -1, -1, -1, -1, 3, 3, -1, -1, -1, -1, 3, 0, 0, 0, 0, 3, -1, -1, -1, -1, 3, 3, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -1, -1, -1, -1, -1, -1, 3, 3, 3, 3, -1, -1, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, 3, 0, 0, 0, 0, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -1, -1, -1, -1, 3, 3, -1, -1, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, 3, 3, -1, -1, 3, 0, 0, 0, 0, 3, -1, -1, -1, -1, -1, -1, 3, 3, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -1, -1, 3, 3, -1, -1, -1, -1, 3, 3, -1, -1, -1, -1, 3, 3, -1, -1, -1, -1, -1, -1, 3, 0, 0, 0, 0, 3, -1, -1, 3, 3, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -1, -1, -1, -1, -1, -1, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 3, 3, 3, 0, 0, 0, 0, 3, -1, -1, -1, -1, -1, -1, -1, -1, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, -1, 1, -1, 1, -1, 1, -1, 1, -3, 3, 3, -3, -1, 1, -1, 1, 3, -3, -1, 1, -1, 1, 3, 0, 0, 0, 0, -3, -1, 1, -1, 1, 3, -3, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, -1, 1, -1, 1, -1, 1, -1, 1, 3, -3, 3, -3, 1, -1, 1, -1, -3, 3, 1, -1, 1, -1, 3, 0, 0, 0, 0, -3, -1, 1, -1, 1, 3, -3, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, -1, 1, -1, 1, -1, 1, 3, -3, -3, 3, -1, 1, 3, -3, -1, 1, -1, 1, -1, 1, -1, 1, 3, 0, 0, 0, 0, -3, 3, -3, -1, 1, -1, 1, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, -1, 1, -1, 1, -1, 1, 3, -3, 3, -3, -1, 1, -3, 3, 1, -1, 1, -1, 1, -1, 1, -1, 3, 0, 0, 0, 0, -3, 3, -3, -1, 1, -1, 1, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, -1, 1, -1, 1, 3, -3, -1, 1, -3, 3, -1, 1, -1, 1, -1, 1, -1, 1, 3, -3, -1, 1, 3, 0, 0, 0, 0, -3, -1, 1, -1, 1, -1, 1, 3, -3, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, -1, 1, -1, 1, 3, -3, -1, 1, 3, -3, -1, 1, 1, -1, 1, -1, 1, -1, -3, 3, 1, -1, 3, 0, 0, 0, 0, -3, -1, 1, -1, 1, -1, 1, 3, -3, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, -1, 1, 3, -3, -1, 1, -1, 1, -3, 3, -1, 1, -1, 1, 3, -3, -1, 1, -1, 1, -1, 1, 3, 0, 0, 0, 0, -3, -1, 1, 3, -3, -1, 1, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, -1, 1, 3, -3, -1, 1, -1, 1, 3, -3, -1, 1, 1, -1, -3, 3, 1, -1, 1, -1, 1, -1, 3, 0, 0, 0, 0, -3, -1, 1, 3, -3, -1, 1, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, 3, -3, -1, 1, -1, 1, -1, 1, -3, 3, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 3, -3, 3, 0, 0, 0, 0, -3, -1, 1, -1, 1, -1, 1, -1, 1, 3, -3, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, 3, -3, -1, 1, -1, 1, -1, 1, 3, -3, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -3, 3, 3, 0, 0, 0, 0, -3, -1, 1, -1, 1, -1, 1, -1, 1, 3, -3, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -1, -1, -1, -1, -1, -1, -1, -1, -3, -3, 3, 3, 1, 1, 1, 1, -3, -3, 1, 1, 1, 1, 3, 0, 0, 0, 0, 3, -1, -1, -1, -1, 3, 3, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -1, -1, -1, -1, -1, -1, 3, 3, -3, -3, -1, -1, -3, -3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 0, 0, 0, 0, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -1, -1, -1, -1, 3, 3, -1, -1, -3, -3, -1, -1, 1, 1, 1, 1, 1, 1, -3, -3, 1, 1, 3, 0, 0, 0, 0, 3, -1, -1, -1, -1, -1, -1, 3, 3, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -1, -1, 3, 3, -1, -1, -1, -1, -3, -3, -1, -1, 1, 1, -3, -3, 1, 1, 1, 1, 1, 1, 3, 0, 0, 0, 0, 3, -1, -1, 3, 3, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -1, -1, -1, -1, -1, -1, -3, -3, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -3, -3, 3, 0, 0, 0, 0, 3, -1, -1, -1, -1, -1, -1, -1, -1, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, -3, 1, 1, 1, 1, -3, -3, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, -2, -2, -2, -2, -2, -2, 6, 6, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, -3, -3, -3, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, -2, -2, -2, -2, 6, 6, -2, -2, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, -3, 1, 1, 1, 1, 1, 1, -3, -3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, -2, -2, 6, 6, -2, -2, -2, -2, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, -3, 1, 1, -3, -3, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 6, 6, -2, -2, -2, -2, -2, -2, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, -3, 1, 1, 1, 1, 1, 1, 1, 1, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -6, -2, 2, -2, 2, -2, 2, -2, 2, 0, 0, 6, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 3, 1, -1, 1, -1, -3, 3, 1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -6, -2, 2, -2, 2, -2, 2, 6, -6, 0, 0, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 3, -3, 3, 1, -1, 1, -1, 1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -6, -2, 2, -2, 2, 6, -6, -2, 2, 0, 0, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 3, 1, -1, 1, -1, 1, -1, -3, 3, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -6, -2, 2, 6, -6, -2, 2, -2, 2, 0, 0, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 3, 1, -1, -3, 3, 1, -1, 1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -6, 6, -6, -2, 2, -2, 2, -2, 2, 0, 0, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 3, 1, -1, 1, -1, 1, -1, 1, -1, -3, 3, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_576_8673:= KnownIrreducibles(CR);