# Group 56882.18 downloaded from the LMFDB on 13 October 2025. ## Various presentations of this group are stored in this file: # GPC is polycyclic presentation GPerm is permutation group # GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups # Many characteristics of the group are stored as booleans in a record: # Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, # metacyclic, monomial, nilpotent, perfect, quasisimple, rational, # solvable, supersolvable # The character table is stored as a record chartbl_n_i where n is the order # of the group and i is which group of that order it is. The record is # converted to a character table using ConvertToLibraryCharacterTableNC # Constructions GPC := PcGroupCode(2837667389999958476826396356823395,56882); a := GPC.1; b := GPC.4; GPerm := Group( (2,239)(3,238)(4,237)(5,236)(6,235)(7,234)(8,233)(9,232)(10,231)(11,230)(12,229)(13,228)(14,227)(15,226)(16,225)(17,224)(18,223)(19,222)(20,221)(21,220)(22,219)(23,218)(24,217)(25,216)(26,215)(27,214)(28,213)(29,212)(30,211)(31,210)(32,209)(33,208)(34,207)(35,206)(36,205)(37,204)(38,203)(39,202)(40,201)(41,200)(42,199)(43,198)(44,197)(45,196)(46,195)(47,194)(48,193)(49,192)(50,191)(51,190)(52,189)(53,188)(54,187)(55,186)(56,185)(57,184)(58,183)(59,182)(60,181)(61,180)(62,179)(63,178)(64,177)(65,176)(66,175)(67,174)(68,173)(69,172)(70,171)(71,170)(72,169)(73,168)(74,167)(75,166)(76,165)(77,164)(78,163)(79,162)(80,161)(81,160)(82,159)(83,158)(84,157)(85,156)(86,155)(87,154)(88,153)(89,152)(90,151)(91,150)(92,149)(93,148)(94,147)(95,146)(96,145)(97,144)(98,143)(99,142)(100,141)(101,140)(102,139)(103,138)(104,137)(105,136)(106,135)(107,134)(108,133)(109,132)(110,131)(111,130)(112,129)(113,128)(114,127)(115,126)(116,125)(117,124)(118,123)(119,122)(120,121), (2,25,99,202,45,101,11)(3,49,197,164,89,201,21)(4,73,56,126,133,62,31)(5,97,154,88,177,162,41)(6,121,13,50,221,23,51)(7,145,111,12,26,123,61)(8,169,209,213,70,223,71)(9,193,68,175,114,84,81)(10,217,166,137,158,184,91)(14,74,80,224,95,106,131)(15,98,178,186,139,206,141)(16,122,37,148,183,67,151)(17,146,135,110,227,167,161)(18,170,233,72,32,28,171)(19,194,92,34,76,128,181)(20,218,190,235,120,228,191)(22,27,147,159,208,189,211)(24,75,104,83,57,150,231)(29,195,116,132,38,172,42)(30,219,214,94,82,33,52)(35,100,226,143,63,55,102)(36,124,85,105,107,155,112)(39,196,140,230,239,216,142)(40,220,238,192,44,77,152)(43,53,54,78,176,138,182)(46,125,109,203,69,199,212)(47,149,207,165,113,60,222)(48,173,66,127,157,160,232)(58,174,90,225,119,204,93)(59,198,188,187,163,65,103)(64,79,200,236,144,87,153)(86,129,205,117,156,136,134)(96,130,229,215,118,180,234)(108,179,210,237,168,185,115), (2,212,68,37,188,23,102,41,76,52,7,72,164,217,167,133,129)(3,184,135,73,136,45,203,81,151,103,13,143,88,194,94,26,18)(4,156,202,109,84,67,65,121,226,154,19,214,12,171,21,158,146)(5,128,30,145,32,89,166,161,62,205,25,46,175,148,187,51,35)(6,100,97,181,219,111,28,201,137,17,31,117,99,125,114,183,163)(8,44,231,14,115,155,230,42,48,119,43,20,186,79,207,208,180)(9,16,59,50,63,177,92,82,123,170,49,91,110,56,134,101,69)(10,227,126,86,11,199,193,122,198,221,55,162,34,33,61,233,197)(15,87,222,27,229,70,220,83,95,237,85,39,132,157,174,176,120)(22,130,213,40,104,224,210,124,142,116,127,58,78,235,141,144,60)(24,74,108,112,239,29,173,204,53,218,139,200,165,189,234,169,77)(36,216,195,66,93,54,190,206,236,113,211,96,209,152,75,80,179)(38,160,90,138,228,98,153,47,147,215,223,238,57,106,168,105,196)(64,149,159,118,71,192,150,131,185,107,140,172,232,225,182,191,178), (1,239,238,237,236,235,234,233,232,231,230,229,228,227,226,225,224,223,222,221,220,219,218,217,216,215,214,213,212,211,210,209,208,207,206,205,204,203,202,201,200,199,198,197,196,195,194,193,192,191,190,189,188,187,186,185,184,183,182,181,180,179,178,177,176,175,174,173,172,171,170,169,168,167,166,165,164,163,162,161,160,159,158,157,156,155,154,153,152,151,150,149,148,147,146,145,144,143,142,141,140,139,138,137,136,135,134,133,132,131,130,129,128,127,126,125,124,123,122,121,120,119,118,117,116,115,114,113,112,111,110,109,108,107,106,105,104,103,102,101,100,99,98,97,96,95,94,93,92,91,90,89,88,87,86,85,84,83,82,81,80,79,78,77,76,75,74,73,72,71,70,69,68,67,66,65,64,63,62,61,60,59,58,57,56,55,54,53,52,51,50,49,48,47,46,45,44,43,42,41,40,39,38,37,36,35,34,33,32,31,30,29,28,27,26,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2) ); GLFp := Group([[[ Z(239)^56, 0*Z(239) ], [ 0*Z(239), Z(239)^183 ]], [[ Z(239)^0, Z(239)^0 ], [ 0*Z(239), Z(239)^0 ]]]); # Booleans booleans_56882_18 := rec( Agroup := true, Zgroup := true, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := true, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true); # Character Table chartbl_56882_18:=rec(); chartbl_56882_18.IsFinite:= true; chartbl_56882_18.UnderlyingCharacteristic:= 0; chartbl_56882_18.UnderlyingGroup:= GPC; chartbl_56882_18.Size:= 56882; chartbl_56882_18.InfoText:= "Character table for group 56882.18 downloaded from the LMFDB."; chartbl_56882_18.Identifier:= " F239 "; chartbl_56882_18.NrConjugacyClasses:= 239; chartbl_56882_18.ConjugacyClasses:= [ of ..., f1*f2^3*f3^8*f4^65, f2^6*f3^4*f4^74, f2*f3^12*f4^9, f2^5*f3^9*f4^156, f2^2*f3^7*f4^192, f2^4*f3^14*f4^66, f2^3*f3^2*f4^89, f1*f2^6*f3^10*f4^215, f1*f3^6*f4^238, f1*f2^5*f3^15*f4^112, f1*f2*f3*f4^148, f1*f2^4*f3^3*f4^56, f1*f2^2*f3^13*f4^230, f3^14*f4^48, f3^3*f4^224, f3^11*f4^106, f3^6*f4^55, f3^8*f4^196, f3^9*f4^47, f3^5*f4^6, f3^12*f4^164, f3^2*f4^115, f3^15*f4^96, f3^16*f4^177, f3*f4^15, f3^13*f4^232, f3^4*f4^154, f3^10*f4^169, f3^7*f4^63, f1*f2^3*f3^15*f4^2, f1*f2^3*f3*f4^135, f1*f2^3*f3^12*f4^150, f1*f2^3*f3^4*f4^72, f1*f2^3*f3^9*f4^50, f1*f2^3*f3^7*f4^127, f1*f2^3*f3^6*f4^208, f1*f2^3*f3^10*f4^189, f1*f2^3*f3^3*f4^140, f1*f2^3*f3^13*f4^59, f1*f2^3*f4^18, f1*f2^3*f3^16*f4^108, f1*f2^3*f3^14*f4^10, f1*f2^3*f3^2*f4^198, f1*f2^3*f3^11*f4^80, f1*f2^3*f3^5*f4^17, f2^2*f3^9*f4^124, f2^5*f3^7*f4^78, f2^4*f3*f4^172, f2^3*f3^15*f4^160, f2^6*f3^10*f4^206, f2*f3^6*f4^93, f2*f3^3*f4^11, f2^6*f3^13*f4^139, f2^3*f3^12*f4^82, f2^4*f3^4*f4^218, f2^5*f3^4*f4^202, f2^2*f3^12*f4^203, f2^2*f3^6*f4^158, f2^5*f3^10*f4^99, f2^4*f3^15*f4^216, f2^3*f3*f4^35, f2^6*f3^7*f4^38, f2*f3^9*f4^29, f2*f4^131, f2^6*f3^16*f4^133, f2^3*f3^9*f4^167, f2^4*f3^7*f4^83, f2^5*f3*f4^73, f2^2*f3^15*f4^153, f2^2*f3^3*f4^219, f2^5*f3^13*f4, f2^4*f3^12*f4^70, f2^3*f3^4*f4^220, f2*f3^14*f4^37, f2^6*f3^2*f4^161, f2^3*f3^6*f4^200, f2^4*f3^10*f4^235, f2^5*f3^15*f4^186, f2^2*f3*f4^227, f2^2*f4^223, f2^5*f3^16*f4^60, f2^4*f3^9*f4^33, f2^3*f3^7*f4^233, f2^6*f3*f4^237, f2*f3^15*f4^182, f2*f3^11*f4^23, f2^6*f3^5*f4^110, f2^3*f3^3*f4^210, f2^4*f3^13*f4^163, f2^5*f3^12*f4^213, f2^2*f3^4*f4^41, f2^2*f3^14*f4^188, f2^5*f3^2*f4^183, f2^4*f3^6*f4^58, f2^3*f3^10*f4^13, f2^6*f3^15*f4^185, f2*f3*f4^12, f2*f3^8*f4^26, f2^6*f3^8*f4^109, f2^3*f4^3, f2^4*f3^16*f4^21, f2^2*f3^11*f4^76, f2^5*f3^5*f4^87, f2^4*f3^3*f4^138, f2^3*f3^13*f4^4, f2^6*f3^12*f4^162, f2*f3^4*f4^168, f2*f3^5*f4^179, f2^6*f3^11*f4^34, f2^3*f3^14*f4^201, f2^4*f3^2*f4^126, f2^5*f3^6*f4^117, f2^2*f3^10*f4^45, f2^2*f3^8*f4^100, f2^5*f3^8*f4^57, f2^4*f4^155, f2^3*f3^16*f4^46, f2^6*f3^9*f4^184, f2*f3^7*f4^157, f2*f3^2*f4^95, f2^6*f3^14*f4^145, f2^3*f3^11*f4^22, f2^4*f3^5*f4^114, f2^5*f3^3*f4^40, f2^2*f3^13*f4^14, f2^2*f3^5*f4^129, f2^5*f3^11*f4^197, f2^6*f3^6*f4^111, f2*f3^10*f4^49, f2*f3^16*f4^113, f2^6*f4^105, f2^3*f3^8*f4^214, f2^4*f3^8*f4^170, f2^5*f4^176, f2^2*f3^16*f4^79, f2^2*f3^2*f4^174, f2^5*f3^14*f4^181, f2^4*f3^11*f4^68, f2^3*f3^5*f4^207, f2^6*f3^3*f4^212, f2*f3^13*f4^75, f1*f2^4*f3^4*f4^229, f1*f2^2*f3^12*f4^92, f1*f2^6*f3^13*f4^97, f1*f3^3*f4^236, f1*f2*f3^6*f4^123, f1*f2^5*f3^10*f4^130, f1*f2^5*f3^7*f4^225, f1*f2*f3^9*f4^128, f1*f4^134, f1*f2^6*f3^16*f4^90, f1*f2^2*f3^9*f4^199, f1*f2^4*f3^7*f4^191, f1*f2^4*f3*f4^16, f1*f2^2*f3^15*f4^193, f1*f2*f3^3*f4^107, f1*f2^5*f3^13*f4^175, f1*f2^5*f3^4*f4^51, f1*f2*f3^12*f4^25, f1*f3^14*f4^190, f1*f2^6*f3^2*f4^43, f1*f2^2*f3^6*f4^159, f1*f2^4*f3^10*f4^209, f1*f2^4*f3^15*f4^147, f1*f2^2*f3*f4^120, f1*f2^6*f3^7*f4^19, f1*f3^9*f4^149, f1*f2*f4^8, f1*f2^5*f3^16*f4^204, f1*f2^5*f3*f4^20, f1*f2*f3^15*f4^187, f1*f3^11*f4^178, f1*f2^6*f3^5*f4^103, f1*f2^2*f3^3*f4^31, f1*f2^4*f3^13*f4^125, f1*f2^4*f3^12*f4^136, f1*f2^2*f3^4*f4^142, f1*f2^6*f3^4*f4^61, f1*f3^12*f4^166, f1*f2*f3^14*f4^217, f1*f2^5*f3^2*f4^228, f1*f3^8*f4^44, f1*f2^6*f3^8*f4^62, f1*f2^2*f4^195, f1*f2^4*f3^16*f4^39, f1*f2^4*f3^9*f4^53, f1*f2^2*f3^7*f4^119, f1*f2^6*f3*f4^52, f1*f3^15*f4^7, f1*f2*f3^11*f4^121, f1*f2^5*f3^5*f4^116, f1*f2^5*f3^12*f4^24, f1*f2*f3^4*f4^91, f1*f3^5*f4^141, f1*f2^6*f3^11*f4^94, f1*f2^2*f3^14*f4^194, f1*f2^4*f3^2*f4^42, f1*f2^4*f3^6*f4^122, f1*f2^2*f3^10*f4^67, f1*f2^6*f3^15*f4^71, f1*f3*f4^32, f1*f2*f3^8*f4^5, f1*f2^5*f3^8*f4^81, f1*f2^5*f3^9*f4^77, f1*f2*f3^7*f4^118, f1*f3^2*f4^69, f1*f2^6*f3^14*f4^104, f1*f2^2*f3^11*f4^143, f1*f2^4*f3^5*f4^28, f1*f2^6*f3^12*f4^84, f1*f3^4*f4^234, f1*f2*f3^5*f4^64, f1*f2^5*f3^11*f4^85, f1*f2^5*f3^6*f4^151, f1*f2*f3^10*f4^231, f1*f3^16*f4^221, f1*f2^6*f4^137, f1*f2^2*f3^8*f4^171, f1*f2^4*f3^8*f4^173, f1*f2^4*f4^36, f1*f2^2*f3^16*f4^27, f1*f2^6*f3^9*f4^30, f1*f3^7*f4^88, f1*f2*f3^2*f4^205, f1*f2^5*f3^14*f4^146, f1*f2^5*f3^3*f4^101, f1*f2*f3^13*f4^102, f1*f3^13*f4^86, f1*f2^6*f3^3*f4^222, f1*f2^2*f3^5*f4^165, f1*f2^4*f3^11*f4^54, f1*f2^4*f3^14*f4^211, f1*f2^2*f3^2*f4^98, f1*f2^6*f3^6*f4^144, f1*f3^10*f4^132, f1*f2*f3^16*f4^226, f1*f2^5*f4^180, f4]; chartbl_56882_18.IdentificationOfConjugacyClasses:= [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239]; chartbl_56882_18.ComputedPowerMaps:= [ , [1, 1, 5, 6, 8, 7, 4, 3, 3, 4, 7, 8, 6, 5, 17, 18, 21, 22, 25, 26, 29, 30, 28, 27, 24, 23, 20, 19, 16, 15, 15, 16, 19, 20, 23, 24, 27, 28, 30, 29, 26, 25, 22, 21, 18, 17, 49, 50, 53, 54, 57, 58, 59, 60, 63, 64, 67, 68, 73, 74, 75, 76, 79, 80, 81, 82, 85, 86, 89, 90, 95, 96, 99, 100, 103, 104, 107, 108, 111, 112, 117, 118, 121, 122, 125, 126, 127, 128, 129, 130, 133, 134, 139, 140, 142, 141, 138, 137, 136, 135, 132, 131, 124, 123, 120, 119, 116, 115, 114, 113, 110, 109, 106, 105, 102, 101, 98, 97, 94, 93, 92, 91, 88, 87, 84, 83, 78, 77, 72, 71, 70, 69, 66, 65, 62, 61, 56, 55, 52, 51, 48, 47, 47, 48, 51, 52, 55, 56, 61, 62, 65, 66, 69, 70, 71, 72, 77, 78, 83, 84, 87, 88, 91, 92, 93, 94, 97, 98, 101, 102, 105, 106, 109, 110, 113, 114, 115, 116, 119, 120, 123, 124, 131, 132, 135, 136, 137, 138, 141, 142, 140, 139, 134, 133, 130, 129, 128, 127, 126, 125, 122, 121, 118, 117, 112, 111, 108, 107, 104, 103, 100, 99, 96, 95, 90, 89, 86, 85, 82, 81, 80, 79, 76, 75, 74, 73, 68, 67, 64, 63, 60, 59, 58, 57, 54, 53, 50, 49, 239], [1, 2, 7, 8, 4, 3, 5, 6, 11, 12, 14, 13, 9, 10, 19, 20, 25, 26, 30, 29, 24, 23, 18, 17, 15, 16, 21, 22, 27, 28, 33, 34, 39, 40, 45, 46, 44, 43, 38, 37, 32, 31, 35, 36, 41, 42, 51, 52, 57, 58, 61, 62, 67, 68, 71, 72, 75, 76, 85, 86, 91, 92, 95, 96, 101, 102, 103, 104, 109, 110, 119, 120, 125, 126, 133, 134, 137, 138, 142, 141, 132, 131, 128, 127, 124, 123, 118, 117, 114, 113, 108, 107, 100, 99, 94, 93, 90, 89, 84, 83, 80, 79, 66, 65, 60, 59, 56, 55, 50, 49, 47, 48, 53, 54, 63, 64, 69, 70, 73, 74, 77, 78, 81, 82, 87, 88, 97, 98, 105, 106, 111, 112, 115, 116, 121, 122, 129, 130, 135, 136, 139, 140, 145, 146, 149, 150, 155, 156, 163, 164, 169, 170, 173, 174, 179, 180, 187, 188, 197, 198, 203, 204, 207, 208, 211, 212, 215, 216, 221, 222, 231, 232, 237, 238, 236, 235, 230, 229, 226, 225, 220, 219, 206, 205, 202, 201, 196, 195, 192, 191, 186, 185, 178, 177, 172, 171, 168, 167, 162, 161, 158, 157, 154, 153, 144, 143, 147, 148, 151, 152, 159, 160, 165, 166, 175, 176, 181, 182, 183, 184, 189, 190, 193, 194, 199, 200, 209, 210, 213, 214, 217, 218, 223, 224, 227, 228, 233, 234, 239], [1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 27, 28, 20, 19, 21, 22, 26, 25, 15, 16, 29, 30, 18, 17, 23, 24, 37, 38, 44, 43, 31, 32, 45, 46, 36, 35, 39, 40, 42, 41, 33, 34, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 29, 30, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 18, 17, 16, 15, 15, 16, 17, 18, 19, 20, 23, 24, 25, 26, 27, 28, 29, 30, 30, 29, 28, 27, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 16, 15, 15, 16, 17, 18, 19, 20, 21, 22, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 39, 40, 41, 42, 43, 44, 45, 46, 46, 45, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 34, 33, 32, 31, 31, 32, 33, 34, 35, 36, 37, 38, 41, 42, 43, 44, 45, 46, 46, 45, 44, 43, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 31, 32, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 239], [1, 2, 7, 8, 4, 3, 5, 6, 11, 12, 14, 13, 9, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 5, 6, 7, 8, 8, 7, 6, 5, 4, 3, 3, 4, 5, 6, 7, 8, 8, 7, 6, 5, 4, 3, 3, 4, 5, 6, 8, 7, 6, 5, 4, 3, 3, 4, 5, 6, 7, 8, 8, 7, 6, 5, 4, 3, 3, 4, 5, 6, 7, 8, 8, 7, 6, 5, 3, 4, 5, 6, 7, 8, 8, 7, 6, 5, 4, 3, 3, 4, 5, 6, 7, 8, 8, 7, 6, 5, 4, 3, 3, 4, 7, 8, 8, 7, 6, 5, 4, 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 13, 12, 11, 10, 9, 9, 10, 13, 14, 14, 13, 12, 11, 10, 9, 9, 10, 11, 12, 13, 14, 14, 13, 12, 11, 10, 9, 9, 10, 11, 12, 13, 14, 12, 11, 10, 9, 9, 10, 11, 12, 13, 14, 14, 13, 12, 11, 10, 9, 9, 10, 11, 12, 13, 14, 14, 13, 12, 11, 10, 9, 11, 12, 13, 14, 14, 13, 12, 11, 10, 9, 9, 10, 11, 12, 13, 14, 14, 13, 12, 11, 10, 9, 9, 10, 11, 12, 13, 14, 239]]; chartbl_56882_18.SizesCentralizers:= [56882, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 239]; chartbl_56882_18.ClassNames:= ["1A", "2A", "7A1", "7A-1", "7A2", "7A-2", "7A3", "7A-3", "14A1", "14A-1", "14A3", "14A-3", "14A5", "14A-5", "17A1", "17A-1", "17A2", "17A-2", "17A3", "17A-3", "17A4", "17A-4", "17A5", "17A-5", "17A6", "17A-6", "17A7", "17A-7", "17A8", "17A-8", "34A1", "34A-1", "34A3", "34A-3", "34A5", "34A-5", "34A7", "34A-7", "34A9", "34A-9", "34A11", "34A-11", "34A13", "34A-13", "34A15", "34A-15", "119A1", "119A-1", "119A2", "119A-2", "119A3", "119A-3", "119A4", "119A-4", "119A5", "119A-5", "119A6", "119A-6", "119A8", "119A-8", "119A9", "119A-9", "119A10", "119A-10", "119A11", "119A-11", "119A12", "119A-12", "119A13", "119A-13", "119A15", "119A-15", "119A16", "119A-16", "119A18", "119A-18", "119A19", "119A-19", "119A20", "119A-20", "119A22", "119A-22", "119A23", "119A-23", "119A24", "119A-24", "119A25", "119A-25", "119A26", "119A-26", "119A27", "119A-27", "119A29", "119A-29", "119A30", "119A-30", "119A31", "119A-31", "119A32", "119A-32", "119A33", "119A-33", "119A36", "119A-36", "119A37", "119A-37", "119A38", "119A-38", "119A39", "119A-39", "119A40", "119A-40", "119A41", "119A-41", "119A43", "119A-43", "119A44", "119A-44", "119A45", "119A-45", "119A46", "119A-46", "119A47", "119A-47", "119A48", "119A-48", "119A50", "119A-50", "119A52", "119A-52", "119A53", "119A-53", "119A54", "119A-54", "119A55", "119A-55", "119A57", "119A-57", "119A58", "119A-58", "119A59", "119A-59", "238A1", "238A-1", "238A3", "238A-3", "238A5", "238A-5", "238A9", "238A-9", "238A11", "238A-11", "238A13", "238A-13", "238A15", "238A-15", "238A19", "238A-19", "238A23", "238A-23", "238A25", "238A-25", "238A27", "238A-27", "238A29", "238A-29", "238A31", "238A-31", "238A33", "238A-33", "238A37", "238A-37", "238A39", "238A-39", "238A41", "238A-41", "238A43", "238A-43", "238A45", "238A-45", "238A47", "238A-47", "238A53", "238A-53", "238A55", "238A-55", "238A57", "238A-57", "238A59", "238A-59", "238A61", "238A-61", "238A65", "238A-65", "238A67", "238A-67", "238A69", "238A-69", "238A71", "238A-71", "238A73", "238A-73", "238A75", "238A-75", "238A79", "238A-79", "238A81", "238A-81", "238A83", "238A-83", "238A87", "238A-87", "238A89", "238A-89", "238A93", "238A-93", "238A95", "238A-95", "238A97", "238A-97", "238A99", "238A-99", "238A101", "238A-101", "238A103", "238A-103", "238A107", "238A-107", "238A109", "238A-109", "238A111", "238A-111", "238A113", "238A-113", "238A115", "238A-115", "238A117", "238A-117", "239A"]; chartbl_56882_18.OrderClassRepresentatives:= [1, 2, 7, 7, 7, 7, 7, 7, 14, 14, 14, 14, 14, 14, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, 239]; chartbl_56882_18.Irr:= [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1], [1, 1, E(7)^-3, E(7)^-2, E(7)^2, E(7)^-1, E(7)^3, E(7), E(7), E(7)^-1, E(7)^3, E(7)^-3, E(7)^-2, E(7)^2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, E(7), E(7)^-2, E(7)^-3, E(7)^-1, E(7)^3, E(7)^-3, E(7), E(7)^-2, E(7)^-3, E(7)^-1, E(7)^3, E(7)^-1, E(7)^-1, E(7)^3, E(7), E(7)^-3, E(7)^-2, E(7), E(7)^2, E(7)^2, E(7)^3, E(7)^2, E(7)^2, E(7)^3, E(7)^2, E(7)^2, E(7), E(7)^-2, E(7)^-2, E(7), E(7)^3, E(7)^-2, E(7)^-1, E(7)^3, E(7)^-1, E(7)^-3, E(7), E(7), E(7)^-3, E(7)^3, E(7)^-1, E(7)^-3, E(7)^-2, E(7), E(7)^2, E(7)^2, E(7)^3, E(7)^2, E(7)^2, E(7), E(7)^-2, E(7)^-3, E(7)^-1, E(7)^3, E(7)^-1, E(7)^-1, E(7)^3, E(7)^-1, E(7)^-1, E(7)^3, E(7)^2, E(7)^-3, E(7)^-2, E(7), E(7)^-3, E(7)^-2, E(7)^3, E(7)^2, E(7)^-2, E(7)^-2, E(7)^-2, E(7)^-3, E(7), E(7)^-2, E(7)^-3, E(7), E(7)^3, E(7)^-3, E(7), E(7)^3, E(7)^-1, E(7)^-3, E(7)^3, E(7)^-1, E(7)^-1, E(7)^-2, E(7)^-1, E(7)^-3, E(7)^-2, E(7), E(7)^-3, E(7)^2, E(7)^2, E(7)^2, E(7)^2, E(7), E(7)^3, E(7)^-3, E(7)^3, E(7)^-2, E(7)^-3, E(7)^3, E(7)^-3, E(7)^2, E(7), E(7)^-1, E(7)^-1, E(7), E(7)^-1, E(7)^2, E(7), E(7)^-1, E(7)^-1, E(7), E(7)^2, E(7)^-2, E(7)^3, E(7)^-3, E(7)^-2, E(7)^3, E(7)^-3, E(7)^-2, E(7)^-2, E(7)^2, E(7), E(7)^3, E(7)^-3, E(7)^3, E(7)^-2, E(7), E(7)^-1, E(7)^-1, E(7), E(7)^-1, E(7)^-1, E(7), E(7)^2, E(7)^-2, E(7)^3, E(7)^2, E(7)^-3, E(7)^3, E(7)^2, E(7)^-2, E(7), E(7)^-3, E(7)^3, E(7)^-2, E(7)^-3, E(7)^-3, E(7)^-1, E(7)^2, E(7)^-3, E(7)^-1, E(7)^-1, E(7), E(7)^2, E(7)^-3, E(7), E(7)^2, E(7)^-1, E(7), E(7)^2, E(7)^-2, E(7)^3, E(7)^-3, E(7)^-2, E(7)^3, E(7)^-3, E(7)^3, E(7)^-2, E(7)^2, E(7), E(7)^2, E(7)^2, E(7)^3, E(7)^-2, E(7)^2, E(7), E(7)^-1, E(7)^-1, E(7), E(7)^2, E(7)^-1, E(7), E(7)^-2, E(7)^-2, E(7)^3, E(7)^-3, E(7)^3, E(7)^-2, E(7)^-3, 1], [1, 1, E(7)^3, E(7)^2, E(7)^-2, E(7), E(7)^-3, E(7)^-1, E(7)^-1, E(7), E(7)^-3, E(7)^3, E(7)^2, E(7)^-2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, E(7)^-1, E(7)^2, E(7)^3, E(7), E(7)^-3, E(7)^3, E(7)^-1, E(7)^2, E(7)^3, E(7), E(7)^-3, E(7), E(7), E(7)^-3, E(7)^-1, E(7)^3, E(7)^2, E(7)^-1, E(7)^-2, E(7)^-2, E(7)^-3, E(7)^-2, E(7)^-2, E(7)^-3, E(7)^-2, E(7)^-2, E(7)^-1, E(7)^2, E(7)^2, E(7)^-1, E(7)^-3, E(7)^2, E(7), E(7)^-3, E(7), E(7)^3, E(7)^-1, E(7)^-1, E(7)^3, E(7)^-3, E(7), E(7)^3, E(7)^2, E(7)^-1, E(7)^-2, E(7)^-2, E(7)^-3, E(7)^-2, E(7)^-2, E(7)^-1, E(7)^2, E(7)^3, E(7), E(7)^-3, E(7), E(7), E(7)^-3, E(7), E(7), E(7)^-3, E(7)^-2, E(7)^3, E(7)^2, E(7)^-1, E(7)^3, E(7)^2, E(7)^-3, E(7)^-2, E(7)^2, E(7)^2, E(7)^2, E(7)^3, E(7)^-1, E(7)^2, E(7)^3, E(7)^-1, E(7)^-3, E(7)^3, E(7)^-1, E(7)^-3, E(7), E(7)^3, E(7)^-3, E(7), E(7), E(7)^2, E(7), E(7)^3, E(7)^2, E(7)^-1, E(7)^3, E(7)^-2, E(7)^-2, E(7)^-2, E(7)^-2, E(7)^-1, E(7)^-3, E(7)^3, E(7)^-3, E(7)^2, E(7)^3, E(7)^-3, E(7)^3, E(7)^-2, E(7)^-1, E(7), E(7), E(7)^-1, E(7), E(7)^-2, E(7)^-1, E(7), E(7), E(7)^-1, E(7)^-2, E(7)^2, E(7)^-3, E(7)^3, E(7)^2, E(7)^-3, E(7)^3, E(7)^2, E(7)^2, E(7)^-2, E(7)^-1, E(7)^-3, E(7)^3, E(7)^-3, E(7)^2, E(7)^-1, E(7), E(7), E(7)^-1, E(7), E(7), E(7)^-1, E(7)^-2, E(7)^2, E(7)^-3, E(7)^-2, E(7)^3, E(7)^-3, E(7)^-2, E(7)^2, E(7)^-1, E(7)^3, E(7)^-3, E(7)^2, E(7)^3, E(7)^3, E(7), E(7)^-2, E(7)^3, E(7), E(7), E(7)^-1, E(7)^-2, E(7)^3, E(7)^-1, E(7)^-2, E(7), E(7)^-1, E(7)^-2, E(7)^2, E(7)^-3, E(7)^3, E(7)^2, E(7)^-3, E(7)^3, E(7)^-3, E(7)^2, E(7)^-2, E(7)^-1, E(7)^-2, E(7)^-2, E(7)^-3, E(7)^2, E(7)^-2, E(7)^-1, E(7), E(7), E(7)^-1, E(7)^-2, E(7), E(7)^-1, E(7)^2, E(7)^2, E(7)^-3, E(7)^3, E(7)^-3, E(7)^2, E(7)^3, 1], [1, 1, E(7)^-2, E(7), E(7)^-1, E(7)^-3, E(7)^2, E(7)^3, E(7)^3, E(7)^-3, E(7)^2, E(7)^-2, E(7), E(7)^-1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, E(7)^3, E(7), E(7)^-2, E(7)^-3, E(7)^2, E(7)^-2, E(7)^3, E(7), E(7)^-2, E(7)^-3, E(7)^2, E(7)^-3, E(7)^-3, E(7)^2, E(7)^3, E(7)^-2, E(7), E(7)^3, E(7)^-1, E(7)^-1, E(7)^2, E(7)^-1, E(7)^-1, E(7)^2, E(7)^-1, E(7)^-1, E(7)^3, E(7), E(7), E(7)^3, E(7)^2, E(7), E(7)^-3, E(7)^2, E(7)^-3, E(7)^-2, E(7)^3, E(7)^3, E(7)^-2, E(7)^2, E(7)^-3, E(7)^-2, E(7), E(7)^3, E(7)^-1, E(7)^-1, E(7)^2, E(7)^-1, E(7)^-1, E(7)^3, E(7), E(7)^-2, E(7)^-3, E(7)^2, E(7)^-3, E(7)^-3, E(7)^2, E(7)^-3, E(7)^-3, E(7)^2, E(7)^-1, E(7)^-2, E(7), E(7)^3, E(7)^-2, E(7), E(7)^2, E(7)^-1, E(7), E(7), E(7), E(7)^-2, E(7)^3, E(7), E(7)^-2, E(7)^3, E(7)^2, E(7)^-2, E(7)^3, E(7)^2, E(7)^-3, E(7)^-2, E(7)^2, E(7)^-3, E(7)^-3, E(7), E(7)^-3, E(7)^-2, E(7), E(7)^3, E(7)^-2, E(7)^-1, E(7)^-1, E(7)^-1, E(7)^-1, E(7)^3, E(7)^2, E(7)^-2, E(7)^2, E(7), E(7)^-2, E(7)^2, E(7)^-2, E(7)^-1, E(7)^3, E(7)^-3, E(7)^-3, E(7)^3, E(7)^-3, E(7)^-1, E(7)^3, E(7)^-3, E(7)^-3, E(7)^3, E(7)^-1, E(7), E(7)^2, E(7)^-2, E(7), E(7)^2, E(7)^-2, E(7), E(7), E(7)^-1, E(7)^3, E(7)^2, E(7)^-2, E(7)^2, E(7), E(7)^3, E(7)^-3, E(7)^-3, E(7)^3, E(7)^-3, E(7)^-3, E(7)^3, E(7)^-1, E(7), E(7)^2, E(7)^-1, E(7)^-2, E(7)^2, E(7)^-1, E(7), E(7)^3, E(7)^-2, E(7)^2, E(7), E(7)^-2, E(7)^-2, E(7)^-3, E(7)^-1, E(7)^-2, E(7)^-3, E(7)^-3, E(7)^3, E(7)^-1, E(7)^-2, E(7)^3, E(7)^-1, E(7)^-3, E(7)^3, E(7)^-1, E(7), E(7)^2, E(7)^-2, E(7), E(7)^2, E(7)^-2, E(7)^2, E(7), E(7)^-1, E(7)^3, E(7)^-1, E(7)^-1, E(7)^2, E(7), E(7)^-1, E(7)^3, E(7)^-3, E(7)^-3, E(7)^3, E(7)^-1, E(7)^-3, E(7)^3, E(7), E(7), E(7)^2, E(7)^-2, E(7)^2, E(7), E(7)^-2, 1], [1, 1, E(7)^2, E(7)^-1, E(7), E(7)^3, E(7)^-2, E(7)^-3, E(7)^-3, E(7)^3, E(7)^-2, E(7)^2, E(7)^-1, E(7), 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, E(7)^-3, E(7)^-1, E(7)^2, E(7)^3, E(7)^-2, E(7)^2, E(7)^-3, E(7)^-1, E(7)^2, E(7)^3, E(7)^-2, E(7)^3, E(7)^3, E(7)^-2, E(7)^-3, E(7)^2, E(7)^-1, E(7)^-3, E(7), E(7), E(7)^-2, E(7), E(7), E(7)^-2, E(7), E(7), E(7)^-3, E(7)^-1, E(7)^-1, E(7)^-3, E(7)^-2, E(7)^-1, E(7)^3, E(7)^-2, E(7)^3, E(7)^2, E(7)^-3, E(7)^-3, E(7)^2, E(7)^-2, E(7)^3, E(7)^2, E(7)^-1, E(7)^-3, E(7), E(7), E(7)^-2, E(7), E(7), E(7)^-3, E(7)^-1, E(7)^2, E(7)^3, E(7)^-2, E(7)^3, E(7)^3, E(7)^-2, E(7)^3, E(7)^3, E(7)^-2, E(7), E(7)^2, E(7)^-1, E(7)^-3, E(7)^2, E(7)^-1, E(7)^-2, E(7), E(7)^-1, E(7)^-1, E(7)^-1, E(7)^2, E(7)^-3, E(7)^-1, E(7)^2, E(7)^-3, E(7)^-2, E(7)^2, E(7)^-3, E(7)^-2, E(7)^3, E(7)^2, E(7)^-2, E(7)^3, E(7)^3, E(7)^-1, E(7)^3, E(7)^2, E(7)^-1, E(7)^-3, E(7)^2, E(7), E(7), E(7), E(7), E(7)^-3, E(7)^-2, E(7)^2, E(7)^-2, E(7)^-1, E(7)^2, E(7)^-2, E(7)^2, E(7), E(7)^-3, E(7)^3, E(7)^3, E(7)^-3, E(7)^3, E(7), E(7)^-3, E(7)^3, E(7)^3, E(7)^-3, E(7), E(7)^-1, E(7)^-2, E(7)^2, E(7)^-1, E(7)^-2, E(7)^2, E(7)^-1, E(7)^-1, E(7), E(7)^-3, E(7)^-2, E(7)^2, E(7)^-2, E(7)^-1, E(7)^-3, E(7)^3, E(7)^3, E(7)^-3, E(7)^3, E(7)^3, E(7)^-3, E(7), E(7)^-1, E(7)^-2, E(7), E(7)^2, E(7)^-2, E(7), E(7)^-1, E(7)^-3, E(7)^2, E(7)^-2, E(7)^-1, E(7)^2, E(7)^2, E(7)^3, E(7), E(7)^2, E(7)^3, E(7)^3, E(7)^-3, E(7), E(7)^2, E(7)^-3, E(7), E(7)^3, E(7)^-3, E(7), E(7)^-1, E(7)^-2, E(7)^2, E(7)^-1, E(7)^-2, E(7)^2, E(7)^-2, E(7)^-1, E(7), E(7)^-3, E(7), E(7), E(7)^-2, E(7)^-1, E(7), E(7)^-3, E(7)^3, E(7)^3, E(7)^-3, E(7), E(7)^3, E(7)^-3, E(7)^-1, E(7)^-1, E(7)^-2, E(7)^2, E(7)^-2, E(7)^-1, E(7)^2, 1], [1, 1, E(7)^-1, E(7)^-3, E(7)^3, E(7)^2, E(7), E(7)^-2, E(7)^-2, E(7)^2, E(7), E(7)^-1, E(7)^-3, E(7)^3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, E(7)^-2, E(7)^-3, E(7)^-1, E(7)^2, E(7), E(7)^-1, E(7)^-2, E(7)^-3, E(7)^-1, E(7)^2, E(7), E(7)^2, E(7)^2, E(7), E(7)^-2, E(7)^-1, E(7)^-3, E(7)^-2, E(7)^3, E(7)^3, E(7), E(7)^3, E(7)^3, E(7), E(7)^3, E(7)^3, E(7)^-2, E(7)^-3, E(7)^-3, E(7)^-2, E(7), E(7)^-3, E(7)^2, E(7), E(7)^2, E(7)^-1, E(7)^-2, E(7)^-2, E(7)^-1, E(7), E(7)^2, E(7)^-1, E(7)^-3, E(7)^-2, E(7)^3, E(7)^3, E(7), E(7)^3, E(7)^3, E(7)^-2, E(7)^-3, E(7)^-1, E(7)^2, E(7), E(7)^2, E(7)^2, E(7), E(7)^2, E(7)^2, E(7), E(7)^3, E(7)^-1, E(7)^-3, E(7)^-2, E(7)^-1, E(7)^-3, E(7), E(7)^3, E(7)^-3, E(7)^-3, E(7)^-3, E(7)^-1, E(7)^-2, E(7)^-3, E(7)^-1, E(7)^-2, E(7), E(7)^-1, E(7)^-2, E(7), E(7)^2, E(7)^-1, E(7), E(7)^2, E(7)^2, E(7)^-3, E(7)^2, E(7)^-1, E(7)^-3, E(7)^-2, E(7)^-1, E(7)^3, E(7)^3, E(7)^3, E(7)^3, E(7)^-2, E(7), E(7)^-1, E(7), E(7)^-3, E(7)^-1, E(7), E(7)^-1, E(7)^3, E(7)^-2, E(7)^2, E(7)^2, E(7)^-2, E(7)^2, E(7)^3, E(7)^-2, E(7)^2, E(7)^2, E(7)^-2, E(7)^3, E(7)^-3, E(7), E(7)^-1, E(7)^-3, E(7), E(7)^-1, E(7)^-3, E(7)^-3, E(7)^3, E(7)^-2, E(7), E(7)^-1, E(7), E(7)^-3, E(7)^-2, E(7)^2, E(7)^2, E(7)^-2, E(7)^2, E(7)^2, E(7)^-2, E(7)^3, E(7)^-3, E(7), E(7)^3, E(7)^-1, E(7), E(7)^3, E(7)^-3, E(7)^-2, E(7)^-1, E(7), E(7)^-3, E(7)^-1, E(7)^-1, E(7)^2, E(7)^3, E(7)^-1, E(7)^2, E(7)^2, E(7)^-2, E(7)^3, E(7)^-1, E(7)^-2, E(7)^3, E(7)^2, E(7)^-2, E(7)^3, E(7)^-3, E(7), E(7)^-1, E(7)^-3, E(7), E(7)^-1, E(7), E(7)^-3, E(7)^3, E(7)^-2, E(7)^3, E(7)^3, E(7), E(7)^-3, E(7)^3, E(7)^-2, E(7)^2, E(7)^2, E(7)^-2, E(7)^3, E(7)^2, E(7)^-2, E(7)^-3, E(7)^-3, E(7), E(7)^-1, E(7), E(7)^-3, E(7)^-1, 1], [1, 1, E(7), E(7)^3, E(7)^-3, E(7)^-2, E(7)^-1, E(7)^2, E(7)^2, E(7)^-2, E(7)^-1, E(7), E(7)^3, E(7)^-3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, E(7)^2, E(7)^3, E(7), E(7)^-2, E(7)^-1, E(7), E(7)^2, E(7)^3, E(7), E(7)^-2, E(7)^-1, E(7)^-2, E(7)^-2, E(7)^-1, E(7)^2, E(7), E(7)^3, E(7)^2, E(7)^-3, E(7)^-3, E(7)^-1, E(7)^-3, E(7)^-3, E(7)^-1, E(7)^-3, E(7)^-3, E(7)^2, E(7)^3, E(7)^3, E(7)^2, E(7)^-1, E(7)^3, E(7)^-2, E(7)^-1, E(7)^-2, E(7), E(7)^2, E(7)^2, E(7), E(7)^-1, E(7)^-2, E(7), E(7)^3, E(7)^2, E(7)^-3, E(7)^-3, E(7)^-1, E(7)^-3, E(7)^-3, E(7)^2, E(7)^3, E(7), E(7)^-2, E(7)^-1, E(7)^-2, E(7)^-2, E(7)^-1, E(7)^-2, E(7)^-2, E(7)^-1, E(7)^-3, E(7), E(7)^3, E(7)^2, E(7), E(7)^3, E(7)^-1, E(7)^-3, E(7)^3, E(7)^3, E(7)^3, E(7), E(7)^2, E(7)^3, E(7), E(7)^2, E(7)^-1, E(7), E(7)^2, E(7)^-1, E(7)^-2, E(7), E(7)^-1, E(7)^-2, E(7)^-2, E(7)^3, E(7)^-2, E(7), E(7)^3, E(7)^2, E(7), E(7)^-3, E(7)^-3, E(7)^-3, E(7)^-3, E(7)^2, E(7)^-1, E(7), E(7)^-1, E(7)^3, E(7), E(7)^-1, E(7), E(7)^-3, E(7)^2, E(7)^-2, E(7)^-2, E(7)^2, E(7)^-2, E(7)^-3, E(7)^2, E(7)^-2, E(7)^-2, E(7)^2, E(7)^-3, E(7)^3, E(7)^-1, E(7), E(7)^3, E(7)^-1, E(7), E(7)^3, E(7)^3, E(7)^-3, E(7)^2, E(7)^-1, E(7), E(7)^-1, E(7)^3, E(7)^2, E(7)^-2, E(7)^-2, E(7)^2, E(7)^-2, E(7)^-2, E(7)^2, E(7)^-3, E(7)^3, E(7)^-1, E(7)^-3, E(7), E(7)^-1, E(7)^-3, E(7)^3, E(7)^2, E(7), E(7)^-1, E(7)^3, E(7), E(7), E(7)^-2, E(7)^-3, E(7), E(7)^-2, E(7)^-2, E(7)^2, E(7)^-3, E(7), E(7)^2, E(7)^-3, E(7)^-2, E(7)^2, E(7)^-3, E(7)^3, E(7)^-1, E(7), E(7)^3, E(7)^-1, E(7), E(7)^-1, E(7)^3, E(7)^-3, E(7)^2, E(7)^-3, E(7)^-3, E(7)^-1, E(7)^3, E(7)^-3, E(7)^2, E(7)^-2, E(7)^-2, E(7)^2, E(7)^-3, E(7)^-2, E(7)^2, E(7)^3, E(7)^3, E(7)^-1, E(7), E(7)^-1, E(7)^3, E(7), 1], [1, -1, E(7)^-3, E(7)^-2, E(7)^2, E(7)^-1, E(7)^3, E(7), -1*E(7), -1*E(7)^-1, -1*E(7)^3, -1*E(7)^-3, -1*E(7)^-2, -1*E(7)^2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, E(7), E(7)^-2, E(7)^-3, E(7)^-1, E(7)^3, E(7)^-3, E(7), E(7)^-2, E(7)^-3, E(7)^-1, E(7)^3, E(7)^-1, E(7)^-1, E(7)^3, E(7), E(7)^-3, E(7)^-2, E(7), E(7)^2, E(7)^2, E(7)^3, E(7)^2, E(7)^2, E(7)^3, E(7)^2, E(7)^2, E(7), E(7)^-2, E(7)^-2, E(7), E(7)^3, E(7)^-2, E(7)^-1, E(7)^3, E(7)^-1, E(7)^-3, E(7), E(7), E(7)^-3, E(7)^3, E(7)^-1, E(7)^-3, E(7)^-2, E(7), E(7)^2, E(7)^2, E(7)^3, E(7)^2, E(7)^2, E(7), E(7)^-2, E(7)^-3, E(7)^-1, E(7)^3, E(7)^-1, E(7)^-1, E(7)^3, E(7)^-1, E(7)^-1, E(7)^3, E(7)^2, E(7)^-3, E(7)^-2, E(7), E(7)^-3, E(7)^-2, E(7)^3, E(7)^2, E(7)^-2, E(7)^-2, E(7)^-2, E(7)^-3, E(7), E(7)^-2, E(7)^-3, E(7), E(7)^3, E(7)^-3, E(7), E(7)^3, E(7)^-1, E(7)^-3, E(7)^3, E(7)^-1, E(7)^-1, E(7)^-2, E(7)^-1, E(7)^-3, E(7)^-2, E(7), E(7)^-3, E(7)^2, E(7)^2, E(7)^2, E(7)^2, E(7), -1*E(7)^3, -1*E(7)^-3, -1*E(7)^3, -1*E(7)^-2, -1*E(7)^-3, -1*E(7)^3, -1*E(7)^-3, -1*E(7)^2, -1*E(7), -1*E(7)^-1, -1*E(7)^-1, -1*E(7), -1*E(7)^-1, -1*E(7)^2, -1*E(7), -1*E(7)^-1, -1*E(7)^-1, -1*E(7), -1*E(7)^2, -1*E(7)^-2, -1*E(7)^3, -1*E(7)^-3, -1*E(7)^-2, -1*E(7)^3, -1*E(7)^-3, -1*E(7)^-2, -1*E(7)^-2, -1*E(7)^2, -1*E(7), -1*E(7)^3, -1*E(7)^-3, -1*E(7)^3, -1*E(7)^-2, -1*E(7), -1*E(7)^-1, -1*E(7)^-1, -1*E(7), -1*E(7)^-1, -1*E(7)^-1, -1*E(7), -1*E(7)^2, -1*E(7)^-2, -1*E(7)^3, -1*E(7)^2, -1*E(7)^-3, -1*E(7)^3, -1*E(7)^2, -1*E(7)^-2, -1*E(7), -1*E(7)^-3, -1*E(7)^3, -1*E(7)^-2, -1*E(7)^-3, -1*E(7)^-3, -1*E(7)^-1, -1*E(7)^2, -1*E(7)^-3, -1*E(7)^-1, -1*E(7)^-1, -1*E(7), -1*E(7)^2, -1*E(7)^-3, -1*E(7), -1*E(7)^2, -1*E(7)^-1, -1*E(7), -1*E(7)^2, -1*E(7)^-2, -1*E(7)^3, -1*E(7)^-3, -1*E(7)^-2, -1*E(7)^3, -1*E(7)^-3, -1*E(7)^3, -1*E(7)^-2, -1*E(7)^2, -1*E(7), -1*E(7)^2, -1*E(7)^2, -1*E(7)^3, -1*E(7)^-2, -1*E(7)^2, -1*E(7), -1*E(7)^-1, -1*E(7)^-1, -1*E(7), -1*E(7)^2, -1*E(7)^-1, -1*E(7), -1*E(7)^-2, -1*E(7)^-2, -1*E(7)^3, -1*E(7)^-3, -1*E(7)^3, -1*E(7)^-2, -1*E(7)^-3, 1], [1, -1, E(7)^3, E(7)^2, E(7)^-2, E(7), E(7)^-3, E(7)^-1, -1*E(7)^-1, -1*E(7), -1*E(7)^-3, -1*E(7)^3, -1*E(7)^2, -1*E(7)^-2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, E(7)^-1, E(7)^2, E(7)^3, E(7), E(7)^-3, E(7)^3, E(7)^-1, E(7)^2, E(7)^3, E(7), E(7)^-3, E(7), E(7), E(7)^-3, E(7)^-1, E(7)^3, E(7)^2, E(7)^-1, E(7)^-2, E(7)^-2, E(7)^-3, E(7)^-2, E(7)^-2, E(7)^-3, E(7)^-2, E(7)^-2, E(7)^-1, E(7)^2, E(7)^2, E(7)^-1, E(7)^-3, E(7)^2, E(7), E(7)^-3, E(7), E(7)^3, E(7)^-1, E(7)^-1, E(7)^3, E(7)^-3, E(7), E(7)^3, E(7)^2, E(7)^-1, E(7)^-2, E(7)^-2, E(7)^-3, E(7)^-2, E(7)^-2, E(7)^-1, E(7)^2, E(7)^3, E(7), E(7)^-3, E(7), E(7), E(7)^-3, E(7), E(7), E(7)^-3, E(7)^-2, E(7)^3, E(7)^2, E(7)^-1, E(7)^3, E(7)^2, E(7)^-3, E(7)^-2, E(7)^2, E(7)^2, E(7)^2, E(7)^3, E(7)^-1, E(7)^2, E(7)^3, E(7)^-1, E(7)^-3, E(7)^3, E(7)^-1, E(7)^-3, E(7), E(7)^3, E(7)^-3, E(7), E(7), E(7)^2, E(7), E(7)^3, E(7)^2, E(7)^-1, E(7)^3, E(7)^-2, E(7)^-2, E(7)^-2, E(7)^-2, E(7)^-1, -1*E(7)^-3, -1*E(7)^3, -1*E(7)^-3, -1*E(7)^2, -1*E(7)^3, -1*E(7)^-3, -1*E(7)^3, -1*E(7)^-2, -1*E(7)^-1, -1*E(7), -1*E(7), -1*E(7)^-1, -1*E(7), -1*E(7)^-2, -1*E(7)^-1, -1*E(7), -1*E(7), -1*E(7)^-1, -1*E(7)^-2, -1*E(7)^2, -1*E(7)^-3, -1*E(7)^3, -1*E(7)^2, -1*E(7)^-3, -1*E(7)^3, -1*E(7)^2, -1*E(7)^2, -1*E(7)^-2, -1*E(7)^-1, -1*E(7)^-3, -1*E(7)^3, -1*E(7)^-3, -1*E(7)^2, -1*E(7)^-1, -1*E(7), -1*E(7), -1*E(7)^-1, -1*E(7), -1*E(7), -1*E(7)^-1, -1*E(7)^-2, -1*E(7)^2, -1*E(7)^-3, -1*E(7)^-2, -1*E(7)^3, -1*E(7)^-3, -1*E(7)^-2, -1*E(7)^2, -1*E(7)^-1, -1*E(7)^3, -1*E(7)^-3, -1*E(7)^2, -1*E(7)^3, -1*E(7)^3, -1*E(7), -1*E(7)^-2, -1*E(7)^3, -1*E(7), -1*E(7), -1*E(7)^-1, -1*E(7)^-2, -1*E(7)^3, -1*E(7)^-1, -1*E(7)^-2, -1*E(7), -1*E(7)^-1, -1*E(7)^-2, -1*E(7)^2, -1*E(7)^-3, -1*E(7)^3, -1*E(7)^2, -1*E(7)^-3, -1*E(7)^3, -1*E(7)^-3, -1*E(7)^2, -1*E(7)^-2, -1*E(7)^-1, -1*E(7)^-2, -1*E(7)^-2, -1*E(7)^-3, -1*E(7)^2, -1*E(7)^-2, -1*E(7)^-1, -1*E(7), -1*E(7), -1*E(7)^-1, -1*E(7)^-2, -1*E(7), -1*E(7)^-1, -1*E(7)^2, -1*E(7)^2, -1*E(7)^-3, -1*E(7)^3, -1*E(7)^-3, -1*E(7)^2, -1*E(7)^3, 1], [1, -1, E(7)^-2, E(7), E(7)^-1, E(7)^-3, E(7)^2, E(7)^3, -1*E(7)^3, -1*E(7)^-3, -1*E(7)^2, -1*E(7)^-2, -1*E(7), -1*E(7)^-1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, E(7)^3, E(7), E(7)^-2, E(7)^-3, E(7)^2, E(7)^-2, E(7)^3, E(7), E(7)^-2, E(7)^-3, E(7)^2, E(7)^-3, E(7)^-3, E(7)^2, E(7)^3, E(7)^-2, E(7), E(7)^3, E(7)^-1, E(7)^-1, E(7)^2, E(7)^-1, E(7)^-1, E(7)^2, E(7)^-1, E(7)^-1, E(7)^3, E(7), E(7), E(7)^3, E(7)^2, E(7), E(7)^-3, E(7)^2, E(7)^-3, E(7)^-2, E(7)^3, E(7)^3, E(7)^-2, E(7)^2, E(7)^-3, E(7)^-2, E(7), E(7)^3, E(7)^-1, E(7)^-1, E(7)^2, E(7)^-1, E(7)^-1, E(7)^3, E(7), E(7)^-2, E(7)^-3, E(7)^2, E(7)^-3, E(7)^-3, E(7)^2, E(7)^-3, E(7)^-3, E(7)^2, E(7)^-1, E(7)^-2, E(7), E(7)^3, E(7)^-2, E(7), E(7)^2, E(7)^-1, E(7), E(7), E(7), E(7)^-2, E(7)^3, E(7), E(7)^-2, E(7)^3, E(7)^2, E(7)^-2, E(7)^3, E(7)^2, E(7)^-3, E(7)^-2, E(7)^2, E(7)^-3, E(7)^-3, E(7), E(7)^-3, E(7)^-2, E(7), E(7)^3, E(7)^-2, E(7)^-1, E(7)^-1, E(7)^-1, E(7)^-1, E(7)^3, -1*E(7)^2, -1*E(7)^-2, -1*E(7)^2, -1*E(7), -1*E(7)^-2, -1*E(7)^2, -1*E(7)^-2, -1*E(7)^-1, -1*E(7)^3, -1*E(7)^-3, -1*E(7)^-3, -1*E(7)^3, -1*E(7)^-3, -1*E(7)^-1, -1*E(7)^3, -1*E(7)^-3, -1*E(7)^-3, -1*E(7)^3, -1*E(7)^-1, -1*E(7), -1*E(7)^2, -1*E(7)^-2, -1*E(7), -1*E(7)^2, -1*E(7)^-2, -1*E(7), -1*E(7), -1*E(7)^-1, -1*E(7)^3, -1*E(7)^2, -1*E(7)^-2, -1*E(7)^2, -1*E(7), -1*E(7)^3, -1*E(7)^-3, -1*E(7)^-3, -1*E(7)^3, -1*E(7)^-3, -1*E(7)^-3, -1*E(7)^3, -1*E(7)^-1, -1*E(7), -1*E(7)^2, -1*E(7)^-1, -1*E(7)^-2, -1*E(7)^2, -1*E(7)^-1, -1*E(7), -1*E(7)^3, -1*E(7)^-2, -1*E(7)^2, -1*E(7), -1*E(7)^-2, -1*E(7)^-2, -1*E(7)^-3, -1*E(7)^-1, -1*E(7)^-2, -1*E(7)^-3, -1*E(7)^-3, -1*E(7)^3, -1*E(7)^-1, -1*E(7)^-2, -1*E(7)^3, -1*E(7)^-1, -1*E(7)^-3, -1*E(7)^3, -1*E(7)^-1, -1*E(7), -1*E(7)^2, -1*E(7)^-2, -1*E(7), -1*E(7)^2, -1*E(7)^-2, -1*E(7)^2, -1*E(7), -1*E(7)^-1, -1*E(7)^3, -1*E(7)^-1, -1*E(7)^-1, -1*E(7)^2, -1*E(7), -1*E(7)^-1, -1*E(7)^3, -1*E(7)^-3, -1*E(7)^-3, -1*E(7)^3, -1*E(7)^-1, -1*E(7)^-3, -1*E(7)^3, -1*E(7), -1*E(7), -1*E(7)^2, -1*E(7)^-2, -1*E(7)^2, -1*E(7), -1*E(7)^-2, 1], [1, -1, E(7)^2, E(7)^-1, E(7), E(7)^3, E(7)^-2, E(7)^-3, -1*E(7)^-3, -1*E(7)^3, -1*E(7)^-2, -1*E(7)^2, -1*E(7)^-1, -1*E(7), 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, E(7)^-3, E(7)^-1, E(7)^2, E(7)^3, E(7)^-2, E(7)^2, E(7)^-3, E(7)^-1, E(7)^2, E(7)^3, E(7)^-2, E(7)^3, E(7)^3, E(7)^-2, E(7)^-3, E(7)^2, E(7)^-1, E(7)^-3, E(7), E(7), E(7)^-2, E(7), E(7), E(7)^-2, E(7), E(7), E(7)^-3, E(7)^-1, E(7)^-1, E(7)^-3, E(7)^-2, E(7)^-1, E(7)^3, E(7)^-2, E(7)^3, E(7)^2, E(7)^-3, E(7)^-3, E(7)^2, E(7)^-2, E(7)^3, E(7)^2, E(7)^-1, E(7)^-3, E(7), E(7), E(7)^-2, E(7), E(7), E(7)^-3, E(7)^-1, E(7)^2, E(7)^3, E(7)^-2, E(7)^3, E(7)^3, E(7)^-2, E(7)^3, E(7)^3, E(7)^-2, E(7), E(7)^2, E(7)^-1, E(7)^-3, E(7)^2, E(7)^-1, E(7)^-2, E(7), E(7)^-1, E(7)^-1, E(7)^-1, E(7)^2, E(7)^-3, E(7)^-1, E(7)^2, E(7)^-3, E(7)^-2, E(7)^2, E(7)^-3, E(7)^-2, E(7)^3, E(7)^2, E(7)^-2, E(7)^3, E(7)^3, E(7)^-1, E(7)^3, E(7)^2, E(7)^-1, E(7)^-3, E(7)^2, E(7), E(7), E(7), E(7), E(7)^-3, -1*E(7)^-2, -1*E(7)^2, -1*E(7)^-2, -1*E(7)^-1, -1*E(7)^2, -1*E(7)^-2, -1*E(7)^2, -1*E(7), -1*E(7)^-3, -1*E(7)^3, -1*E(7)^3, -1*E(7)^-3, -1*E(7)^3, -1*E(7), -1*E(7)^-3, -1*E(7)^3, -1*E(7)^3, -1*E(7)^-3, -1*E(7), -1*E(7)^-1, -1*E(7)^-2, -1*E(7)^2, -1*E(7)^-1, -1*E(7)^-2, -1*E(7)^2, -1*E(7)^-1, -1*E(7)^-1, -1*E(7), -1*E(7)^-3, -1*E(7)^-2, -1*E(7)^2, -1*E(7)^-2, -1*E(7)^-1, -1*E(7)^-3, -1*E(7)^3, -1*E(7)^3, -1*E(7)^-3, -1*E(7)^3, -1*E(7)^3, -1*E(7)^-3, -1*E(7), -1*E(7)^-1, -1*E(7)^-2, -1*E(7), -1*E(7)^2, -1*E(7)^-2, -1*E(7), -1*E(7)^-1, -1*E(7)^-3, -1*E(7)^2, -1*E(7)^-2, -1*E(7)^-1, -1*E(7)^2, -1*E(7)^2, -1*E(7)^3, -1*E(7), -1*E(7)^2, -1*E(7)^3, -1*E(7)^3, -1*E(7)^-3, -1*E(7), -1*E(7)^2, -1*E(7)^-3, -1*E(7), -1*E(7)^3, -1*E(7)^-3, -1*E(7), -1*E(7)^-1, -1*E(7)^-2, -1*E(7)^2, -1*E(7)^-1, -1*E(7)^-2, -1*E(7)^2, -1*E(7)^-2, -1*E(7)^-1, -1*E(7), -1*E(7)^-3, -1*E(7), -1*E(7), -1*E(7)^-2, -1*E(7)^-1, -1*E(7), -1*E(7)^-3, -1*E(7)^3, -1*E(7)^3, -1*E(7)^-3, -1*E(7), -1*E(7)^3, -1*E(7)^-3, -1*E(7)^-1, -1*E(7)^-1, -1*E(7)^-2, -1*E(7)^2, -1*E(7)^-2, -1*E(7)^-1, -1*E(7)^2, 1], [1, -1, E(7)^-1, E(7)^-3, E(7)^3, E(7)^2, E(7), E(7)^-2, -1*E(7)^-2, -1*E(7)^2, -1*E(7), -1*E(7)^-1, -1*E(7)^-3, -1*E(7)^3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, E(7)^-2, E(7)^-3, E(7)^-1, E(7)^2, E(7), E(7)^-1, E(7)^-2, E(7)^-3, E(7)^-1, E(7)^2, E(7), E(7)^2, E(7)^2, E(7), E(7)^-2, E(7)^-1, E(7)^-3, E(7)^-2, E(7)^3, E(7)^3, E(7), E(7)^3, E(7)^3, E(7), E(7)^3, E(7)^3, E(7)^-2, E(7)^-3, E(7)^-3, E(7)^-2, E(7), E(7)^-3, E(7)^2, E(7), E(7)^2, E(7)^-1, E(7)^-2, E(7)^-2, E(7)^-1, E(7), E(7)^2, E(7)^-1, E(7)^-3, E(7)^-2, E(7)^3, E(7)^3, E(7), E(7)^3, E(7)^3, E(7)^-2, E(7)^-3, E(7)^-1, E(7)^2, E(7), E(7)^2, E(7)^2, E(7), E(7)^2, E(7)^2, E(7), E(7)^3, E(7)^-1, E(7)^-3, E(7)^-2, E(7)^-1, E(7)^-3, E(7), E(7)^3, E(7)^-3, E(7)^-3, E(7)^-3, E(7)^-1, E(7)^-2, E(7)^-3, E(7)^-1, E(7)^-2, E(7), E(7)^-1, E(7)^-2, E(7), E(7)^2, E(7)^-1, E(7), E(7)^2, E(7)^2, E(7)^-3, E(7)^2, E(7)^-1, E(7)^-3, E(7)^-2, E(7)^-1, E(7)^3, E(7)^3, E(7)^3, E(7)^3, E(7)^-2, -1*E(7), -1*E(7)^-1, -1*E(7), -1*E(7)^-3, -1*E(7)^-1, -1*E(7), -1*E(7)^-1, -1*E(7)^3, -1*E(7)^-2, -1*E(7)^2, -1*E(7)^2, -1*E(7)^-2, -1*E(7)^2, -1*E(7)^3, -1*E(7)^-2, -1*E(7)^2, -1*E(7)^2, -1*E(7)^-2, -1*E(7)^3, -1*E(7)^-3, -1*E(7), -1*E(7)^-1, -1*E(7)^-3, -1*E(7), -1*E(7)^-1, -1*E(7)^-3, -1*E(7)^-3, -1*E(7)^3, -1*E(7)^-2, -1*E(7), -1*E(7)^-1, -1*E(7), -1*E(7)^-3, -1*E(7)^-2, -1*E(7)^2, -1*E(7)^2, -1*E(7)^-2, -1*E(7)^2, -1*E(7)^2, -1*E(7)^-2, -1*E(7)^3, -1*E(7)^-3, -1*E(7), -1*E(7)^3, -1*E(7)^-1, -1*E(7), -1*E(7)^3, -1*E(7)^-3, -1*E(7)^-2, -1*E(7)^-1, -1*E(7), -1*E(7)^-3, -1*E(7)^-1, -1*E(7)^-1, -1*E(7)^2, -1*E(7)^3, -1*E(7)^-1, -1*E(7)^2, -1*E(7)^2, -1*E(7)^-2, -1*E(7)^3, -1*E(7)^-1, -1*E(7)^-2, -1*E(7)^3, -1*E(7)^2, -1*E(7)^-2, -1*E(7)^3, -1*E(7)^-3, -1*E(7), -1*E(7)^-1, -1*E(7)^-3, -1*E(7), -1*E(7)^-1, -1*E(7), -1*E(7)^-3, -1*E(7)^3, -1*E(7)^-2, -1*E(7)^3, -1*E(7)^3, -1*E(7), -1*E(7)^-3, -1*E(7)^3, -1*E(7)^-2, -1*E(7)^2, -1*E(7)^2, -1*E(7)^-2, -1*E(7)^3, -1*E(7)^2, -1*E(7)^-2, -1*E(7)^-3, -1*E(7)^-3, -1*E(7), -1*E(7)^-1, -1*E(7), -1*E(7)^-3, -1*E(7)^-1, 1], [1, -1, E(7), E(7)^3, E(7)^-3, E(7)^-2, E(7)^-1, E(7)^2, -1*E(7)^2, -1*E(7)^-2, -1*E(7)^-1, -1*E(7), -1*E(7)^3, -1*E(7)^-3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, E(7)^2, E(7)^3, E(7), E(7)^-2, E(7)^-1, E(7), E(7)^2, E(7)^3, E(7), E(7)^-2, E(7)^-1, E(7)^-2, E(7)^-2, E(7)^-1, E(7)^2, E(7), E(7)^3, E(7)^2, E(7)^-3, E(7)^-3, E(7)^-1, E(7)^-3, E(7)^-3, E(7)^-1, E(7)^-3, E(7)^-3, E(7)^2, E(7)^3, E(7)^3, E(7)^2, E(7)^-1, E(7)^3, E(7)^-2, E(7)^-1, E(7)^-2, E(7), E(7)^2, E(7)^2, E(7), E(7)^-1, E(7)^-2, E(7), E(7)^3, E(7)^2, E(7)^-3, E(7)^-3, E(7)^-1, E(7)^-3, E(7)^-3, E(7)^2, E(7)^3, E(7), E(7)^-2, E(7)^-1, E(7)^-2, E(7)^-2, E(7)^-1, E(7)^-2, E(7)^-2, E(7)^-1, E(7)^-3, E(7), E(7)^3, E(7)^2, E(7), E(7)^3, E(7)^-1, E(7)^-3, E(7)^3, E(7)^3, E(7)^3, E(7), E(7)^2, E(7)^3, E(7), E(7)^2, E(7)^-1, E(7), E(7)^2, E(7)^-1, E(7)^-2, E(7), E(7)^-1, E(7)^-2, E(7)^-2, E(7)^3, E(7)^-2, E(7), E(7)^3, E(7)^2, E(7), E(7)^-3, E(7)^-3, E(7)^-3, E(7)^-3, E(7)^2, -1*E(7)^-1, -1*E(7), -1*E(7)^-1, -1*E(7)^3, -1*E(7), -1*E(7)^-1, -1*E(7), -1*E(7)^-3, -1*E(7)^2, -1*E(7)^-2, -1*E(7)^-2, -1*E(7)^2, -1*E(7)^-2, -1*E(7)^-3, -1*E(7)^2, -1*E(7)^-2, -1*E(7)^-2, -1*E(7)^2, -1*E(7)^-3, -1*E(7)^3, -1*E(7)^-1, -1*E(7), -1*E(7)^3, -1*E(7)^-1, -1*E(7), -1*E(7)^3, -1*E(7)^3, -1*E(7)^-3, -1*E(7)^2, -1*E(7)^-1, -1*E(7), -1*E(7)^-1, -1*E(7)^3, -1*E(7)^2, -1*E(7)^-2, -1*E(7)^-2, -1*E(7)^2, -1*E(7)^-2, -1*E(7)^-2, -1*E(7)^2, -1*E(7)^-3, -1*E(7)^3, -1*E(7)^-1, -1*E(7)^-3, -1*E(7), -1*E(7)^-1, -1*E(7)^-3, -1*E(7)^3, -1*E(7)^2, -1*E(7), -1*E(7)^-1, -1*E(7)^3, -1*E(7), -1*E(7), -1*E(7)^-2, -1*E(7)^-3, -1*E(7), -1*E(7)^-2, -1*E(7)^-2, -1*E(7)^2, -1*E(7)^-3, -1*E(7), -1*E(7)^2, -1*E(7)^-3, -1*E(7)^-2, -1*E(7)^2, -1*E(7)^-3, -1*E(7)^3, -1*E(7)^-1, -1*E(7), -1*E(7)^3, -1*E(7)^-1, -1*E(7), -1*E(7)^-1, -1*E(7)^3, -1*E(7)^-3, -1*E(7)^2, -1*E(7)^-3, -1*E(7)^-3, -1*E(7)^-1, -1*E(7)^3, -1*E(7)^-3, -1*E(7)^2, -1*E(7)^-2, -1*E(7)^-2, -1*E(7)^2, -1*E(7)^-3, -1*E(7)^-2, -1*E(7)^2, -1*E(7)^3, -1*E(7)^3, -1*E(7)^-1, -1*E(7), -1*E(7)^-1, -1*E(7)^3, -1*E(7), 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, E(17)^-8, E(17)^-4, E(17)^-7, E(17)^7, E(17)^-1, E(17)^6, E(17), E(17)^5, E(17)^-3, E(17)^-5, E(17)^-6, E(17)^8, E(17)^-2, E(17)^3, E(17)^2, E(17)^4, E(17)^8, E(17)^6, E(17), E(17)^-3, E(17)^7, E(17)^2, E(17)^3, E(17)^-6, E(17)^4, E(17)^-8, E(17)^5, E(17)^-4, E(17)^-2, E(17)^-1, E(17)^-5, E(17)^-7, E(17)^-2, E(17)^-3, E(17)^6, E(17)^5, E(17)^3, E(17)^-1, E(17)^-7, E(17)^-5, E(17), E(17)^-7, E(17)^8, E(17), E(17)^-3, E(17)^-5, E(17)^-5, E(17)^-3, E(17)^6, E(17)^-3, E(17)^3, E(17)^5, E(17)^-7, E(17), E(17)^4, E(17)^-4, E(17)^2, E(17)^6, E(17)^-6, E(17)^3, E(17)^7, E(17)^-8, E(17)^-8, E(17)^-7, E(17)^-2, E(17)^-6, E(17)^-4, E(17)^-2, E(17)^3, E(17)^-4, E(17)^-4, E(17)^6, E(17)^8, E(17)^3, E(17)^2, E(17)^8, E(17)^-8, E(17)^-1, E(17)^-1, E(17)^7, E(17)^-3, E(17)^-1, E(17)^8, E(17)^-5, E(17)^-1, E(17)^-3, E(17)^-5, E(17)^3, E(17)^-2, E(17)^-6, E(17)^4, E(17)^5, E(17)^-6, E(17)^4, E(17)^5, E(17)^7, E(17)^2, E(17), E(17)^7, E(17)^8, E(17)^4, E(17)^-4, E(17)^-8, E(17)^-6, E(17)^6, E(17)^-2, E(17)^5, E(17)^4, E(17)^4, E(17)^7, E(17), E(17)^2, E(17)^7, E(17)^-7, E(17), E(17)^6, E(17)^-8, E(17)^-1, E(17)^2, E(17)^-8, E(17)^-6, E(17)^2, E(17)^8, E(17)^-7, E(17)^-2, E(17)^-4, E(17)^-5, E(17)^5, E(17)^4, E(17)^-7, E(17)^8, E(17)^-2, E(17), E(17)^-5, E(17)^-3, E(17)^7, E(17)^-5, E(17)^-1, E(17)^-5, E(17)^2, E(17)^4, E(17)^6, E(17)^-6, E(17)^3, E(17)^8, E(17)^3, E(17)^-2, E(17)^-8, E(17)^3, E(17)^-8, E(17)^7, E(17)^-1, E(17)^2, E(17), E(17)^-1, E(17)^2, E(17)^-4, E(17)^5, E(17)^-4, E(17)^7, E(17)^5, E(17)^7, E(17)^-7, E(17)^-2, E(17)^5, E(17)^-8, E(17)^2, E(17)^-8, E(17)^4, E(17)^3, E(17)^-8, E(17)^-3, E(17)^-2, E(17)^-3, E(17)^5, E(17)^-4, E(17)^4, E(17)^5, E(17)^-4, E(17)^-7, E(17)^6, E(17)^-6, E(17), E(17)^-5, E(17)^8, E(17)^-6, E(17)^-3, E(17)^-3, E(17)^-8, E(17)^3, E(17)^-1, E(17)^8, E(17)^-4, E(17)^-2, E(17)^-7, E(17)^-3, E(17)^-2, E(17)^4, E(17)^-5, E(17)^-6, E(17)^7, E(17), E(17)^-6, E(17)^-4, E(17), E(17)^-1, E(17)^-6, E(17)^6, E(17)^6, E(17), E(17)^6, E(17)^5, E(17)^6, E(17)^8, E(17)^3, E(17)^7, E(17)^-7, E(17)^8, E(17)^2, E(17)^-7, E(17)^-1, E(17)^2, E(17)^4, E(17)^-5, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, E(17)^8, E(17)^4, E(17)^7, E(17)^-7, E(17), E(17)^-6, E(17)^-1, E(17)^-5, E(17)^3, E(17)^5, E(17)^6, E(17)^-8, E(17)^2, E(17)^-3, E(17)^-2, E(17)^-4, E(17)^-8, E(17)^-6, E(17)^-1, E(17)^3, E(17)^-7, E(17)^-2, E(17)^-3, E(17)^6, E(17)^-4, E(17)^8, E(17)^-5, E(17)^4, E(17)^2, E(17), E(17)^5, E(17)^7, E(17)^2, E(17)^3, E(17)^-6, E(17)^-5, E(17)^-3, E(17), E(17)^7, E(17)^5, E(17)^-1, E(17)^7, E(17)^-8, E(17)^-1, E(17)^3, E(17)^5, E(17)^5, E(17)^3, E(17)^-6, E(17)^3, E(17)^-3, E(17)^-5, E(17)^7, E(17)^-1, E(17)^-4, E(17)^4, E(17)^-2, E(17)^-6, E(17)^6, E(17)^-3, E(17)^-7, E(17)^8, E(17)^8, E(17)^7, E(17)^2, E(17)^6, E(17)^4, E(17)^2, E(17)^-3, E(17)^4, E(17)^4, E(17)^-6, E(17)^-8, E(17)^-3, E(17)^-2, E(17)^-8, E(17)^8, E(17), E(17), E(17)^-7, E(17)^3, E(17), E(17)^-8, E(17)^5, E(17), E(17)^3, E(17)^5, E(17)^-3, E(17)^2, E(17)^6, E(17)^-4, E(17)^-5, E(17)^6, E(17)^-4, E(17)^-5, E(17)^-7, E(17)^-2, E(17)^-1, E(17)^-7, E(17)^-8, E(17)^-4, E(17)^4, E(17)^8, E(17)^6, E(17)^-6, E(17)^2, E(17)^-5, E(17)^-4, E(17)^-4, E(17)^-7, E(17)^-1, E(17)^-2, E(17)^-7, E(17)^7, E(17)^-1, E(17)^-6, E(17)^8, E(17), E(17)^-2, E(17)^8, E(17)^6, E(17)^-2, E(17)^-8, E(17)^7, E(17)^2, E(17)^4, E(17)^5, E(17)^-5, E(17)^-4, E(17)^7, E(17)^-8, E(17)^2, E(17)^-1, E(17)^5, E(17)^3, E(17)^-7, E(17)^5, E(17), E(17)^5, E(17)^-2, E(17)^-4, E(17)^-6, E(17)^6, E(17)^-3, E(17)^-8, E(17)^-3, E(17)^2, E(17)^8, E(17)^-3, E(17)^8, E(17)^-7, E(17), E(17)^-2, E(17)^-1, E(17), E(17)^-2, E(17)^4, E(17)^-5, E(17)^4, E(17)^-7, E(17)^-5, E(17)^-7, E(17)^7, E(17)^2, E(17)^-5, E(17)^8, E(17)^-2, E(17)^8, E(17)^-4, E(17)^-3, E(17)^8, E(17)^3, E(17)^2, E(17)^3, E(17)^-5, E(17)^4, E(17)^-4, E(17)^-5, E(17)^4, E(17)^7, E(17)^-6, E(17)^6, E(17)^-1, E(17)^5, E(17)^-8, E(17)^6, E(17)^3, E(17)^3, E(17)^8, E(17)^-3, E(17), E(17)^-8, E(17)^4, E(17)^2, E(17)^7, E(17)^3, E(17)^2, E(17)^-4, E(17)^5, E(17)^6, E(17)^-7, E(17)^-1, E(17)^6, E(17)^4, E(17)^-1, E(17), E(17)^6, E(17)^-6, E(17)^-6, E(17)^-1, E(17)^-6, E(17)^-5, E(17)^-6, E(17)^-8, E(17)^-3, E(17)^-7, E(17)^7, E(17)^-8, E(17)^-2, E(17)^7, E(17), E(17)^-2, E(17)^-4, E(17)^5, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, E(17)^-7, E(17)^5, E(17)^-4, E(17)^4, E(17)^-3, E(17), E(17)^3, E(17)^-2, E(17)^8, E(17)^2, E(17)^-1, E(17)^7, E(17)^-6, E(17)^-8, E(17)^6, E(17)^-5, E(17)^7, E(17), E(17)^3, E(17)^8, E(17)^4, E(17)^6, E(17)^-8, E(17)^-1, E(17)^-5, E(17)^-7, E(17)^-2, E(17)^5, E(17)^-6, E(17)^-3, E(17)^2, E(17)^-4, E(17)^-6, E(17)^8, E(17), E(17)^-2, E(17)^-8, E(17)^-3, E(17)^-4, E(17)^2, E(17)^3, E(17)^-4, E(17)^7, E(17)^3, E(17)^8, E(17)^2, E(17)^2, E(17)^8, E(17), E(17)^8, E(17)^-8, E(17)^-2, E(17)^-4, E(17)^3, E(17)^-5, E(17)^5, E(17)^6, E(17), E(17)^-1, E(17)^-8, E(17)^4, E(17)^-7, E(17)^-7, E(17)^-4, E(17)^-6, E(17)^-1, E(17)^5, E(17)^-6, E(17)^-8, E(17)^5, E(17)^5, E(17), E(17)^7, E(17)^-8, E(17)^6, E(17)^7, E(17)^-7, E(17)^-3, E(17)^-3, E(17)^4, E(17)^8, E(17)^-3, E(17)^7, E(17)^2, E(17)^-3, E(17)^8, E(17)^2, E(17)^-8, E(17)^-6, E(17)^-1, E(17)^-5, E(17)^-2, E(17)^-1, E(17)^-5, E(17)^-2, E(17)^4, E(17)^6, E(17)^3, E(17)^4, E(17)^7, E(17)^-5, E(17)^5, E(17)^-7, E(17)^-1, E(17), E(17)^-6, E(17)^-2, E(17)^-5, E(17)^-5, E(17)^4, E(17)^3, E(17)^6, E(17)^4, E(17)^-4, E(17)^3, E(17), E(17)^-7, E(17)^-3, E(17)^6, E(17)^-7, E(17)^-1, E(17)^6, E(17)^7, E(17)^-4, E(17)^-6, E(17)^5, E(17)^2, E(17)^-2, E(17)^-5, E(17)^-4, E(17)^7, E(17)^-6, E(17)^3, E(17)^2, E(17)^8, E(17)^4, E(17)^2, E(17)^-3, E(17)^2, E(17)^6, E(17)^-5, E(17), E(17)^-1, E(17)^-8, E(17)^7, E(17)^-8, E(17)^-6, E(17)^-7, E(17)^-8, E(17)^-7, E(17)^4, E(17)^-3, E(17)^6, E(17)^3, E(17)^-3, E(17)^6, E(17)^5, E(17)^-2, E(17)^5, E(17)^4, E(17)^-2, E(17)^4, E(17)^-4, E(17)^-6, E(17)^-2, E(17)^-7, E(17)^6, E(17)^-7, E(17)^-5, E(17)^-8, E(17)^-7, E(17)^8, E(17)^-6, E(17)^8, E(17)^-2, E(17)^5, E(17)^-5, E(17)^-2, E(17)^5, E(17)^-4, E(17), E(17)^-1, E(17)^3, E(17)^2, E(17)^7, E(17)^-1, E(17)^8, E(17)^8, E(17)^-7, E(17)^-8, E(17)^-3, E(17)^7, E(17)^5, E(17)^-6, E(17)^-4, E(17)^8, E(17)^-6, E(17)^-5, E(17)^2, E(17)^-1, E(17)^4, E(17)^3, E(17)^-1, E(17)^5, E(17)^3, E(17)^-3, E(17)^-1, E(17), E(17), E(17)^3, E(17), E(17)^-2, E(17), E(17)^7, E(17)^-8, E(17)^4, E(17)^-4, E(17)^7, E(17)^6, E(17)^-4, E(17)^-3, E(17)^6, E(17)^-5, E(17)^2, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, E(17)^7, E(17)^-5, E(17)^4, E(17)^-4, E(17)^3, E(17)^-1, E(17)^-3, E(17)^2, E(17)^-8, E(17)^-2, E(17), E(17)^-7, E(17)^6, E(17)^8, E(17)^-6, E(17)^5, E(17)^-7, E(17)^-1, E(17)^-3, E(17)^-8, E(17)^-4, E(17)^-6, E(17)^8, E(17), E(17)^5, E(17)^7, E(17)^2, E(17)^-5, E(17)^6, E(17)^3, E(17)^-2, E(17)^4, E(17)^6, E(17)^-8, E(17)^-1, E(17)^2, E(17)^8, E(17)^3, E(17)^4, E(17)^-2, E(17)^-3, E(17)^4, E(17)^-7, E(17)^-3, E(17)^-8, E(17)^-2, E(17)^-2, E(17)^-8, E(17)^-1, E(17)^-8, E(17)^8, E(17)^2, E(17)^4, E(17)^-3, E(17)^5, E(17)^-5, E(17)^-6, E(17)^-1, E(17), E(17)^8, E(17)^-4, E(17)^7, E(17)^7, E(17)^4, E(17)^6, E(17), E(17)^-5, E(17)^6, E(17)^8, E(17)^-5, E(17)^-5, E(17)^-1, E(17)^-7, E(17)^8, E(17)^-6, E(17)^-7, E(17)^7, E(17)^3, E(17)^3, E(17)^-4, E(17)^-8, E(17)^3, E(17)^-7, E(17)^-2, E(17)^3, E(17)^-8, E(17)^-2, E(17)^8, E(17)^6, E(17), E(17)^5, E(17)^2, E(17), E(17)^5, E(17)^2, E(17)^-4, E(17)^-6, E(17)^-3, E(17)^-4, E(17)^-7, E(17)^5, E(17)^-5, E(17)^7, E(17), E(17)^-1, E(17)^6, E(17)^2, E(17)^5, E(17)^5, E(17)^-4, E(17)^-3, E(17)^-6, E(17)^-4, E(17)^4, E(17)^-3, E(17)^-1, E(17)^7, E(17)^3, E(17)^-6, E(17)^7, E(17), E(17)^-6, E(17)^-7, E(17)^4, E(17)^6, E(17)^-5, E(17)^-2, E(17)^2, E(17)^5, E(17)^4, E(17)^-7, E(17)^6, E(17)^-3, E(17)^-2, E(17)^-8, E(17)^-4, E(17)^-2, E(17)^3, E(17)^-2, E(17)^-6, E(17)^5, E(17)^-1, E(17), E(17)^8, E(17)^-7, E(17)^8, E(17)^6, E(17)^7, E(17)^8, E(17)^7, E(17)^-4, E(17)^3, E(17)^-6, E(17)^-3, E(17)^3, E(17)^-6, E(17)^-5, E(17)^2, E(17)^-5, E(17)^-4, E(17)^2, E(17)^-4, E(17)^4, E(17)^6, E(17)^2, E(17)^7, E(17)^-6, E(17)^7, E(17)^5, E(17)^8, E(17)^7, E(17)^-8, E(17)^6, E(17)^-8, E(17)^2, E(17)^-5, E(17)^5, E(17)^2, E(17)^-5, E(17)^4, E(17)^-1, E(17), E(17)^-3, E(17)^-2, E(17)^-7, E(17), E(17)^-8, E(17)^-8, E(17)^7, E(17)^8, E(17)^3, E(17)^-7, E(17)^-5, E(17)^6, E(17)^4, E(17)^-8, E(17)^6, E(17)^5, E(17)^-2, E(17), E(17)^-4, E(17)^-3, E(17), E(17)^-5, E(17)^-3, E(17)^3, E(17), E(17)^-1, E(17)^-1, E(17)^-3, E(17)^-1, E(17)^2, E(17)^-1, E(17)^-7, E(17)^8, E(17)^-4, E(17)^4, E(17)^-7, E(17)^-6, E(17)^4, E(17)^3, E(17)^-6, E(17)^5, E(17)^-2, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, E(17)^-6, E(17)^-3, E(17)^-1, E(17), E(17)^-5, E(17)^-4, E(17)^5, E(17)^8, E(17)^2, E(17)^-8, E(17)^4, E(17)^6, E(17)^7, E(17)^-2, E(17)^-7, E(17)^3, E(17)^6, E(17)^-4, E(17)^5, E(17)^2, E(17), E(17)^-7, E(17)^-2, E(17)^4, E(17)^3, E(17)^-6, E(17)^8, E(17)^-3, E(17)^7, E(17)^-5, E(17)^-8, E(17)^-1, E(17)^7, E(17)^2, E(17)^-4, E(17)^8, E(17)^-2, E(17)^-5, E(17)^-1, E(17)^-8, E(17)^5, E(17)^-1, E(17)^6, E(17)^5, E(17)^2, E(17)^-8, E(17)^-8, E(17)^2, E(17)^-4, E(17)^2, E(17)^-2, E(17)^8, E(17)^-1, E(17)^5, E(17)^3, E(17)^-3, E(17)^-7, E(17)^-4, E(17)^4, E(17)^-2, E(17), E(17)^-6, E(17)^-6, E(17)^-1, E(17)^7, E(17)^4, E(17)^-3, E(17)^7, E(17)^-2, E(17)^-3, E(17)^-3, E(17)^-4, E(17)^6, E(17)^-2, E(17)^-7, E(17)^6, E(17)^-6, E(17)^-5, E(17)^-5, E(17), E(17)^2, E(17)^-5, E(17)^6, E(17)^-8, E(17)^-5, E(17)^2, E(17)^-8, E(17)^-2, E(17)^7, E(17)^4, E(17)^3, E(17)^8, E(17)^4, E(17)^3, E(17)^8, E(17), E(17)^-7, E(17)^5, E(17), E(17)^6, E(17)^3, E(17)^-3, E(17)^-6, E(17)^4, E(17)^-4, E(17)^7, E(17)^8, E(17)^3, E(17)^3, E(17), E(17)^5, E(17)^-7, E(17), E(17)^-1, E(17)^5, E(17)^-4, E(17)^-6, E(17)^-5, E(17)^-7, E(17)^-6, E(17)^4, E(17)^-7, E(17)^6, E(17)^-1, E(17)^7, E(17)^-3, E(17)^-8, E(17)^8, E(17)^3, E(17)^-1, E(17)^6, E(17)^7, E(17)^5, E(17)^-8, E(17)^2, E(17), E(17)^-8, E(17)^-5, E(17)^-8, E(17)^-7, E(17)^3, E(17)^-4, E(17)^4, E(17)^-2, E(17)^6, E(17)^-2, E(17)^7, E(17)^-6, E(17)^-2, E(17)^-6, E(17), E(17)^-5, E(17)^-7, E(17)^5, E(17)^-5, E(17)^-7, E(17)^-3, E(17)^8, E(17)^-3, E(17), E(17)^8, E(17), E(17)^-1, E(17)^7, E(17)^8, E(17)^-6, E(17)^-7, E(17)^-6, E(17)^3, E(17)^-2, E(17)^-6, E(17)^2, E(17)^7, E(17)^2, E(17)^8, E(17)^-3, E(17)^3, E(17)^8, E(17)^-3, E(17)^-1, E(17)^-4, E(17)^4, E(17)^5, E(17)^-8, E(17)^6, E(17)^4, E(17)^2, E(17)^2, E(17)^-6, E(17)^-2, E(17)^-5, E(17)^6, E(17)^-3, E(17)^7, E(17)^-1, E(17)^2, E(17)^7, E(17)^3, E(17)^-8, E(17)^4, E(17), E(17)^5, E(17)^4, E(17)^-3, E(17)^5, E(17)^-5, E(17)^4, E(17)^-4, E(17)^-4, E(17)^5, E(17)^-4, E(17)^8, E(17)^-4, E(17)^6, E(17)^-2, E(17), E(17)^-1, E(17)^6, E(17)^-7, E(17)^-1, E(17)^-5, E(17)^-7, E(17)^3, E(17)^-8, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, E(17)^6, E(17)^3, E(17), E(17)^-1, E(17)^5, E(17)^4, E(17)^-5, E(17)^-8, E(17)^-2, E(17)^8, E(17)^-4, E(17)^-6, E(17)^-7, E(17)^2, E(17)^7, E(17)^-3, E(17)^-6, E(17)^4, E(17)^-5, E(17)^-2, E(17)^-1, E(17)^7, E(17)^2, E(17)^-4, E(17)^-3, E(17)^6, E(17)^-8, E(17)^3, E(17)^-7, E(17)^5, E(17)^8, E(17), E(17)^-7, E(17)^-2, E(17)^4, E(17)^-8, E(17)^2, E(17)^5, E(17), E(17)^8, E(17)^-5, E(17), E(17)^-6, E(17)^-5, E(17)^-2, E(17)^8, E(17)^8, E(17)^-2, E(17)^4, E(17)^-2, E(17)^2, E(17)^-8, E(17), E(17)^-5, E(17)^-3, E(17)^3, E(17)^7, E(17)^4, E(17)^-4, E(17)^2, E(17)^-1, E(17)^6, E(17)^6, E(17), E(17)^-7, E(17)^-4, E(17)^3, E(17)^-7, E(17)^2, E(17)^3, E(17)^3, E(17)^4, E(17)^-6, E(17)^2, E(17)^7, E(17)^-6, E(17)^6, E(17)^5, E(17)^5, E(17)^-1, E(17)^-2, E(17)^5, E(17)^-6, E(17)^8, E(17)^5, E(17)^-2, E(17)^8, E(17)^2, E(17)^-7, E(17)^-4, E(17)^-3, E(17)^-8, E(17)^-4, E(17)^-3, E(17)^-8, E(17)^-1, E(17)^7, E(17)^-5, E(17)^-1, E(17)^-6, E(17)^-3, E(17)^3, E(17)^6, E(17)^-4, E(17)^4, E(17)^-7, E(17)^-8, E(17)^-3, E(17)^-3, E(17)^-1, E(17)^-5, E(17)^7, E(17)^-1, E(17), E(17)^-5, E(17)^4, E(17)^6, E(17)^5, E(17)^7, E(17)^6, E(17)^-4, E(17)^7, E(17)^-6, E(17), E(17)^-7, E(17)^3, E(17)^8, E(17)^-8, E(17)^-3, E(17), E(17)^-6, E(17)^-7, E(17)^-5, E(17)^8, E(17)^-2, E(17)^-1, E(17)^8, E(17)^5, E(17)^8, E(17)^7, E(17)^-3, E(17)^4, E(17)^-4, E(17)^2, E(17)^-6, E(17)^2, E(17)^-7, E(17)^6, E(17)^2, E(17)^6, E(17)^-1, E(17)^5, E(17)^7, E(17)^-5, E(17)^5, E(17)^7, E(17)^3, E(17)^-8, E(17)^3, E(17)^-1, E(17)^-8, E(17)^-1, E(17), E(17)^-7, E(17)^-8, E(17)^6, E(17)^7, E(17)^6, E(17)^-3, E(17)^2, E(17)^6, E(17)^-2, E(17)^-7, E(17)^-2, E(17)^-8, E(17)^3, E(17)^-3, E(17)^-8, E(17)^3, E(17), E(17)^4, E(17)^-4, E(17)^-5, E(17)^8, E(17)^-6, E(17)^-4, E(17)^-2, E(17)^-2, E(17)^6, E(17)^2, E(17)^5, E(17)^-6, E(17)^3, E(17)^-7, E(17), E(17)^-2, E(17)^-7, E(17)^-3, E(17)^8, E(17)^-4, E(17)^-1, E(17)^-5, E(17)^-4, E(17)^3, E(17)^-5, E(17)^5, E(17)^-4, E(17)^4, E(17)^4, E(17)^-5, E(17)^4, E(17)^-8, E(17)^4, E(17)^-6, E(17)^2, E(17)^-1, E(17), E(17)^-6, E(17)^7, E(17), E(17)^5, E(17)^7, E(17)^-3, E(17)^8, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, E(17)^-5, E(17)^6, E(17)^2, E(17)^-2, E(17)^-7, E(17)^8, E(17)^7, E(17), E(17)^-4, E(17)^-1, E(17)^-8, E(17)^5, E(17)^3, E(17)^4, E(17)^-3, E(17)^-6, E(17)^5, E(17)^8, E(17)^7, E(17)^-4, E(17)^-2, E(17)^-3, E(17)^4, E(17)^-8, E(17)^-6, E(17)^-5, E(17), E(17)^6, E(17)^3, E(17)^-7, E(17)^-1, E(17)^2, E(17)^3, E(17)^-4, E(17)^8, E(17), E(17)^4, E(17)^-7, E(17)^2, E(17)^-1, E(17)^7, E(17)^2, E(17)^5, E(17)^7, E(17)^-4, E(17)^-1, E(17)^-1, E(17)^-4, E(17)^8, E(17)^-4, E(17)^4, E(17), E(17)^2, E(17)^7, E(17)^-6, E(17)^6, E(17)^-3, E(17)^8, E(17)^-8, E(17)^4, E(17)^-2, E(17)^-5, E(17)^-5, E(17)^2, E(17)^3, E(17)^-8, E(17)^6, E(17)^3, E(17)^4, E(17)^6, E(17)^6, E(17)^8, E(17)^5, E(17)^4, E(17)^-3, E(17)^5, E(17)^-5, E(17)^-7, E(17)^-7, E(17)^-2, E(17)^-4, E(17)^-7, E(17)^5, E(17)^-1, E(17)^-7, E(17)^-4, E(17)^-1, E(17)^4, E(17)^3, E(17)^-8, E(17)^-6, E(17), E(17)^-8, E(17)^-6, E(17), E(17)^-2, E(17)^-3, E(17)^7, E(17)^-2, E(17)^5, E(17)^-6, E(17)^6, E(17)^-5, E(17)^-8, E(17)^8, E(17)^3, E(17), E(17)^-6, E(17)^-6, E(17)^-2, E(17)^7, E(17)^-3, E(17)^-2, E(17)^2, E(17)^7, E(17)^8, E(17)^-5, E(17)^-7, E(17)^-3, E(17)^-5, E(17)^-8, E(17)^-3, E(17)^5, E(17)^2, E(17)^3, E(17)^6, E(17)^-1, E(17), E(17)^-6, E(17)^2, E(17)^5, E(17)^3, E(17)^7, E(17)^-1, E(17)^-4, E(17)^-2, E(17)^-1, E(17)^-7, E(17)^-1, E(17)^-3, E(17)^-6, E(17)^8, E(17)^-8, E(17)^4, E(17)^5, E(17)^4, E(17)^3, E(17)^-5, E(17)^4, E(17)^-5, E(17)^-2, E(17)^-7, E(17)^-3, E(17)^7, E(17)^-7, E(17)^-3, E(17)^6, E(17), E(17)^6, E(17)^-2, E(17), E(17)^-2, E(17)^2, E(17)^3, E(17), E(17)^-5, E(17)^-3, E(17)^-5, E(17)^-6, E(17)^4, E(17)^-5, E(17)^-4, E(17)^3, E(17)^-4, E(17), E(17)^6, E(17)^-6, E(17), E(17)^6, E(17)^2, E(17)^8, E(17)^-8, E(17)^7, E(17)^-1, E(17)^5, E(17)^-8, E(17)^-4, E(17)^-4, E(17)^-5, E(17)^4, E(17)^-7, E(17)^5, E(17)^6, E(17)^3, E(17)^2, E(17)^-4, E(17)^3, E(17)^-6, E(17)^-1, E(17)^-8, E(17)^-2, E(17)^7, E(17)^-8, E(17)^6, E(17)^7, E(17)^-7, E(17)^-8, E(17)^8, E(17)^8, E(17)^7, E(17)^8, E(17), E(17)^8, E(17)^5, E(17)^4, E(17)^-2, E(17)^2, E(17)^5, E(17)^-3, E(17)^2, E(17)^-7, E(17)^-3, E(17)^-6, E(17)^-1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, E(17)^5, E(17)^-6, E(17)^-2, E(17)^2, E(17)^7, E(17)^-8, E(17)^-7, E(17)^-1, E(17)^4, E(17), E(17)^8, E(17)^-5, E(17)^-3, E(17)^-4, E(17)^3, E(17)^6, E(17)^-5, E(17)^-8, E(17)^-7, E(17)^4, E(17)^2, E(17)^3, E(17)^-4, E(17)^8, E(17)^6, E(17)^5, E(17)^-1, E(17)^-6, E(17)^-3, E(17)^7, E(17), E(17)^-2, E(17)^-3, E(17)^4, E(17)^-8, E(17)^-1, E(17)^-4, E(17)^7, E(17)^-2, E(17), E(17)^-7, E(17)^-2, E(17)^-5, E(17)^-7, E(17)^4, E(17), E(17), E(17)^4, E(17)^-8, E(17)^4, E(17)^-4, E(17)^-1, E(17)^-2, E(17)^-7, E(17)^6, E(17)^-6, E(17)^3, E(17)^-8, E(17)^8, E(17)^-4, E(17)^2, E(17)^5, E(17)^5, E(17)^-2, E(17)^-3, E(17)^8, E(17)^-6, E(17)^-3, E(17)^-4, E(17)^-6, E(17)^-6, E(17)^-8, E(17)^-5, E(17)^-4, E(17)^3, E(17)^-5, E(17)^5, E(17)^7, E(17)^7, E(17)^2, E(17)^4, E(17)^7, E(17)^-5, E(17), E(17)^7, E(17)^4, E(17), E(17)^-4, E(17)^-3, E(17)^8, E(17)^6, E(17)^-1, E(17)^8, E(17)^6, E(17)^-1, E(17)^2, E(17)^3, E(17)^-7, E(17)^2, E(17)^-5, E(17)^6, E(17)^-6, E(17)^5, E(17)^8, E(17)^-8, E(17)^-3, E(17)^-1, E(17)^6, E(17)^6, E(17)^2, E(17)^-7, E(17)^3, E(17)^2, E(17)^-2, E(17)^-7, E(17)^-8, E(17)^5, E(17)^7, E(17)^3, E(17)^5, E(17)^8, E(17)^3, E(17)^-5, E(17)^-2, E(17)^-3, E(17)^-6, E(17), E(17)^-1, E(17)^6, E(17)^-2, E(17)^-5, E(17)^-3, E(17)^-7, E(17), E(17)^4, E(17)^2, E(17), E(17)^7, E(17), E(17)^3, E(17)^6, E(17)^-8, E(17)^8, E(17)^-4, E(17)^-5, E(17)^-4, E(17)^-3, E(17)^5, E(17)^-4, E(17)^5, E(17)^2, E(17)^7, E(17)^3, E(17)^-7, E(17)^7, E(17)^3, E(17)^-6, E(17)^-1, E(17)^-6, E(17)^2, E(17)^-1, E(17)^2, E(17)^-2, E(17)^-3, E(17)^-1, E(17)^5, E(17)^3, E(17)^5, E(17)^6, E(17)^-4, E(17)^5, E(17)^4, E(17)^-3, E(17)^4, E(17)^-1, E(17)^-6, E(17)^6, E(17)^-1, E(17)^-6, E(17)^-2, E(17)^-8, E(17)^8, E(17)^-7, E(17), E(17)^-5, E(17)^8, E(17)^4, E(17)^4, E(17)^5, E(17)^-4, E(17)^7, E(17)^-5, E(17)^-6, E(17)^-3, E(17)^-2, E(17)^4, E(17)^-3, E(17)^6, E(17), E(17)^8, E(17)^2, E(17)^-7, E(17)^8, E(17)^-6, E(17)^-7, E(17)^7, E(17)^8, E(17)^-8, E(17)^-8, E(17)^-7, E(17)^-8, E(17)^-1, E(17)^-8, E(17)^-5, E(17)^-4, E(17)^2, E(17)^-2, E(17)^-5, E(17)^3, E(17)^-2, E(17)^7, E(17)^3, E(17)^6, E(17), 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, E(17)^-4, E(17)^-2, E(17)^5, E(17)^-5, E(17)^8, E(17)^3, E(17)^-8, E(17)^-6, E(17)^7, E(17)^6, E(17)^-3, E(17)^4, E(17)^-1, E(17)^-7, E(17), E(17)^2, E(17)^4, E(17)^3, E(17)^-8, E(17)^7, E(17)^-5, E(17), E(17)^-7, E(17)^-3, E(17)^2, E(17)^-4, E(17)^-6, E(17)^-2, E(17)^-1, E(17)^8, E(17)^6, E(17)^5, E(17)^-1, E(17)^7, E(17)^3, E(17)^-6, E(17)^-7, E(17)^8, E(17)^5, E(17)^6, E(17)^-8, E(17)^5, E(17)^4, E(17)^-8, E(17)^7, E(17)^6, E(17)^6, E(17)^7, E(17)^3, E(17)^7, E(17)^-7, E(17)^-6, E(17)^5, E(17)^-8, E(17)^2, E(17)^-2, E(17), E(17)^3, E(17)^-3, E(17)^-7, E(17)^-5, E(17)^-4, E(17)^-4, E(17)^5, E(17)^-1, E(17)^-3, E(17)^-2, E(17)^-1, E(17)^-7, E(17)^-2, E(17)^-2, E(17)^3, E(17)^4, E(17)^-7, E(17), E(17)^4, E(17)^-4, E(17)^8, E(17)^8, E(17)^-5, E(17)^7, E(17)^8, E(17)^4, E(17)^6, E(17)^8, E(17)^7, E(17)^6, E(17)^-7, E(17)^-1, E(17)^-3, E(17)^2, E(17)^-6, E(17)^-3, E(17)^2, E(17)^-6, E(17)^-5, E(17), E(17)^-8, E(17)^-5, E(17)^4, E(17)^2, E(17)^-2, E(17)^-4, E(17)^-3, E(17)^3, E(17)^-1, E(17)^-6, E(17)^2, E(17)^2, E(17)^-5, E(17)^-8, E(17), E(17)^-5, E(17)^5, E(17)^-8, E(17)^3, E(17)^-4, E(17)^8, E(17), E(17)^-4, E(17)^-3, E(17), E(17)^4, E(17)^5, E(17)^-1, E(17)^-2, E(17)^6, E(17)^-6, E(17)^2, E(17)^5, E(17)^4, E(17)^-1, E(17)^-8, E(17)^6, E(17)^7, E(17)^-5, E(17)^6, E(17)^8, E(17)^6, E(17), E(17)^2, E(17)^3, E(17)^-3, E(17)^-7, E(17)^4, E(17)^-7, E(17)^-1, E(17)^-4, E(17)^-7, E(17)^-4, E(17)^-5, E(17)^8, E(17), E(17)^-8, E(17)^8, E(17), E(17)^-2, E(17)^-6, E(17)^-2, E(17)^-5, E(17)^-6, E(17)^-5, E(17)^5, E(17)^-1, E(17)^-6, E(17)^-4, E(17), E(17)^-4, E(17)^2, E(17)^-7, E(17)^-4, E(17)^7, E(17)^-1, E(17)^7, E(17)^-6, E(17)^-2, E(17)^2, E(17)^-6, E(17)^-2, E(17)^5, E(17)^3, E(17)^-3, E(17)^-8, E(17)^6, E(17)^4, E(17)^-3, E(17)^7, E(17)^7, E(17)^-4, E(17)^-7, E(17)^8, E(17)^4, E(17)^-2, E(17)^-1, E(17)^5, E(17)^7, E(17)^-1, E(17)^2, E(17)^6, E(17)^-3, E(17)^-5, E(17)^-8, E(17)^-3, E(17)^-2, E(17)^-8, E(17)^8, E(17)^-3, E(17)^3, E(17)^3, E(17)^-8, E(17)^3, E(17)^-6, E(17)^3, E(17)^4, E(17)^-7, E(17)^-5, E(17)^5, E(17)^4, E(17), E(17)^5, E(17)^8, E(17), E(17)^2, E(17)^6, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, E(17)^4, E(17)^2, E(17)^-5, E(17)^5, E(17)^-8, E(17)^-3, E(17)^8, E(17)^6, E(17)^-7, E(17)^-6, E(17)^3, E(17)^-4, E(17), E(17)^7, E(17)^-1, E(17)^-2, E(17)^-4, E(17)^-3, E(17)^8, E(17)^-7, E(17)^5, E(17)^-1, E(17)^7, E(17)^3, E(17)^-2, E(17)^4, E(17)^6, E(17)^2, E(17), E(17)^-8, E(17)^-6, E(17)^-5, E(17), E(17)^-7, E(17)^-3, E(17)^6, E(17)^7, E(17)^-8, E(17)^-5, E(17)^-6, E(17)^8, E(17)^-5, E(17)^-4, E(17)^8, E(17)^-7, E(17)^-6, E(17)^-6, E(17)^-7, E(17)^-3, E(17)^-7, E(17)^7, E(17)^6, E(17)^-5, E(17)^8, E(17)^-2, E(17)^2, E(17)^-1, E(17)^-3, E(17)^3, E(17)^7, E(17)^5, E(17)^4, E(17)^4, E(17)^-5, E(17), E(17)^3, E(17)^2, E(17), E(17)^7, E(17)^2, E(17)^2, E(17)^-3, E(17)^-4, E(17)^7, E(17)^-1, E(17)^-4, E(17)^4, E(17)^-8, E(17)^-8, E(17)^5, E(17)^-7, E(17)^-8, E(17)^-4, E(17)^-6, E(17)^-8, E(17)^-7, E(17)^-6, E(17)^7, E(17), E(17)^3, E(17)^-2, E(17)^6, E(17)^3, E(17)^-2, E(17)^6, E(17)^5, E(17)^-1, E(17)^8, E(17)^5, E(17)^-4, E(17)^-2, E(17)^2, E(17)^4, E(17)^3, E(17)^-3, E(17), E(17)^6, E(17)^-2, E(17)^-2, E(17)^5, E(17)^8, E(17)^-1, E(17)^5, E(17)^-5, E(17)^8, E(17)^-3, E(17)^4, E(17)^-8, E(17)^-1, E(17)^4, E(17)^3, E(17)^-1, E(17)^-4, E(17)^-5, E(17), E(17)^2, E(17)^-6, E(17)^6, E(17)^-2, E(17)^-5, E(17)^-4, E(17), E(17)^8, E(17)^-6, E(17)^-7, E(17)^5, E(17)^-6, E(17)^-8, E(17)^-6, E(17)^-1, E(17)^-2, E(17)^-3, E(17)^3, E(17)^7, E(17)^-4, E(17)^7, E(17), E(17)^4, E(17)^7, E(17)^4, E(17)^5, E(17)^-8, E(17)^-1, E(17)^8, E(17)^-8, E(17)^-1, E(17)^2, E(17)^6, E(17)^2, E(17)^5, E(17)^6, E(17)^5, E(17)^-5, E(17), E(17)^6, E(17)^4, E(17)^-1, E(17)^4, E(17)^-2, E(17)^7, E(17)^4, E(17)^-7, E(17), E(17)^-7, E(17)^6, E(17)^2, E(17)^-2, E(17)^6, E(17)^2, E(17)^-5, E(17)^-3, E(17)^3, E(17)^8, E(17)^-6, E(17)^-4, E(17)^3, E(17)^-7, E(17)^-7, E(17)^4, E(17)^7, E(17)^-8, E(17)^-4, E(17)^2, E(17), E(17)^-5, E(17)^-7, E(17), E(17)^-2, E(17)^-6, E(17)^3, E(17)^5, E(17)^8, E(17)^3, E(17)^2, E(17)^8, E(17)^-8, E(17)^3, E(17)^-3, E(17)^-3, E(17)^8, E(17)^-3, E(17)^6, E(17)^-3, E(17)^-4, E(17)^7, E(17)^5, E(17)^-5, E(17)^-4, E(17)^-1, E(17)^-5, E(17)^-8, E(17)^-1, E(17)^-2, E(17)^-6, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, E(17)^-3, E(17)^7, E(17)^8, E(17)^-8, E(17)^6, E(17)^-2, E(17)^-6, E(17)^4, E(17), E(17)^-4, E(17)^2, E(17)^3, E(17)^-5, E(17)^-1, E(17)^5, E(17)^-7, E(17)^3, E(17)^-2, E(17)^-6, E(17), E(17)^-8, E(17)^5, E(17)^-1, E(17)^2, E(17)^-7, E(17)^-3, E(17)^4, E(17)^7, E(17)^-5, E(17)^6, E(17)^-4, E(17)^8, E(17)^-5, E(17), E(17)^-2, E(17)^4, E(17)^-1, E(17)^6, E(17)^8, E(17)^-4, E(17)^-6, E(17)^8, E(17)^3, E(17)^-6, E(17), E(17)^-4, E(17)^-4, E(17), E(17)^-2, E(17), E(17)^-1, E(17)^4, E(17)^8, E(17)^-6, E(17)^-7, E(17)^7, E(17)^5, E(17)^-2, E(17)^2, E(17)^-1, E(17)^-8, E(17)^-3, E(17)^-3, E(17)^8, E(17)^-5, E(17)^2, E(17)^7, E(17)^-5, E(17)^-1, E(17)^7, E(17)^7, E(17)^-2, E(17)^3, E(17)^-1, E(17)^5, E(17)^3, E(17)^-3, E(17)^6, E(17)^6, E(17)^-8, E(17), E(17)^6, E(17)^3, E(17)^-4, E(17)^6, E(17), E(17)^-4, E(17)^-1, E(17)^-5, E(17)^2, E(17)^-7, E(17)^4, E(17)^2, E(17)^-7, E(17)^4, E(17)^-8, E(17)^5, E(17)^-6, E(17)^-8, E(17)^3, E(17)^-7, E(17)^7, E(17)^-3, E(17)^2, E(17)^-2, E(17)^-5, E(17)^4, E(17)^-7, E(17)^-7, E(17)^-8, E(17)^-6, E(17)^5, E(17)^-8, E(17)^8, E(17)^-6, E(17)^-2, E(17)^-3, E(17)^6, E(17)^5, E(17)^-3, E(17)^2, E(17)^5, E(17)^3, E(17)^8, E(17)^-5, E(17)^7, E(17)^-4, E(17)^4, E(17)^-7, E(17)^8, E(17)^3, E(17)^-5, E(17)^-6, E(17)^-4, E(17), E(17)^-8, E(17)^-4, E(17)^6, E(17)^-4, E(17)^5, E(17)^-7, E(17)^-2, E(17)^2, E(17)^-1, E(17)^3, E(17)^-1, E(17)^-5, E(17)^-3, E(17)^-1, E(17)^-3, E(17)^-8, E(17)^6, E(17)^5, E(17)^-6, E(17)^6, E(17)^5, E(17)^7, E(17)^4, E(17)^7, E(17)^-8, E(17)^4, E(17)^-8, E(17)^8, E(17)^-5, E(17)^4, E(17)^-3, E(17)^5, E(17)^-3, E(17)^-7, E(17)^-1, E(17)^-3, E(17), E(17)^-5, E(17), E(17)^4, E(17)^7, E(17)^-7, E(17)^4, E(17)^7, E(17)^8, E(17)^-2, E(17)^2, E(17)^-6, E(17)^-4, E(17)^3, E(17)^2, E(17), E(17), E(17)^-3, E(17)^-1, E(17)^6, E(17)^3, E(17)^7, E(17)^-5, E(17)^8, E(17), E(17)^-5, E(17)^-7, E(17)^-4, E(17)^2, E(17)^-8, E(17)^-6, E(17)^2, E(17)^7, E(17)^-6, E(17)^6, E(17)^2, E(17)^-2, E(17)^-2, E(17)^-6, E(17)^-2, E(17)^4, E(17)^-2, E(17)^3, E(17)^-1, E(17)^-8, E(17)^8, E(17)^3, E(17)^5, E(17)^8, E(17)^6, E(17)^5, E(17)^-7, E(17)^-4, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, E(17)^3, E(17)^-7, E(17)^-8, E(17)^8, E(17)^-6, E(17)^2, E(17)^6, E(17)^-4, E(17)^-1, E(17)^4, E(17)^-2, E(17)^-3, E(17)^5, E(17), E(17)^-5, E(17)^7, E(17)^-3, E(17)^2, E(17)^6, E(17)^-1, E(17)^8, E(17)^-5, E(17), E(17)^-2, E(17)^7, E(17)^3, E(17)^-4, E(17)^-7, E(17)^5, E(17)^-6, E(17)^4, E(17)^-8, E(17)^5, E(17)^-1, E(17)^2, E(17)^-4, E(17), E(17)^-6, E(17)^-8, E(17)^4, E(17)^6, E(17)^-8, E(17)^-3, E(17)^6, E(17)^-1, E(17)^4, E(17)^4, E(17)^-1, E(17)^2, E(17)^-1, E(17), E(17)^-4, E(17)^-8, E(17)^6, E(17)^7, E(17)^-7, E(17)^-5, E(17)^2, E(17)^-2, E(17), E(17)^8, E(17)^3, E(17)^3, E(17)^-8, E(17)^5, E(17)^-2, E(17)^-7, E(17)^5, E(17), E(17)^-7, E(17)^-7, E(17)^2, E(17)^-3, E(17), E(17)^-5, E(17)^-3, E(17)^3, E(17)^-6, E(17)^-6, E(17)^8, E(17)^-1, E(17)^-6, E(17)^-3, E(17)^4, E(17)^-6, E(17)^-1, E(17)^4, E(17), E(17)^5, E(17)^-2, E(17)^7, E(17)^-4, E(17)^-2, E(17)^7, E(17)^-4, E(17)^8, E(17)^-5, E(17)^6, E(17)^8, E(17)^-3, E(17)^7, E(17)^-7, E(17)^3, E(17)^-2, E(17)^2, E(17)^5, E(17)^-4, E(17)^7, E(17)^7, E(17)^8, E(17)^6, E(17)^-5, E(17)^8, E(17)^-8, E(17)^6, E(17)^2, E(17)^3, E(17)^-6, E(17)^-5, E(17)^3, E(17)^-2, E(17)^-5, E(17)^-3, E(17)^-8, E(17)^5, E(17)^-7, E(17)^4, E(17)^-4, E(17)^7, E(17)^-8, E(17)^-3, E(17)^5, E(17)^6, E(17)^4, E(17)^-1, E(17)^8, E(17)^4, E(17)^-6, E(17)^4, E(17)^-5, E(17)^7, E(17)^2, E(17)^-2, E(17), E(17)^-3, E(17), E(17)^5, E(17)^3, E(17), E(17)^3, E(17)^8, E(17)^-6, E(17)^-5, E(17)^6, E(17)^-6, E(17)^-5, E(17)^-7, E(17)^-4, E(17)^-7, E(17)^8, E(17)^-4, E(17)^8, E(17)^-8, E(17)^5, E(17)^-4, E(17)^3, E(17)^-5, E(17)^3, E(17)^7, E(17), E(17)^3, E(17)^-1, E(17)^5, E(17)^-1, E(17)^-4, E(17)^-7, E(17)^7, E(17)^-4, E(17)^-7, E(17)^-8, E(17)^2, E(17)^-2, E(17)^6, E(17)^4, E(17)^-3, E(17)^-2, E(17)^-1, E(17)^-1, E(17)^3, E(17), E(17)^-6, E(17)^-3, E(17)^-7, E(17)^5, E(17)^-8, E(17)^-1, E(17)^5, E(17)^7, E(17)^4, E(17)^-2, E(17)^8, E(17)^6, E(17)^-2, E(17)^-7, E(17)^6, E(17)^-6, E(17)^-2, E(17)^2, E(17)^2, E(17)^6, E(17)^2, E(17)^-4, E(17)^2, E(17)^-3, E(17), E(17)^8, E(17)^-8, E(17)^-3, E(17)^-5, E(17)^-8, E(17)^-6, E(17)^-5, E(17)^7, E(17)^4, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, E(17)^-2, E(17)^-1, E(17)^-6, E(17)^6, E(17)^4, E(17)^-7, E(17)^-4, E(17)^-3, E(17)^-5, E(17)^3, E(17)^7, E(17)^2, E(17)^8, E(17)^5, E(17)^-8, E(17), E(17)^2, E(17)^-7, E(17)^-4, E(17)^-5, E(17)^6, E(17)^-8, E(17)^5, E(17)^7, E(17), E(17)^-2, E(17)^-3, E(17)^-1, E(17)^8, E(17)^4, E(17)^3, E(17)^-6, E(17)^8, E(17)^-5, E(17)^-7, E(17)^-3, E(17)^5, E(17)^4, E(17)^-6, E(17)^3, E(17)^-4, E(17)^-6, E(17)^2, E(17)^-4, E(17)^-5, E(17)^3, E(17)^3, E(17)^-5, E(17)^-7, E(17)^-5, E(17)^5, E(17)^-3, E(17)^-6, E(17)^-4, E(17), E(17)^-1, E(17)^-8, E(17)^-7, E(17)^7, E(17)^5, E(17)^6, E(17)^-2, E(17)^-2, E(17)^-6, E(17)^8, E(17)^7, E(17)^-1, E(17)^8, E(17)^5, E(17)^-1, E(17)^-1, E(17)^-7, E(17)^2, E(17)^5, E(17)^-8, E(17)^2, E(17)^-2, E(17)^4, E(17)^4, E(17)^6, E(17)^-5, E(17)^4, E(17)^2, E(17)^3, E(17)^4, E(17)^-5, E(17)^3, E(17)^5, E(17)^8, E(17)^7, E(17), E(17)^-3, E(17)^7, E(17), E(17)^-3, E(17)^6, E(17)^-8, E(17)^-4, E(17)^6, E(17)^2, E(17), E(17)^-1, E(17)^-2, E(17)^7, E(17)^-7, E(17)^8, E(17)^-3, E(17), E(17), E(17)^6, E(17)^-4, E(17)^-8, E(17)^6, E(17)^-6, E(17)^-4, E(17)^-7, E(17)^-2, E(17)^4, E(17)^-8, E(17)^-2, E(17)^7, E(17)^-8, E(17)^2, E(17)^-6, E(17)^8, E(17)^-1, E(17)^3, E(17)^-3, E(17), E(17)^-6, E(17)^2, E(17)^8, E(17)^-4, E(17)^3, E(17)^-5, E(17)^6, E(17)^3, E(17)^4, E(17)^3, E(17)^-8, E(17), E(17)^-7, E(17)^7, E(17)^5, E(17)^2, E(17)^5, E(17)^8, E(17)^-2, E(17)^5, E(17)^-2, E(17)^6, E(17)^4, E(17)^-8, E(17)^-4, E(17)^4, E(17)^-8, E(17)^-1, E(17)^-3, E(17)^-1, E(17)^6, E(17)^-3, E(17)^6, E(17)^-6, E(17)^8, E(17)^-3, E(17)^-2, E(17)^-8, E(17)^-2, E(17), E(17)^5, E(17)^-2, E(17)^-5, E(17)^8, E(17)^-5, E(17)^-3, E(17)^-1, E(17), E(17)^-3, E(17)^-1, E(17)^-6, E(17)^-7, E(17)^7, E(17)^-4, E(17)^3, E(17)^2, E(17)^7, E(17)^-5, E(17)^-5, E(17)^-2, E(17)^5, E(17)^4, E(17)^2, E(17)^-1, E(17)^8, E(17)^-6, E(17)^-5, E(17)^8, E(17), E(17)^3, E(17)^7, E(17)^6, E(17)^-4, E(17)^7, E(17)^-1, E(17)^-4, E(17)^4, E(17)^7, E(17)^-7, E(17)^-7, E(17)^-4, E(17)^-7, E(17)^-3, E(17)^-7, E(17)^2, E(17)^5, E(17)^6, E(17)^-6, E(17)^2, E(17)^-8, E(17)^-6, E(17)^4, E(17)^-8, E(17), E(17)^3, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, E(17)^2, E(17), E(17)^6, E(17)^-6, E(17)^-4, E(17)^7, E(17)^4, E(17)^3, E(17)^5, E(17)^-3, E(17)^-7, E(17)^-2, E(17)^-8, E(17)^-5, E(17)^8, E(17)^-1, E(17)^-2, E(17)^7, E(17)^4, E(17)^5, E(17)^-6, E(17)^8, E(17)^-5, E(17)^-7, E(17)^-1, E(17)^2, E(17)^3, E(17), E(17)^-8, E(17)^-4, E(17)^-3, E(17)^6, E(17)^-8, E(17)^5, E(17)^7, E(17)^3, E(17)^-5, E(17)^-4, E(17)^6, E(17)^-3, E(17)^4, E(17)^6, E(17)^-2, E(17)^4, E(17)^5, E(17)^-3, E(17)^-3, E(17)^5, E(17)^7, E(17)^5, E(17)^-5, E(17)^3, E(17)^6, E(17)^4, E(17)^-1, E(17), E(17)^8, E(17)^7, E(17)^-7, E(17)^-5, E(17)^-6, E(17)^2, E(17)^2, E(17)^6, E(17)^-8, E(17)^-7, E(17), E(17)^-8, E(17)^-5, E(17), E(17), E(17)^7, E(17)^-2, E(17)^-5, E(17)^8, E(17)^-2, E(17)^2, E(17)^-4, E(17)^-4, E(17)^-6, E(17)^5, E(17)^-4, E(17)^-2, E(17)^-3, E(17)^-4, E(17)^5, E(17)^-3, E(17)^-5, E(17)^-8, E(17)^-7, E(17)^-1, E(17)^3, E(17)^-7, E(17)^-1, E(17)^3, E(17)^-6, E(17)^8, E(17)^4, E(17)^-6, E(17)^-2, E(17)^-1, E(17), E(17)^2, E(17)^-7, E(17)^7, E(17)^-8, E(17)^3, E(17)^-1, E(17)^-1, E(17)^-6, E(17)^4, E(17)^8, E(17)^-6, E(17)^6, E(17)^4, E(17)^7, E(17)^2, E(17)^-4, E(17)^8, E(17)^2, E(17)^-7, E(17)^8, E(17)^-2, E(17)^6, E(17)^-8, E(17), E(17)^-3, E(17)^3, E(17)^-1, E(17)^6, E(17)^-2, E(17)^-8, E(17)^4, E(17)^-3, E(17)^5, E(17)^-6, E(17)^-3, E(17)^-4, E(17)^-3, E(17)^8, E(17)^-1, E(17)^7, E(17)^-7, E(17)^-5, E(17)^-2, E(17)^-5, E(17)^-8, E(17)^2, E(17)^-5, E(17)^2, E(17)^-6, E(17)^-4, E(17)^8, E(17)^4, E(17)^-4, E(17)^8, E(17), E(17)^3, E(17), E(17)^-6, E(17)^3, E(17)^-6, E(17)^6, E(17)^-8, E(17)^3, E(17)^2, E(17)^8, E(17)^2, E(17)^-1, E(17)^-5, E(17)^2, E(17)^5, E(17)^-8, E(17)^5, E(17)^3, E(17), E(17)^-1, E(17)^3, E(17), E(17)^6, E(17)^7, E(17)^-7, E(17)^4, E(17)^-3, E(17)^-2, E(17)^-7, E(17)^5, E(17)^5, E(17)^2, E(17)^-5, E(17)^-4, E(17)^-2, E(17), E(17)^-8, E(17)^6, E(17)^5, E(17)^-8, E(17)^-1, E(17)^-3, E(17)^-7, E(17)^-6, E(17)^4, E(17)^-7, E(17), E(17)^4, E(17)^-4, E(17)^-7, E(17)^7, E(17)^7, E(17)^4, E(17)^7, E(17)^3, E(17)^7, E(17)^-2, E(17)^-5, E(17)^-6, E(17)^6, E(17)^-2, E(17)^8, E(17)^6, E(17)^-4, E(17)^8, E(17)^-1, E(17)^-3, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, E(17)^-1, E(17)^8, E(17)^-3, E(17)^3, E(17)^2, E(17)^5, E(17)^-2, E(17)^7, E(17)^6, E(17)^-7, E(17)^-5, E(17), E(17)^4, E(17)^-6, E(17)^-4, E(17)^-8, E(17), E(17)^5, E(17)^-2, E(17)^6, E(17)^3, E(17)^-4, E(17)^-6, E(17)^-5, E(17)^-8, E(17)^-1, E(17)^7, E(17)^8, E(17)^4, E(17)^2, E(17)^-7, E(17)^-3, E(17)^4, E(17)^6, E(17)^5, E(17)^7, E(17)^-6, E(17)^2, E(17)^-3, E(17)^-7, E(17)^-2, E(17)^-3, E(17), E(17)^-2, E(17)^6, E(17)^-7, E(17)^-7, E(17)^6, E(17)^5, E(17)^6, E(17)^-6, E(17)^7, E(17)^-3, E(17)^-2, E(17)^-8, E(17)^8, E(17)^-4, E(17)^5, E(17)^-5, E(17)^-6, E(17)^3, E(17)^-1, E(17)^-1, E(17)^-3, E(17)^4, E(17)^-5, E(17)^8, E(17)^4, E(17)^-6, E(17)^8, E(17)^8, E(17)^5, E(17), E(17)^-6, E(17)^-4, E(17), E(17)^-1, E(17)^2, E(17)^2, E(17)^3, E(17)^6, E(17)^2, E(17), E(17)^-7, E(17)^2, E(17)^6, E(17)^-7, E(17)^-6, E(17)^4, E(17)^-5, E(17)^-8, E(17)^7, E(17)^-5, E(17)^-8, E(17)^7, E(17)^3, E(17)^-4, E(17)^-2, E(17)^3, E(17), E(17)^-8, E(17)^8, E(17)^-1, E(17)^-5, E(17)^5, E(17)^4, E(17)^7, E(17)^-8, E(17)^-8, E(17)^3, E(17)^-2, E(17)^-4, E(17)^3, E(17)^-3, E(17)^-2, E(17)^5, E(17)^-1, E(17)^2, E(17)^-4, E(17)^-1, E(17)^-5, E(17)^-4, E(17), E(17)^-3, E(17)^4, E(17)^8, E(17)^-7, E(17)^7, E(17)^-8, E(17)^-3, E(17), E(17)^4, E(17)^-2, E(17)^-7, E(17)^6, E(17)^3, E(17)^-7, E(17)^2, E(17)^-7, E(17)^-4, E(17)^-8, E(17)^5, E(17)^-5, E(17)^-6, E(17), E(17)^-6, E(17)^4, E(17)^-1, E(17)^-6, E(17)^-1, E(17)^3, E(17)^2, E(17)^-4, E(17)^-2, E(17)^2, E(17)^-4, E(17)^8, E(17)^7, E(17)^8, E(17)^3, E(17)^7, E(17)^3, E(17)^-3, E(17)^4, E(17)^7, E(17)^-1, E(17)^-4, E(17)^-1, E(17)^-8, E(17)^-6, E(17)^-1, E(17)^6, E(17)^4, E(17)^6, E(17)^7, E(17)^8, E(17)^-8, E(17)^7, E(17)^8, E(17)^-3, E(17)^5, E(17)^-5, E(17)^-2, E(17)^-7, E(17), E(17)^-5, E(17)^6, E(17)^6, E(17)^-1, E(17)^-6, E(17)^2, E(17), E(17)^8, E(17)^4, E(17)^-3, E(17)^6, E(17)^4, E(17)^-8, E(17)^-7, E(17)^-5, E(17)^3, E(17)^-2, E(17)^-5, E(17)^8, E(17)^-2, E(17)^2, E(17)^-5, E(17)^5, E(17)^5, E(17)^-2, E(17)^5, E(17)^7, E(17)^5, E(17), E(17)^-6, E(17)^3, E(17)^-3, E(17), E(17)^-4, E(17)^-3, E(17)^2, E(17)^-4, E(17)^-8, E(17)^-7, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, E(17), E(17)^-8, E(17)^3, E(17)^-3, E(17)^-2, E(17)^-5, E(17)^2, E(17)^-7, E(17)^-6, E(17)^7, E(17)^5, E(17)^-1, E(17)^-4, E(17)^6, E(17)^4, E(17)^8, E(17)^-1, E(17)^-5, E(17)^2, E(17)^-6, E(17)^-3, E(17)^4, E(17)^6, E(17)^5, E(17)^8, E(17), E(17)^-7, E(17)^-8, E(17)^-4, E(17)^-2, E(17)^7, E(17)^3, E(17)^-4, E(17)^-6, E(17)^-5, E(17)^-7, E(17)^6, E(17)^-2, E(17)^3, E(17)^7, E(17)^2, E(17)^3, E(17)^-1, E(17)^2, E(17)^-6, E(17)^7, E(17)^7, E(17)^-6, E(17)^-5, E(17)^-6, E(17)^6, E(17)^-7, E(17)^3, E(17)^2, E(17)^8, E(17)^-8, E(17)^4, E(17)^-5, E(17)^5, E(17)^6, E(17)^-3, E(17), E(17), E(17)^3, E(17)^-4, E(17)^5, E(17)^-8, E(17)^-4, E(17)^6, E(17)^-8, E(17)^-8, E(17)^-5, E(17)^-1, E(17)^6, E(17)^4, E(17)^-1, E(17), E(17)^-2, E(17)^-2, E(17)^-3, E(17)^-6, E(17)^-2, E(17)^-1, E(17)^7, E(17)^-2, E(17)^-6, E(17)^7, E(17)^6, E(17)^-4, E(17)^5, E(17)^8, E(17)^-7, E(17)^5, E(17)^8, E(17)^-7, E(17)^-3, E(17)^4, E(17)^2, E(17)^-3, E(17)^-1, E(17)^8, E(17)^-8, E(17), E(17)^5, E(17)^-5, E(17)^-4, E(17)^-7, E(17)^8, E(17)^8, E(17)^-3, E(17)^2, E(17)^4, E(17)^-3, E(17)^3, E(17)^2, E(17)^-5, E(17), E(17)^-2, E(17)^4, E(17), E(17)^5, E(17)^4, E(17)^-1, E(17)^3, E(17)^-4, E(17)^-8, E(17)^7, E(17)^-7, E(17)^8, E(17)^3, E(17)^-1, E(17)^-4, E(17)^2, E(17)^7, E(17)^-6, E(17)^-3, E(17)^7, E(17)^-2, E(17)^7, E(17)^4, E(17)^8, E(17)^-5, E(17)^5, E(17)^6, E(17)^-1, E(17)^6, E(17)^-4, E(17), E(17)^6, E(17), E(17)^-3, E(17)^-2, E(17)^4, E(17)^2, E(17)^-2, E(17)^4, E(17)^-8, E(17)^-7, E(17)^-8, E(17)^-3, E(17)^-7, E(17)^-3, E(17)^3, E(17)^-4, E(17)^-7, E(17), E(17)^4, E(17), E(17)^8, E(17)^6, E(17), E(17)^-6, E(17)^-4, E(17)^-6, E(17)^-7, E(17)^-8, E(17)^8, E(17)^-7, E(17)^-8, E(17)^3, E(17)^-5, E(17)^5, E(17)^2, E(17)^7, E(17)^-1, E(17)^5, E(17)^-6, E(17)^-6, E(17), E(17)^6, E(17)^-2, E(17)^-1, E(17)^-8, E(17)^-4, E(17)^3, E(17)^-6, E(17)^-4, E(17)^8, E(17)^7, E(17)^5, E(17)^-3, E(17)^2, E(17)^5, E(17)^-8, E(17)^2, E(17)^-2, E(17)^5, E(17)^-5, E(17)^-5, E(17)^2, E(17)^-5, E(17)^-7, E(17)^-5, E(17)^-1, E(17)^6, E(17)^-3, E(17)^3, E(17)^-1, E(17)^4, E(17)^3, E(17)^-2, E(17)^4, E(17)^8, E(17)^7, 1], [1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, E(17)^-8, E(17)^-4, E(17)^-7, E(17)^7, E(17)^-1, E(17)^6, E(17), E(17)^5, E(17)^-3, E(17)^-5, E(17)^-6, E(17)^8, E(17)^-2, E(17)^3, E(17)^2, E(17)^4, -1*E(17)^8, -1*E(17)^6, -1*E(17), -1*E(17)^-3, -1*E(17)^7, -1*E(17)^2, -1*E(17)^3, -1*E(17)^-6, -1*E(17)^4, -1*E(17)^-8, -1*E(17)^5, -1*E(17)^-4, -1*E(17)^-2, -1*E(17)^-1, -1*E(17)^-5, -1*E(17)^-7, E(17)^-2, E(17)^-3, E(17)^6, E(17)^5, E(17)^3, E(17)^-1, E(17)^-7, E(17)^-5, E(17), E(17)^-7, E(17)^8, E(17), E(17)^-3, E(17)^-5, E(17)^-5, E(17)^-3, E(17)^6, E(17)^-3, E(17)^3, E(17)^5, E(17)^-7, E(17), E(17)^4, E(17)^-4, E(17)^2, E(17)^6, E(17)^-6, E(17)^3, E(17)^7, E(17)^-8, E(17)^-8, E(17)^-7, E(17)^-2, E(17)^-6, E(17)^-4, E(17)^-2, E(17)^3, E(17)^-4, E(17)^-4, E(17)^6, E(17)^8, E(17)^3, E(17)^2, E(17)^8, E(17)^-8, E(17)^-1, E(17)^-1, E(17)^7, E(17)^-3, E(17)^-1, E(17)^8, E(17)^-5, E(17)^-1, E(17)^-3, E(17)^-5, E(17)^3, E(17)^-2, E(17)^-6, E(17)^4, E(17)^5, E(17)^-6, E(17)^4, E(17)^5, E(17)^7, E(17)^2, E(17), E(17)^7, E(17)^8, E(17)^4, E(17)^-4, E(17)^-8, E(17)^-6, E(17)^6, E(17)^-2, E(17)^5, E(17)^4, E(17)^4, E(17)^7, E(17), E(17)^2, E(17)^7, E(17)^-7, E(17), E(17)^6, E(17)^-8, E(17)^-1, E(17)^2, E(17)^-8, E(17)^-6, E(17)^2, E(17)^8, E(17)^-7, E(17)^-2, E(17)^-4, E(17)^-5, E(17)^5, -1*E(17)^4, -1*E(17)^-7, -1*E(17)^8, -1*E(17)^-2, -1*E(17), -1*E(17)^-5, -1*E(17)^-3, -1*E(17)^7, -1*E(17)^-5, -1*E(17)^-1, -1*E(17)^-5, -1*E(17)^2, -1*E(17)^4, -1*E(17)^6, -1*E(17)^-6, -1*E(17)^3, -1*E(17)^8, -1*E(17)^3, -1*E(17)^-2, -1*E(17)^-8, -1*E(17)^3, -1*E(17)^-8, -1*E(17)^7, -1*E(17)^-1, -1*E(17)^2, -1*E(17), -1*E(17)^-1, -1*E(17)^2, -1*E(17)^-4, -1*E(17)^5, -1*E(17)^-4, -1*E(17)^7, -1*E(17)^5, -1*E(17)^7, -1*E(17)^-7, -1*E(17)^-2, -1*E(17)^5, -1*E(17)^-8, -1*E(17)^2, -1*E(17)^-8, -1*E(17)^4, -1*E(17)^3, -1*E(17)^-8, -1*E(17)^-3, -1*E(17)^-2, -1*E(17)^-3, -1*E(17)^5, -1*E(17)^-4, -1*E(17)^4, -1*E(17)^5, -1*E(17)^-4, -1*E(17)^-7, -1*E(17)^6, -1*E(17)^-6, -1*E(17), -1*E(17)^-5, -1*E(17)^8, -1*E(17)^-6, -1*E(17)^-3, -1*E(17)^-3, -1*E(17)^-8, -1*E(17)^3, -1*E(17)^-1, -1*E(17)^8, -1*E(17)^-4, -1*E(17)^-2, -1*E(17)^-7, -1*E(17)^-3, -1*E(17)^-2, -1*E(17)^4, -1*E(17)^-5, -1*E(17)^-6, -1*E(17)^7, -1*E(17), -1*E(17)^-6, -1*E(17)^-4, -1*E(17), -1*E(17)^-1, -1*E(17)^-6, -1*E(17)^6, -1*E(17)^6, -1*E(17), -1*E(17)^6, -1*E(17)^5, -1*E(17)^6, -1*E(17)^8, -1*E(17)^3, -1*E(17)^7, -1*E(17)^-7, -1*E(17)^8, -1*E(17)^2, -1*E(17)^-7, -1*E(17)^-1, -1*E(17)^2, -1*E(17)^4, -1*E(17)^-5, 1], [1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, E(17)^8, E(17)^4, E(17)^7, E(17)^-7, E(17), E(17)^-6, E(17)^-1, E(17)^-5, E(17)^3, E(17)^5, E(17)^6, E(17)^-8, E(17)^2, E(17)^-3, E(17)^-2, E(17)^-4, -1*E(17)^-8, -1*E(17)^-6, -1*E(17)^-1, -1*E(17)^3, -1*E(17)^-7, -1*E(17)^-2, -1*E(17)^-3, -1*E(17)^6, -1*E(17)^-4, -1*E(17)^8, -1*E(17)^-5, -1*E(17)^4, -1*E(17)^2, -1*E(17), -1*E(17)^5, -1*E(17)^7, E(17)^2, E(17)^3, E(17)^-6, E(17)^-5, E(17)^-3, E(17), E(17)^7, E(17)^5, E(17)^-1, E(17)^7, E(17)^-8, E(17)^-1, E(17)^3, E(17)^5, E(17)^5, E(17)^3, E(17)^-6, E(17)^3, E(17)^-3, E(17)^-5, E(17)^7, E(17)^-1, E(17)^-4, E(17)^4, E(17)^-2, E(17)^-6, E(17)^6, E(17)^-3, E(17)^-7, E(17)^8, E(17)^8, E(17)^7, E(17)^2, E(17)^6, E(17)^4, E(17)^2, E(17)^-3, E(17)^4, E(17)^4, E(17)^-6, E(17)^-8, E(17)^-3, E(17)^-2, E(17)^-8, E(17)^8, E(17), E(17), E(17)^-7, E(17)^3, E(17), E(17)^-8, E(17)^5, E(17), E(17)^3, E(17)^5, E(17)^-3, E(17)^2, E(17)^6, E(17)^-4, E(17)^-5, E(17)^6, E(17)^-4, E(17)^-5, E(17)^-7, E(17)^-2, E(17)^-1, E(17)^-7, E(17)^-8, E(17)^-4, E(17)^4, E(17)^8, E(17)^6, E(17)^-6, E(17)^2, E(17)^-5, E(17)^-4, E(17)^-4, E(17)^-7, E(17)^-1, E(17)^-2, E(17)^-7, E(17)^7, E(17)^-1, E(17)^-6, E(17)^8, E(17), E(17)^-2, E(17)^8, E(17)^6, E(17)^-2, E(17)^-8, E(17)^7, E(17)^2, E(17)^4, E(17)^5, E(17)^-5, -1*E(17)^-4, -1*E(17)^7, -1*E(17)^-8, -1*E(17)^2, -1*E(17)^-1, -1*E(17)^5, -1*E(17)^3, -1*E(17)^-7, -1*E(17)^5, -1*E(17), -1*E(17)^5, -1*E(17)^-2, -1*E(17)^-4, -1*E(17)^-6, -1*E(17)^6, -1*E(17)^-3, -1*E(17)^-8, -1*E(17)^-3, -1*E(17)^2, -1*E(17)^8, -1*E(17)^-3, -1*E(17)^8, -1*E(17)^-7, -1*E(17), -1*E(17)^-2, -1*E(17)^-1, -1*E(17), -1*E(17)^-2, -1*E(17)^4, -1*E(17)^-5, -1*E(17)^4, -1*E(17)^-7, -1*E(17)^-5, -1*E(17)^-7, -1*E(17)^7, -1*E(17)^2, -1*E(17)^-5, -1*E(17)^8, -1*E(17)^-2, -1*E(17)^8, -1*E(17)^-4, -1*E(17)^-3, -1*E(17)^8, -1*E(17)^3, -1*E(17)^2, -1*E(17)^3, -1*E(17)^-5, -1*E(17)^4, -1*E(17)^-4, -1*E(17)^-5, -1*E(17)^4, -1*E(17)^7, -1*E(17)^-6, -1*E(17)^6, -1*E(17)^-1, -1*E(17)^5, -1*E(17)^-8, -1*E(17)^6, -1*E(17)^3, -1*E(17)^3, -1*E(17)^8, -1*E(17)^-3, -1*E(17), -1*E(17)^-8, -1*E(17)^4, -1*E(17)^2, -1*E(17)^7, -1*E(17)^3, -1*E(17)^2, -1*E(17)^-4, -1*E(17)^5, -1*E(17)^6, -1*E(17)^-7, -1*E(17)^-1, -1*E(17)^6, -1*E(17)^4, -1*E(17)^-1, -1*E(17), -1*E(17)^6, -1*E(17)^-6, -1*E(17)^-6, -1*E(17)^-1, -1*E(17)^-6, -1*E(17)^-5, -1*E(17)^-6, -1*E(17)^-8, -1*E(17)^-3, -1*E(17)^-7, -1*E(17)^7, -1*E(17)^-8, -1*E(17)^-2, -1*E(17)^7, -1*E(17), -1*E(17)^-2, -1*E(17)^-4, -1*E(17)^5, 1], [1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, E(17)^-7, E(17)^5, E(17)^-4, E(17)^4, E(17)^-3, E(17), E(17)^3, E(17)^-2, E(17)^8, E(17)^2, E(17)^-1, E(17)^7, E(17)^-6, E(17)^-8, E(17)^6, E(17)^-5, -1*E(17)^7, -1*E(17), -1*E(17)^3, -1*E(17)^8, -1*E(17)^4, -1*E(17)^6, -1*E(17)^-8, -1*E(17)^-1, -1*E(17)^-5, -1*E(17)^-7, -1*E(17)^-2, -1*E(17)^5, -1*E(17)^-6, -1*E(17)^-3, -1*E(17)^2, -1*E(17)^-4, E(17)^-6, E(17)^8, E(17), E(17)^-2, E(17)^-8, E(17)^-3, E(17)^-4, E(17)^2, E(17)^3, E(17)^-4, E(17)^7, E(17)^3, E(17)^8, E(17)^2, E(17)^2, E(17)^8, E(17), E(17)^8, E(17)^-8, E(17)^-2, E(17)^-4, E(17)^3, E(17)^-5, E(17)^5, E(17)^6, E(17), E(17)^-1, E(17)^-8, E(17)^4, E(17)^-7, E(17)^-7, E(17)^-4, E(17)^-6, E(17)^-1, E(17)^5, E(17)^-6, E(17)^-8, E(17)^5, E(17)^5, E(17), E(17)^7, E(17)^-8, E(17)^6, E(17)^7, E(17)^-7, E(17)^-3, E(17)^-3, E(17)^4, E(17)^8, E(17)^-3, E(17)^7, E(17)^2, E(17)^-3, E(17)^8, E(17)^2, E(17)^-8, E(17)^-6, E(17)^-1, E(17)^-5, E(17)^-2, E(17)^-1, E(17)^-5, E(17)^-2, E(17)^4, E(17)^6, E(17)^3, E(17)^4, E(17)^7, E(17)^-5, E(17)^5, E(17)^-7, E(17)^-1, E(17), E(17)^-6, E(17)^-2, E(17)^-5, E(17)^-5, E(17)^4, E(17)^3, E(17)^6, E(17)^4, E(17)^-4, E(17)^3, E(17), E(17)^-7, E(17)^-3, E(17)^6, E(17)^-7, E(17)^-1, E(17)^6, E(17)^7, E(17)^-4, E(17)^-6, E(17)^5, E(17)^2, E(17)^-2, -1*E(17)^-5, -1*E(17)^-4, -1*E(17)^7, -1*E(17)^-6, -1*E(17)^3, -1*E(17)^2, -1*E(17)^8, -1*E(17)^4, -1*E(17)^2, -1*E(17)^-3, -1*E(17)^2, -1*E(17)^6, -1*E(17)^-5, -1*E(17), -1*E(17)^-1, -1*E(17)^-8, -1*E(17)^7, -1*E(17)^-8, -1*E(17)^-6, -1*E(17)^-7, -1*E(17)^-8, -1*E(17)^-7, -1*E(17)^4, -1*E(17)^-3, -1*E(17)^6, -1*E(17)^3, -1*E(17)^-3, -1*E(17)^6, -1*E(17)^5, -1*E(17)^-2, -1*E(17)^5, -1*E(17)^4, -1*E(17)^-2, -1*E(17)^4, -1*E(17)^-4, -1*E(17)^-6, -1*E(17)^-2, -1*E(17)^-7, -1*E(17)^6, -1*E(17)^-7, -1*E(17)^-5, -1*E(17)^-8, -1*E(17)^-7, -1*E(17)^8, -1*E(17)^-6, -1*E(17)^8, -1*E(17)^-2, -1*E(17)^5, -1*E(17)^-5, -1*E(17)^-2, -1*E(17)^5, -1*E(17)^-4, -1*E(17), -1*E(17)^-1, -1*E(17)^3, -1*E(17)^2, -1*E(17)^7, -1*E(17)^-1, -1*E(17)^8, -1*E(17)^8, -1*E(17)^-7, -1*E(17)^-8, -1*E(17)^-3, -1*E(17)^7, -1*E(17)^5, -1*E(17)^-6, -1*E(17)^-4, -1*E(17)^8, -1*E(17)^-6, -1*E(17)^-5, -1*E(17)^2, -1*E(17)^-1, -1*E(17)^4, -1*E(17)^3, -1*E(17)^-1, -1*E(17)^5, -1*E(17)^3, -1*E(17)^-3, -1*E(17)^-1, -1*E(17), -1*E(17), -1*E(17)^3, -1*E(17), -1*E(17)^-2, -1*E(17), -1*E(17)^7, -1*E(17)^-8, -1*E(17)^4, -1*E(17)^-4, -1*E(17)^7, -1*E(17)^6, -1*E(17)^-4, -1*E(17)^-3, -1*E(17)^6, -1*E(17)^-5, -1*E(17)^2, 1], [1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, E(17)^7, E(17)^-5, E(17)^4, E(17)^-4, E(17)^3, E(17)^-1, E(17)^-3, E(17)^2, E(17)^-8, E(17)^-2, E(17), E(17)^-7, E(17)^6, E(17)^8, E(17)^-6, E(17)^5, -1*E(17)^-7, -1*E(17)^-1, -1*E(17)^-3, -1*E(17)^-8, -1*E(17)^-4, -1*E(17)^-6, -1*E(17)^8, -1*E(17), -1*E(17)^5, -1*E(17)^7, -1*E(17)^2, -1*E(17)^-5, -1*E(17)^6, -1*E(17)^3, -1*E(17)^-2, -1*E(17)^4, E(17)^6, E(17)^-8, E(17)^-1, E(17)^2, E(17)^8, E(17)^3, E(17)^4, E(17)^-2, E(17)^-3, E(17)^4, E(17)^-7, E(17)^-3, E(17)^-8, E(17)^-2, E(17)^-2, E(17)^-8, E(17)^-1, E(17)^-8, E(17)^8, E(17)^2, E(17)^4, E(17)^-3, E(17)^5, E(17)^-5, E(17)^-6, E(17)^-1, E(17), E(17)^8, E(17)^-4, E(17)^7, E(17)^7, E(17)^4, E(17)^6, E(17), E(17)^-5, E(17)^6, E(17)^8, E(17)^-5, E(17)^-5, E(17)^-1, E(17)^-7, E(17)^8, E(17)^-6, E(17)^-7, E(17)^7, E(17)^3, E(17)^3, E(17)^-4, E(17)^-8, E(17)^3, E(17)^-7, E(17)^-2, E(17)^3, E(17)^-8, E(17)^-2, E(17)^8, E(17)^6, E(17), E(17)^5, E(17)^2, E(17), E(17)^5, E(17)^2, E(17)^-4, E(17)^-6, E(17)^-3, E(17)^-4, E(17)^-7, E(17)^5, E(17)^-5, E(17)^7, E(17), E(17)^-1, E(17)^6, E(17)^2, E(17)^5, E(17)^5, E(17)^-4, E(17)^-3, E(17)^-6, E(17)^-4, E(17)^4, E(17)^-3, E(17)^-1, E(17)^7, E(17)^3, E(17)^-6, E(17)^7, E(17), E(17)^-6, E(17)^-7, E(17)^4, E(17)^6, E(17)^-5, E(17)^-2, E(17)^2, -1*E(17)^5, -1*E(17)^4, -1*E(17)^-7, -1*E(17)^6, -1*E(17)^-3, -1*E(17)^-2, -1*E(17)^-8, -1*E(17)^-4, -1*E(17)^-2, -1*E(17)^3, -1*E(17)^-2, -1*E(17)^-6, -1*E(17)^5, -1*E(17)^-1, -1*E(17), -1*E(17)^8, -1*E(17)^-7, -1*E(17)^8, -1*E(17)^6, -1*E(17)^7, -1*E(17)^8, -1*E(17)^7, -1*E(17)^-4, -1*E(17)^3, -1*E(17)^-6, -1*E(17)^-3, -1*E(17)^3, -1*E(17)^-6, -1*E(17)^-5, -1*E(17)^2, -1*E(17)^-5, -1*E(17)^-4, -1*E(17)^2, -1*E(17)^-4, -1*E(17)^4, -1*E(17)^6, -1*E(17)^2, -1*E(17)^7, -1*E(17)^-6, -1*E(17)^7, -1*E(17)^5, -1*E(17)^8, -1*E(17)^7, -1*E(17)^-8, -1*E(17)^6, -1*E(17)^-8, -1*E(17)^2, -1*E(17)^-5, -1*E(17)^5, -1*E(17)^2, -1*E(17)^-5, -1*E(17)^4, -1*E(17)^-1, -1*E(17), -1*E(17)^-3, -1*E(17)^-2, -1*E(17)^-7, -1*E(17), -1*E(17)^-8, -1*E(17)^-8, -1*E(17)^7, -1*E(17)^8, -1*E(17)^3, -1*E(17)^-7, -1*E(17)^-5, -1*E(17)^6, -1*E(17)^4, -1*E(17)^-8, -1*E(17)^6, -1*E(17)^5, -1*E(17)^-2, -1*E(17), -1*E(17)^-4, -1*E(17)^-3, -1*E(17), -1*E(17)^-5, -1*E(17)^-3, -1*E(17)^3, -1*E(17), -1*E(17)^-1, -1*E(17)^-1, -1*E(17)^-3, -1*E(17)^-1, -1*E(17)^2, -1*E(17)^-1, -1*E(17)^-7, -1*E(17)^8, -1*E(17)^-4, -1*E(17)^4, -1*E(17)^-7, -1*E(17)^-6, -1*E(17)^4, -1*E(17)^3, -1*E(17)^-6, -1*E(17)^5, -1*E(17)^-2, 1], [1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, E(17)^-6, E(17)^-3, E(17)^-1, E(17), E(17)^-5, E(17)^-4, E(17)^5, E(17)^8, E(17)^2, E(17)^-8, E(17)^4, E(17)^6, E(17)^7, E(17)^-2, E(17)^-7, E(17)^3, -1*E(17)^6, -1*E(17)^-4, -1*E(17)^5, -1*E(17)^2, -1*E(17), -1*E(17)^-7, -1*E(17)^-2, -1*E(17)^4, -1*E(17)^3, -1*E(17)^-6, -1*E(17)^8, -1*E(17)^-3, -1*E(17)^7, -1*E(17)^-5, -1*E(17)^-8, -1*E(17)^-1, E(17)^7, E(17)^2, E(17)^-4, E(17)^8, E(17)^-2, E(17)^-5, E(17)^-1, E(17)^-8, E(17)^5, E(17)^-1, E(17)^6, E(17)^5, E(17)^2, E(17)^-8, E(17)^-8, E(17)^2, E(17)^-4, E(17)^2, E(17)^-2, E(17)^8, E(17)^-1, E(17)^5, E(17)^3, E(17)^-3, E(17)^-7, E(17)^-4, E(17)^4, E(17)^-2, E(17), E(17)^-6, E(17)^-6, E(17)^-1, E(17)^7, E(17)^4, E(17)^-3, E(17)^7, E(17)^-2, E(17)^-3, E(17)^-3, E(17)^-4, E(17)^6, E(17)^-2, E(17)^-7, E(17)^6, E(17)^-6, E(17)^-5, E(17)^-5, E(17), E(17)^2, E(17)^-5, E(17)^6, E(17)^-8, E(17)^-5, E(17)^2, E(17)^-8, E(17)^-2, E(17)^7, E(17)^4, E(17)^3, E(17)^8, E(17)^4, E(17)^3, E(17)^8, E(17), E(17)^-7, E(17)^5, E(17), E(17)^6, E(17)^3, E(17)^-3, E(17)^-6, E(17)^4, E(17)^-4, E(17)^7, E(17)^8, E(17)^3, E(17)^3, E(17), E(17)^5, E(17)^-7, E(17), E(17)^-1, E(17)^5, E(17)^-4, E(17)^-6, E(17)^-5, E(17)^-7, E(17)^-6, E(17)^4, E(17)^-7, E(17)^6, E(17)^-1, E(17)^7, E(17)^-3, E(17)^-8, E(17)^8, -1*E(17)^3, -1*E(17)^-1, -1*E(17)^6, -1*E(17)^7, -1*E(17)^5, -1*E(17)^-8, -1*E(17)^2, -1*E(17), -1*E(17)^-8, -1*E(17)^-5, -1*E(17)^-8, -1*E(17)^-7, -1*E(17)^3, -1*E(17)^-4, -1*E(17)^4, -1*E(17)^-2, -1*E(17)^6, -1*E(17)^-2, -1*E(17)^7, -1*E(17)^-6, -1*E(17)^-2, -1*E(17)^-6, -1*E(17), -1*E(17)^-5, -1*E(17)^-7, -1*E(17)^5, -1*E(17)^-5, -1*E(17)^-7, -1*E(17)^-3, -1*E(17)^8, -1*E(17)^-3, -1*E(17), -1*E(17)^8, -1*E(17), -1*E(17)^-1, -1*E(17)^7, -1*E(17)^8, -1*E(17)^-6, -1*E(17)^-7, -1*E(17)^-6, -1*E(17)^3, -1*E(17)^-2, -1*E(17)^-6, -1*E(17)^2, -1*E(17)^7, -1*E(17)^2, -1*E(17)^8, -1*E(17)^-3, -1*E(17)^3, -1*E(17)^8, -1*E(17)^-3, -1*E(17)^-1, -1*E(17)^-4, -1*E(17)^4, -1*E(17)^5, -1*E(17)^-8, -1*E(17)^6, -1*E(17)^4, -1*E(17)^2, -1*E(17)^2, -1*E(17)^-6, -1*E(17)^-2, -1*E(17)^-5, -1*E(17)^6, -1*E(17)^-3, -1*E(17)^7, -1*E(17)^-1, -1*E(17)^2, -1*E(17)^7, -1*E(17)^3, -1*E(17)^-8, -1*E(17)^4, -1*E(17), -1*E(17)^5, -1*E(17)^4, -1*E(17)^-3, -1*E(17)^5, -1*E(17)^-5, -1*E(17)^4, -1*E(17)^-4, -1*E(17)^-4, -1*E(17)^5, -1*E(17)^-4, -1*E(17)^8, -1*E(17)^-4, -1*E(17)^6, -1*E(17)^-2, -1*E(17), -1*E(17)^-1, -1*E(17)^6, -1*E(17)^-7, -1*E(17)^-1, -1*E(17)^-5, -1*E(17)^-7, -1*E(17)^3, -1*E(17)^-8, 1], [1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, E(17)^6, E(17)^3, E(17), E(17)^-1, E(17)^5, E(17)^4, E(17)^-5, E(17)^-8, E(17)^-2, E(17)^8, E(17)^-4, E(17)^-6, E(17)^-7, E(17)^2, E(17)^7, E(17)^-3, -1*E(17)^-6, -1*E(17)^4, -1*E(17)^-5, -1*E(17)^-2, -1*E(17)^-1, -1*E(17)^7, -1*E(17)^2, -1*E(17)^-4, -1*E(17)^-3, -1*E(17)^6, -1*E(17)^-8, -1*E(17)^3, -1*E(17)^-7, -1*E(17)^5, -1*E(17)^8, -1*E(17), E(17)^-7, E(17)^-2, E(17)^4, E(17)^-8, E(17)^2, E(17)^5, E(17), E(17)^8, E(17)^-5, E(17), E(17)^-6, E(17)^-5, E(17)^-2, E(17)^8, E(17)^8, E(17)^-2, E(17)^4, E(17)^-2, E(17)^2, E(17)^-8, E(17), E(17)^-5, E(17)^-3, E(17)^3, E(17)^7, E(17)^4, E(17)^-4, E(17)^2, E(17)^-1, E(17)^6, E(17)^6, E(17), E(17)^-7, E(17)^-4, E(17)^3, E(17)^-7, E(17)^2, E(17)^3, E(17)^3, E(17)^4, E(17)^-6, E(17)^2, E(17)^7, E(17)^-6, E(17)^6, E(17)^5, E(17)^5, E(17)^-1, E(17)^-2, E(17)^5, E(17)^-6, E(17)^8, E(17)^5, E(17)^-2, E(17)^8, E(17)^2, E(17)^-7, E(17)^-4, E(17)^-3, E(17)^-8, E(17)^-4, E(17)^-3, E(17)^-8, E(17)^-1, E(17)^7, E(17)^-5, E(17)^-1, E(17)^-6, E(17)^-3, E(17)^3, E(17)^6, E(17)^-4, E(17)^4, E(17)^-7, E(17)^-8, E(17)^-3, E(17)^-3, E(17)^-1, E(17)^-5, E(17)^7, E(17)^-1, E(17), E(17)^-5, E(17)^4, E(17)^6, E(17)^5, E(17)^7, E(17)^6, E(17)^-4, E(17)^7, E(17)^-6, E(17), E(17)^-7, E(17)^3, E(17)^8, E(17)^-8, -1*E(17)^-3, -1*E(17), -1*E(17)^-6, -1*E(17)^-7, -1*E(17)^-5, -1*E(17)^8, -1*E(17)^-2, -1*E(17)^-1, -1*E(17)^8, -1*E(17)^5, -1*E(17)^8, -1*E(17)^7, -1*E(17)^-3, -1*E(17)^4, -1*E(17)^-4, -1*E(17)^2, -1*E(17)^-6, -1*E(17)^2, -1*E(17)^-7, -1*E(17)^6, -1*E(17)^2, -1*E(17)^6, -1*E(17)^-1, -1*E(17)^5, -1*E(17)^7, -1*E(17)^-5, -1*E(17)^5, -1*E(17)^7, -1*E(17)^3, -1*E(17)^-8, -1*E(17)^3, -1*E(17)^-1, -1*E(17)^-8, -1*E(17)^-1, -1*E(17), -1*E(17)^-7, -1*E(17)^-8, -1*E(17)^6, -1*E(17)^7, -1*E(17)^6, -1*E(17)^-3, -1*E(17)^2, -1*E(17)^6, -1*E(17)^-2, -1*E(17)^-7, -1*E(17)^-2, -1*E(17)^-8, -1*E(17)^3, -1*E(17)^-3, -1*E(17)^-8, -1*E(17)^3, -1*E(17), -1*E(17)^4, -1*E(17)^-4, -1*E(17)^-5, -1*E(17)^8, -1*E(17)^-6, -1*E(17)^-4, -1*E(17)^-2, -1*E(17)^-2, -1*E(17)^6, -1*E(17)^2, -1*E(17)^5, -1*E(17)^-6, -1*E(17)^3, -1*E(17)^-7, -1*E(17), -1*E(17)^-2, -1*E(17)^-7, -1*E(17)^-3, -1*E(17)^8, -1*E(17)^-4, -1*E(17)^-1, -1*E(17)^-5, -1*E(17)^-4, -1*E(17)^3, -1*E(17)^-5, -1*E(17)^5, -1*E(17)^-4, -1*E(17)^4, -1*E(17)^4, -1*E(17)^-5, -1*E(17)^4, -1*E(17)^-8, -1*E(17)^4, -1*E(17)^-6, -1*E(17)^2, -1*E(17)^-1, -1*E(17), -1*E(17)^-6, -1*E(17)^7, -1*E(17), -1*E(17)^5, -1*E(17)^7, -1*E(17)^-3, -1*E(17)^8, 1], [1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, E(17)^-5, E(17)^6, E(17)^2, E(17)^-2, E(17)^-7, E(17)^8, E(17)^7, E(17), E(17)^-4, E(17)^-1, E(17)^-8, E(17)^5, E(17)^3, E(17)^4, E(17)^-3, E(17)^-6, -1*E(17)^5, -1*E(17)^8, -1*E(17)^7, -1*E(17)^-4, -1*E(17)^-2, -1*E(17)^-3, -1*E(17)^4, -1*E(17)^-8, -1*E(17)^-6, -1*E(17)^-5, -1*E(17), -1*E(17)^6, -1*E(17)^3, -1*E(17)^-7, -1*E(17)^-1, -1*E(17)^2, E(17)^3, E(17)^-4, E(17)^8, E(17), E(17)^4, E(17)^-7, E(17)^2, E(17)^-1, E(17)^7, E(17)^2, E(17)^5, E(17)^7, E(17)^-4, E(17)^-1, E(17)^-1, E(17)^-4, E(17)^8, E(17)^-4, E(17)^4, E(17), E(17)^2, E(17)^7, E(17)^-6, E(17)^6, E(17)^-3, E(17)^8, E(17)^-8, E(17)^4, E(17)^-2, E(17)^-5, E(17)^-5, E(17)^2, E(17)^3, E(17)^-8, E(17)^6, E(17)^3, E(17)^4, E(17)^6, E(17)^6, E(17)^8, E(17)^5, E(17)^4, E(17)^-3, E(17)^5, E(17)^-5, E(17)^-7, E(17)^-7, E(17)^-2, E(17)^-4, E(17)^-7, E(17)^5, E(17)^-1, E(17)^-7, E(17)^-4, E(17)^-1, E(17)^4, E(17)^3, E(17)^-8, E(17)^-6, E(17), E(17)^-8, E(17)^-6, E(17), E(17)^-2, E(17)^-3, E(17)^7, E(17)^-2, E(17)^5, E(17)^-6, E(17)^6, E(17)^-5, E(17)^-8, E(17)^8, E(17)^3, E(17), E(17)^-6, E(17)^-6, E(17)^-2, E(17)^7, E(17)^-3, E(17)^-2, E(17)^2, E(17)^7, E(17)^8, E(17)^-5, E(17)^-7, E(17)^-3, E(17)^-5, E(17)^-8, E(17)^-3, E(17)^5, E(17)^2, E(17)^3, E(17)^6, E(17)^-1, E(17), -1*E(17)^-6, -1*E(17)^2, -1*E(17)^5, -1*E(17)^3, -1*E(17)^7, -1*E(17)^-1, -1*E(17)^-4, -1*E(17)^-2, -1*E(17)^-1, -1*E(17)^-7, -1*E(17)^-1, -1*E(17)^-3, -1*E(17)^-6, -1*E(17)^8, -1*E(17)^-8, -1*E(17)^4, -1*E(17)^5, -1*E(17)^4, -1*E(17)^3, -1*E(17)^-5, -1*E(17)^4, -1*E(17)^-5, -1*E(17)^-2, -1*E(17)^-7, -1*E(17)^-3, -1*E(17)^7, -1*E(17)^-7, -1*E(17)^-3, -1*E(17)^6, -1*E(17), -1*E(17)^6, -1*E(17)^-2, -1*E(17), -1*E(17)^-2, -1*E(17)^2, -1*E(17)^3, -1*E(17), -1*E(17)^-5, -1*E(17)^-3, -1*E(17)^-5, -1*E(17)^-6, -1*E(17)^4, -1*E(17)^-5, -1*E(17)^-4, -1*E(17)^3, -1*E(17)^-4, -1*E(17), -1*E(17)^6, -1*E(17)^-6, -1*E(17), -1*E(17)^6, -1*E(17)^2, -1*E(17)^8, -1*E(17)^-8, -1*E(17)^7, -1*E(17)^-1, -1*E(17)^5, -1*E(17)^-8, -1*E(17)^-4, -1*E(17)^-4, -1*E(17)^-5, -1*E(17)^4, -1*E(17)^-7, -1*E(17)^5, -1*E(17)^6, -1*E(17)^3, -1*E(17)^2, -1*E(17)^-4, -1*E(17)^3, -1*E(17)^-6, -1*E(17)^-1, -1*E(17)^-8, -1*E(17)^-2, -1*E(17)^7, -1*E(17)^-8, -1*E(17)^6, -1*E(17)^7, -1*E(17)^-7, -1*E(17)^-8, -1*E(17)^8, -1*E(17)^8, -1*E(17)^7, -1*E(17)^8, -1*E(17), -1*E(17)^8, -1*E(17)^5, -1*E(17)^4, -1*E(17)^-2, -1*E(17)^2, -1*E(17)^5, -1*E(17)^-3, -1*E(17)^2, -1*E(17)^-7, -1*E(17)^-3, -1*E(17)^-6, -1*E(17)^-1, 1], [1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, E(17)^5, E(17)^-6, E(17)^-2, E(17)^2, E(17)^7, E(17)^-8, E(17)^-7, E(17)^-1, E(17)^4, E(17), E(17)^8, E(17)^-5, E(17)^-3, E(17)^-4, E(17)^3, E(17)^6, -1*E(17)^-5, -1*E(17)^-8, -1*E(17)^-7, -1*E(17)^4, -1*E(17)^2, -1*E(17)^3, -1*E(17)^-4, -1*E(17)^8, -1*E(17)^6, -1*E(17)^5, -1*E(17)^-1, -1*E(17)^-6, -1*E(17)^-3, -1*E(17)^7, -1*E(17), -1*E(17)^-2, E(17)^-3, E(17)^4, E(17)^-8, E(17)^-1, E(17)^-4, E(17)^7, E(17)^-2, E(17), E(17)^-7, E(17)^-2, E(17)^-5, E(17)^-7, E(17)^4, E(17), E(17), E(17)^4, E(17)^-8, E(17)^4, E(17)^-4, E(17)^-1, E(17)^-2, E(17)^-7, E(17)^6, E(17)^-6, E(17)^3, E(17)^-8, E(17)^8, E(17)^-4, E(17)^2, E(17)^5, E(17)^5, E(17)^-2, E(17)^-3, E(17)^8, E(17)^-6, E(17)^-3, E(17)^-4, E(17)^-6, E(17)^-6, E(17)^-8, E(17)^-5, E(17)^-4, E(17)^3, E(17)^-5, E(17)^5, E(17)^7, E(17)^7, E(17)^2, E(17)^4, E(17)^7, E(17)^-5, E(17), E(17)^7, E(17)^4, E(17), E(17)^-4, E(17)^-3, E(17)^8, E(17)^6, E(17)^-1, E(17)^8, E(17)^6, E(17)^-1, E(17)^2, E(17)^3, E(17)^-7, E(17)^2, E(17)^-5, E(17)^6, E(17)^-6, E(17)^5, E(17)^8, E(17)^-8, E(17)^-3, E(17)^-1, E(17)^6, E(17)^6, E(17)^2, E(17)^-7, E(17)^3, E(17)^2, E(17)^-2, E(17)^-7, E(17)^-8, E(17)^5, E(17)^7, E(17)^3, E(17)^5, E(17)^8, E(17)^3, E(17)^-5, E(17)^-2, E(17)^-3, E(17)^-6, E(17), E(17)^-1, -1*E(17)^6, -1*E(17)^-2, -1*E(17)^-5, -1*E(17)^-3, -1*E(17)^-7, -1*E(17), -1*E(17)^4, -1*E(17)^2, -1*E(17), -1*E(17)^7, -1*E(17), -1*E(17)^3, -1*E(17)^6, -1*E(17)^-8, -1*E(17)^8, -1*E(17)^-4, -1*E(17)^-5, -1*E(17)^-4, -1*E(17)^-3, -1*E(17)^5, -1*E(17)^-4, -1*E(17)^5, -1*E(17)^2, -1*E(17)^7, -1*E(17)^3, -1*E(17)^-7, -1*E(17)^7, -1*E(17)^3, -1*E(17)^-6, -1*E(17)^-1, -1*E(17)^-6, -1*E(17)^2, -1*E(17)^-1, -1*E(17)^2, -1*E(17)^-2, -1*E(17)^-3, -1*E(17)^-1, -1*E(17)^5, -1*E(17)^3, -1*E(17)^5, -1*E(17)^6, -1*E(17)^-4, -1*E(17)^5, -1*E(17)^4, -1*E(17)^-3, -1*E(17)^4, -1*E(17)^-1, -1*E(17)^-6, -1*E(17)^6, -1*E(17)^-1, -1*E(17)^-6, -1*E(17)^-2, -1*E(17)^-8, -1*E(17)^8, -1*E(17)^-7, -1*E(17), -1*E(17)^-5, -1*E(17)^8, -1*E(17)^4, -1*E(17)^4, -1*E(17)^5, -1*E(17)^-4, -1*E(17)^7, -1*E(17)^-5, -1*E(17)^-6, -1*E(17)^-3, -1*E(17)^-2, -1*E(17)^4, -1*E(17)^-3, -1*E(17)^6, -1*E(17), -1*E(17)^8, -1*E(17)^2, -1*E(17)^-7, -1*E(17)^8, -1*E(17)^-6, -1*E(17)^-7, -1*E(17)^7, -1*E(17)^8, -1*E(17)^-8, -1*E(17)^-8, -1*E(17)^-7, -1*E(17)^-8, -1*E(17)^-1, -1*E(17)^-8, -1*E(17)^-5, -1*E(17)^-4, -1*E(17)^2, -1*E(17)^-2, -1*E(17)^-5, -1*E(17)^3, -1*E(17)^-2, -1*E(17)^7, -1*E(17)^3, -1*E(17)^6, -1*E(17), 1], [1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, E(17)^-4, E(17)^-2, E(17)^5, E(17)^-5, E(17)^8, E(17)^3, E(17)^-8, E(17)^-6, E(17)^7, E(17)^6, E(17)^-3, E(17)^4, E(17)^-1, E(17)^-7, E(17), E(17)^2, -1*E(17)^4, -1*E(17)^3, -1*E(17)^-8, -1*E(17)^7, -1*E(17)^-5, -1*E(17), -1*E(17)^-7, -1*E(17)^-3, -1*E(17)^2, -1*E(17)^-4, -1*E(17)^-6, -1*E(17)^-2, -1*E(17)^-1, -1*E(17)^8, -1*E(17)^6, -1*E(17)^5, E(17)^-1, E(17)^7, E(17)^3, E(17)^-6, E(17)^-7, E(17)^8, E(17)^5, E(17)^6, E(17)^-8, E(17)^5, E(17)^4, E(17)^-8, E(17)^7, E(17)^6, E(17)^6, E(17)^7, E(17)^3, E(17)^7, E(17)^-7, E(17)^-6, E(17)^5, E(17)^-8, E(17)^2, E(17)^-2, E(17), E(17)^3, E(17)^-3, E(17)^-7, E(17)^-5, E(17)^-4, E(17)^-4, E(17)^5, E(17)^-1, E(17)^-3, E(17)^-2, E(17)^-1, E(17)^-7, E(17)^-2, E(17)^-2, E(17)^3, E(17)^4, E(17)^-7, E(17), E(17)^4, E(17)^-4, E(17)^8, E(17)^8, E(17)^-5, E(17)^7, E(17)^8, E(17)^4, E(17)^6, E(17)^8, E(17)^7, E(17)^6, E(17)^-7, E(17)^-1, E(17)^-3, E(17)^2, E(17)^-6, E(17)^-3, E(17)^2, E(17)^-6, E(17)^-5, E(17), E(17)^-8, E(17)^-5, E(17)^4, E(17)^2, E(17)^-2, E(17)^-4, E(17)^-3, E(17)^3, E(17)^-1, E(17)^-6, E(17)^2, E(17)^2, E(17)^-5, E(17)^-8, E(17), E(17)^-5, E(17)^5, E(17)^-8, E(17)^3, E(17)^-4, E(17)^8, E(17), E(17)^-4, E(17)^-3, E(17), E(17)^4, E(17)^5, E(17)^-1, E(17)^-2, E(17)^6, E(17)^-6, -1*E(17)^2, -1*E(17)^5, -1*E(17)^4, -1*E(17)^-1, -1*E(17)^-8, -1*E(17)^6, -1*E(17)^7, -1*E(17)^-5, -1*E(17)^6, -1*E(17)^8, -1*E(17)^6, -1*E(17), -1*E(17)^2, -1*E(17)^3, -1*E(17)^-3, -1*E(17)^-7, -1*E(17)^4, -1*E(17)^-7, -1*E(17)^-1, -1*E(17)^-4, -1*E(17)^-7, -1*E(17)^-4, -1*E(17)^-5, -1*E(17)^8, -1*E(17), -1*E(17)^-8, -1*E(17)^8, -1*E(17), -1*E(17)^-2, -1*E(17)^-6, -1*E(17)^-2, -1*E(17)^-5, -1*E(17)^-6, -1*E(17)^-5, -1*E(17)^5, -1*E(17)^-1, -1*E(17)^-6, -1*E(17)^-4, -1*E(17), -1*E(17)^-4, -1*E(17)^2, -1*E(17)^-7, -1*E(17)^-4, -1*E(17)^7, -1*E(17)^-1, -1*E(17)^7, -1*E(17)^-6, -1*E(17)^-2, -1*E(17)^2, -1*E(17)^-6, -1*E(17)^-2, -1*E(17)^5, -1*E(17)^3, -1*E(17)^-3, -1*E(17)^-8, -1*E(17)^6, -1*E(17)^4, -1*E(17)^-3, -1*E(17)^7, -1*E(17)^7, -1*E(17)^-4, -1*E(17)^-7, -1*E(17)^8, -1*E(17)^4, -1*E(17)^-2, -1*E(17)^-1, -1*E(17)^5, -1*E(17)^7, -1*E(17)^-1, -1*E(17)^2, -1*E(17)^6, -1*E(17)^-3, -1*E(17)^-5, -1*E(17)^-8, -1*E(17)^-3, -1*E(17)^-2, -1*E(17)^-8, -1*E(17)^8, -1*E(17)^-3, -1*E(17)^3, -1*E(17)^3, -1*E(17)^-8, -1*E(17)^3, -1*E(17)^-6, -1*E(17)^3, -1*E(17)^4, -1*E(17)^-7, -1*E(17)^-5, -1*E(17)^5, -1*E(17)^4, -1*E(17), -1*E(17)^5, -1*E(17)^8, -1*E(17), -1*E(17)^2, -1*E(17)^6, 1], [1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, E(17)^4, E(17)^2, E(17)^-5, E(17)^5, E(17)^-8, E(17)^-3, E(17)^8, E(17)^6, E(17)^-7, E(17)^-6, E(17)^3, E(17)^-4, E(17), E(17)^7, E(17)^-1, E(17)^-2, -1*E(17)^-4, -1*E(17)^-3, -1*E(17)^8, -1*E(17)^-7, -1*E(17)^5, -1*E(17)^-1, -1*E(17)^7, -1*E(17)^3, -1*E(17)^-2, -1*E(17)^4, -1*E(17)^6, -1*E(17)^2, -1*E(17), -1*E(17)^-8, -1*E(17)^-6, -1*E(17)^-5, E(17), E(17)^-7, E(17)^-3, E(17)^6, E(17)^7, E(17)^-8, E(17)^-5, E(17)^-6, E(17)^8, E(17)^-5, E(17)^-4, E(17)^8, E(17)^-7, E(17)^-6, E(17)^-6, E(17)^-7, E(17)^-3, E(17)^-7, E(17)^7, E(17)^6, E(17)^-5, E(17)^8, E(17)^-2, E(17)^2, E(17)^-1, E(17)^-3, E(17)^3, E(17)^7, E(17)^5, E(17)^4, E(17)^4, E(17)^-5, E(17), E(17)^3, E(17)^2, E(17), E(17)^7, E(17)^2, E(17)^2, E(17)^-3, E(17)^-4, E(17)^7, E(17)^-1, E(17)^-4, E(17)^4, E(17)^-8, E(17)^-8, E(17)^5, E(17)^-7, E(17)^-8, E(17)^-4, E(17)^-6, E(17)^-8, E(17)^-7, E(17)^-6, E(17)^7, E(17), E(17)^3, E(17)^-2, E(17)^6, E(17)^3, E(17)^-2, E(17)^6, E(17)^5, E(17)^-1, E(17)^8, E(17)^5, E(17)^-4, E(17)^-2, E(17)^2, E(17)^4, E(17)^3, E(17)^-3, E(17), E(17)^6, E(17)^-2, E(17)^-2, E(17)^5, E(17)^8, E(17)^-1, E(17)^5, E(17)^-5, E(17)^8, E(17)^-3, E(17)^4, E(17)^-8, E(17)^-1, E(17)^4, E(17)^3, E(17)^-1, E(17)^-4, E(17)^-5, E(17), E(17)^2, E(17)^-6, E(17)^6, -1*E(17)^-2, -1*E(17)^-5, -1*E(17)^-4, -1*E(17), -1*E(17)^8, -1*E(17)^-6, -1*E(17)^-7, -1*E(17)^5, -1*E(17)^-6, -1*E(17)^-8, -1*E(17)^-6, -1*E(17)^-1, -1*E(17)^-2, -1*E(17)^-3, -1*E(17)^3, -1*E(17)^7, -1*E(17)^-4, -1*E(17)^7, -1*E(17), -1*E(17)^4, -1*E(17)^7, -1*E(17)^4, -1*E(17)^5, -1*E(17)^-8, -1*E(17)^-1, -1*E(17)^8, -1*E(17)^-8, -1*E(17)^-1, -1*E(17)^2, -1*E(17)^6, -1*E(17)^2, -1*E(17)^5, -1*E(17)^6, -1*E(17)^5, -1*E(17)^-5, -1*E(17), -1*E(17)^6, -1*E(17)^4, -1*E(17)^-1, -1*E(17)^4, -1*E(17)^-2, -1*E(17)^7, -1*E(17)^4, -1*E(17)^-7, -1*E(17), -1*E(17)^-7, -1*E(17)^6, -1*E(17)^2, -1*E(17)^-2, -1*E(17)^6, -1*E(17)^2, -1*E(17)^-5, -1*E(17)^-3, -1*E(17)^3, -1*E(17)^8, -1*E(17)^-6, -1*E(17)^-4, -1*E(17)^3, -1*E(17)^-7, -1*E(17)^-7, -1*E(17)^4, -1*E(17)^7, -1*E(17)^-8, -1*E(17)^-4, -1*E(17)^2, -1*E(17), -1*E(17)^-5, -1*E(17)^-7, -1*E(17), -1*E(17)^-2, -1*E(17)^-6, -1*E(17)^3, -1*E(17)^5, -1*E(17)^8, -1*E(17)^3, -1*E(17)^2, -1*E(17)^8, -1*E(17)^-8, -1*E(17)^3, -1*E(17)^-3, -1*E(17)^-3, -1*E(17)^8, -1*E(17)^-3, -1*E(17)^6, -1*E(17)^-3, -1*E(17)^-4, -1*E(17)^7, -1*E(17)^5, -1*E(17)^-5, -1*E(17)^-4, -1*E(17)^-1, -1*E(17)^-5, -1*E(17)^-8, -1*E(17)^-1, -1*E(17)^-2, -1*E(17)^-6, 1], [1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, E(17)^-3, E(17)^7, E(17)^8, E(17)^-8, E(17)^6, E(17)^-2, E(17)^-6, E(17)^4, E(17), E(17)^-4, E(17)^2, E(17)^3, E(17)^-5, E(17)^-1, E(17)^5, E(17)^-7, -1*E(17)^3, -1*E(17)^-2, -1*E(17)^-6, -1*E(17), -1*E(17)^-8, -1*E(17)^5, -1*E(17)^-1, -1*E(17)^2, -1*E(17)^-7, -1*E(17)^-3, -1*E(17)^4, -1*E(17)^7, -1*E(17)^-5, -1*E(17)^6, -1*E(17)^-4, -1*E(17)^8, E(17)^-5, E(17), E(17)^-2, E(17)^4, E(17)^-1, E(17)^6, E(17)^8, E(17)^-4, E(17)^-6, E(17)^8, E(17)^3, E(17)^-6, E(17), E(17)^-4, E(17)^-4, E(17), E(17)^-2, E(17), E(17)^-1, E(17)^4, E(17)^8, E(17)^-6, E(17)^-7, E(17)^7, E(17)^5, E(17)^-2, E(17)^2, E(17)^-1, E(17)^-8, E(17)^-3, E(17)^-3, E(17)^8, E(17)^-5, E(17)^2, E(17)^7, E(17)^-5, E(17)^-1, E(17)^7, E(17)^7, E(17)^-2, E(17)^3, E(17)^-1, E(17)^5, E(17)^3, E(17)^-3, E(17)^6, E(17)^6, E(17)^-8, E(17), E(17)^6, E(17)^3, E(17)^-4, E(17)^6, E(17), E(17)^-4, E(17)^-1, E(17)^-5, E(17)^2, E(17)^-7, E(17)^4, E(17)^2, E(17)^-7, E(17)^4, E(17)^-8, E(17)^5, E(17)^-6, E(17)^-8, E(17)^3, E(17)^-7, E(17)^7, E(17)^-3, E(17)^2, E(17)^-2, E(17)^-5, E(17)^4, E(17)^-7, E(17)^-7, E(17)^-8, E(17)^-6, E(17)^5, E(17)^-8, E(17)^8, E(17)^-6, E(17)^-2, E(17)^-3, E(17)^6, E(17)^5, E(17)^-3, E(17)^2, E(17)^5, E(17)^3, E(17)^8, E(17)^-5, E(17)^7, E(17)^-4, E(17)^4, -1*E(17)^-7, -1*E(17)^8, -1*E(17)^3, -1*E(17)^-5, -1*E(17)^-6, -1*E(17)^-4, -1*E(17), -1*E(17)^-8, -1*E(17)^-4, -1*E(17)^6, -1*E(17)^-4, -1*E(17)^5, -1*E(17)^-7, -1*E(17)^-2, -1*E(17)^2, -1*E(17)^-1, -1*E(17)^3, -1*E(17)^-1, -1*E(17)^-5, -1*E(17)^-3, -1*E(17)^-1, -1*E(17)^-3, -1*E(17)^-8, -1*E(17)^6, -1*E(17)^5, -1*E(17)^-6, -1*E(17)^6, -1*E(17)^5, -1*E(17)^7, -1*E(17)^4, -1*E(17)^7, -1*E(17)^-8, -1*E(17)^4, -1*E(17)^-8, -1*E(17)^8, -1*E(17)^-5, -1*E(17)^4, -1*E(17)^-3, -1*E(17)^5, -1*E(17)^-3, -1*E(17)^-7, -1*E(17)^-1, -1*E(17)^-3, -1*E(17), -1*E(17)^-5, -1*E(17), -1*E(17)^4, -1*E(17)^7, -1*E(17)^-7, -1*E(17)^4, -1*E(17)^7, -1*E(17)^8, -1*E(17)^-2, -1*E(17)^2, -1*E(17)^-6, -1*E(17)^-4, -1*E(17)^3, -1*E(17)^2, -1*E(17), -1*E(17), -1*E(17)^-3, -1*E(17)^-1, -1*E(17)^6, -1*E(17)^3, -1*E(17)^7, -1*E(17)^-5, -1*E(17)^8, -1*E(17), -1*E(17)^-5, -1*E(17)^-7, -1*E(17)^-4, -1*E(17)^2, -1*E(17)^-8, -1*E(17)^-6, -1*E(17)^2, -1*E(17)^7, -1*E(17)^-6, -1*E(17)^6, -1*E(17)^2, -1*E(17)^-2, -1*E(17)^-2, -1*E(17)^-6, -1*E(17)^-2, -1*E(17)^4, -1*E(17)^-2, -1*E(17)^3, -1*E(17)^-1, -1*E(17)^-8, -1*E(17)^8, -1*E(17)^3, -1*E(17)^5, -1*E(17)^8, -1*E(17)^6, -1*E(17)^5, -1*E(17)^-7, -1*E(17)^-4, 1], [1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, E(17)^3, E(17)^-7, E(17)^-8, E(17)^8, E(17)^-6, E(17)^2, E(17)^6, E(17)^-4, E(17)^-1, E(17)^4, E(17)^-2, E(17)^-3, E(17)^5, E(17), E(17)^-5, E(17)^7, -1*E(17)^-3, -1*E(17)^2, -1*E(17)^6, -1*E(17)^-1, -1*E(17)^8, -1*E(17)^-5, -1*E(17), -1*E(17)^-2, -1*E(17)^7, -1*E(17)^3, -1*E(17)^-4, -1*E(17)^-7, -1*E(17)^5, -1*E(17)^-6, -1*E(17)^4, -1*E(17)^-8, E(17)^5, E(17)^-1, E(17)^2, E(17)^-4, E(17), E(17)^-6, E(17)^-8, E(17)^4, E(17)^6, E(17)^-8, E(17)^-3, E(17)^6, E(17)^-1, E(17)^4, E(17)^4, E(17)^-1, E(17)^2, E(17)^-1, E(17), E(17)^-4, E(17)^-8, E(17)^6, E(17)^7, E(17)^-7, E(17)^-5, E(17)^2, E(17)^-2, E(17), E(17)^8, E(17)^3, E(17)^3, E(17)^-8, E(17)^5, E(17)^-2, E(17)^-7, E(17)^5, E(17), E(17)^-7, E(17)^-7, E(17)^2, E(17)^-3, E(17), E(17)^-5, E(17)^-3, E(17)^3, E(17)^-6, E(17)^-6, E(17)^8, E(17)^-1, E(17)^-6, E(17)^-3, E(17)^4, E(17)^-6, E(17)^-1, E(17)^4, E(17), E(17)^5, E(17)^-2, E(17)^7, E(17)^-4, E(17)^-2, E(17)^7, E(17)^-4, E(17)^8, E(17)^-5, E(17)^6, E(17)^8, E(17)^-3, E(17)^7, E(17)^-7, E(17)^3, E(17)^-2, E(17)^2, E(17)^5, E(17)^-4, E(17)^7, E(17)^7, E(17)^8, E(17)^6, E(17)^-5, E(17)^8, E(17)^-8, E(17)^6, E(17)^2, E(17)^3, E(17)^-6, E(17)^-5, E(17)^3, E(17)^-2, E(17)^-5, E(17)^-3, E(17)^-8, E(17)^5, E(17)^-7, E(17)^4, E(17)^-4, -1*E(17)^7, -1*E(17)^-8, -1*E(17)^-3, -1*E(17)^5, -1*E(17)^6, -1*E(17)^4, -1*E(17)^-1, -1*E(17)^8, -1*E(17)^4, -1*E(17)^-6, -1*E(17)^4, -1*E(17)^-5, -1*E(17)^7, -1*E(17)^2, -1*E(17)^-2, -1*E(17), -1*E(17)^-3, -1*E(17), -1*E(17)^5, -1*E(17)^3, -1*E(17), -1*E(17)^3, -1*E(17)^8, -1*E(17)^-6, -1*E(17)^-5, -1*E(17)^6, -1*E(17)^-6, -1*E(17)^-5, -1*E(17)^-7, -1*E(17)^-4, -1*E(17)^-7, -1*E(17)^8, -1*E(17)^-4, -1*E(17)^8, -1*E(17)^-8, -1*E(17)^5, -1*E(17)^-4, -1*E(17)^3, -1*E(17)^-5, -1*E(17)^3, -1*E(17)^7, -1*E(17), -1*E(17)^3, -1*E(17)^-1, -1*E(17)^5, -1*E(17)^-1, -1*E(17)^-4, -1*E(17)^-7, -1*E(17)^7, -1*E(17)^-4, -1*E(17)^-7, -1*E(17)^-8, -1*E(17)^2, -1*E(17)^-2, -1*E(17)^6, -1*E(17)^4, -1*E(17)^-3, -1*E(17)^-2, -1*E(17)^-1, -1*E(17)^-1, -1*E(17)^3, -1*E(17), -1*E(17)^-6, -1*E(17)^-3, -1*E(17)^-7, -1*E(17)^5, -1*E(17)^-8, -1*E(17)^-1, -1*E(17)^5, -1*E(17)^7, -1*E(17)^4, -1*E(17)^-2, -1*E(17)^8, -1*E(17)^6, -1*E(17)^-2, -1*E(17)^-7, -1*E(17)^6, -1*E(17)^-6, -1*E(17)^-2, -1*E(17)^2, -1*E(17)^2, -1*E(17)^6, -1*E(17)^2, -1*E(17)^-4, -1*E(17)^2, -1*E(17)^-3, -1*E(17), -1*E(17)^8, -1*E(17)^-8, -1*E(17)^-3, -1*E(17)^-5, -1*E(17)^-8, -1*E(17)^-6, -1*E(17)^-5, -1*E(17)^7, -1*E(17)^4, 1], [1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, E(17)^-2, E(17)^-1, E(17)^-6, E(17)^6, E(17)^4, E(17)^-7, E(17)^-4, E(17)^-3, E(17)^-5, E(17)^3, E(17)^7, E(17)^2, E(17)^8, E(17)^5, E(17)^-8, E(17), -1*E(17)^2, -1*E(17)^-7, -1*E(17)^-4, -1*E(17)^-5, -1*E(17)^6, -1*E(17)^-8, -1*E(17)^5, -1*E(17)^7, -1*E(17), -1*E(17)^-2, -1*E(17)^-3, -1*E(17)^-1, -1*E(17)^8, -1*E(17)^4, -1*E(17)^3, -1*E(17)^-6, E(17)^8, E(17)^-5, E(17)^-7, E(17)^-3, E(17)^5, E(17)^4, E(17)^-6, E(17)^3, E(17)^-4, E(17)^-6, E(17)^2, E(17)^-4, E(17)^-5, E(17)^3, E(17)^3, E(17)^-5, E(17)^-7, E(17)^-5, E(17)^5, E(17)^-3, E(17)^-6, E(17)^-4, E(17), E(17)^-1, E(17)^-8, E(17)^-7, E(17)^7, E(17)^5, E(17)^6, E(17)^-2, E(17)^-2, E(17)^-6, E(17)^8, E(17)^7, E(17)^-1, E(17)^8, E(17)^5, E(17)^-1, E(17)^-1, E(17)^-7, E(17)^2, E(17)^5, E(17)^-8, E(17)^2, E(17)^-2, E(17)^4, E(17)^4, E(17)^6, E(17)^-5, E(17)^4, E(17)^2, E(17)^3, E(17)^4, E(17)^-5, E(17)^3, E(17)^5, E(17)^8, E(17)^7, E(17), E(17)^-3, E(17)^7, E(17), E(17)^-3, E(17)^6, E(17)^-8, E(17)^-4, E(17)^6, E(17)^2, E(17), E(17)^-1, E(17)^-2, E(17)^7, E(17)^-7, E(17)^8, E(17)^-3, E(17), E(17), E(17)^6, E(17)^-4, E(17)^-8, E(17)^6, E(17)^-6, E(17)^-4, E(17)^-7, E(17)^-2, E(17)^4, E(17)^-8, E(17)^-2, E(17)^7, E(17)^-8, E(17)^2, E(17)^-6, E(17)^8, E(17)^-1, E(17)^3, E(17)^-3, -1*E(17), -1*E(17)^-6, -1*E(17)^2, -1*E(17)^8, -1*E(17)^-4, -1*E(17)^3, -1*E(17)^-5, -1*E(17)^6, -1*E(17)^3, -1*E(17)^4, -1*E(17)^3, -1*E(17)^-8, -1*E(17), -1*E(17)^-7, -1*E(17)^7, -1*E(17)^5, -1*E(17)^2, -1*E(17)^5, -1*E(17)^8, -1*E(17)^-2, -1*E(17)^5, -1*E(17)^-2, -1*E(17)^6, -1*E(17)^4, -1*E(17)^-8, -1*E(17)^-4, -1*E(17)^4, -1*E(17)^-8, -1*E(17)^-1, -1*E(17)^-3, -1*E(17)^-1, -1*E(17)^6, -1*E(17)^-3, -1*E(17)^6, -1*E(17)^-6, -1*E(17)^8, -1*E(17)^-3, -1*E(17)^-2, -1*E(17)^-8, -1*E(17)^-2, -1*E(17), -1*E(17)^5, -1*E(17)^-2, -1*E(17)^-5, -1*E(17)^8, -1*E(17)^-5, -1*E(17)^-3, -1*E(17)^-1, -1*E(17), -1*E(17)^-3, -1*E(17)^-1, -1*E(17)^-6, -1*E(17)^-7, -1*E(17)^7, -1*E(17)^-4, -1*E(17)^3, -1*E(17)^2, -1*E(17)^7, -1*E(17)^-5, -1*E(17)^-5, -1*E(17)^-2, -1*E(17)^5, -1*E(17)^4, -1*E(17)^2, -1*E(17)^-1, -1*E(17)^8, -1*E(17)^-6, -1*E(17)^-5, -1*E(17)^8, -1*E(17), -1*E(17)^3, -1*E(17)^7, -1*E(17)^6, -1*E(17)^-4, -1*E(17)^7, -1*E(17)^-1, -1*E(17)^-4, -1*E(17)^4, -1*E(17)^7, -1*E(17)^-7, -1*E(17)^-7, -1*E(17)^-4, -1*E(17)^-7, -1*E(17)^-3, -1*E(17)^-7, -1*E(17)^2, -1*E(17)^5, -1*E(17)^6, -1*E(17)^-6, -1*E(17)^2, -1*E(17)^-8, -1*E(17)^-6, -1*E(17)^4, -1*E(17)^-8, -1*E(17), -1*E(17)^3, 1], [1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, E(17)^2, E(17), E(17)^6, E(17)^-6, E(17)^-4, E(17)^7, E(17)^4, E(17)^3, E(17)^5, E(17)^-3, E(17)^-7, E(17)^-2, E(17)^-8, E(17)^-5, E(17)^8, E(17)^-1, -1*E(17)^-2, -1*E(17)^7, -1*E(17)^4, -1*E(17)^5, -1*E(17)^-6, -1*E(17)^8, -1*E(17)^-5, -1*E(17)^-7, -1*E(17)^-1, -1*E(17)^2, -1*E(17)^3, -1*E(17), -1*E(17)^-8, -1*E(17)^-4, -1*E(17)^-3, -1*E(17)^6, E(17)^-8, E(17)^5, E(17)^7, E(17)^3, E(17)^-5, E(17)^-4, E(17)^6, E(17)^-3, E(17)^4, E(17)^6, E(17)^-2, E(17)^4, E(17)^5, E(17)^-3, E(17)^-3, E(17)^5, E(17)^7, E(17)^5, E(17)^-5, E(17)^3, E(17)^6, E(17)^4, E(17)^-1, E(17), E(17)^8, E(17)^7, E(17)^-7, E(17)^-5, E(17)^-6, E(17)^2, E(17)^2, E(17)^6, E(17)^-8, E(17)^-7, E(17), E(17)^-8, E(17)^-5, E(17), E(17), E(17)^7, E(17)^-2, E(17)^-5, E(17)^8, E(17)^-2, E(17)^2, E(17)^-4, E(17)^-4, E(17)^-6, E(17)^5, E(17)^-4, E(17)^-2, E(17)^-3, E(17)^-4, E(17)^5, E(17)^-3, E(17)^-5, E(17)^-8, E(17)^-7, E(17)^-1, E(17)^3, E(17)^-7, E(17)^-1, E(17)^3, E(17)^-6, E(17)^8, E(17)^4, E(17)^-6, E(17)^-2, E(17)^-1, E(17), E(17)^2, E(17)^-7, E(17)^7, E(17)^-8, E(17)^3, E(17)^-1, E(17)^-1, E(17)^-6, E(17)^4, E(17)^8, E(17)^-6, E(17)^6, E(17)^4, E(17)^7, E(17)^2, E(17)^-4, E(17)^8, E(17)^2, E(17)^-7, E(17)^8, E(17)^-2, E(17)^6, E(17)^-8, E(17), E(17)^-3, E(17)^3, -1*E(17)^-1, -1*E(17)^6, -1*E(17)^-2, -1*E(17)^-8, -1*E(17)^4, -1*E(17)^-3, -1*E(17)^5, -1*E(17)^-6, -1*E(17)^-3, -1*E(17)^-4, -1*E(17)^-3, -1*E(17)^8, -1*E(17)^-1, -1*E(17)^7, -1*E(17)^-7, -1*E(17)^-5, -1*E(17)^-2, -1*E(17)^-5, -1*E(17)^-8, -1*E(17)^2, -1*E(17)^-5, -1*E(17)^2, -1*E(17)^-6, -1*E(17)^-4, -1*E(17)^8, -1*E(17)^4, -1*E(17)^-4, -1*E(17)^8, -1*E(17), -1*E(17)^3, -1*E(17), -1*E(17)^-6, -1*E(17)^3, -1*E(17)^-6, -1*E(17)^6, -1*E(17)^-8, -1*E(17)^3, -1*E(17)^2, -1*E(17)^8, -1*E(17)^2, -1*E(17)^-1, -1*E(17)^-5, -1*E(17)^2, -1*E(17)^5, -1*E(17)^-8, -1*E(17)^5, -1*E(17)^3, -1*E(17), -1*E(17)^-1, -1*E(17)^3, -1*E(17), -1*E(17)^6, -1*E(17)^7, -1*E(17)^-7, -1*E(17)^4, -1*E(17)^-3, -1*E(17)^-2, -1*E(17)^-7, -1*E(17)^5, -1*E(17)^5, -1*E(17)^2, -1*E(17)^-5, -1*E(17)^-4, -1*E(17)^-2, -1*E(17), -1*E(17)^-8, -1*E(17)^6, -1*E(17)^5, -1*E(17)^-8, -1*E(17)^-1, -1*E(17)^-3, -1*E(17)^-7, -1*E(17)^-6, -1*E(17)^4, -1*E(17)^-7, -1*E(17), -1*E(17)^4, -1*E(17)^-4, -1*E(17)^-7, -1*E(17)^7, -1*E(17)^7, -1*E(17)^4, -1*E(17)^7, -1*E(17)^3, -1*E(17)^7, -1*E(17)^-2, -1*E(17)^-5, -1*E(17)^-6, -1*E(17)^6, -1*E(17)^-2, -1*E(17)^8, -1*E(17)^6, -1*E(17)^-4, -1*E(17)^8, -1*E(17)^-1, -1*E(17)^-3, 1], [1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, E(17)^-1, E(17)^8, E(17)^-3, E(17)^3, E(17)^2, E(17)^5, E(17)^-2, E(17)^7, E(17)^6, E(17)^-7, E(17)^-5, E(17), E(17)^4, E(17)^-6, E(17)^-4, E(17)^-8, -1*E(17), -1*E(17)^5, -1*E(17)^-2, -1*E(17)^6, -1*E(17)^3, -1*E(17)^-4, -1*E(17)^-6, -1*E(17)^-5, -1*E(17)^-8, -1*E(17)^-1, -1*E(17)^7, -1*E(17)^8, -1*E(17)^4, -1*E(17)^2, -1*E(17)^-7, -1*E(17)^-3, E(17)^4, E(17)^6, E(17)^5, E(17)^7, E(17)^-6, E(17)^2, E(17)^-3, E(17)^-7, E(17)^-2, E(17)^-3, E(17), E(17)^-2, E(17)^6, E(17)^-7, E(17)^-7, E(17)^6, E(17)^5, E(17)^6, E(17)^-6, E(17)^7, E(17)^-3, E(17)^-2, E(17)^-8, E(17)^8, E(17)^-4, E(17)^5, E(17)^-5, E(17)^-6, E(17)^3, E(17)^-1, E(17)^-1, E(17)^-3, E(17)^4, E(17)^-5, E(17)^8, E(17)^4, E(17)^-6, E(17)^8, E(17)^8, E(17)^5, E(17), E(17)^-6, E(17)^-4, E(17), E(17)^-1, E(17)^2, E(17)^2, E(17)^3, E(17)^6, E(17)^2, E(17), E(17)^-7, E(17)^2, E(17)^6, E(17)^-7, E(17)^-6, E(17)^4, E(17)^-5, E(17)^-8, E(17)^7, E(17)^-5, E(17)^-8, E(17)^7, E(17)^3, E(17)^-4, E(17)^-2, E(17)^3, E(17), E(17)^-8, E(17)^8, E(17)^-1, E(17)^-5, E(17)^5, E(17)^4, E(17)^7, E(17)^-8, E(17)^-8, E(17)^3, E(17)^-2, E(17)^-4, E(17)^3, E(17)^-3, E(17)^-2, E(17)^5, E(17)^-1, E(17)^2, E(17)^-4, E(17)^-1, E(17)^-5, E(17)^-4, E(17), E(17)^-3, E(17)^4, E(17)^8, E(17)^-7, E(17)^7, -1*E(17)^-8, -1*E(17)^-3, -1*E(17), -1*E(17)^4, -1*E(17)^-2, -1*E(17)^-7, -1*E(17)^6, -1*E(17)^3, -1*E(17)^-7, -1*E(17)^2, -1*E(17)^-7, -1*E(17)^-4, -1*E(17)^-8, -1*E(17)^5, -1*E(17)^-5, -1*E(17)^-6, -1*E(17), -1*E(17)^-6, -1*E(17)^4, -1*E(17)^-1, -1*E(17)^-6, -1*E(17)^-1, -1*E(17)^3, -1*E(17)^2, -1*E(17)^-4, -1*E(17)^-2, -1*E(17)^2, -1*E(17)^-4, -1*E(17)^8, -1*E(17)^7, -1*E(17)^8, -1*E(17)^3, -1*E(17)^7, -1*E(17)^3, -1*E(17)^-3, -1*E(17)^4, -1*E(17)^7, -1*E(17)^-1, -1*E(17)^-4, -1*E(17)^-1, -1*E(17)^-8, -1*E(17)^-6, -1*E(17)^-1, -1*E(17)^6, -1*E(17)^4, -1*E(17)^6, -1*E(17)^7, -1*E(17)^8, -1*E(17)^-8, -1*E(17)^7, -1*E(17)^8, -1*E(17)^-3, -1*E(17)^5, -1*E(17)^-5, -1*E(17)^-2, -1*E(17)^-7, -1*E(17), -1*E(17)^-5, -1*E(17)^6, -1*E(17)^6, -1*E(17)^-1, -1*E(17)^-6, -1*E(17)^2, -1*E(17), -1*E(17)^8, -1*E(17)^4, -1*E(17)^-3, -1*E(17)^6, -1*E(17)^4, -1*E(17)^-8, -1*E(17)^-7, -1*E(17)^-5, -1*E(17)^3, -1*E(17)^-2, -1*E(17)^-5, -1*E(17)^8, -1*E(17)^-2, -1*E(17)^2, -1*E(17)^-5, -1*E(17)^5, -1*E(17)^5, -1*E(17)^-2, -1*E(17)^5, -1*E(17)^7, -1*E(17)^5, -1*E(17), -1*E(17)^-6, -1*E(17)^3, -1*E(17)^-3, -1*E(17), -1*E(17)^-4, -1*E(17)^-3, -1*E(17)^2, -1*E(17)^-4, -1*E(17)^-8, -1*E(17)^-7, 1], [1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, E(17), E(17)^-8, E(17)^3, E(17)^-3, E(17)^-2, E(17)^-5, E(17)^2, E(17)^-7, E(17)^-6, E(17)^7, E(17)^5, E(17)^-1, E(17)^-4, E(17)^6, E(17)^4, E(17)^8, -1*E(17)^-1, -1*E(17)^-5, -1*E(17)^2, -1*E(17)^-6, -1*E(17)^-3, -1*E(17)^4, -1*E(17)^6, -1*E(17)^5, -1*E(17)^8, -1*E(17), -1*E(17)^-7, -1*E(17)^-8, -1*E(17)^-4, -1*E(17)^-2, -1*E(17)^7, -1*E(17)^3, E(17)^-4, E(17)^-6, E(17)^-5, E(17)^-7, E(17)^6, E(17)^-2, E(17)^3, E(17)^7, E(17)^2, E(17)^3, E(17)^-1, E(17)^2, E(17)^-6, E(17)^7, E(17)^7, E(17)^-6, E(17)^-5, E(17)^-6, E(17)^6, E(17)^-7, E(17)^3, E(17)^2, E(17)^8, E(17)^-8, E(17)^4, E(17)^-5, E(17)^5, E(17)^6, E(17)^-3, E(17), E(17), E(17)^3, E(17)^-4, E(17)^5, E(17)^-8, E(17)^-4, E(17)^6, E(17)^-8, E(17)^-8, E(17)^-5, E(17)^-1, E(17)^6, E(17)^4, E(17)^-1, E(17), E(17)^-2, E(17)^-2, E(17)^-3, E(17)^-6, E(17)^-2, E(17)^-1, E(17)^7, E(17)^-2, E(17)^-6, E(17)^7, E(17)^6, E(17)^-4, E(17)^5, E(17)^8, E(17)^-7, E(17)^5, E(17)^8, E(17)^-7, E(17)^-3, E(17)^4, E(17)^2, E(17)^-3, E(17)^-1, E(17)^8, E(17)^-8, E(17), E(17)^5, E(17)^-5, E(17)^-4, E(17)^-7, E(17)^8, E(17)^8, E(17)^-3, E(17)^2, E(17)^4, E(17)^-3, E(17)^3, E(17)^2, E(17)^-5, E(17), E(17)^-2, E(17)^4, E(17), E(17)^5, E(17)^4, E(17)^-1, E(17)^3, E(17)^-4, E(17)^-8, E(17)^7, E(17)^-7, -1*E(17)^8, -1*E(17)^3, -1*E(17)^-1, -1*E(17)^-4, -1*E(17)^2, -1*E(17)^7, -1*E(17)^-6, -1*E(17)^-3, -1*E(17)^7, -1*E(17)^-2, -1*E(17)^7, -1*E(17)^4, -1*E(17)^8, -1*E(17)^-5, -1*E(17)^5, -1*E(17)^6, -1*E(17)^-1, -1*E(17)^6, -1*E(17)^-4, -1*E(17), -1*E(17)^6, -1*E(17), -1*E(17)^-3, -1*E(17)^-2, -1*E(17)^4, -1*E(17)^2, -1*E(17)^-2, -1*E(17)^4, -1*E(17)^-8, -1*E(17)^-7, -1*E(17)^-8, -1*E(17)^-3, -1*E(17)^-7, -1*E(17)^-3, -1*E(17)^3, -1*E(17)^-4, -1*E(17)^-7, -1*E(17), -1*E(17)^4, -1*E(17), -1*E(17)^8, -1*E(17)^6, -1*E(17), -1*E(17)^-6, -1*E(17)^-4, -1*E(17)^-6, -1*E(17)^-7, -1*E(17)^-8, -1*E(17)^8, -1*E(17)^-7, -1*E(17)^-8, -1*E(17)^3, -1*E(17)^-5, -1*E(17)^5, -1*E(17)^2, -1*E(17)^7, -1*E(17)^-1, -1*E(17)^5, -1*E(17)^-6, -1*E(17)^-6, -1*E(17), -1*E(17)^6, -1*E(17)^-2, -1*E(17)^-1, -1*E(17)^-8, -1*E(17)^-4, -1*E(17)^3, -1*E(17)^-6, -1*E(17)^-4, -1*E(17)^8, -1*E(17)^7, -1*E(17)^5, -1*E(17)^-3, -1*E(17)^2, -1*E(17)^5, -1*E(17)^-8, -1*E(17)^2, -1*E(17)^-2, -1*E(17)^5, -1*E(17)^-5, -1*E(17)^-5, -1*E(17)^2, -1*E(17)^-5, -1*E(17)^-7, -1*E(17)^-5, -1*E(17)^-1, -1*E(17)^6, -1*E(17)^-3, -1*E(17)^3, -1*E(17)^-1, -1*E(17)^4, -1*E(17)^3, -1*E(17)^-2, -1*E(17)^4, -1*E(17)^8, -1*E(17)^7, 1], [1, 1, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^51, E(119)^17, E(119)^17, E(119)^-17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-56, E(119)^-28, E(119)^-49, E(119)^49, E(119)^-7, E(119)^42, E(119)^7, E(119)^35, E(119)^-21, E(119)^-35, E(119)^-42, E(119)^56, E(119)^-14, E(119)^21, E(119)^14, E(119)^28, E(119)^56, E(119)^42, E(119)^7, E(119)^-21, E(119)^49, E(119)^14, E(119)^21, E(119)^-42, E(119)^28, E(119)^-56, E(119)^35, E(119)^-28, E(119)^-14, E(119)^-7, E(119)^-35, E(119)^-49, E(119)^3, E(119)^-55, E(119)^-9, E(119)^18, E(119)^-47, E(119)^-58, E(119)^-32, E(119)^50, E(119)^-44, E(119)^53, E(119)^-12, E(119)^-10, E(119)^-38, E(119)^16, E(119)^-18, E(119)^47, E(119)^8, E(119)^-4, E(119)^55, E(119)^-50, E(119)^2, E(119)^41, E(119)^-57, E(119)^23, E(119)^48, E(119)^-43, E(119)^-25, E(119)^-13, E(119)^15, E(119)^-39, E(119)^-5, E(119)^36, E(119)^-31, E(119)^9, E(119)^-45, E(119)^54, E(119)^38, E(119)^-11, E(119)^40, E(119)^-26, E(119)^39, E(119)^-30, E(119)^-20, E(119)^-46, E(119)^-22, E(119)^27, E(119)^44, E(119)^-36, E(119)^13, E(119)^10, E(119)^22, E(119)^33, E(119)^-24, E(119)^30, E(119)^-52, E(119)^4, E(119)^37, E(119)^-59, E(119)^11, E(119)^-33, E(119)^-8, E(119)^-23, E(119), E(119)^-53, E(119)^-37, E(119)^-27, E(119)^-19, E(119)^-29, E(119)^-6, E(119)^57, E(119)^29, E(119)^26, E(119)^59, E(119)^-48, E(119)^-16, E(119)^45, E(119)^-40, E(119)^-2, E(119)^24, E(119)^-54, E(119)^32, E(119)^19, E(119)^58, E(119)^25, E(119)^46, E(119)^-41, E(119)^-3, E(119)^12, E(119)^43, E(119)^31, E(119)^5, E(119)^-15, E(119)^20, E(119)^6, E(119)^-1, E(119)^52, E(119)^-40, E(119)^19, E(119)^-12, E(119)^-48, E(119)^-44, E(119)^16, E(119)^47, E(119)^-36, E(119)^-18, E(119)^-24, E(119)^-52, E(119)^31, E(119)^11, E(119)^-43, E(119)^-25, E(119)^4, E(119)^39, E(119)^38, E(119)^20, E(119)^29, E(119)^-47, E(119)^12, E(119)^15, E(119)^44, E(119)^-37, E(119)^-27, E(119)^-41, E(119)^48, E(119)^-11, E(119)^-33, E(119)^40, E(119)^-19, E(119), E(119)^-53, E(119)^53, E(119)^-31, E(119)^52, E(119)^46, E(119)^-3, E(119)^-39, E(119)^-57, E(119)^-13, E(119)^-5, E(119)^13, E(119)^54, E(119)^30, E(119)^-50, E(119)^57, E(119)^45, E(119)^-16, E(119)^23, E(119)^36, E(119)^-9, E(119)^26, E(119)^-10, E(119)^-1, E(119)^5, E(119)^-59, E(119)^-38, E(119)^-4, E(119)^-22, E(119)^-30, E(119)^10, E(119)^-29, E(119)^-45, E(119)^3, E(119)^-15, E(119)^-55, E(119)^37, E(119)^-23, E(119)^50, E(119)^9, E(119)^-2, E(119)^58, E(119)^43, E(119)^6, E(119)^24, E(119)^27, E(119)^-8, E(119)^-26, E(119)^8, E(119)^41, E(119)^59, E(119)^18, E(119)^25, E(119)^-46, E(119)^55, E(119)^32, E(119)^-32, E(119)^22, E(119)^-20, E(119)^2, E(119)^-58, E(119)^-54, E(119)^-6, E(119)^33, 1], [1, 1, E(119)^51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-51, E(119)^-17, E(119)^-17, E(119)^17, E(119)^-51, E(119)^51, E(119)^34, E(119)^-34, E(119)^56, E(119)^28, E(119)^49, E(119)^-49, E(119)^7, E(119)^-42, E(119)^-7, E(119)^-35, E(119)^21, E(119)^35, E(119)^42, E(119)^-56, E(119)^14, E(119)^-21, E(119)^-14, E(119)^-28, E(119)^-56, E(119)^-42, E(119)^-7, E(119)^21, E(119)^-49, E(119)^-14, E(119)^-21, E(119)^42, E(119)^-28, E(119)^56, E(119)^-35, E(119)^28, E(119)^14, E(119)^7, E(119)^35, E(119)^49, E(119)^-3, E(119)^55, E(119)^9, E(119)^-18, E(119)^47, E(119)^58, E(119)^32, E(119)^-50, E(119)^44, E(119)^-53, E(119)^12, E(119)^10, E(119)^38, E(119)^-16, E(119)^18, E(119)^-47, E(119)^-8, E(119)^4, E(119)^-55, E(119)^50, E(119)^-2, E(119)^-41, E(119)^57, E(119)^-23, E(119)^-48, E(119)^43, E(119)^25, E(119)^13, E(119)^-15, E(119)^39, E(119)^5, E(119)^-36, E(119)^31, E(119)^-9, E(119)^45, E(119)^-54, E(119)^-38, E(119)^11, E(119)^-40, E(119)^26, E(119)^-39, E(119)^30, E(119)^20, E(119)^46, E(119)^22, E(119)^-27, E(119)^-44, E(119)^36, E(119)^-13, E(119)^-10, E(119)^-22, E(119)^-33, E(119)^24, E(119)^-30, E(119)^52, E(119)^-4, E(119)^-37, E(119)^59, E(119)^-11, E(119)^33, E(119)^8, E(119)^23, E(119)^-1, E(119)^53, E(119)^37, E(119)^27, E(119)^19, E(119)^29, E(119)^6, E(119)^-57, E(119)^-29, E(119)^-26, E(119)^-59, E(119)^48, E(119)^16, E(119)^-45, E(119)^40, E(119)^2, E(119)^-24, E(119)^54, E(119)^-32, E(119)^-19, E(119)^-58, E(119)^-25, E(119)^-46, E(119)^41, E(119)^3, E(119)^-12, E(119)^-43, E(119)^-31, E(119)^-5, E(119)^15, E(119)^-20, E(119)^-6, E(119), E(119)^-52, E(119)^40, E(119)^-19, E(119)^12, E(119)^48, E(119)^44, E(119)^-16, E(119)^-47, E(119)^36, E(119)^18, E(119)^24, E(119)^52, E(119)^-31, E(119)^-11, E(119)^43, E(119)^25, E(119)^-4, E(119)^-39, E(119)^-38, E(119)^-20, E(119)^-29, E(119)^47, E(119)^-12, E(119)^-15, E(119)^-44, E(119)^37, E(119)^27, E(119)^41, E(119)^-48, E(119)^11, E(119)^33, E(119)^-40, E(119)^19, E(119)^-1, E(119)^53, E(119)^-53, E(119)^31, E(119)^-52, E(119)^-46, E(119)^3, E(119)^39, E(119)^57, E(119)^13, E(119)^5, E(119)^-13, E(119)^-54, E(119)^-30, E(119)^50, E(119)^-57, E(119)^-45, E(119)^16, E(119)^-23, E(119)^-36, E(119)^9, E(119)^-26, E(119)^10, E(119), E(119)^-5, E(119)^59, E(119)^38, E(119)^4, E(119)^22, E(119)^30, E(119)^-10, E(119)^29, E(119)^45, E(119)^-3, E(119)^15, E(119)^55, E(119)^-37, E(119)^23, E(119)^-50, E(119)^-9, E(119)^2, E(119)^-58, E(119)^-43, E(119)^-6, E(119)^-24, E(119)^-27, E(119)^8, E(119)^26, E(119)^-8, E(119)^-41, E(119)^-59, E(119)^-18, E(119)^-25, E(119)^46, E(119)^-55, E(119)^-32, E(119)^32, E(119)^-22, E(119)^20, E(119)^-2, E(119)^58, E(119)^54, E(119)^6, E(119)^-33, 1], [1, 1, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^51, E(119)^17, E(119)^17, E(119)^-17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^34, E(119)^56, E(119)^28, E(119)^49, E(119)^-49, E(119)^7, E(119)^-42, E(119)^-7, E(119)^-35, E(119)^21, E(119)^35, E(119)^42, E(119)^-56, E(119)^14, E(119)^-21, E(119)^-14, E(119)^-28, E(119)^-56, E(119)^-42, E(119)^-7, E(119)^21, E(119)^-49, E(119)^-14, E(119)^-21, E(119)^42, E(119)^-28, E(119)^56, E(119)^-35, E(119)^28, E(119)^14, E(119)^7, E(119)^35, E(119)^49, E(119)^31, E(119)^-13, E(119)^26, E(119)^-52, E(119)^30, E(119)^-44, E(119)^-53, E(119), E(119)^-58, E(119)^32, E(119)^-5, E(119)^-24, E(119)^4, E(119)^-33, E(119)^52, E(119)^-30, E(119)^43, E(119)^38, E(119)^13, E(119)^-1, E(119)^-19, E(119)^27, E(119)^6, E(119)^-40, E(119)^20, E(119)^-8, E(119)^59, E(119)^-55, E(119)^36, E(119)^-46, E(119)^-12, E(119)^15, E(119)^-3, E(119)^-26, E(119)^11, E(119)^-37, E(119)^-4, E(119)^45, E(119)^-23, E(119)^9, E(119)^46, E(119)^47, E(119)^-48, E(119)^-39, E(119)^-29, E(119)^41, E(119)^58, E(119)^-15, E(119)^55, E(119)^24, E(119)^29, E(119)^-16, E(119)^-10, E(119)^-47, E(119)^18, E(119)^-38, E(119)^-54, E(119)^25, E(119)^-45, E(119)^16, E(119)^-43, E(119)^40, E(119)^50, E(119)^-32, E(119)^54, E(119)^-41, E(119)^2, E(119)^-22, E(119)^57, E(119)^-6, E(119)^22, E(119)^-9, E(119)^-25, E(119)^-20, E(119)^33, E(119)^-11, E(119)^23, E(119)^19, E(119)^10, E(119)^37, E(119)^53, E(119)^-2, E(119)^44, E(119)^-59, E(119)^39, E(119)^-27, E(119)^-31, E(119)^5, E(119)^8, E(119)^3, E(119)^12, E(119)^-36, E(119)^48, E(119)^-57, E(119)^-50, E(119)^-18, E(119)^23, E(119)^-2, E(119)^-5, E(119)^-20, E(119)^-58, E(119)^-33, E(119)^-30, E(119)^-15, E(119)^52, E(119)^-10, E(119)^18, E(119)^3, E(119)^-45, E(119)^-8, E(119)^59, E(119)^-38, E(119)^46, E(119)^-4, E(119)^48, E(119)^22, E(119)^30, E(119)^5, E(119)^36, E(119)^58, E(119)^54, E(119)^-41, E(119)^-27, E(119)^20, E(119)^45, E(119)^16, E(119)^-23, E(119)^2, E(119)^50, E(119)^-32, E(119)^32, E(119)^-3, E(119)^-18, E(119)^39, E(119)^-31, E(119)^-46, E(119)^6, E(119)^-55, E(119)^-12, E(119)^55, E(119)^-37, E(119)^-47, E(119)^-1, E(119)^-6, E(119)^-11, E(119)^33, E(119)^-40, E(119)^15, E(119)^26, E(119)^-9, E(119)^-24, E(119)^-50, E(119)^12, E(119)^25, E(119)^4, E(119)^38, E(119)^-29, E(119)^47, E(119)^24, E(119)^-22, E(119)^11, E(119)^31, E(119)^-36, E(119)^-13, E(119)^-54, E(119)^40, E(119), E(119)^-26, E(119)^19, E(119)^44, E(119)^8, E(119)^-57, E(119)^10, E(119)^41, E(119)^-43, E(119)^9, E(119)^43, E(119)^27, E(119)^-25, E(119)^-52, E(119)^-59, E(119)^-39, E(119)^13, E(119)^53, E(119)^-53, E(119)^29, E(119)^-48, E(119)^-19, E(119)^-44, E(119)^37, E(119)^57, E(119)^-16, 1], [1, 1, E(119)^51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-51, E(119)^-17, E(119)^-17, E(119)^17, E(119)^-51, E(119)^51, E(119)^34, E(119)^-34, E(119)^-56, E(119)^-28, E(119)^-49, E(119)^49, E(119)^-7, E(119)^42, E(119)^7, E(119)^35, E(119)^-21, E(119)^-35, E(119)^-42, E(119)^56, E(119)^-14, E(119)^21, E(119)^14, E(119)^28, E(119)^56, E(119)^42, E(119)^7, E(119)^-21, E(119)^49, E(119)^14, E(119)^21, E(119)^-42, E(119)^28, E(119)^-56, E(119)^35, E(119)^-28, E(119)^-14, E(119)^-7, E(119)^-35, E(119)^-49, E(119)^-31, E(119)^13, E(119)^-26, E(119)^52, E(119)^-30, E(119)^44, E(119)^53, E(119)^-1, E(119)^58, E(119)^-32, E(119)^5, E(119)^24, E(119)^-4, E(119)^33, E(119)^-52, E(119)^30, E(119)^-43, E(119)^-38, E(119)^-13, E(119), E(119)^19, E(119)^-27, E(119)^-6, E(119)^40, E(119)^-20, E(119)^8, E(119)^-59, E(119)^55, E(119)^-36, E(119)^46, E(119)^12, E(119)^-15, E(119)^3, E(119)^26, E(119)^-11, E(119)^37, E(119)^4, E(119)^-45, E(119)^23, E(119)^-9, E(119)^-46, E(119)^-47, E(119)^48, E(119)^39, E(119)^29, E(119)^-41, E(119)^-58, E(119)^15, E(119)^-55, E(119)^-24, E(119)^-29, E(119)^16, E(119)^10, E(119)^47, E(119)^-18, E(119)^38, E(119)^54, E(119)^-25, E(119)^45, E(119)^-16, E(119)^43, E(119)^-40, E(119)^-50, E(119)^32, E(119)^-54, E(119)^41, E(119)^-2, E(119)^22, E(119)^-57, E(119)^6, E(119)^-22, E(119)^9, E(119)^25, E(119)^20, E(119)^-33, E(119)^11, E(119)^-23, E(119)^-19, E(119)^-10, E(119)^-37, E(119)^-53, E(119)^2, E(119)^-44, E(119)^59, E(119)^-39, E(119)^27, E(119)^31, E(119)^-5, E(119)^-8, E(119)^-3, E(119)^-12, E(119)^36, E(119)^-48, E(119)^57, E(119)^50, E(119)^18, E(119)^-23, E(119)^2, E(119)^5, E(119)^20, E(119)^58, E(119)^33, E(119)^30, E(119)^15, E(119)^-52, E(119)^10, E(119)^-18, E(119)^-3, E(119)^45, E(119)^8, E(119)^-59, E(119)^38, E(119)^-46, E(119)^4, E(119)^-48, E(119)^-22, E(119)^-30, E(119)^-5, E(119)^-36, E(119)^-58, E(119)^-54, E(119)^41, E(119)^27, E(119)^-20, E(119)^-45, E(119)^-16, E(119)^23, E(119)^-2, E(119)^-50, E(119)^32, E(119)^-32, E(119)^3, E(119)^18, E(119)^-39, E(119)^31, E(119)^46, E(119)^-6, E(119)^55, E(119)^12, E(119)^-55, E(119)^37, E(119)^47, E(119), E(119)^6, E(119)^11, E(119)^-33, E(119)^40, E(119)^-15, E(119)^-26, E(119)^9, E(119)^24, E(119)^50, E(119)^-12, E(119)^-25, E(119)^-4, E(119)^-38, E(119)^29, E(119)^-47, E(119)^-24, E(119)^22, E(119)^-11, E(119)^-31, E(119)^36, E(119)^13, E(119)^54, E(119)^-40, E(119)^-1, E(119)^26, E(119)^-19, E(119)^-44, E(119)^-8, E(119)^57, E(119)^-10, E(119)^-41, E(119)^43, E(119)^-9, E(119)^-43, E(119)^-27, E(119)^25, E(119)^52, E(119)^59, E(119)^39, E(119)^-13, E(119)^-53, E(119)^53, E(119)^-29, E(119)^48, E(119)^19, E(119)^44, E(119)^-37, E(119)^-57, E(119)^16, 1], [1, 1, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^51, E(119)^17, E(119)^17, E(119)^-17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-49, E(119)^35, E(119)^-28, E(119)^28, E(119)^-21, E(119)^7, E(119)^21, E(119)^-14, E(119)^56, E(119)^14, E(119)^-7, E(119)^49, E(119)^-42, E(119)^-56, E(119)^42, E(119)^-35, E(119)^49, E(119)^7, E(119)^21, E(119)^56, E(119)^28, E(119)^42, E(119)^-56, E(119)^-7, E(119)^-35, E(119)^-49, E(119)^-14, E(119)^35, E(119)^-42, E(119)^-21, E(119)^14, E(119)^-28, E(119)^-25, E(119)^22, E(119)^-44, E(119)^-31, E(119)^-5, E(119)^47, E(119)^-11, E(119)^-20, E(119)^-30, E(119)^-45, E(119)^-19, E(119)^4, E(119)^39, E(119)^-54, E(119)^31, E(119)^5, E(119)^-27, E(119)^-46, E(119)^-22, E(119)^20, E(119)^23, E(119)^55, E(119)^-1, E(119)^-33, E(119)^-43, E(119)^41, E(119)^10, E(119)^29, E(119)^-6, E(119)^-32, E(119)^2, E(119)^57, E(119)^-59, E(119)^44, E(119)^18, E(119)^26, E(119)^-39, E(119)^52, E(119)^-16, E(119)^58, E(119)^32, E(119)^12, E(119)^8, E(119)^-53, E(119)^-15, E(119)^13, E(119)^30, E(119)^-57, E(119)^-29, E(119)^-4, E(119)^15, E(119)^-37, E(119)^-38, E(119)^-12, E(119)^-3, E(119)^46, E(119)^9, E(119)^-24, E(119)^-52, E(119)^37, E(119)^27, E(119)^33, E(119)^-48, E(119)^45, E(119)^-9, E(119)^-13, E(119)^-40, E(119)^-36, E(119)^50, E(119), E(119)^36, E(119)^-58, E(119)^24, E(119)^43, E(119)^54, E(119)^-18, E(119)^16, E(119)^-23, E(119)^38, E(119)^-26, E(119)^11, E(119)^40, E(119)^-47, E(119)^-10, E(119)^53, E(119)^-55, E(119)^25, E(119)^19, E(119)^-41, E(119)^59, E(119)^-2, E(119)^6, E(119)^-8, E(119)^-50, E(119)^48, E(119)^3, E(119)^16, E(119)^40, E(119)^-19, E(119)^43, E(119)^-30, E(119)^-54, E(119)^5, E(119)^-57, E(119)^31, E(119)^-38, E(119)^-3, E(119)^59, E(119)^-52, E(119)^41, E(119)^10, E(119)^46, E(119)^32, E(119)^-39, E(119)^-8, E(119)^36, E(119)^-5, E(119)^19, E(119)^-6, E(119)^30, E(119)^-9, E(119)^-13, E(119)^-55, E(119)^-43, E(119)^52, E(119)^37, E(119)^-16, E(119)^-40, E(119)^-48, E(119)^45, E(119)^-45, E(119)^-59, E(119)^3, E(119)^53, E(119)^25, E(119)^-32, E(119)^-1, E(119)^29, E(119)^2, E(119)^-29, E(119)^26, E(119)^-12, E(119)^20, E(119), E(119)^-18, E(119)^54, E(119)^-33, E(119)^57, E(119)^-44, E(119)^-58, E(119)^4, E(119)^48, E(119)^-2, E(119)^-24, E(119)^39, E(119)^-46, E(119)^-15, E(119)^12, E(119)^-4, E(119)^-36, E(119)^18, E(119)^-25, E(119)^6, E(119)^22, E(119)^9, E(119)^33, E(119)^-20, E(119)^44, E(119)^-23, E(119)^-47, E(119)^-41, E(119)^-50, E(119)^38, E(119)^13, E(119)^27, E(119)^58, E(119)^-27, E(119)^55, E(119)^24, E(119)^-31, E(119)^-10, E(119)^-53, E(119)^-22, E(119)^11, E(119)^-11, E(119)^15, E(119)^8, E(119)^23, E(119)^47, E(119)^-26, E(119)^50, E(119)^-37, 1], [1, 1, E(119)^51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-51, E(119)^-17, E(119)^-17, E(119)^17, E(119)^-51, E(119)^51, E(119)^34, E(119)^-34, E(119)^49, E(119)^-35, E(119)^28, E(119)^-28, E(119)^21, E(119)^-7, E(119)^-21, E(119)^14, E(119)^-56, E(119)^-14, E(119)^7, E(119)^-49, E(119)^42, E(119)^56, E(119)^-42, E(119)^35, E(119)^-49, E(119)^-7, E(119)^-21, E(119)^-56, E(119)^-28, E(119)^-42, E(119)^56, E(119)^7, E(119)^35, E(119)^49, E(119)^14, E(119)^-35, E(119)^42, E(119)^21, E(119)^-14, E(119)^28, E(119)^25, E(119)^-22, E(119)^44, E(119)^31, E(119)^5, E(119)^-47, E(119)^11, E(119)^20, E(119)^30, E(119)^45, E(119)^19, E(119)^-4, E(119)^-39, E(119)^54, E(119)^-31, E(119)^-5, E(119)^27, E(119)^46, E(119)^22, E(119)^-20, E(119)^-23, E(119)^-55, E(119), E(119)^33, E(119)^43, E(119)^-41, E(119)^-10, E(119)^-29, E(119)^6, E(119)^32, E(119)^-2, E(119)^-57, E(119)^59, E(119)^-44, E(119)^-18, E(119)^-26, E(119)^39, E(119)^-52, E(119)^16, E(119)^-58, E(119)^-32, E(119)^-12, E(119)^-8, E(119)^53, E(119)^15, E(119)^-13, E(119)^-30, E(119)^57, E(119)^29, E(119)^4, E(119)^-15, E(119)^37, E(119)^38, E(119)^12, E(119)^3, E(119)^-46, E(119)^-9, E(119)^24, E(119)^52, E(119)^-37, E(119)^-27, E(119)^-33, E(119)^48, E(119)^-45, E(119)^9, E(119)^13, E(119)^40, E(119)^36, E(119)^-50, E(119)^-1, E(119)^-36, E(119)^58, E(119)^-24, E(119)^-43, E(119)^-54, E(119)^18, E(119)^-16, E(119)^23, E(119)^-38, E(119)^26, E(119)^-11, E(119)^-40, E(119)^47, E(119)^10, E(119)^-53, E(119)^55, E(119)^-25, E(119)^-19, E(119)^41, E(119)^-59, E(119)^2, E(119)^-6, E(119)^8, E(119)^50, E(119)^-48, E(119)^-3, E(119)^-16, E(119)^-40, E(119)^19, E(119)^-43, E(119)^30, E(119)^54, E(119)^-5, E(119)^57, E(119)^-31, E(119)^38, E(119)^3, E(119)^-59, E(119)^52, E(119)^-41, E(119)^-10, E(119)^-46, E(119)^-32, E(119)^39, E(119)^8, E(119)^-36, E(119)^5, E(119)^-19, E(119)^6, E(119)^-30, E(119)^9, E(119)^13, E(119)^55, E(119)^43, E(119)^-52, E(119)^-37, E(119)^16, E(119)^40, E(119)^48, E(119)^-45, E(119)^45, E(119)^59, E(119)^-3, E(119)^-53, E(119)^-25, E(119)^32, E(119), E(119)^-29, E(119)^-2, E(119)^29, E(119)^-26, E(119)^12, E(119)^-20, E(119)^-1, E(119)^18, E(119)^-54, E(119)^33, E(119)^-57, E(119)^44, E(119)^58, E(119)^-4, E(119)^-48, E(119)^2, E(119)^24, E(119)^-39, E(119)^46, E(119)^15, E(119)^-12, E(119)^4, E(119)^36, E(119)^-18, E(119)^25, E(119)^-6, E(119)^-22, E(119)^-9, E(119)^-33, E(119)^20, E(119)^-44, E(119)^23, E(119)^47, E(119)^41, E(119)^50, E(119)^-38, E(119)^-13, E(119)^-27, E(119)^-58, E(119)^27, E(119)^-55, E(119)^-24, E(119)^31, E(119)^10, E(119)^53, E(119)^22, E(119)^-11, E(119)^11, E(119)^-15, E(119)^-8, E(119)^-23, E(119)^-47, E(119)^26, E(119)^-50, E(119)^37, 1], [1, 1, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^51, E(119)^17, E(119)^17, E(119)^-17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^34, E(119)^49, E(119)^-35, E(119)^28, E(119)^-28, E(119)^21, E(119)^-7, E(119)^-21, E(119)^14, E(119)^-56, E(119)^-14, E(119)^7, E(119)^-49, E(119)^42, E(119)^56, E(119)^-42, E(119)^35, E(119)^-49, E(119)^-7, E(119)^-21, E(119)^-56, E(119)^-28, E(119)^-42, E(119)^56, E(119)^7, E(119)^35, E(119)^49, E(119)^14, E(119)^-35, E(119)^42, E(119)^21, E(119)^-14, E(119)^28, E(119)^59, E(119)^29, E(119)^-58, E(119)^-3, E(119)^-12, E(119)^-30, E(119)^45, E(119)^-48, E(119)^47, E(119)^11, E(119)^2, E(119)^-38, E(119)^46, E(119)^37, E(119)^3, E(119)^12, E(119)^-41, E(119)^-39, E(119)^-29, E(119)^48, E(119)^-40, E(119)^13, E(119)^-50, E(119)^16, E(119)^-8, E(119)^27, E(119)^24, E(119)^22, E(119)^57, E(119)^-53, E(119)^-19, E(119)^-6, E(119)^25, E(119)^58, E(119)^-52, E(119)^-9, E(119)^-46, E(119)^-18, E(119)^33, E(119)^44, E(119)^53, E(119)^5, E(119)^43, E(119)^-32, E(119)^-36, E(119)^55, E(119)^-47, E(119)^6, E(119)^-22, E(119)^38, E(119)^36, E(119)^54, E(119)^4, E(119)^-5, E(119)^-31, E(119)^39, E(119)^-26, E(119)^-10, E(119)^18, E(119)^-54, E(119)^41, E(119)^-16, E(119)^-20, E(119)^-11, E(119)^26, E(119)^-55, E(119)^23, E(119)^-15, E(119), E(119)^50, E(119)^15, E(119)^-44, E(119)^10, E(119)^8, E(119)^-37, E(119)^52, E(119)^-33, E(119)^40, E(119)^-4, E(119)^9, E(119)^-45, E(119)^-23, E(119)^30, E(119)^-24, E(119)^32, E(119)^-13, E(119)^-59, E(119)^-2, E(119)^-27, E(119)^-25, E(119)^19, E(119)^-57, E(119)^-43, E(119)^-1, E(119)^20, E(119)^31, E(119)^-33, E(119)^-23, E(119)^2, E(119)^8, E(119)^47, E(119)^37, E(119)^12, E(119)^6, E(119)^3, E(119)^4, E(119)^-31, E(119)^-25, E(119)^18, E(119)^27, E(119)^24, E(119)^39, E(119)^53, E(119)^-46, E(119)^-43, E(119)^15, E(119)^-12, E(119)^-2, E(119)^57, E(119)^-47, E(119)^26, E(119)^-55, E(119)^-13, E(119)^-8, E(119)^-18, E(119)^-54, E(119)^33, E(119)^23, E(119)^-20, E(119)^-11, E(119)^11, E(119)^25, E(119)^31, E(119)^32, E(119)^-59, E(119)^-53, E(119)^-50, E(119)^22, E(119)^-19, E(119)^-22, E(119)^-9, E(119)^-5, E(119)^48, E(119)^50, E(119)^52, E(119)^-37, E(119)^16, E(119)^-6, E(119)^-58, E(119)^-44, E(119)^-38, E(119)^20, E(119)^19, E(119)^-10, E(119)^46, E(119)^-39, E(119)^-36, E(119)^5, E(119)^38, E(119)^-15, E(119)^-52, E(119)^59, E(119)^-57, E(119)^29, E(119)^-26, E(119)^-16, E(119)^-48, E(119)^58, E(119)^40, E(119)^30, E(119)^-27, E(119)^-1, E(119)^-4, E(119)^55, E(119)^41, E(119)^44, E(119)^-41, E(119)^13, E(119)^10, E(119)^-3, E(119)^-24, E(119)^-32, E(119)^-29, E(119)^-45, E(119)^45, E(119)^36, E(119)^43, E(119)^-40, E(119)^-30, E(119)^9, E(119), E(119)^54, 1], [1, 1, E(119)^51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-51, E(119)^-17, E(119)^-17, E(119)^17, E(119)^-51, E(119)^51, E(119)^34, E(119)^-34, E(119)^-49, E(119)^35, E(119)^-28, E(119)^28, E(119)^-21, E(119)^7, E(119)^21, E(119)^-14, E(119)^56, E(119)^14, E(119)^-7, E(119)^49, E(119)^-42, E(119)^-56, E(119)^42, E(119)^-35, E(119)^49, E(119)^7, E(119)^21, E(119)^56, E(119)^28, E(119)^42, E(119)^-56, E(119)^-7, E(119)^-35, E(119)^-49, E(119)^-14, E(119)^35, E(119)^-42, E(119)^-21, E(119)^14, E(119)^-28, E(119)^-59, E(119)^-29, E(119)^58, E(119)^3, E(119)^12, E(119)^30, E(119)^-45, E(119)^48, E(119)^-47, E(119)^-11, E(119)^-2, E(119)^38, E(119)^-46, E(119)^-37, E(119)^-3, E(119)^-12, E(119)^41, E(119)^39, E(119)^29, E(119)^-48, E(119)^40, E(119)^-13, E(119)^50, E(119)^-16, E(119)^8, E(119)^-27, E(119)^-24, E(119)^-22, E(119)^-57, E(119)^53, E(119)^19, E(119)^6, E(119)^-25, E(119)^-58, E(119)^52, E(119)^9, E(119)^46, E(119)^18, E(119)^-33, E(119)^-44, E(119)^-53, E(119)^-5, E(119)^-43, E(119)^32, E(119)^36, E(119)^-55, E(119)^47, E(119)^-6, E(119)^22, E(119)^-38, E(119)^-36, E(119)^-54, E(119)^-4, E(119)^5, E(119)^31, E(119)^-39, E(119)^26, E(119)^10, E(119)^-18, E(119)^54, E(119)^-41, E(119)^16, E(119)^20, E(119)^11, E(119)^-26, E(119)^55, E(119)^-23, E(119)^15, E(119)^-1, E(119)^-50, E(119)^-15, E(119)^44, E(119)^-10, E(119)^-8, E(119)^37, E(119)^-52, E(119)^33, E(119)^-40, E(119)^4, E(119)^-9, E(119)^45, E(119)^23, E(119)^-30, E(119)^24, E(119)^-32, E(119)^13, E(119)^59, E(119)^2, E(119)^27, E(119)^25, E(119)^-19, E(119)^57, E(119)^43, E(119), E(119)^-20, E(119)^-31, E(119)^33, E(119)^23, E(119)^-2, E(119)^-8, E(119)^-47, E(119)^-37, E(119)^-12, E(119)^-6, E(119)^-3, E(119)^-4, E(119)^31, E(119)^25, E(119)^-18, E(119)^-27, E(119)^-24, E(119)^-39, E(119)^-53, E(119)^46, E(119)^43, E(119)^-15, E(119)^12, E(119)^2, E(119)^-57, E(119)^47, E(119)^-26, E(119)^55, E(119)^13, E(119)^8, E(119)^18, E(119)^54, E(119)^-33, E(119)^-23, E(119)^20, E(119)^11, E(119)^-11, E(119)^-25, E(119)^-31, E(119)^-32, E(119)^59, E(119)^53, E(119)^50, E(119)^-22, E(119)^19, E(119)^22, E(119)^9, E(119)^5, E(119)^-48, E(119)^-50, E(119)^-52, E(119)^37, E(119)^-16, E(119)^6, E(119)^58, E(119)^44, E(119)^38, E(119)^-20, E(119)^-19, E(119)^10, E(119)^-46, E(119)^39, E(119)^36, E(119)^-5, E(119)^-38, E(119)^15, E(119)^52, E(119)^-59, E(119)^57, E(119)^-29, E(119)^26, E(119)^16, E(119)^48, E(119)^-58, E(119)^-40, E(119)^-30, E(119)^27, E(119), E(119)^4, E(119)^-55, E(119)^-41, E(119)^-44, E(119)^41, E(119)^-13, E(119)^-10, E(119)^3, E(119)^24, E(119)^32, E(119)^29, E(119)^45, E(119)^-45, E(119)^-36, E(119)^-43, E(119)^40, E(119)^30, E(119)^-9, E(119)^-1, E(119)^-54, 1], [1, 1, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^51, E(119)^17, E(119)^17, E(119)^-17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-42, E(119)^-21, E(119)^-7, E(119)^7, E(119)^-35, E(119)^-28, E(119)^35, E(119)^56, E(119)^14, E(119)^-56, E(119)^28, E(119)^42, E(119)^49, E(119)^-14, E(119)^-49, E(119)^21, E(119)^42, E(119)^-28, E(119)^35, E(119)^14, E(119)^7, E(119)^-49, E(119)^-14, E(119)^28, E(119)^21, E(119)^-42, E(119)^56, E(119)^-21, E(119)^49, E(119)^-35, E(119)^-56, E(119)^-7, E(119)^-53, E(119)^-20, E(119)^40, E(119)^39, E(119)^37, E(119)^33, E(119)^10, E(119)^29, E(119)^-16, E(119)^-24, E(119)^-26, E(119)^18, E(119)^-3, E(119)^-5, E(119)^-39, E(119)^-37, E(119)^57, E(119)^31, E(119)^20, E(119)^-29, E(119)^44, E(119)^-50, E(119)^55, E(119)^30, E(119)^-15, E(119)^6, E(119)^45, E(119)^-48, E(119)^-27, E(119)^-25, E(119)^9, E(119)^-41, E(119)^32, E(119)^-40, E(119)^-38, E(119)^-2, E(119)^3, E(119)^-4, E(119)^47, E(119)^23, E(119)^25, E(119)^54, E(119)^36, E(119)^59, E(119)^-8, E(119)^-1, E(119)^16, E(119)^41, E(119)^48, E(119)^-18, E(119)^8, E(119)^12, E(119)^-52, E(119)^-54, E(119)^46, E(119)^-31, E(119)^-19, E(119)^11, E(119)^4, E(119)^-12, E(119)^-57, E(119)^-30, E(119)^22, E(119)^24, E(119)^19, E(119), E(119)^58, E(119)^-43, E(119)^-13, E(119)^-55, E(119)^43, E(119)^-23, E(119)^-11, E(119)^15, E(119)^5, E(119)^38, E(119)^-47, E(119)^-44, E(119)^52, E(119)^2, E(119)^-10, E(119)^-58, E(119)^-33, E(119)^-45, E(119)^-59, E(119)^50, E(119)^53, E(119)^26, E(119)^-6, E(119)^-32, E(119)^-9, E(119)^27, E(119)^-36, E(119)^13, E(119)^-22, E(119)^-46, E(119)^-47, E(119)^-58, E(119)^-26, E(119)^15, E(119)^-16, E(119)^-5, E(119)^-37, E(119)^41, E(119)^-39, E(119)^-52, E(119)^46, E(119)^-32, E(119)^4, E(119)^6, E(119)^45, E(119)^-31, E(119)^25, E(119)^3, E(119)^-36, E(119)^43, E(119)^37, E(119)^26, E(119)^-27, E(119)^16, E(119)^19, E(119), E(119)^50, E(119)^-15, E(119)^-4, E(119)^-12, E(119)^47, E(119)^58, E(119)^22, E(119)^24, E(119)^-24, E(119)^32, E(119)^-46, E(119)^-59, E(119)^53, E(119)^-25, E(119)^55, E(119)^-48, E(119)^9, E(119)^48, E(119)^-2, E(119)^-54, E(119)^-29, E(119)^-55, E(119)^38, E(119)^5, E(119)^30, E(119)^-41, E(119)^40, E(119)^-23, E(119)^18, E(119)^-22, E(119)^-9, E(119)^11, E(119)^-3, E(119)^31, E(119)^-8, E(119)^54, E(119)^-18, E(119)^-43, E(119)^-38, E(119)^-53, E(119)^27, E(119)^-20, E(119)^-19, E(119)^-30, E(119)^29, E(119)^-40, E(119)^-44, E(119)^-33, E(119)^-6, E(119)^13, E(119)^52, E(119)^-1, E(119)^-57, E(119)^23, E(119)^57, E(119)^-50, E(119)^-11, E(119)^39, E(119)^-45, E(119)^59, E(119)^20, E(119)^-10, E(119)^10, E(119)^8, E(119)^36, E(119)^44, E(119)^33, E(119)^2, E(119)^-13, E(119)^12, 1], [1, 1, E(119)^51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-51, E(119)^-17, E(119)^-17, E(119)^17, E(119)^-51, E(119)^51, E(119)^34, E(119)^-34, E(119)^42, E(119)^21, E(119)^7, E(119)^-7, E(119)^35, E(119)^28, E(119)^-35, E(119)^-56, E(119)^-14, E(119)^56, E(119)^-28, E(119)^-42, E(119)^-49, E(119)^14, E(119)^49, E(119)^-21, E(119)^-42, E(119)^28, E(119)^-35, E(119)^-14, E(119)^-7, E(119)^49, E(119)^14, E(119)^-28, E(119)^-21, E(119)^42, E(119)^-56, E(119)^21, E(119)^-49, E(119)^35, E(119)^56, E(119)^7, E(119)^53, E(119)^20, E(119)^-40, E(119)^-39, E(119)^-37, E(119)^-33, E(119)^-10, E(119)^-29, E(119)^16, E(119)^24, E(119)^26, E(119)^-18, E(119)^3, E(119)^5, E(119)^39, E(119)^37, E(119)^-57, E(119)^-31, E(119)^-20, E(119)^29, E(119)^-44, E(119)^50, E(119)^-55, E(119)^-30, E(119)^15, E(119)^-6, E(119)^-45, E(119)^48, E(119)^27, E(119)^25, E(119)^-9, E(119)^41, E(119)^-32, E(119)^40, E(119)^38, E(119)^2, E(119)^-3, E(119)^4, E(119)^-47, E(119)^-23, E(119)^-25, E(119)^-54, E(119)^-36, E(119)^-59, E(119)^8, E(119), E(119)^-16, E(119)^-41, E(119)^-48, E(119)^18, E(119)^-8, E(119)^-12, E(119)^52, E(119)^54, E(119)^-46, E(119)^31, E(119)^19, E(119)^-11, E(119)^-4, E(119)^12, E(119)^57, E(119)^30, E(119)^-22, E(119)^-24, E(119)^-19, E(119)^-1, E(119)^-58, E(119)^43, E(119)^13, E(119)^55, E(119)^-43, E(119)^23, E(119)^11, E(119)^-15, E(119)^-5, E(119)^-38, E(119)^47, E(119)^44, E(119)^-52, E(119)^-2, E(119)^10, E(119)^58, E(119)^33, E(119)^45, E(119)^59, E(119)^-50, E(119)^-53, E(119)^-26, E(119)^6, E(119)^32, E(119)^9, E(119)^-27, E(119)^36, E(119)^-13, E(119)^22, E(119)^46, E(119)^47, E(119)^58, E(119)^26, E(119)^-15, E(119)^16, E(119)^5, E(119)^37, E(119)^-41, E(119)^39, E(119)^52, E(119)^-46, E(119)^32, E(119)^-4, E(119)^-6, E(119)^-45, E(119)^31, E(119)^-25, E(119)^-3, E(119)^36, E(119)^-43, E(119)^-37, E(119)^-26, E(119)^27, E(119)^-16, E(119)^-19, E(119)^-1, E(119)^-50, E(119)^15, E(119)^4, E(119)^12, E(119)^-47, E(119)^-58, E(119)^-22, E(119)^-24, E(119)^24, E(119)^-32, E(119)^46, E(119)^59, E(119)^-53, E(119)^25, E(119)^-55, E(119)^48, E(119)^-9, E(119)^-48, E(119)^2, E(119)^54, E(119)^29, E(119)^55, E(119)^-38, E(119)^-5, E(119)^-30, E(119)^41, E(119)^-40, E(119)^23, E(119)^-18, E(119)^22, E(119)^9, E(119)^-11, E(119)^3, E(119)^-31, E(119)^8, E(119)^-54, E(119)^18, E(119)^43, E(119)^38, E(119)^53, E(119)^-27, E(119)^20, E(119)^19, E(119)^30, E(119)^-29, E(119)^40, E(119)^44, E(119)^33, E(119)^6, E(119)^-13, E(119)^-52, E(119), E(119)^57, E(119)^-23, E(119)^-57, E(119)^50, E(119)^11, E(119)^-39, E(119)^45, E(119)^-59, E(119)^-20, E(119)^10, E(119)^-10, E(119)^-8, E(119)^-36, E(119)^-44, E(119)^-33, E(119)^-2, E(119)^13, E(119)^-12, 1], [1, 1, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^51, E(119)^17, E(119)^17, E(119)^-17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^34, E(119)^42, E(119)^21, E(119)^7, E(119)^-7, E(119)^35, E(119)^28, E(119)^-35, E(119)^-56, E(119)^-14, E(119)^56, E(119)^-28, E(119)^-42, E(119)^-49, E(119)^14, E(119)^49, E(119)^-21, E(119)^-42, E(119)^28, E(119)^-35, E(119)^-14, E(119)^-7, E(119)^49, E(119)^14, E(119)^-28, E(119)^-21, E(119)^42, E(119)^-56, E(119)^21, E(119)^-49, E(119)^35, E(119)^56, E(119)^7, E(119)^-32, E(119)^-48, E(119)^-23, E(119)^46, E(119)^-54, E(119)^-16, E(119)^24, E(119)^22, E(119)^33, E(119)^-10, E(119)^9, E(119)^-52, E(119)^-31, E(119)^-12, E(119)^-46, E(119)^54, E(119)^-6, E(119)^3, E(119)^48, E(119)^-22, E(119)^58, E(119)^-1, E(119)^13, E(119)^-47, E(119)^-36, E(119)^-57, E(119)^-11, E(119)^-20, E(119)^-41, E(119)^59, E(119)^-26, E(119)^-27, E(119)^53, E(119)^23, E(119)^4, E(119)^19, E(119)^31, E(119)^38, E(119)^-30, E(119)^-40, E(119)^-59, E(119)^-37, E(119)^15, E(119)^-25, E(119)^-43, E(119)^-50, E(119)^-33, E(119)^27, E(119)^20, E(119)^52, E(119)^43, E(119)^5, E(119)^18, E(119)^37, E(119)^39, E(119)^-3, E(119)^2, E(119)^-45, E(119)^-38, E(119)^-5, E(119)^6, E(119)^47, E(119)^29, E(119)^10, E(119)^-2, E(119)^50, E(119)^44, E(119)^-8, E(119)^-55, E(119)^-13, E(119)^8, E(119)^40, E(119)^45, E(119)^36, E(119)^12, E(119)^-4, E(119)^30, E(119)^-58, E(119)^-18, E(119)^-19, E(119)^-24, E(119)^-44, E(119)^16, E(119)^11, E(119)^25, E(119), E(119)^32, E(119)^-9, E(119)^57, E(119)^-53, E(119)^26, E(119)^41, E(119)^-15, E(119)^55, E(119)^-29, E(119)^-39, E(119)^30, E(119)^-44, E(119)^9, E(119)^36, E(119)^33, E(119)^-12, E(119)^54, E(119)^27, E(119)^-46, E(119)^18, E(119)^39, E(119)^-53, E(119)^-38, E(119)^-57, E(119)^-11, E(119)^-3, E(119)^-59, E(119)^31, E(119)^-15, E(119)^8, E(119)^-54, E(119)^-9, E(119)^-41, E(119)^-33, E(119)^-2, E(119)^50, E(119), E(119)^-36, E(119)^38, E(119)^-5, E(119)^-30, E(119)^44, E(119)^29, E(119)^10, E(119)^-10, E(119)^53, E(119)^-39, E(119)^25, E(119)^32, E(119)^59, E(119)^13, E(119)^-20, E(119)^-26, E(119)^20, E(119)^19, E(119)^37, E(119)^-22, E(119)^-13, E(119)^-4, E(119)^12, E(119)^-47, E(119)^-27, E(119)^-23, E(119)^40, E(119)^-52, E(119)^-29, E(119)^26, E(119)^-45, E(119)^-31, E(119)^3, E(119)^-43, E(119)^-37, E(119)^52, E(119)^-8, E(119)^4, E(119)^-32, E(119)^41, E(119)^-48, E(119)^2, E(119)^47, E(119)^22, E(119)^23, E(119)^-58, E(119)^16, E(119)^57, E(119)^55, E(119)^-18, E(119)^-50, E(119)^6, E(119)^-40, E(119)^-6, E(119)^-1, E(119)^45, E(119)^46, E(119)^11, E(119)^-25, E(119)^48, E(119)^-24, E(119)^24, E(119)^43, E(119)^15, E(119)^58, E(119)^-16, E(119)^-19, E(119)^-55, E(119)^5, 1], [1, 1, E(119)^51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-51, E(119)^-17, E(119)^-17, E(119)^17, E(119)^-51, E(119)^51, E(119)^34, E(119)^-34, E(119)^-42, E(119)^-21, E(119)^-7, E(119)^7, E(119)^-35, E(119)^-28, E(119)^35, E(119)^56, E(119)^14, E(119)^-56, E(119)^28, E(119)^42, E(119)^49, E(119)^-14, E(119)^-49, E(119)^21, E(119)^42, E(119)^-28, E(119)^35, E(119)^14, E(119)^7, E(119)^-49, E(119)^-14, E(119)^28, E(119)^21, E(119)^-42, E(119)^56, E(119)^-21, E(119)^49, E(119)^-35, E(119)^-56, E(119)^-7, E(119)^32, E(119)^48, E(119)^23, E(119)^-46, E(119)^54, E(119)^16, E(119)^-24, E(119)^-22, E(119)^-33, E(119)^10, E(119)^-9, E(119)^52, E(119)^31, E(119)^12, E(119)^46, E(119)^-54, E(119)^6, E(119)^-3, E(119)^-48, E(119)^22, E(119)^-58, E(119), E(119)^-13, E(119)^47, E(119)^36, E(119)^57, E(119)^11, E(119)^20, E(119)^41, E(119)^-59, E(119)^26, E(119)^27, E(119)^-53, E(119)^-23, E(119)^-4, E(119)^-19, E(119)^-31, E(119)^-38, E(119)^30, E(119)^40, E(119)^59, E(119)^37, E(119)^-15, E(119)^25, E(119)^43, E(119)^50, E(119)^33, E(119)^-27, E(119)^-20, E(119)^-52, E(119)^-43, E(119)^-5, E(119)^-18, E(119)^-37, E(119)^-39, E(119)^3, E(119)^-2, E(119)^45, E(119)^38, E(119)^5, E(119)^-6, E(119)^-47, E(119)^-29, E(119)^-10, E(119)^2, E(119)^-50, E(119)^-44, E(119)^8, E(119)^55, E(119)^13, E(119)^-8, E(119)^-40, E(119)^-45, E(119)^-36, E(119)^-12, E(119)^4, E(119)^-30, E(119)^58, E(119)^18, E(119)^19, E(119)^24, E(119)^44, E(119)^-16, E(119)^-11, E(119)^-25, E(119)^-1, E(119)^-32, E(119)^9, E(119)^-57, E(119)^53, E(119)^-26, E(119)^-41, E(119)^15, E(119)^-55, E(119)^29, E(119)^39, E(119)^-30, E(119)^44, E(119)^-9, E(119)^-36, E(119)^-33, E(119)^12, E(119)^-54, E(119)^-27, E(119)^46, E(119)^-18, E(119)^-39, E(119)^53, E(119)^38, E(119)^57, E(119)^11, E(119)^3, E(119)^59, E(119)^-31, E(119)^15, E(119)^-8, E(119)^54, E(119)^9, E(119)^41, E(119)^33, E(119)^2, E(119)^-50, E(119)^-1, E(119)^36, E(119)^-38, E(119)^5, E(119)^30, E(119)^-44, E(119)^-29, E(119)^-10, E(119)^10, E(119)^-53, E(119)^39, E(119)^-25, E(119)^-32, E(119)^-59, E(119)^-13, E(119)^20, E(119)^26, E(119)^-20, E(119)^-19, E(119)^-37, E(119)^22, E(119)^13, E(119)^4, E(119)^-12, E(119)^47, E(119)^27, E(119)^23, E(119)^-40, E(119)^52, E(119)^29, E(119)^-26, E(119)^45, E(119)^31, E(119)^-3, E(119)^43, E(119)^37, E(119)^-52, E(119)^8, E(119)^-4, E(119)^32, E(119)^-41, E(119)^48, E(119)^-2, E(119)^-47, E(119)^-22, E(119)^-23, E(119)^58, E(119)^-16, E(119)^-57, E(119)^-55, E(119)^18, E(119)^50, E(119)^-6, E(119)^40, E(119)^6, E(119), E(119)^-45, E(119)^-46, E(119)^-11, E(119)^25, E(119)^-48, E(119)^24, E(119)^-24, E(119)^-43, E(119)^-15, E(119)^-58, E(119)^16, E(119)^19, E(119)^55, E(119)^-5, 1], [1, 1, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^51, E(119)^17, E(119)^17, E(119)^-17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-35, E(119)^42, E(119)^14, E(119)^-14, E(119)^-49, E(119)^56, E(119)^49, E(119)^7, E(119)^-28, E(119)^-7, E(119)^-56, E(119)^35, E(119)^21, E(119)^28, E(119)^-21, E(119)^-42, E(119)^35, E(119)^56, E(119)^49, E(119)^-28, E(119)^-14, E(119)^-21, E(119)^28, E(119)^-56, E(119)^-42, E(119)^-35, E(119)^7, E(119)^42, E(119)^21, E(119)^-49, E(119)^-7, E(119)^14, E(119)^38, E(119)^57, E(119)^5, E(119)^-10, E(119)^-40, E(119)^19, E(119)^31, E(119)^-41, E(119)^-2, E(119)^-3, E(119)^-33, E(119)^32, E(119)^-45, E(119)^44, E(119)^10, E(119)^40, E(119)^22, E(119)^-11, E(119)^-57, E(119)^41, E(119)^-54, E(119)^-36, E(119)^-8, E(119)^-26, E(119)^13, E(119)^-29, E(119)^-39, E(119)^-6, E(119)^-48, E(119)^-18, E(119)^16, E(119)^-20, E(119)^4, E(119)^-5, E(119)^25, E(119)^-30, E(119)^45, E(119)^59, E(119)^-9, E(119)^-12, E(119)^18, E(119)^-23, E(119)^-55, E(119)^52, E(119)^-1, E(119)^-15, E(119)^2, E(119)^20, E(119)^6, E(119)^-32, E(119), E(119)^-58, E(119)^53, E(119)^23, E(119)^-24, E(119)^11, E(119)^-47, E(119)^46, E(119)^-59, E(119)^58, E(119)^-22, E(119)^26, E(119)^-27, E(119)^3, E(119)^47, E(119)^15, E(119)^37, E(119)^-50, E(119)^43, E(119)^8, E(119)^50, E(119)^12, E(119)^-46, E(119)^-13, E(119)^-44, E(119)^-25, E(119)^9, E(119)^54, E(119)^-53, E(119)^30, E(119)^-31, E(119)^-37, E(119)^-19, E(119)^39, E(119)^-52, E(119)^36, E(119)^-38, E(119)^33, E(119)^29, E(119)^-4, E(119)^-16, E(119)^48, E(119)^55, E(119)^-43, E(119)^27, E(119)^24, E(119)^9, E(119)^-37, E(119)^-33, E(119)^-13, E(119)^-2, E(119)^44, E(119)^40, E(119)^20, E(119)^10, E(119)^53, E(119)^-24, E(119)^-4, E(119)^-59, E(119)^-29, E(119)^-39, E(119)^11, E(119)^18, E(119)^45, E(119)^55, E(119)^50, E(119)^-40, E(119)^33, E(119)^-48, E(119)^2, E(119)^47, E(119)^15, E(119)^36, E(119)^13, E(119)^59, E(119)^58, E(119)^-9, E(119)^37, E(119)^-27, E(119)^3, E(119)^-3, E(119)^4, E(119)^24, E(119)^-52, E(119)^-38, E(119)^-18, E(119)^-8, E(119)^-6, E(119)^16, E(119)^6, E(119)^-30, E(119)^23, E(119)^41, E(119)^8, E(119)^-25, E(119)^-44, E(119)^-26, E(119)^-20, E(119)^5, E(119)^12, E(119)^32, E(119)^27, E(119)^-16, E(119)^46, E(119)^-45, E(119)^-11, E(119)^-1, E(119)^-23, E(119)^-32, E(119)^-50, E(119)^25, E(119)^38, E(119)^48, E(119)^57, E(119)^-47, E(119)^26, E(119)^-41, E(119)^-5, E(119)^54, E(119)^-19, E(119)^29, E(119)^-43, E(119)^-53, E(119)^-15, E(119)^-22, E(119)^-12, E(119)^22, E(119)^-36, E(119)^-46, E(119)^-10, E(119)^39, E(119)^52, E(119)^-57, E(119)^-31, E(119)^31, E(119), E(119)^-55, E(119)^-54, E(119)^19, E(119)^30, E(119)^43, E(119)^-58, 1], [1, 1, E(119)^51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-51, E(119)^-17, E(119)^-17, E(119)^17, E(119)^-51, E(119)^51, E(119)^34, E(119)^-34, E(119)^35, E(119)^-42, E(119)^-14, E(119)^14, E(119)^49, E(119)^-56, E(119)^-49, E(119)^-7, E(119)^28, E(119)^7, E(119)^56, E(119)^-35, E(119)^-21, E(119)^-28, E(119)^21, E(119)^42, E(119)^-35, E(119)^-56, E(119)^-49, E(119)^28, E(119)^14, E(119)^21, E(119)^-28, E(119)^56, E(119)^42, E(119)^35, E(119)^-7, E(119)^-42, E(119)^-21, E(119)^49, E(119)^7, E(119)^-14, E(119)^-38, E(119)^-57, E(119)^-5, E(119)^10, E(119)^40, E(119)^-19, E(119)^-31, E(119)^41, E(119)^2, E(119)^3, E(119)^33, E(119)^-32, E(119)^45, E(119)^-44, E(119)^-10, E(119)^-40, E(119)^-22, E(119)^11, E(119)^57, E(119)^-41, E(119)^54, E(119)^36, E(119)^8, E(119)^26, E(119)^-13, E(119)^29, E(119)^39, E(119)^6, E(119)^48, E(119)^18, E(119)^-16, E(119)^20, E(119)^-4, E(119)^5, E(119)^-25, E(119)^30, E(119)^-45, E(119)^-59, E(119)^9, E(119)^12, E(119)^-18, E(119)^23, E(119)^55, E(119)^-52, E(119), E(119)^15, E(119)^-2, E(119)^-20, E(119)^-6, E(119)^32, E(119)^-1, E(119)^58, E(119)^-53, E(119)^-23, E(119)^24, E(119)^-11, E(119)^47, E(119)^-46, E(119)^59, E(119)^-58, E(119)^22, E(119)^-26, E(119)^27, E(119)^-3, E(119)^-47, E(119)^-15, E(119)^-37, E(119)^50, E(119)^-43, E(119)^-8, E(119)^-50, E(119)^-12, E(119)^46, E(119)^13, E(119)^44, E(119)^25, E(119)^-9, E(119)^-54, E(119)^53, E(119)^-30, E(119)^31, E(119)^37, E(119)^19, E(119)^-39, E(119)^52, E(119)^-36, E(119)^38, E(119)^-33, E(119)^-29, E(119)^4, E(119)^16, E(119)^-48, E(119)^-55, E(119)^43, E(119)^-27, E(119)^-24, E(119)^-9, E(119)^37, E(119)^33, E(119)^13, E(119)^2, E(119)^-44, E(119)^-40, E(119)^-20, E(119)^-10, E(119)^-53, E(119)^24, E(119)^4, E(119)^59, E(119)^29, E(119)^39, E(119)^-11, E(119)^-18, E(119)^-45, E(119)^-55, E(119)^-50, E(119)^40, E(119)^-33, E(119)^48, E(119)^-2, E(119)^-47, E(119)^-15, E(119)^-36, E(119)^-13, E(119)^-59, E(119)^-58, E(119)^9, E(119)^-37, E(119)^27, E(119)^-3, E(119)^3, E(119)^-4, E(119)^-24, E(119)^52, E(119)^38, E(119)^18, E(119)^8, E(119)^6, E(119)^-16, E(119)^-6, E(119)^30, E(119)^-23, E(119)^-41, E(119)^-8, E(119)^25, E(119)^44, E(119)^26, E(119)^20, E(119)^-5, E(119)^-12, E(119)^-32, E(119)^-27, E(119)^16, E(119)^-46, E(119)^45, E(119)^11, E(119), E(119)^23, E(119)^32, E(119)^50, E(119)^-25, E(119)^-38, E(119)^-48, E(119)^-57, E(119)^47, E(119)^-26, E(119)^41, E(119)^5, E(119)^-54, E(119)^19, E(119)^-29, E(119)^43, E(119)^53, E(119)^15, E(119)^22, E(119)^12, E(119)^-22, E(119)^36, E(119)^46, E(119)^10, E(119)^-39, E(119)^-52, E(119)^57, E(119)^31, E(119)^-31, E(119)^-1, E(119)^55, E(119)^54, E(119)^-19, E(119)^-30, E(119)^-43, E(119)^58, 1], [1, 1, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^51, E(119)^17, E(119)^17, E(119)^-17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^34, E(119)^35, E(119)^-42, E(119)^-14, E(119)^14, E(119)^49, E(119)^-56, E(119)^-49, E(119)^-7, E(119)^28, E(119)^7, E(119)^56, E(119)^-35, E(119)^-21, E(119)^-28, E(119)^21, E(119)^42, E(119)^-35, E(119)^-56, E(119)^-49, E(119)^28, E(119)^14, E(119)^21, E(119)^-28, E(119)^56, E(119)^42, E(119)^35, E(119)^-7, E(119)^-42, E(119)^-21, E(119)^49, E(119)^7, E(119)^-14, E(119)^-4, E(119)^-6, E(119)^12, E(119)^-24, E(119)^23, E(119)^-2, E(119)^3, E(119)^-27, E(119)^19, E(119)^-31, E(119)^16, E(119)^53, E(119)^11, E(119)^58, E(119)^24, E(119)^-23, E(119)^29, E(119)^45, E(119)^6, E(119)^27, E(119)^37, E(119)^-15, E(119)^-43, E(119)^9, E(119)^55, E(119)^-22, E(119)^-46, E(119)^57, E(119)^-20, E(119)^52, E(119)^-33, E(119)^-48, E(119)^-38, E(119)^-12, E(119)^-59, E(119)^47, E(119)^-11, E(119)^-25, E(119)^26, E(119)^-5, E(119)^-52, E(119)^40, E(119)^-13, E(119)^-18, E(119)^-50, E(119)^-36, E(119)^-19, E(119)^48, E(119)^-57, E(119)^-53, E(119)^50, E(119)^-44, E(119)^32, E(119)^-40, E(119)^-10, E(119)^-45, E(119)^30, E(119)^39, E(119)^25, E(119)^44, E(119)^-29, E(119)^-9, E(119)^-41, E(119)^31, E(119)^-30, E(119)^36, E(119)^-54, E(119)^-1, E(119)^8, E(119)^43, E(119), E(119)^5, E(119)^-39, E(119)^-55, E(119)^-58, E(119)^59, E(119)^-26, E(119)^-37, E(119)^-32, E(119)^-47, E(119)^-3, E(119)^54, E(119)^2, E(119)^46, E(119)^18, E(119)^15, E(119)^4, E(119)^-16, E(119)^22, E(119)^38, E(119)^33, E(119)^20, E(119)^13, E(119)^-8, E(119)^41, E(119)^10, E(119)^-26, E(119)^54, E(119)^16, E(119)^-55, E(119)^19, E(119)^58, E(119)^-23, E(119)^48, E(119)^24, E(119)^32, E(119)^-10, E(119)^38, E(119)^25, E(119)^-22, E(119)^-46, E(119)^-45, E(119)^-52, E(119)^-11, E(119)^13, E(119), E(119)^23, E(119)^-16, E(119)^-20, E(119)^-19, E(119)^-30, E(119)^36, E(119)^15, E(119)^55, E(119)^-25, E(119)^44, E(119)^26, E(119)^-54, E(119)^-41, E(119)^31, E(119)^-31, E(119)^-38, E(119)^10, E(119)^18, E(119)^4, E(119)^52, E(119)^-43, E(119)^57, E(119)^-33, E(119)^-57, E(119)^47, E(119)^-40, E(119)^27, E(119)^43, E(119)^59, E(119)^-58, E(119)^9, E(119)^-48, E(119)^12, E(119)^5, E(119)^53, E(119)^41, E(119)^33, E(119)^39, E(119)^11, E(119)^45, E(119)^-50, E(119)^40, E(119)^-53, E(119)^-1, E(119)^-59, E(119)^-4, E(119)^20, E(119)^-6, E(119)^30, E(119)^-9, E(119)^-27, E(119)^-12, E(119)^-37, E(119)^2, E(119)^22, E(119)^-8, E(119)^-32, E(119)^-36, E(119)^-29, E(119)^-5, E(119)^29, E(119)^-15, E(119)^-39, E(119)^-24, E(119)^46, E(119)^-18, E(119)^6, E(119)^-3, E(119)^3, E(119)^50, E(119)^-13, E(119)^37, E(119)^-2, E(119)^-47, E(119)^8, E(119)^-44, 1], [1, 1, E(119)^51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-51, E(119)^-17, E(119)^-17, E(119)^17, E(119)^-51, E(119)^51, E(119)^34, E(119)^-34, E(119)^-35, E(119)^42, E(119)^14, E(119)^-14, E(119)^-49, E(119)^56, E(119)^49, E(119)^7, E(119)^-28, E(119)^-7, E(119)^-56, E(119)^35, E(119)^21, E(119)^28, E(119)^-21, E(119)^-42, E(119)^35, E(119)^56, E(119)^49, E(119)^-28, E(119)^-14, E(119)^-21, E(119)^28, E(119)^-56, E(119)^-42, E(119)^-35, E(119)^7, E(119)^42, E(119)^21, E(119)^-49, E(119)^-7, E(119)^14, E(119)^4, E(119)^6, E(119)^-12, E(119)^24, E(119)^-23, E(119)^2, E(119)^-3, E(119)^27, E(119)^-19, E(119)^31, E(119)^-16, E(119)^-53, E(119)^-11, E(119)^-58, E(119)^-24, E(119)^23, E(119)^-29, E(119)^-45, E(119)^-6, E(119)^-27, E(119)^-37, E(119)^15, E(119)^43, E(119)^-9, E(119)^-55, E(119)^22, E(119)^46, E(119)^-57, E(119)^20, E(119)^-52, E(119)^33, E(119)^48, E(119)^38, E(119)^12, E(119)^59, E(119)^-47, E(119)^11, E(119)^25, E(119)^-26, E(119)^5, E(119)^52, E(119)^-40, E(119)^13, E(119)^18, E(119)^50, E(119)^36, E(119)^19, E(119)^-48, E(119)^57, E(119)^53, E(119)^-50, E(119)^44, E(119)^-32, E(119)^40, E(119)^10, E(119)^45, E(119)^-30, E(119)^-39, E(119)^-25, E(119)^-44, E(119)^29, E(119)^9, E(119)^41, E(119)^-31, E(119)^30, E(119)^-36, E(119)^54, E(119), E(119)^-8, E(119)^-43, E(119)^-1, E(119)^-5, E(119)^39, E(119)^55, E(119)^58, E(119)^-59, E(119)^26, E(119)^37, E(119)^32, E(119)^47, E(119)^3, E(119)^-54, E(119)^-2, E(119)^-46, E(119)^-18, E(119)^-15, E(119)^-4, E(119)^16, E(119)^-22, E(119)^-38, E(119)^-33, E(119)^-20, E(119)^-13, E(119)^8, E(119)^-41, E(119)^-10, E(119)^26, E(119)^-54, E(119)^-16, E(119)^55, E(119)^-19, E(119)^-58, E(119)^23, E(119)^-48, E(119)^-24, E(119)^-32, E(119)^10, E(119)^-38, E(119)^-25, E(119)^22, E(119)^46, E(119)^45, E(119)^52, E(119)^11, E(119)^-13, E(119)^-1, E(119)^-23, E(119)^16, E(119)^20, E(119)^19, E(119)^30, E(119)^-36, E(119)^-15, E(119)^-55, E(119)^25, E(119)^-44, E(119)^-26, E(119)^54, E(119)^41, E(119)^-31, E(119)^31, E(119)^38, E(119)^-10, E(119)^-18, E(119)^-4, E(119)^-52, E(119)^43, E(119)^-57, E(119)^33, E(119)^57, E(119)^-47, E(119)^40, E(119)^-27, E(119)^-43, E(119)^-59, E(119)^58, E(119)^-9, E(119)^48, E(119)^-12, E(119)^-5, E(119)^-53, E(119)^-41, E(119)^-33, E(119)^-39, E(119)^-11, E(119)^-45, E(119)^50, E(119)^-40, E(119)^53, E(119), E(119)^59, E(119)^4, E(119)^-20, E(119)^6, E(119)^-30, E(119)^9, E(119)^27, E(119)^12, E(119)^37, E(119)^-2, E(119)^-22, E(119)^8, E(119)^32, E(119)^36, E(119)^29, E(119)^5, E(119)^-29, E(119)^15, E(119)^39, E(119)^24, E(119)^-46, E(119)^18, E(119)^-6, E(119)^3, E(119)^-3, E(119)^-50, E(119)^13, E(119)^-37, E(119)^2, E(119)^47, E(119)^-8, E(119)^44, 1], [1, 1, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^51, E(119)^17, E(119)^17, E(119)^-17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-28, E(119)^-14, E(119)^35, E(119)^-35, E(119)^56, E(119)^21, E(119)^-56, E(119)^-42, E(119)^49, E(119)^42, E(119)^-21, E(119)^28, E(119)^-7, E(119)^-49, E(119)^7, E(119)^14, E(119)^28, E(119)^21, E(119)^-56, E(119)^49, E(119)^-35, E(119)^7, E(119)^-49, E(119)^-21, E(119)^14, E(119)^-28, E(119)^-42, E(119)^-14, E(119)^-7, E(119)^56, E(119)^42, E(119)^35, E(119)^10, E(119)^15, E(119)^-30, E(119)^-59, E(119)^2, E(119)^5, E(119)^52, E(119)^8, E(119)^12, E(119)^18, E(119)^-40, E(119)^46, E(119)^32, E(119)^-26, E(119)^59, E(119)^-2, E(119)^-13, E(119)^-53, E(119)^-15, E(119)^-8, E(119)^-33, E(119)^-22, E(119)^48, E(119)^37, E(119)^41, E(119)^55, E(119)^-4, E(119)^36, E(119)^50, E(119)^-11, E(119)^23, E(119), E(119)^-24, E(119)^30, E(119)^-31, E(119)^-58, E(119)^-32, E(119)^3, E(119)^54, E(119)^-47, E(119)^11, E(119)^19, E(119)^-27, E(119)^45, E(119)^6, E(119)^-29, E(119)^-12, E(119)^-1, E(119)^-36, E(119)^-46, E(119)^-6, E(119)^-9, E(119)^39, E(119)^-19, E(119)^25, E(119)^53, E(119)^44, E(119)^-38, E(119)^-3, E(119)^9, E(119)^13, E(119)^-37, E(119)^43, E(119)^-18, E(119)^-44, E(119)^29, E(119)^16, E(119)^-57, E(119)^-20, E(119)^-48, E(119)^57, E(119)^47, E(119)^38, E(119)^-41, E(119)^26, E(119)^31, E(119)^-54, E(119)^33, E(119)^-39, E(119)^58, E(119)^-52, E(119)^-16, E(119)^-5, E(119)^4, E(119)^-45, E(119)^22, E(119)^-10, E(119)^40, E(119)^-55, E(119)^24, E(119)^-23, E(119)^-50, E(119)^27, E(119)^20, E(119)^-43, E(119)^-25, E(119)^-54, E(119)^-16, E(119)^-40, E(119)^-41, E(119)^12, E(119)^-26, E(119)^-2, E(119)^-1, E(119)^59, E(119)^39, E(119)^25, E(119)^24, E(119)^-3, E(119)^55, E(119)^-4, E(119)^53, E(119)^11, E(119)^-32, E(119)^27, E(119)^57, E(119)^2, E(119)^40, E(119)^50, E(119)^-12, E(119)^-44, E(119)^29, E(119)^22, E(119)^41, E(119)^3, E(119)^9, E(119)^54, E(119)^16, E(119)^43, E(119)^-18, E(119)^18, E(119)^-24, E(119)^-25, E(119)^-45, E(119)^-10, E(119)^-11, E(119)^48, E(119)^36, E(119)^23, E(119)^-36, E(119)^-58, E(119)^-19, E(119)^-8, E(119)^-48, E(119)^31, E(119)^26, E(119)^37, E(119), E(119)^-30, E(119)^47, E(119)^46, E(119)^-43, E(119)^-23, E(119)^-38, E(119)^32, E(119)^-53, E(119)^6, E(119)^19, E(119)^-46, E(119)^-57, E(119)^-31, E(119)^10, E(119)^-50, E(119)^15, E(119)^44, E(119)^-37, E(119)^8, E(119)^30, E(119)^33, E(119)^-5, E(119)^-55, E(119)^20, E(119)^-39, E(119)^-29, E(119)^13, E(119)^-47, E(119)^-13, E(119)^-22, E(119)^38, E(119)^-59, E(119)^4, E(119)^45, E(119)^-15, E(119)^-52, E(119)^52, E(119)^-6, E(119)^-27, E(119)^-33, E(119)^5, E(119)^58, E(119)^-20, E(119)^-9, 1], [1, 1, E(119)^51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-51, E(119)^-17, E(119)^-17, E(119)^17, E(119)^-51, E(119)^51, E(119)^34, E(119)^-34, E(119)^28, E(119)^14, E(119)^-35, E(119)^35, E(119)^-56, E(119)^-21, E(119)^56, E(119)^42, E(119)^-49, E(119)^-42, E(119)^21, E(119)^-28, E(119)^7, E(119)^49, E(119)^-7, E(119)^-14, E(119)^-28, E(119)^-21, E(119)^56, E(119)^-49, E(119)^35, E(119)^-7, E(119)^49, E(119)^21, E(119)^-14, E(119)^28, E(119)^42, E(119)^14, E(119)^7, E(119)^-56, E(119)^-42, E(119)^-35, E(119)^-10, E(119)^-15, E(119)^30, E(119)^59, E(119)^-2, E(119)^-5, E(119)^-52, E(119)^-8, E(119)^-12, E(119)^-18, E(119)^40, E(119)^-46, E(119)^-32, E(119)^26, E(119)^-59, E(119)^2, E(119)^13, E(119)^53, E(119)^15, E(119)^8, E(119)^33, E(119)^22, E(119)^-48, E(119)^-37, E(119)^-41, E(119)^-55, E(119)^4, E(119)^-36, E(119)^-50, E(119)^11, E(119)^-23, E(119)^-1, E(119)^24, E(119)^-30, E(119)^31, E(119)^58, E(119)^32, E(119)^-3, E(119)^-54, E(119)^47, E(119)^-11, E(119)^-19, E(119)^27, E(119)^-45, E(119)^-6, E(119)^29, E(119)^12, E(119), E(119)^36, E(119)^46, E(119)^6, E(119)^9, E(119)^-39, E(119)^19, E(119)^-25, E(119)^-53, E(119)^-44, E(119)^38, E(119)^3, E(119)^-9, E(119)^-13, E(119)^37, E(119)^-43, E(119)^18, E(119)^44, E(119)^-29, E(119)^-16, E(119)^57, E(119)^20, E(119)^48, E(119)^-57, E(119)^-47, E(119)^-38, E(119)^41, E(119)^-26, E(119)^-31, E(119)^54, E(119)^-33, E(119)^39, E(119)^-58, E(119)^52, E(119)^16, E(119)^5, E(119)^-4, E(119)^45, E(119)^-22, E(119)^10, E(119)^-40, E(119)^55, E(119)^-24, E(119)^23, E(119)^50, E(119)^-27, E(119)^-20, E(119)^43, E(119)^25, E(119)^54, E(119)^16, E(119)^40, E(119)^41, E(119)^-12, E(119)^26, E(119)^2, E(119), E(119)^-59, E(119)^-39, E(119)^-25, E(119)^-24, E(119)^3, E(119)^-55, E(119)^4, E(119)^-53, E(119)^-11, E(119)^32, E(119)^-27, E(119)^-57, E(119)^-2, E(119)^-40, E(119)^-50, E(119)^12, E(119)^44, E(119)^-29, E(119)^-22, E(119)^-41, E(119)^-3, E(119)^-9, E(119)^-54, E(119)^-16, E(119)^-43, E(119)^18, E(119)^-18, E(119)^24, E(119)^25, E(119)^45, E(119)^10, E(119)^11, E(119)^-48, E(119)^-36, E(119)^-23, E(119)^36, E(119)^58, E(119)^19, E(119)^8, E(119)^48, E(119)^-31, E(119)^-26, E(119)^-37, E(119)^-1, E(119)^30, E(119)^-47, E(119)^-46, E(119)^43, E(119)^23, E(119)^38, E(119)^-32, E(119)^53, E(119)^-6, E(119)^-19, E(119)^46, E(119)^57, E(119)^31, E(119)^-10, E(119)^50, E(119)^-15, E(119)^-44, E(119)^37, E(119)^-8, E(119)^-30, E(119)^-33, E(119)^5, E(119)^55, E(119)^-20, E(119)^39, E(119)^29, E(119)^-13, E(119)^47, E(119)^13, E(119)^22, E(119)^-38, E(119)^59, E(119)^-4, E(119)^-45, E(119)^15, E(119)^52, E(119)^-52, E(119)^6, E(119)^27, E(119)^33, E(119)^-5, E(119)^-58, E(119)^20, E(119)^9, 1], [1, 1, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^51, E(119)^17, E(119)^17, E(119)^-17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^34, E(119)^28, E(119)^14, E(119)^-35, E(119)^35, E(119)^-56, E(119)^-21, E(119)^56, E(119)^42, E(119)^-49, E(119)^-42, E(119)^21, E(119)^-28, E(119)^7, E(119)^49, E(119)^-7, E(119)^-14, E(119)^-28, E(119)^-21, E(119)^56, E(119)^-49, E(119)^35, E(119)^-7, E(119)^49, E(119)^21, E(119)^-14, E(119)^28, E(119)^42, E(119)^14, E(119)^7, E(119)^-56, E(119)^-42, E(119)^-35, E(119)^24, E(119)^36, E(119)^47, E(119)^25, E(119)^-19, E(119)^12, E(119)^-18, E(119)^43, E(119)^5, E(119)^-52, E(119)^23, E(119)^39, E(119)^53, E(119)^9, E(119)^-25, E(119)^19, E(119)^-55, E(119)^-32, E(119)^-36, E(119)^-43, E(119)^16, E(119)^-29, E(119)^20, E(119)^-54, E(119)^27, E(119)^13, E(119)^38, E(119)^15, E(119), E(119)^45, E(119)^-40, E(119)^50, E(119)^-10, E(119)^-47, E(119)^-3, E(119)^-44, E(119)^-53, E(119)^31, E(119)^-37, E(119)^30, E(119)^-45, E(119)^-2, E(119)^-41, E(119)^-11, E(119)^-57, E(119)^-22, E(119)^-5, E(119)^-50, E(119)^-15, E(119)^-39, E(119)^57, E(119)^26, E(119)^46, E(119)^2, E(119)^-59, E(119)^32, E(119)^58, E(119)^4, E(119)^-31, E(119)^-26, E(119)^55, E(119)^54, E(119)^8, E(119)^52, E(119)^-58, E(119)^22, E(119)^-33, E(119)^6, E(119)^-48, E(119)^-20, E(119)^-6, E(119)^-30, E(119)^-4, E(119)^-27, E(119)^-9, E(119)^3, E(119)^37, E(119)^-16, E(119)^-46, E(119)^44, E(119)^18, E(119)^33, E(119)^-12, E(119)^-38, E(119)^11, E(119)^29, E(119)^-24, E(119)^-23, E(119)^-13, E(119)^10, E(119)^40, E(119)^-1, E(119)^41, E(119)^48, E(119)^-8, E(119)^59, E(119)^37, E(119)^33, E(119)^23, E(119)^-27, E(119)^5, E(119)^9, E(119)^19, E(119)^-50, E(119)^-25, E(119)^46, E(119)^-59, E(119)^10, E(119)^-31, E(119)^13, E(119)^38, E(119)^32, E(119)^-45, E(119)^-53, E(119)^41, E(119)^-6, E(119)^-19, E(119)^-23, E(119), E(119)^-5, E(119)^-58, E(119)^22, E(119)^29, E(119)^27, E(119)^31, E(119)^-26, E(119)^-37, E(119)^-33, E(119)^8, E(119)^52, E(119)^-52, E(119)^-10, E(119)^59, E(119)^11, E(119)^-24, E(119)^45, E(119)^20, E(119)^15, E(119)^-40, E(119)^-15, E(119)^-44, E(119)^2, E(119)^-43, E(119)^-20, E(119)^3, E(119)^-9, E(119)^-54, E(119)^50, E(119)^47, E(119)^-30, E(119)^39, E(119)^-8, E(119)^40, E(119)^4, E(119)^53, E(119)^-32, E(119)^-57, E(119)^-2, E(119)^-39, E(119)^6, E(119)^-3, E(119)^24, E(119)^-1, E(119)^36, E(119)^58, E(119)^54, E(119)^43, E(119)^-47, E(119)^-16, E(119)^-12, E(119)^-13, E(119)^48, E(119)^-46, E(119)^-22, E(119)^55, E(119)^30, E(119)^-55, E(119)^-29, E(119)^-4, E(119)^25, E(119)^-38, E(119)^-11, E(119)^-36, E(119)^18, E(119)^-18, E(119)^57, E(119)^-41, E(119)^16, E(119)^12, E(119)^44, E(119)^-48, E(119)^26, 1], [1, 1, E(119)^51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-51, E(119)^-17, E(119)^-17, E(119)^17, E(119)^-51, E(119)^51, E(119)^34, E(119)^-34, E(119)^-28, E(119)^-14, E(119)^35, E(119)^-35, E(119)^56, E(119)^21, E(119)^-56, E(119)^-42, E(119)^49, E(119)^42, E(119)^-21, E(119)^28, E(119)^-7, E(119)^-49, E(119)^7, E(119)^14, E(119)^28, E(119)^21, E(119)^-56, E(119)^49, E(119)^-35, E(119)^7, E(119)^-49, E(119)^-21, E(119)^14, E(119)^-28, E(119)^-42, E(119)^-14, E(119)^-7, E(119)^56, E(119)^42, E(119)^35, E(119)^-24, E(119)^-36, E(119)^-47, E(119)^-25, E(119)^19, E(119)^-12, E(119)^18, E(119)^-43, E(119)^-5, E(119)^52, E(119)^-23, E(119)^-39, E(119)^-53, E(119)^-9, E(119)^25, E(119)^-19, E(119)^55, E(119)^32, E(119)^36, E(119)^43, E(119)^-16, E(119)^29, E(119)^-20, E(119)^54, E(119)^-27, E(119)^-13, E(119)^-38, E(119)^-15, E(119)^-1, E(119)^-45, E(119)^40, E(119)^-50, E(119)^10, E(119)^47, E(119)^3, E(119)^44, E(119)^53, E(119)^-31, E(119)^37, E(119)^-30, E(119)^45, E(119)^2, E(119)^41, E(119)^11, E(119)^57, E(119)^22, E(119)^5, E(119)^50, E(119)^15, E(119)^39, E(119)^-57, E(119)^-26, E(119)^-46, E(119)^-2, E(119)^59, E(119)^-32, E(119)^-58, E(119)^-4, E(119)^31, E(119)^26, E(119)^-55, E(119)^-54, E(119)^-8, E(119)^-52, E(119)^58, E(119)^-22, E(119)^33, E(119)^-6, E(119)^48, E(119)^20, E(119)^6, E(119)^30, E(119)^4, E(119)^27, E(119)^9, E(119)^-3, E(119)^-37, E(119)^16, E(119)^46, E(119)^-44, E(119)^-18, E(119)^-33, E(119)^12, E(119)^38, E(119)^-11, E(119)^-29, E(119)^24, E(119)^23, E(119)^13, E(119)^-10, E(119)^-40, E(119), E(119)^-41, E(119)^-48, E(119)^8, E(119)^-59, E(119)^-37, E(119)^-33, E(119)^-23, E(119)^27, E(119)^-5, E(119)^-9, E(119)^-19, E(119)^50, E(119)^25, E(119)^-46, E(119)^59, E(119)^-10, E(119)^31, E(119)^-13, E(119)^-38, E(119)^-32, E(119)^45, E(119)^53, E(119)^-41, E(119)^6, E(119)^19, E(119)^23, E(119)^-1, E(119)^5, E(119)^58, E(119)^-22, E(119)^-29, E(119)^-27, E(119)^-31, E(119)^26, E(119)^37, E(119)^33, E(119)^-8, E(119)^-52, E(119)^52, E(119)^10, E(119)^-59, E(119)^-11, E(119)^24, E(119)^-45, E(119)^-20, E(119)^-15, E(119)^40, E(119)^15, E(119)^44, E(119)^-2, E(119)^43, E(119)^20, E(119)^-3, E(119)^9, E(119)^54, E(119)^-50, E(119)^-47, E(119)^30, E(119)^-39, E(119)^8, E(119)^-40, E(119)^-4, E(119)^-53, E(119)^32, E(119)^57, E(119)^2, E(119)^39, E(119)^-6, E(119)^3, E(119)^-24, E(119), E(119)^-36, E(119)^-58, E(119)^-54, E(119)^-43, E(119)^47, E(119)^16, E(119)^12, E(119)^13, E(119)^-48, E(119)^46, E(119)^22, E(119)^-55, E(119)^-30, E(119)^55, E(119)^29, E(119)^4, E(119)^-25, E(119)^38, E(119)^11, E(119)^36, E(119)^-18, E(119)^18, E(119)^-57, E(119)^41, E(119)^-16, E(119)^-12, E(119)^-44, E(119)^48, E(119)^-26, 1], [1, 1, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^51, E(119)^17, E(119)^17, E(119)^-17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-21, E(119)^49, E(119)^56, E(119)^-56, E(119)^42, E(119)^-14, E(119)^-42, E(119)^28, E(119)^7, E(119)^-28, E(119)^14, E(119)^21, E(119)^-35, E(119)^-7, E(119)^35, E(119)^-49, E(119)^21, E(119)^-14, E(119)^-42, E(119)^7, E(119)^-56, E(119)^35, E(119)^-7, E(119)^14, E(119)^-49, E(119)^-21, E(119)^28, E(119)^49, E(119)^-35, E(119)^42, E(119)^-28, E(119)^56, E(119)^-18, E(119)^-27, E(119)^54, E(119)^11, E(119)^44, E(119)^-9, E(119)^-46, E(119)^57, E(119)^26, E(119)^39, E(119)^-47, E(119)^-59, E(119)^-10, E(119)^23, E(119)^-11, E(119)^-44, E(119)^-48, E(119)^24, E(119)^27, E(119)^-57, E(119)^-12, E(119)^-8, E(119)^-15, E(119)^-19, E(119)^-50, E(119)^20, E(119)^31, E(119)^-41, E(119)^29, E(119)^-4, E(119)^30, E(119)^22, E(119)^-52, E(119)^-54, E(119)^32, E(119)^33, E(119)^10, E(119)^-53, E(119)^-2, E(119)^37, E(119)^4, E(119)^-58, E(119), E(119)^38, E(119)^13, E(119)^-43, E(119)^-26, E(119)^-22, E(119)^41, E(119)^59, E(119)^-13, E(119)^40, E(119)^25, E(119)^58, E(119)^-45, E(119)^-24, E(119)^16, E(119)^-3, E(119)^53, E(119)^-40, E(119)^48, E(119)^19, E(119)^-6, E(119)^-39, E(119)^-16, E(119)^43, E(119)^-5, E(119)^55, E(119)^36, E(119)^15, E(119)^-55, E(119)^-37, E(119)^3, E(119)^50, E(119)^-23, E(119)^-32, E(119)^2, E(119)^12, E(119)^-25, E(119)^-33, E(119)^46, E(119)^5, E(119)^9, E(119)^-31, E(119)^-38, E(119)^8, E(119)^18, E(119)^47, E(119)^-20, E(119)^52, E(119)^-30, E(119)^-29, E(119)^-1, E(119)^-36, E(119)^6, E(119)^45, E(119)^2, E(119)^5, E(119)^-47, E(119)^50, E(119)^26, E(119)^23, E(119)^-44, E(119)^-22, E(119)^-11, E(119)^25, E(119)^-45, E(119)^52, E(119)^53, E(119)^20, E(119)^31, E(119)^-24, E(119)^4, E(119)^10, E(119)^-1, E(119)^-55, E(119)^44, E(119)^47, E(119)^29, E(119)^-26, E(119)^-16, E(119)^43, E(119)^8, E(119)^-50, E(119)^-53, E(119)^-40, E(119)^-2, E(119)^-5, E(119)^-6, E(119)^-39, E(119)^39, E(119)^-52, E(119)^45, E(119)^-38, E(119)^18, E(119)^-4, E(119)^-15, E(119)^-41, E(119)^30, E(119)^41, E(119)^33, E(119)^58, E(119)^-57, E(119)^15, E(119)^-32, E(119)^-23, E(119)^-19, E(119)^22, E(119)^54, E(119)^-37, E(119)^-59, E(119)^6, E(119)^-30, E(119)^-3, E(119)^-10, E(119)^24, E(119)^13, E(119)^-58, E(119)^59, E(119)^55, E(119)^32, E(119)^-18, E(119)^-29, E(119)^-27, E(119)^16, E(119)^19, E(119)^57, E(119)^-54, E(119)^12, E(119)^9, E(119)^-20, E(119)^-36, E(119)^-25, E(119)^-43, E(119)^48, E(119)^37, E(119)^-48, E(119)^-8, E(119)^3, E(119)^11, E(119)^-31, E(119)^38, E(119)^27, E(119)^46, E(119)^-46, E(119)^-13, E(119), E(119)^-12, E(119)^-9, E(119)^-33, E(119)^36, E(119)^40, 1], [1, 1, E(119)^51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-51, E(119)^-17, E(119)^-17, E(119)^17, E(119)^-51, E(119)^51, E(119)^34, E(119)^-34, E(119)^21, E(119)^-49, E(119)^-56, E(119)^56, E(119)^-42, E(119)^14, E(119)^42, E(119)^-28, E(119)^-7, E(119)^28, E(119)^-14, E(119)^-21, E(119)^35, E(119)^7, E(119)^-35, E(119)^49, E(119)^-21, E(119)^14, E(119)^42, E(119)^-7, E(119)^56, E(119)^-35, E(119)^7, E(119)^-14, E(119)^49, E(119)^21, E(119)^-28, E(119)^-49, E(119)^35, E(119)^-42, E(119)^28, E(119)^-56, E(119)^18, E(119)^27, E(119)^-54, E(119)^-11, E(119)^-44, E(119)^9, E(119)^46, E(119)^-57, E(119)^-26, E(119)^-39, E(119)^47, E(119)^59, E(119)^10, E(119)^-23, E(119)^11, E(119)^44, E(119)^48, E(119)^-24, E(119)^-27, E(119)^57, E(119)^12, E(119)^8, E(119)^15, E(119)^19, E(119)^50, E(119)^-20, E(119)^-31, E(119)^41, E(119)^-29, E(119)^4, E(119)^-30, E(119)^-22, E(119)^52, E(119)^54, E(119)^-32, E(119)^-33, E(119)^-10, E(119)^53, E(119)^2, E(119)^-37, E(119)^-4, E(119)^58, E(119)^-1, E(119)^-38, E(119)^-13, E(119)^43, E(119)^26, E(119)^22, E(119)^-41, E(119)^-59, E(119)^13, E(119)^-40, E(119)^-25, E(119)^-58, E(119)^45, E(119)^24, E(119)^-16, E(119)^3, E(119)^-53, E(119)^40, E(119)^-48, E(119)^-19, E(119)^6, E(119)^39, E(119)^16, E(119)^-43, E(119)^5, E(119)^-55, E(119)^-36, E(119)^-15, E(119)^55, E(119)^37, E(119)^-3, E(119)^-50, E(119)^23, E(119)^32, E(119)^-2, E(119)^-12, E(119)^25, E(119)^33, E(119)^-46, E(119)^-5, E(119)^-9, E(119)^31, E(119)^38, E(119)^-8, E(119)^-18, E(119)^-47, E(119)^20, E(119)^-52, E(119)^30, E(119)^29, E(119), E(119)^36, E(119)^-6, E(119)^-45, E(119)^-2, E(119)^-5, E(119)^47, E(119)^-50, E(119)^-26, E(119)^-23, E(119)^44, E(119)^22, E(119)^11, E(119)^-25, E(119)^45, E(119)^-52, E(119)^-53, E(119)^-20, E(119)^-31, E(119)^24, E(119)^-4, E(119)^-10, E(119), E(119)^55, E(119)^-44, E(119)^-47, E(119)^-29, E(119)^26, E(119)^16, E(119)^-43, E(119)^-8, E(119)^50, E(119)^53, E(119)^40, E(119)^2, E(119)^5, E(119)^6, E(119)^39, E(119)^-39, E(119)^52, E(119)^-45, E(119)^38, E(119)^-18, E(119)^4, E(119)^15, E(119)^41, E(119)^-30, E(119)^-41, E(119)^-33, E(119)^-58, E(119)^57, E(119)^-15, E(119)^32, E(119)^23, E(119)^19, E(119)^-22, E(119)^-54, E(119)^37, E(119)^59, E(119)^-6, E(119)^30, E(119)^3, E(119)^10, E(119)^-24, E(119)^-13, E(119)^58, E(119)^-59, E(119)^-55, E(119)^-32, E(119)^18, E(119)^29, E(119)^27, E(119)^-16, E(119)^-19, E(119)^-57, E(119)^54, E(119)^-12, E(119)^-9, E(119)^20, E(119)^36, E(119)^25, E(119)^43, E(119)^-48, E(119)^-37, E(119)^48, E(119)^8, E(119)^-3, E(119)^-11, E(119)^31, E(119)^-38, E(119)^-27, E(119)^-46, E(119)^46, E(119)^13, E(119)^-1, E(119)^12, E(119)^9, E(119)^33, E(119)^-36, E(119)^-40, 1], [1, 1, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^51, E(119)^17, E(119)^17, E(119)^-17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^34, E(119)^21, E(119)^-49, E(119)^-56, E(119)^56, E(119)^-42, E(119)^14, E(119)^42, E(119)^-28, E(119)^-7, E(119)^28, E(119)^-14, E(119)^-21, E(119)^35, E(119)^7, E(119)^-35, E(119)^49, E(119)^-21, E(119)^14, E(119)^42, E(119)^-7, E(119)^56, E(119)^-35, E(119)^7, E(119)^-14, E(119)^49, E(119)^21, E(119)^-28, E(119)^-49, E(119)^35, E(119)^-42, E(119)^28, E(119)^-56, E(119)^52, E(119)^-41, E(119)^-37, E(119)^-45, E(119)^58, E(119)^26, E(119)^-39, E(119)^-6, E(119)^-9, E(119)^46, E(119)^30, E(119)^25, E(119)^-24, E(119)^-40, E(119)^45, E(119)^-58, E(119)^-20, E(119)^10, E(119)^41, E(119)^6, E(119)^-5, E(119)^-43, E(119)^-36, E(119)^2, E(119)^-1, E(119)^48, E(119)^3, E(119)^-27, E(119)^22, E(119)^38, E(119)^-47, E(119)^29, E(119)^18, E(119)^37, E(119)^53, E(119)^-16, E(119)^24, E(119)^-32, E(119)^19, E(119)^-54, E(119)^-38, E(119)^-44, E(119)^50, E(119)^-4, E(119)^55, E(119)^-8, E(119)^9, E(119)^-29, E(119)^27, E(119)^-25, E(119)^-55, E(119)^-23, E(119)^-59, E(119)^44, E(119)^11, E(119)^-10, E(119)^-33, E(119)^-31, E(119)^32, E(119)^23, E(119)^20, E(119)^-2, E(119)^57, E(119)^-46, E(119)^33, E(119)^8, E(119)^-12, E(119)^13, E(119)^15, E(119)^36, E(119)^-13, E(119)^54, E(119)^31, E(119), E(119)^40, E(119)^-53, E(119)^-19, E(119)^5, E(119)^59, E(119)^16, E(119)^39, E(119)^12, E(119)^-26, E(119)^-3, E(119)^4, E(119)^43, E(119)^-52, E(119)^-30, E(119)^-48, E(119)^-18, E(119)^47, E(119)^-22, E(119)^-50, E(119)^-15, E(119)^-57, E(119)^-11, E(119)^-19, E(119)^12, E(119)^30, E(119), E(119)^-9, E(119)^-40, E(119)^-58, E(119)^-29, E(119)^45, E(119)^-59, E(119)^11, E(119)^-18, E(119)^32, E(119)^48, E(119)^3, E(119)^-10, E(119)^-38, E(119)^24, E(119)^-50, E(119)^-13, E(119)^58, E(119)^-30, E(119)^22, E(119)^9, E(119)^33, E(119)^8, E(119)^43, E(119)^-1, E(119)^-32, E(119)^23, E(119)^19, E(119)^-12, E(119)^57, E(119)^-46, E(119)^46, E(119)^18, E(119)^-11, E(119)^4, E(119)^-52, E(119)^38, E(119)^-36, E(119)^-27, E(119)^-47, E(119)^27, E(119)^-16, E(119)^44, E(119)^6, E(119)^36, E(119)^-53, E(119)^40, E(119)^2, E(119)^29, E(119)^-37, E(119)^54, E(119)^25, E(119)^-57, E(119)^47, E(119)^-31, E(119)^-24, E(119)^10, E(119)^55, E(119)^-44, E(119)^-25, E(119)^13, E(119)^53, E(119)^52, E(119)^-22, E(119)^-41, E(119)^-33, E(119)^-2, E(119)^-6, E(119)^37, E(119)^5, E(119)^-26, E(119)^-48, E(119)^-15, E(119)^59, E(119)^-8, E(119)^20, E(119)^-54, E(119)^-20, E(119)^-43, E(119)^31, E(119)^-45, E(119)^-3, E(119)^-4, E(119)^41, E(119)^39, E(119)^-39, E(119)^-55, E(119)^50, E(119)^-5, E(119)^26, E(119)^16, E(119)^15, E(119)^-23, 1], [1, 1, E(119)^51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-51, E(119)^-17, E(119)^-17, E(119)^17, E(119)^-51, E(119)^51, E(119)^34, E(119)^-34, E(119)^-21, E(119)^49, E(119)^56, E(119)^-56, E(119)^42, E(119)^-14, E(119)^-42, E(119)^28, E(119)^7, E(119)^-28, E(119)^14, E(119)^21, E(119)^-35, E(119)^-7, E(119)^35, E(119)^-49, E(119)^21, E(119)^-14, E(119)^-42, E(119)^7, E(119)^-56, E(119)^35, E(119)^-7, E(119)^14, E(119)^-49, E(119)^-21, E(119)^28, E(119)^49, E(119)^-35, E(119)^42, E(119)^-28, E(119)^56, E(119)^-52, E(119)^41, E(119)^37, E(119)^45, E(119)^-58, E(119)^-26, E(119)^39, E(119)^6, E(119)^9, E(119)^-46, E(119)^-30, E(119)^-25, E(119)^24, E(119)^40, E(119)^-45, E(119)^58, E(119)^20, E(119)^-10, E(119)^-41, E(119)^-6, E(119)^5, E(119)^43, E(119)^36, E(119)^-2, E(119), E(119)^-48, E(119)^-3, E(119)^27, E(119)^-22, E(119)^-38, E(119)^47, E(119)^-29, E(119)^-18, E(119)^-37, E(119)^-53, E(119)^16, E(119)^-24, E(119)^32, E(119)^-19, E(119)^54, E(119)^38, E(119)^44, E(119)^-50, E(119)^4, E(119)^-55, E(119)^8, E(119)^-9, E(119)^29, E(119)^-27, E(119)^25, E(119)^55, E(119)^23, E(119)^59, E(119)^-44, E(119)^-11, E(119)^10, E(119)^33, E(119)^31, E(119)^-32, E(119)^-23, E(119)^-20, E(119)^2, E(119)^-57, E(119)^46, E(119)^-33, E(119)^-8, E(119)^12, E(119)^-13, E(119)^-15, E(119)^-36, E(119)^13, E(119)^-54, E(119)^-31, E(119)^-1, E(119)^-40, E(119)^53, E(119)^19, E(119)^-5, E(119)^-59, E(119)^-16, E(119)^-39, E(119)^-12, E(119)^26, E(119)^3, E(119)^-4, E(119)^-43, E(119)^52, E(119)^30, E(119)^48, E(119)^18, E(119)^-47, E(119)^22, E(119)^50, E(119)^15, E(119)^57, E(119)^11, E(119)^19, E(119)^-12, E(119)^-30, E(119)^-1, E(119)^9, E(119)^40, E(119)^58, E(119)^29, E(119)^-45, E(119)^59, E(119)^-11, E(119)^18, E(119)^-32, E(119)^-48, E(119)^-3, E(119)^10, E(119)^38, E(119)^-24, E(119)^50, E(119)^13, E(119)^-58, E(119)^30, E(119)^-22, E(119)^-9, E(119)^-33, E(119)^-8, E(119)^-43, E(119), E(119)^32, E(119)^-23, E(119)^-19, E(119)^12, E(119)^-57, E(119)^46, E(119)^-46, E(119)^-18, E(119)^11, E(119)^-4, E(119)^52, E(119)^-38, E(119)^36, E(119)^27, E(119)^47, E(119)^-27, E(119)^16, E(119)^-44, E(119)^-6, E(119)^-36, E(119)^53, E(119)^-40, E(119)^-2, E(119)^-29, E(119)^37, E(119)^-54, E(119)^-25, E(119)^57, E(119)^-47, E(119)^31, E(119)^24, E(119)^-10, E(119)^-55, E(119)^44, E(119)^25, E(119)^-13, E(119)^-53, E(119)^-52, E(119)^22, E(119)^41, E(119)^33, E(119)^2, E(119)^6, E(119)^-37, E(119)^-5, E(119)^26, E(119)^48, E(119)^15, E(119)^-59, E(119)^8, E(119)^-20, E(119)^54, E(119)^20, E(119)^43, E(119)^-31, E(119)^45, E(119)^3, E(119)^4, E(119)^-41, E(119)^-39, E(119)^39, E(119)^55, E(119)^-50, E(119)^5, E(119)^-26, E(119)^-16, E(119)^-15, E(119)^23, 1], [1, 1, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^51, E(119)^17, E(119)^17, E(119)^-17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-14, E(119)^-7, E(119)^-42, E(119)^42, E(119)^28, E(119)^-49, E(119)^-28, E(119)^-21, E(119)^-35, E(119)^21, E(119)^49, E(119)^14, E(119)^56, E(119)^35, E(119)^-56, E(119)^7, E(119)^14, E(119)^-49, E(119)^-28, E(119)^-35, E(119)^42, E(119)^-56, E(119)^35, E(119)^49, E(119)^7, E(119)^-14, E(119)^-21, E(119)^-7, E(119)^56, E(119)^28, E(119)^21, E(119)^-42, E(119)^-46, E(119)^50, E(119)^19, E(119)^-38, E(119)^-33, E(119)^-23, E(119)^-25, E(119)^-13, E(119)^40, E(119)^-59, E(119)^-54, E(119)^-45, E(119)^-52, E(119)^-47, E(119)^38, E(119)^33, E(119)^36, E(119)^-18, E(119)^-50, E(119)^13, E(119)^9, E(119)^6, E(119)^41, E(119)^44, E(119)^-22, E(119)^-15, E(119)^-53, E(119), E(119)^8, E(119)^3, E(119)^37, E(119)^43, E(119)^39, E(119)^-19, E(119)^-24, E(119)^5, E(119)^52, E(119)^10, E(119)^-58, E(119)^2, E(119)^-3, E(119)^-16, E(119)^29, E(119)^31, E(119)^20, E(119)^-57, E(119)^-40, E(119)^-43, E(119)^-1, E(119)^45, E(119)^-20, E(119)^-30, E(119)^11, E(119)^16, E(119)^4, E(119)^18, E(119)^-12, E(119)^32, E(119)^-10, E(119)^30, E(119)^-36, E(119)^-44, E(119)^-55, E(119)^59, E(119)^12, E(119)^57, E(119)^-26, E(119)^48, E(119)^-27, E(119)^-41, E(119)^-48, E(119)^-2, E(119)^-32, E(119)^22, E(119)^47, E(119)^24, E(119)^58, E(119)^-9, E(119)^-11, E(119)^-5, E(119)^25, E(119)^26, E(119)^23, E(119)^53, E(119)^-31, E(119)^-6, E(119)^46, E(119)^54, E(119)^15, E(119)^-39, E(119)^-37, E(119)^-8, E(119)^-29, E(119)^27, E(119)^55, E(119)^-4, E(119)^58, E(119)^26, E(119)^-54, E(119)^22, E(119)^40, E(119)^-47, E(119)^33, E(119)^-43, E(119)^38, E(119)^11, E(119)^4, E(119)^-39, E(119)^-10, E(119)^-15, E(119)^-53, E(119)^18, E(119)^-3, E(119)^52, E(119)^-29, E(119)^-48, E(119)^-33, E(119)^54, E(119)^8, E(119)^-40, E(119)^12, E(119)^57, E(119)^-6, E(119)^-22, E(119)^10, E(119)^30, E(119)^-58, E(119)^-26, E(119)^-55, E(119)^59, E(119)^-59, E(119)^39, E(119)^-4, E(119)^-31, E(119)^46, E(119)^3, E(119)^41, E(119), E(119)^37, E(119)^-1, E(119)^5, E(119)^16, E(119)^13, E(119)^-41, E(119)^24, E(119)^47, E(119)^44, E(119)^43, E(119)^19, E(119)^-2, E(119)^-45, E(119)^55, E(119)^-37, E(119)^32, E(119)^-52, E(119)^-18, E(119)^20, E(119)^-16, E(119)^45, E(119)^48, E(119)^-24, E(119)^-46, E(119)^-8, E(119)^50, E(119)^-12, E(119)^-44, E(119)^-13, E(119)^-19, E(119)^-9, E(119)^23, E(119)^15, E(119)^27, E(119)^-11, E(119)^-57, E(119)^-36, E(119)^2, E(119)^36, E(119)^6, E(119)^-32, E(119)^-38, E(119)^53, E(119)^31, E(119)^-50, E(119)^25, E(119)^-25, E(119)^-20, E(119)^29, E(119)^9, E(119)^-23, E(119)^-5, E(119)^-27, E(119)^-30, 1], [1, 1, E(119)^51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-51, E(119)^-17, E(119)^-17, E(119)^17, E(119)^-51, E(119)^51, E(119)^34, E(119)^-34, E(119)^14, E(119)^7, E(119)^42, E(119)^-42, E(119)^-28, E(119)^49, E(119)^28, E(119)^21, E(119)^35, E(119)^-21, E(119)^-49, E(119)^-14, E(119)^-56, E(119)^-35, E(119)^56, E(119)^-7, E(119)^-14, E(119)^49, E(119)^28, E(119)^35, E(119)^-42, E(119)^56, E(119)^-35, E(119)^-49, E(119)^-7, E(119)^14, E(119)^21, E(119)^7, E(119)^-56, E(119)^-28, E(119)^-21, E(119)^42, E(119)^46, E(119)^-50, E(119)^-19, E(119)^38, E(119)^33, E(119)^23, E(119)^25, E(119)^13, E(119)^-40, E(119)^59, E(119)^54, E(119)^45, E(119)^52, E(119)^47, E(119)^-38, E(119)^-33, E(119)^-36, E(119)^18, E(119)^50, E(119)^-13, E(119)^-9, E(119)^-6, E(119)^-41, E(119)^-44, E(119)^22, E(119)^15, E(119)^53, E(119)^-1, E(119)^-8, E(119)^-3, E(119)^-37, E(119)^-43, E(119)^-39, E(119)^19, E(119)^24, E(119)^-5, E(119)^-52, E(119)^-10, E(119)^58, E(119)^-2, E(119)^3, E(119)^16, E(119)^-29, E(119)^-31, E(119)^-20, E(119)^57, E(119)^40, E(119)^43, E(119), E(119)^-45, E(119)^20, E(119)^30, E(119)^-11, E(119)^-16, E(119)^-4, E(119)^-18, E(119)^12, E(119)^-32, E(119)^10, E(119)^-30, E(119)^36, E(119)^44, E(119)^55, E(119)^-59, E(119)^-12, E(119)^-57, E(119)^26, E(119)^-48, E(119)^27, E(119)^41, E(119)^48, E(119)^2, E(119)^32, E(119)^-22, E(119)^-47, E(119)^-24, E(119)^-58, E(119)^9, E(119)^11, E(119)^5, E(119)^-25, E(119)^-26, E(119)^-23, E(119)^-53, E(119)^31, E(119)^6, E(119)^-46, E(119)^-54, E(119)^-15, E(119)^39, E(119)^37, E(119)^8, E(119)^29, E(119)^-27, E(119)^-55, E(119)^4, E(119)^-58, E(119)^-26, E(119)^54, E(119)^-22, E(119)^-40, E(119)^47, E(119)^-33, E(119)^43, E(119)^-38, E(119)^-11, E(119)^-4, E(119)^39, E(119)^10, E(119)^15, E(119)^53, E(119)^-18, E(119)^3, E(119)^-52, E(119)^29, E(119)^48, E(119)^33, E(119)^-54, E(119)^-8, E(119)^40, E(119)^-12, E(119)^-57, E(119)^6, E(119)^22, E(119)^-10, E(119)^-30, E(119)^58, E(119)^26, E(119)^55, E(119)^-59, E(119)^59, E(119)^-39, E(119)^4, E(119)^31, E(119)^-46, E(119)^-3, E(119)^-41, E(119)^-1, E(119)^-37, E(119), E(119)^-5, E(119)^-16, E(119)^-13, E(119)^41, E(119)^-24, E(119)^-47, E(119)^-44, E(119)^-43, E(119)^-19, E(119)^2, E(119)^45, E(119)^-55, E(119)^37, E(119)^-32, E(119)^52, E(119)^18, E(119)^-20, E(119)^16, E(119)^-45, E(119)^-48, E(119)^24, E(119)^46, E(119)^8, E(119)^-50, E(119)^12, E(119)^44, E(119)^13, E(119)^19, E(119)^9, E(119)^-23, E(119)^-15, E(119)^-27, E(119)^11, E(119)^57, E(119)^36, E(119)^-2, E(119)^-36, E(119)^-6, E(119)^32, E(119)^38, E(119)^-53, E(119)^-31, E(119)^50, E(119)^-25, E(119)^25, E(119)^20, E(119)^-29, E(119)^-9, E(119)^23, E(119)^5, E(119)^27, E(119)^30, 1], [1, 1, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^51, E(119)^17, E(119)^17, E(119)^-17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^34, E(119)^14, E(119)^7, E(119)^42, E(119)^-42, E(119)^-28, E(119)^49, E(119)^28, E(119)^21, E(119)^35, E(119)^-21, E(119)^-49, E(119)^-14, E(119)^-56, E(119)^-35, E(119)^56, E(119)^-7, E(119)^-14, E(119)^49, E(119)^28, E(119)^35, E(119)^-42, E(119)^56, E(119)^-35, E(119)^-49, E(119)^-7, E(119)^14, E(119)^21, E(119)^7, E(119)^-56, E(119)^-28, E(119)^-21, E(119)^42, E(119)^-39, E(119), E(119)^-2, E(119)^4, E(119)^16, E(119)^40, E(119)^59, E(119)^-55, E(119)^-23, E(119)^25, E(119)^37, E(119)^11, E(119)^18, E(119)^30, E(119)^-4, E(119)^-16, E(119)^15, E(119)^52, E(119)^-1, E(119)^55, E(119)^-26, E(119)^-57, E(119)^27, E(119)^58, E(119)^-29, E(119)^-36, E(119)^-32, E(119)^50, E(119)^43, E(119)^31, E(119)^-54, E(119)^8, E(119)^46, E(119)^2, E(119)^-10, E(119)^12, E(119)^-18, E(119)^24, E(119)^-44, E(119)^-19, E(119)^-31, E(119)^33, E(119)^22, E(119)^3, E(119)^48, E(119)^6, E(119)^23, E(119)^-8, E(119)^-50, E(119)^-11, E(119)^-48, E(119)^47, E(119)^-45, E(119)^-33, E(119)^-38, E(119)^-52, E(119)^-5, E(119)^53, E(119)^-24, E(119)^-47, E(119)^-15, E(119)^-58, E(119)^-13, E(119)^-25, E(119)^5, E(119)^-6, E(119)^9, E(119)^20, E(119)^-41, E(119)^-27, E(119)^-20, E(119)^19, E(119)^-53, E(119)^29, E(119)^-30, E(119)^10, E(119)^44, E(119)^26, E(119)^45, E(119)^-12, E(119)^-59, E(119)^-9, E(119)^-40, E(119)^32, E(119)^-3, E(119)^57, E(119)^39, E(119)^-37, E(119)^36, E(119)^-46, E(119)^54, E(119)^-43, E(119)^-22, E(119)^41, E(119)^13, E(119)^38, E(119)^44, E(119)^-9, E(119)^37, E(119)^29, E(119)^-23, E(119)^30, E(119)^-16, E(119)^-8, E(119)^-4, E(119)^-45, E(119)^-38, E(119)^-46, E(119)^-24, E(119)^-36, E(119)^-32, E(119)^-52, E(119)^-31, E(119)^-18, E(119)^-22, E(119)^-20, E(119)^16, E(119)^-37, E(119)^43, E(119)^23, E(119)^5, E(119)^-6, E(119)^57, E(119)^-29, E(119)^24, E(119)^-47, E(119)^-44, E(119)^9, E(119)^-13, E(119)^-25, E(119)^25, E(119)^46, E(119)^38, E(119)^-3, E(119)^39, E(119)^31, E(119)^27, E(119)^50, E(119)^-54, E(119)^-50, E(119)^12, E(119)^-33, E(119)^55, E(119)^-27, E(119)^10, E(119)^-30, E(119)^58, E(119)^8, E(119)^-2, E(119)^19, E(119)^11, E(119)^13, E(119)^54, E(119)^53, E(119)^18, E(119)^52, E(119)^48, E(119)^33, E(119)^-11, E(119)^20, E(119)^-10, E(119)^-39, E(119)^-43, E(119), E(119)^-5, E(119)^-58, E(119)^-55, E(119)^2, E(119)^26, E(119)^-40, E(119)^36, E(119)^41, E(119)^45, E(119)^6, E(119)^-15, E(119)^-19, E(119)^15, E(119)^-57, E(119)^-53, E(119)^4, E(119)^32, E(119)^3, E(119)^-1, E(119)^-59, E(119)^59, E(119)^-48, E(119)^22, E(119)^-26, E(119)^40, E(119)^-12, E(119)^-41, E(119)^47, 1], [1, 1, E(119)^51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-51, E(119)^-17, E(119)^-17, E(119)^17, E(119)^-51, E(119)^51, E(119)^34, E(119)^-34, E(119)^-14, E(119)^-7, E(119)^-42, E(119)^42, E(119)^28, E(119)^-49, E(119)^-28, E(119)^-21, E(119)^-35, E(119)^21, E(119)^49, E(119)^14, E(119)^56, E(119)^35, E(119)^-56, E(119)^7, E(119)^14, E(119)^-49, E(119)^-28, E(119)^-35, E(119)^42, E(119)^-56, E(119)^35, E(119)^49, E(119)^7, E(119)^-14, E(119)^-21, E(119)^-7, E(119)^56, E(119)^28, E(119)^21, E(119)^-42, E(119)^39, E(119)^-1, E(119)^2, E(119)^-4, E(119)^-16, E(119)^-40, E(119)^-59, E(119)^55, E(119)^23, E(119)^-25, E(119)^-37, E(119)^-11, E(119)^-18, E(119)^-30, E(119)^4, E(119)^16, E(119)^-15, E(119)^-52, E(119), E(119)^-55, E(119)^26, E(119)^57, E(119)^-27, E(119)^-58, E(119)^29, E(119)^36, E(119)^32, E(119)^-50, E(119)^-43, E(119)^-31, E(119)^54, E(119)^-8, E(119)^-46, E(119)^-2, E(119)^10, E(119)^-12, E(119)^18, E(119)^-24, E(119)^44, E(119)^19, E(119)^31, E(119)^-33, E(119)^-22, E(119)^-3, E(119)^-48, E(119)^-6, E(119)^-23, E(119)^8, E(119)^50, E(119)^11, E(119)^48, E(119)^-47, E(119)^45, E(119)^33, E(119)^38, E(119)^52, E(119)^5, E(119)^-53, E(119)^24, E(119)^47, E(119)^15, E(119)^58, E(119)^13, E(119)^25, E(119)^-5, E(119)^6, E(119)^-9, E(119)^-20, E(119)^41, E(119)^27, E(119)^20, E(119)^-19, E(119)^53, E(119)^-29, E(119)^30, E(119)^-10, E(119)^-44, E(119)^-26, E(119)^-45, E(119)^12, E(119)^59, E(119)^9, E(119)^40, E(119)^-32, E(119)^3, E(119)^-57, E(119)^-39, E(119)^37, E(119)^-36, E(119)^46, E(119)^-54, E(119)^43, E(119)^22, E(119)^-41, E(119)^-13, E(119)^-38, E(119)^-44, E(119)^9, E(119)^-37, E(119)^-29, E(119)^23, E(119)^-30, E(119)^16, E(119)^8, E(119)^4, E(119)^45, E(119)^38, E(119)^46, E(119)^24, E(119)^36, E(119)^32, E(119)^52, E(119)^31, E(119)^18, E(119)^22, E(119)^20, E(119)^-16, E(119)^37, E(119)^-43, E(119)^-23, E(119)^-5, E(119)^6, E(119)^-57, E(119)^29, E(119)^-24, E(119)^47, E(119)^44, E(119)^-9, E(119)^13, E(119)^25, E(119)^-25, E(119)^-46, E(119)^-38, E(119)^3, E(119)^-39, E(119)^-31, E(119)^-27, E(119)^-50, E(119)^54, E(119)^50, E(119)^-12, E(119)^33, E(119)^-55, E(119)^27, E(119)^-10, E(119)^30, E(119)^-58, E(119)^-8, E(119)^2, E(119)^-19, E(119)^-11, E(119)^-13, E(119)^-54, E(119)^-53, E(119)^-18, E(119)^-52, E(119)^-48, E(119)^-33, E(119)^11, E(119)^-20, E(119)^10, E(119)^39, E(119)^43, E(119)^-1, E(119)^5, E(119)^58, E(119)^55, E(119)^-2, E(119)^-26, E(119)^40, E(119)^-36, E(119)^-41, E(119)^-45, E(119)^-6, E(119)^15, E(119)^19, E(119)^-15, E(119)^57, E(119)^53, E(119)^-4, E(119)^-32, E(119)^-3, E(119), E(119)^59, E(119)^-59, E(119)^48, E(119)^-22, E(119)^26, E(119)^-40, E(119)^12, E(119)^41, E(119)^-47, 1], [1, 1, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^51, E(119)^17, E(119)^17, E(119)^-17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-7, E(119)^56, E(119)^-21, E(119)^21, E(119)^14, E(119)^35, E(119)^-14, E(119)^49, E(119)^42, E(119)^-49, E(119)^-35, E(119)^7, E(119)^28, E(119)^-42, E(119)^-28, E(119)^-56, E(119)^7, E(119)^35, E(119)^-14, E(119)^42, E(119)^21, E(119)^-28, E(119)^-42, E(119)^-35, E(119)^-56, E(119)^-7, E(119)^49, E(119)^56, E(119)^28, E(119)^14, E(119)^-49, E(119)^-21, E(119)^45, E(119)^8, E(119)^-16, E(119)^32, E(119)^9, E(119)^-37, E(119)^-4, E(119)^36, E(119)^54, E(119)^-38, E(119)^58, E(119)^-31, E(119)^25, E(119)^2, E(119)^-32, E(119)^-9, E(119), E(119)^59, E(119)^-8, E(119)^-36, E(119)^30, E(119)^20, E(119)^-22, E(119)^-12, E(119)^6, E(119)^-50, E(119)^-18, E(119)^43, E(119)^-13, E(119)^10, E(119)^44, E(119)^-55, E(119)^11, E(119)^16, E(119)^39, E(119)^-23, E(119)^-25, E(119)^-46, E(119)^5, E(119)^-33, E(119)^-10, E(119)^26, E(119)^57, E(119)^24, E(119)^27, E(119)^48, E(119)^-54, E(119)^55, E(119)^-43, E(119)^31, E(119)^-27, E(119)^19, E(119)^-3, E(119)^-26, E(119)^53, E(119)^-59, E(119)^-40, E(119)^-52, E(119)^46, E(119)^-19, E(119)^-1, E(119)^12, E(119)^15, E(119)^38, E(119)^40, E(119)^-48, E(119)^-47, E(119)^41, E(119)^29, E(119)^22, E(119)^-41, E(119)^33, E(119)^52, E(119)^-6, E(119)^-2, E(119)^-39, E(119)^-5, E(119)^-30, E(119)^3, E(119)^23, E(119)^4, E(119)^47, E(119)^37, E(119)^18, E(119)^-24, E(119)^-20, E(119)^-45, E(119)^-58, E(119)^50, E(119)^-11, E(119)^-44, E(119)^13, E(119)^-57, E(119)^-29, E(119)^-15, E(119)^-53, E(119)^-5, E(119)^47, E(119)^58, E(119)^-6, E(119)^54, E(119)^2, E(119)^-9, E(119)^55, E(119)^-32, E(119)^-3, E(119)^53, E(119)^-11, E(119)^46, E(119)^-50, E(119)^-18, E(119)^-59, E(119)^-10, E(119)^-25, E(119)^-57, E(119)^-41, E(119)^9, E(119)^-58, E(119)^-13, E(119)^-54, E(119)^40, E(119)^-48, E(119)^-20, E(119)^6, E(119)^-46, E(119)^-19, E(119)^5, E(119)^-47, E(119)^15, E(119)^38, E(119)^-38, E(119)^11, E(119)^-53, E(119)^-24, E(119)^-45, E(119)^10, E(119)^-22, E(119)^43, E(119)^44, E(119)^-43, E(119)^-23, E(119)^-26, E(119)^-36, E(119)^22, E(119)^-39, E(119)^-2, E(119)^-12, E(119)^-55, E(119)^-16, E(119)^33, E(119)^-31, E(119)^-15, E(119)^-44, E(119)^-52, E(119)^25, E(119)^59, E(119)^27, E(119)^26, E(119)^31, E(119)^41, E(119)^39, E(119)^45, E(119)^13, E(119)^8, E(119)^-40, E(119)^12, E(119)^36, E(119)^16, E(119)^-30, E(119)^37, E(119)^50, E(119)^-29, E(119)^3, E(119)^48, E(119)^-1, E(119)^-33, E(119), E(119)^20, E(119)^52, E(119)^32, E(119)^18, E(119)^24, E(119)^-8, E(119)^4, E(119)^-4, E(119)^-27, E(119)^57, E(119)^30, E(119)^-37, E(119)^23, E(119)^29, E(119)^19, 1], [1, 1, E(119)^51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-51, E(119)^-17, E(119)^-17, E(119)^17, E(119)^-51, E(119)^51, E(119)^34, E(119)^-34, E(119)^7, E(119)^-56, E(119)^21, E(119)^-21, E(119)^-14, E(119)^-35, E(119)^14, E(119)^-49, E(119)^-42, E(119)^49, E(119)^35, E(119)^-7, E(119)^-28, E(119)^42, E(119)^28, E(119)^56, E(119)^-7, E(119)^-35, E(119)^14, E(119)^-42, E(119)^-21, E(119)^28, E(119)^42, E(119)^35, E(119)^56, E(119)^7, E(119)^-49, E(119)^-56, E(119)^-28, E(119)^-14, E(119)^49, E(119)^21, E(119)^-45, E(119)^-8, E(119)^16, E(119)^-32, E(119)^-9, E(119)^37, E(119)^4, E(119)^-36, E(119)^-54, E(119)^38, E(119)^-58, E(119)^31, E(119)^-25, E(119)^-2, E(119)^32, E(119)^9, E(119)^-1, E(119)^-59, E(119)^8, E(119)^36, E(119)^-30, E(119)^-20, E(119)^22, E(119)^12, E(119)^-6, E(119)^50, E(119)^18, E(119)^-43, E(119)^13, E(119)^-10, E(119)^-44, E(119)^55, E(119)^-11, E(119)^-16, E(119)^-39, E(119)^23, E(119)^25, E(119)^46, E(119)^-5, E(119)^33, E(119)^10, E(119)^-26, E(119)^-57, E(119)^-24, E(119)^-27, E(119)^-48, E(119)^54, E(119)^-55, E(119)^43, E(119)^-31, E(119)^27, E(119)^-19, E(119)^3, E(119)^26, E(119)^-53, E(119)^59, E(119)^40, E(119)^52, E(119)^-46, E(119)^19, E(119), E(119)^-12, E(119)^-15, E(119)^-38, E(119)^-40, E(119)^48, E(119)^47, E(119)^-41, E(119)^-29, E(119)^-22, E(119)^41, E(119)^-33, E(119)^-52, E(119)^6, E(119)^2, E(119)^39, E(119)^5, E(119)^30, E(119)^-3, E(119)^-23, E(119)^-4, E(119)^-47, E(119)^-37, E(119)^-18, E(119)^24, E(119)^20, E(119)^45, E(119)^58, E(119)^-50, E(119)^11, E(119)^44, E(119)^-13, E(119)^57, E(119)^29, E(119)^15, E(119)^53, E(119)^5, E(119)^-47, E(119)^-58, E(119)^6, E(119)^-54, E(119)^-2, E(119)^9, E(119)^-55, E(119)^32, E(119)^3, E(119)^-53, E(119)^11, E(119)^-46, E(119)^50, E(119)^18, E(119)^59, E(119)^10, E(119)^25, E(119)^57, E(119)^41, E(119)^-9, E(119)^58, E(119)^13, E(119)^54, E(119)^-40, E(119)^48, E(119)^20, E(119)^-6, E(119)^46, E(119)^19, E(119)^-5, E(119)^47, E(119)^-15, E(119)^-38, E(119)^38, E(119)^-11, E(119)^53, E(119)^24, E(119)^45, E(119)^-10, E(119)^22, E(119)^-43, E(119)^-44, E(119)^43, E(119)^23, E(119)^26, E(119)^36, E(119)^-22, E(119)^39, E(119)^2, E(119)^12, E(119)^55, E(119)^16, E(119)^-33, E(119)^31, E(119)^15, E(119)^44, E(119)^52, E(119)^-25, E(119)^-59, E(119)^-27, E(119)^-26, E(119)^-31, E(119)^-41, E(119)^-39, E(119)^-45, E(119)^-13, E(119)^-8, E(119)^40, E(119)^-12, E(119)^-36, E(119)^-16, E(119)^30, E(119)^-37, E(119)^-50, E(119)^29, E(119)^-3, E(119)^-48, E(119), E(119)^33, E(119)^-1, E(119)^-20, E(119)^-52, E(119)^-32, E(119)^-18, E(119)^-24, E(119)^8, E(119)^-4, E(119)^4, E(119)^27, E(119)^-57, E(119)^-30, E(119)^37, E(119)^-23, E(119)^-29, E(119)^-19, 1], [1, 1, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^51, E(119)^17, E(119)^17, E(119)^-17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^34, E(119)^7, E(119)^-56, E(119)^21, E(119)^-21, E(119)^-14, E(119)^-35, E(119)^14, E(119)^-49, E(119)^-42, E(119)^49, E(119)^35, E(119)^-7, E(119)^-28, E(119)^42, E(119)^28, E(119)^56, E(119)^-7, E(119)^-35, E(119)^14, E(119)^-42, E(119)^-21, E(119)^28, E(119)^42, E(119)^35, E(119)^56, E(119)^7, E(119)^-49, E(119)^-56, E(119)^-28, E(119)^-14, E(119)^49, E(119)^21, E(119)^-11, E(119)^43, E(119)^33, E(119)^53, E(119)^-26, E(119)^54, E(119)^38, E(119)^15, E(119)^-37, E(119)^4, E(119)^44, E(119)^-3, E(119)^-59, E(119)^-19, E(119)^-53, E(119)^26, E(119)^50, E(119)^-25, E(119)^-43, E(119)^-15, E(119)^-47, E(119)^48, E(119)^-29, E(119)^-5, E(119)^-57, E(119)^-1, E(119)^52, E(119)^8, E(119)^-55, E(119)^24, E(119)^58, E(119)^-13, E(119)^-45, E(119)^-33, E(119)^46, E(119)^40, E(119)^59, E(119)^-39, E(119)^12, E(119)^16, E(119)^-24, E(119)^-9, E(119)^-6, E(119)^10, E(119)^41, E(119)^20, E(119)^37, E(119)^13, E(119)^-8, E(119)^3, E(119)^-41, E(119)^-2, E(119)^-31, E(119)^9, E(119)^32, E(119)^25, E(119)^23, E(119)^18, E(119)^39, E(119)^2, E(119)^-50, E(119)^5, E(119)^36, E(119)^-4, E(119)^-23, E(119)^-20, E(119)^30, E(119)^27, E(119)^22, E(119)^29, E(119)^-27, E(119)^-16, E(119)^-18, E(119)^57, E(119)^19, E(119)^-46, E(119)^-12, E(119)^47, E(119)^31, E(119)^-40, E(119)^-38, E(119)^-30, E(119)^-54, E(119)^-52, E(119)^-10, E(119)^-48, E(119)^11, E(119)^-44, E(119), E(119)^45, E(119)^-58, E(119)^55, E(119)^6, E(119)^-22, E(119)^-36, E(119)^-32, E(119)^-12, E(119)^-30, E(119)^44, E(119)^57, E(119)^-37, E(119)^-19, E(119)^26, E(119)^13, E(119)^-53, E(119)^-31, E(119)^32, E(119)^45, E(119)^39, E(119)^-1, E(119)^52, E(119)^25, E(119)^-24, E(119)^59, E(119)^6, E(119)^-27, E(119)^-26, E(119)^-44, E(119)^-55, E(119)^37, E(119)^-23, E(119)^-20, E(119)^-48, E(119)^-57, E(119)^-39, E(119)^2, E(119)^12, E(119)^30, E(119)^36, E(119)^-4, E(119)^4, E(119)^-45, E(119)^-32, E(119)^-10, E(119)^11, E(119)^24, E(119)^-29, E(119)^8, E(119)^58, E(119)^-8, E(119)^40, E(119)^9, E(119)^-15, E(119)^29, E(119)^-46, E(119)^19, E(119)^-5, E(119)^-13, E(119)^33, E(119)^-16, E(119)^-3, E(119)^-36, E(119)^-58, E(119)^18, E(119)^-59, E(119)^-25, E(119)^41, E(119)^-9, E(119)^3, E(119)^27, E(119)^46, E(119)^-11, E(119)^55, E(119)^43, E(119)^23, E(119)^5, E(119)^15, E(119)^-33, E(119)^47, E(119)^-54, E(119), E(119)^-22, E(119)^31, E(119)^20, E(119)^-50, E(119)^16, E(119)^50, E(119)^48, E(119)^-18, E(119)^53, E(119)^-52, E(119)^10, E(119)^-43, E(119)^-38, E(119)^38, E(119)^-41, E(119)^-6, E(119)^-47, E(119)^54, E(119)^-40, E(119)^22, E(119)^-2, 1], [1, 1, E(119)^51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-51, E(119)^-17, E(119)^-17, E(119)^17, E(119)^-51, E(119)^51, E(119)^34, E(119)^-34, E(119)^-7, E(119)^56, E(119)^-21, E(119)^21, E(119)^14, E(119)^35, E(119)^-14, E(119)^49, E(119)^42, E(119)^-49, E(119)^-35, E(119)^7, E(119)^28, E(119)^-42, E(119)^-28, E(119)^-56, E(119)^7, E(119)^35, E(119)^-14, E(119)^42, E(119)^21, E(119)^-28, E(119)^-42, E(119)^-35, E(119)^-56, E(119)^-7, E(119)^49, E(119)^56, E(119)^28, E(119)^14, E(119)^-49, E(119)^-21, E(119)^11, E(119)^-43, E(119)^-33, E(119)^-53, E(119)^26, E(119)^-54, E(119)^-38, E(119)^-15, E(119)^37, E(119)^-4, E(119)^-44, E(119)^3, E(119)^59, E(119)^19, E(119)^53, E(119)^-26, E(119)^-50, E(119)^25, E(119)^43, E(119)^15, E(119)^47, E(119)^-48, E(119)^29, E(119)^5, E(119)^57, E(119), E(119)^-52, E(119)^-8, E(119)^55, E(119)^-24, E(119)^-58, E(119)^13, E(119)^45, E(119)^33, E(119)^-46, E(119)^-40, E(119)^-59, E(119)^39, E(119)^-12, E(119)^-16, E(119)^24, E(119)^9, E(119)^6, E(119)^-10, E(119)^-41, E(119)^-20, E(119)^-37, E(119)^-13, E(119)^8, E(119)^-3, E(119)^41, E(119)^2, E(119)^31, E(119)^-9, E(119)^-32, E(119)^-25, E(119)^-23, E(119)^-18, E(119)^-39, E(119)^-2, E(119)^50, E(119)^-5, E(119)^-36, E(119)^4, E(119)^23, E(119)^20, E(119)^-30, E(119)^-27, E(119)^-22, E(119)^-29, E(119)^27, E(119)^16, E(119)^18, E(119)^-57, E(119)^-19, E(119)^46, E(119)^12, E(119)^-47, E(119)^-31, E(119)^40, E(119)^38, E(119)^30, E(119)^54, E(119)^52, E(119)^10, E(119)^48, E(119)^-11, E(119)^44, E(119)^-1, E(119)^-45, E(119)^58, E(119)^-55, E(119)^-6, E(119)^22, E(119)^36, E(119)^32, E(119)^12, E(119)^30, E(119)^-44, E(119)^-57, E(119)^37, E(119)^19, E(119)^-26, E(119)^-13, E(119)^53, E(119)^31, E(119)^-32, E(119)^-45, E(119)^-39, E(119), E(119)^-52, E(119)^-25, E(119)^24, E(119)^-59, E(119)^-6, E(119)^27, E(119)^26, E(119)^44, E(119)^55, E(119)^-37, E(119)^23, E(119)^20, E(119)^48, E(119)^57, E(119)^39, E(119)^-2, E(119)^-12, E(119)^-30, E(119)^-36, E(119)^4, E(119)^-4, E(119)^45, E(119)^32, E(119)^10, E(119)^-11, E(119)^-24, E(119)^29, E(119)^-8, E(119)^-58, E(119)^8, E(119)^-40, E(119)^-9, E(119)^15, E(119)^-29, E(119)^46, E(119)^-19, E(119)^5, E(119)^13, E(119)^-33, E(119)^16, E(119)^3, E(119)^36, E(119)^58, E(119)^-18, E(119)^59, E(119)^25, E(119)^-41, E(119)^9, E(119)^-3, E(119)^-27, E(119)^-46, E(119)^11, E(119)^-55, E(119)^-43, E(119)^-23, E(119)^-5, E(119)^-15, E(119)^33, E(119)^-47, E(119)^54, E(119)^-1, E(119)^22, E(119)^-31, E(119)^-20, E(119)^50, E(119)^-16, E(119)^-50, E(119)^-48, E(119)^18, E(119)^-53, E(119)^52, E(119)^-10, E(119)^43, E(119)^38, E(119)^-38, E(119)^41, E(119)^6, E(119)^47, E(119)^-54, E(119)^40, E(119)^-22, E(119)^2, 1], [1, 1, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^34, E(119)^51, E(119)^51, E(119)^-51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-56, E(119)^-28, E(119)^-49, E(119)^49, E(119)^-7, E(119)^42, E(119)^7, E(119)^35, E(119)^-21, E(119)^-35, E(119)^-42, E(119)^56, E(119)^-14, E(119)^21, E(119)^14, E(119)^28, E(119)^56, E(119)^42, E(119)^7, E(119)^-21, E(119)^49, E(119)^14, E(119)^21, E(119)^-42, E(119)^28, E(119)^-56, E(119)^35, E(119)^-28, E(119)^-14, E(119)^-7, E(119)^-35, E(119)^-49, E(119)^37, E(119)^-4, E(119)^8, E(119)^-16, E(119)^55, E(119)^-41, E(119)^2, E(119)^-18, E(119)^-27, E(119)^19, E(119)^-29, E(119)^-44, E(119)^47, E(119)^-1, E(119)^16, E(119)^-55, E(119)^59, E(119)^30, E(119)^4, E(119)^18, E(119)^-15, E(119)^-10, E(119)^11, E(119)^6, E(119)^-3, E(119)^25, E(119)^9, E(119)^38, E(119)^-53, E(119)^-5, E(119)^-22, E(119)^-32, E(119)^54, E(119)^-8, E(119)^40, E(119)^-48, E(119)^-47, E(119)^23, E(119)^57, E(119)^-43, E(119)^5, E(119)^-13, E(119)^31, E(119)^-12, E(119)^46, E(119)^-24, E(119)^27, E(119)^32, E(119)^-38, E(119)^44, E(119)^-46, E(119)^50, E(119)^-58, E(119)^13, E(119)^33, E(119)^-30, E(119)^20, E(119)^26, E(119)^-23, E(119)^-50, E(119)^-59, E(119)^-6, E(119)^52, E(119)^-19, E(119)^-20, E(119)^24, E(119)^-36, E(119)^39, E(119)^45, E(119)^-11, E(119)^-39, E(119)^43, E(119)^-26, E(119)^3, E(119), E(119)^-40, E(119)^-57, E(119)^15, E(119)^58, E(119)^48, E(119)^-2, E(119)^36, E(119)^41, E(119)^-9, E(119)^12, E(119)^10, E(119)^-37, E(119)^29, E(119)^-25, E(119)^-54, E(119)^22, E(119)^53, E(119)^-31, E(119)^-45, E(119)^-52, E(119)^-33, E(119)^-57, E(119)^36, E(119)^-29, E(119)^3, E(119)^-27, E(119)^-1, E(119)^-55, E(119)^32, E(119)^16, E(119)^-58, E(119)^33, E(119)^-54, E(119)^-23, E(119)^25, E(119)^9, E(119)^-30, E(119)^5, E(119)^-47, E(119)^-31, E(119)^-39, E(119)^55, E(119)^29, E(119)^-53, E(119)^27, E(119)^-20, E(119)^24, E(119)^10, E(119)^-3, E(119)^23, E(119)^-50, E(119)^57, E(119)^-36, E(119)^52, E(119)^-19, E(119)^19, E(119)^54, E(119)^-33, E(119)^12, E(119)^-37, E(119)^-5, E(119)^11, E(119)^38, E(119)^-22, E(119)^-38, E(119)^-48, E(119)^13, E(119)^18, E(119)^-11, E(119)^-40, E(119), E(119)^6, E(119)^-32, E(119)^8, E(119)^43, E(119)^-44, E(119)^-52, E(119)^22, E(119)^26, E(119)^47, E(119)^30, E(119)^46, E(119)^-13, E(119)^44, E(119)^39, E(119)^40, E(119)^37, E(119)^53, E(119)^-4, E(119)^20, E(119)^-6, E(119)^-18, E(119)^-8, E(119)^15, E(119)^41, E(119)^-25, E(119)^-45, E(119)^58, E(119)^-24, E(119)^-59, E(119)^-43, E(119)^59, E(119)^-10, E(119)^-26, E(119)^-16, E(119)^-9, E(119)^-12, E(119)^4, E(119)^-2, E(119)^2, E(119)^-46, E(119)^31, E(119)^-15, E(119)^-41, E(119)^48, E(119)^45, E(119)^50, 1], [1, 1, E(119)^34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-34, E(119)^-51, E(119)^-51, E(119)^51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^17, E(119)^56, E(119)^28, E(119)^49, E(119)^-49, E(119)^7, E(119)^-42, E(119)^-7, E(119)^-35, E(119)^21, E(119)^35, E(119)^42, E(119)^-56, E(119)^14, E(119)^-21, E(119)^-14, E(119)^-28, E(119)^-56, E(119)^-42, E(119)^-7, E(119)^21, E(119)^-49, E(119)^-14, E(119)^-21, E(119)^42, E(119)^-28, E(119)^56, E(119)^-35, E(119)^28, E(119)^14, E(119)^7, E(119)^35, E(119)^49, E(119)^-37, E(119)^4, E(119)^-8, E(119)^16, E(119)^-55, E(119)^41, E(119)^-2, E(119)^18, E(119)^27, E(119)^-19, E(119)^29, E(119)^44, E(119)^-47, E(119), E(119)^-16, E(119)^55, E(119)^-59, E(119)^-30, E(119)^-4, E(119)^-18, E(119)^15, E(119)^10, E(119)^-11, E(119)^-6, E(119)^3, E(119)^-25, E(119)^-9, E(119)^-38, E(119)^53, E(119)^5, E(119)^22, E(119)^32, E(119)^-54, E(119)^8, E(119)^-40, E(119)^48, E(119)^47, E(119)^-23, E(119)^-57, E(119)^43, E(119)^-5, E(119)^13, E(119)^-31, E(119)^12, E(119)^-46, E(119)^24, E(119)^-27, E(119)^-32, E(119)^38, E(119)^-44, E(119)^46, E(119)^-50, E(119)^58, E(119)^-13, E(119)^-33, E(119)^30, E(119)^-20, E(119)^-26, E(119)^23, E(119)^50, E(119)^59, E(119)^6, E(119)^-52, E(119)^19, E(119)^20, E(119)^-24, E(119)^36, E(119)^-39, E(119)^-45, E(119)^11, E(119)^39, E(119)^-43, E(119)^26, E(119)^-3, E(119)^-1, E(119)^40, E(119)^57, E(119)^-15, E(119)^-58, E(119)^-48, E(119)^2, E(119)^-36, E(119)^-41, E(119)^9, E(119)^-12, E(119)^-10, E(119)^37, E(119)^-29, E(119)^25, E(119)^54, E(119)^-22, E(119)^-53, E(119)^31, E(119)^45, E(119)^52, E(119)^33, E(119)^57, E(119)^-36, E(119)^29, E(119)^-3, E(119)^27, E(119), E(119)^55, E(119)^-32, E(119)^-16, E(119)^58, E(119)^-33, E(119)^54, E(119)^23, E(119)^-25, E(119)^-9, E(119)^30, E(119)^-5, E(119)^47, E(119)^31, E(119)^39, E(119)^-55, E(119)^-29, E(119)^53, E(119)^-27, E(119)^20, E(119)^-24, E(119)^-10, E(119)^3, E(119)^-23, E(119)^50, E(119)^-57, E(119)^36, E(119)^-52, E(119)^19, E(119)^-19, E(119)^-54, E(119)^33, E(119)^-12, E(119)^37, E(119)^5, E(119)^-11, E(119)^-38, E(119)^22, E(119)^38, E(119)^48, E(119)^-13, E(119)^-18, E(119)^11, E(119)^40, E(119)^-1, E(119)^-6, E(119)^32, E(119)^-8, E(119)^-43, E(119)^44, E(119)^52, E(119)^-22, E(119)^-26, E(119)^-47, E(119)^-30, E(119)^-46, E(119)^13, E(119)^-44, E(119)^-39, E(119)^-40, E(119)^-37, E(119)^-53, E(119)^4, E(119)^-20, E(119)^6, E(119)^18, E(119)^8, E(119)^-15, E(119)^-41, E(119)^25, E(119)^45, E(119)^-58, E(119)^24, E(119)^59, E(119)^43, E(119)^-59, E(119)^10, E(119)^26, E(119)^16, E(119)^9, E(119)^12, E(119)^-4, E(119)^2, E(119)^-2, E(119)^46, E(119)^-31, E(119)^15, E(119)^41, E(119)^-48, E(119)^-45, E(119)^-50, 1], [1, 1, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^34, E(119)^51, E(119)^51, E(119)^-51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-17, E(119)^56, E(119)^28, E(119)^49, E(119)^-49, E(119)^7, E(119)^-42, E(119)^-7, E(119)^-35, E(119)^21, E(119)^35, E(119)^42, E(119)^-56, E(119)^14, E(119)^-21, E(119)^-14, E(119)^-28, E(119)^-56, E(119)^-42, E(119)^-7, E(119)^21, E(119)^-49, E(119)^-14, E(119)^-21, E(119)^42, E(119)^-28, E(119)^56, E(119)^-35, E(119)^28, E(119)^14, E(119)^7, E(119)^35, E(119)^49, E(119)^-54, E(119)^38, E(119)^43, E(119)^33, E(119)^13, E(119)^-27, E(119)^-19, E(119)^52, E(119)^-41, E(119)^-2, E(119)^-22, E(119)^-58, E(119)^-30, E(119)^-50, E(119)^-33, E(119)^-13, E(119)^-25, E(119)^-47, E(119)^-38, E(119)^-52, E(119)^-36, E(119)^-24, E(119)^-45, E(119)^-57, E(119)^-31, E(119)^-59, E(119)^-26, E(119)^-4, E(119)^-32, E(119)^-12, E(119)^-29, E(119)^-53, E(119)^-37, E(119)^-43, E(119)^-23, E(119)^-20, E(119)^30, E(119)^-40, E(119)^-6, E(119)^-8, E(119)^12, E(119)^-55, E(119)^3, E(119)^-5, E(119)^39, E(119)^-10, E(119)^41, E(119)^53, E(119)^4, E(119)^58, E(119)^-39, E(119), E(119)^-44, E(119)^55, E(119)^-16, E(119)^47, E(119)^48, E(119)^-9, E(119)^40, E(119)^-1, E(119)^25, E(119)^57, E(119)^-18, E(119)^2, E(119)^-48, E(119)^10, E(119)^-15, E(119)^46, E(119)^-11, E(119)^45, E(119)^-46, E(119)^8, E(119)^9, E(119)^31, E(119)^50, E(119)^23, E(119)^6, E(119)^36, E(119)^44, E(119)^20, E(119)^19, E(119)^15, E(119)^27, E(119)^26, E(119)^5, E(119)^24, E(119)^54, E(119)^22, E(119)^59, E(119)^37, E(119)^29, E(119)^32, E(119)^-3, E(119)^11, E(119)^18, E(119)^16, E(119)^6, E(119)^15, E(119)^-22, E(119)^31, E(119)^-41, E(119)^-50, E(119)^-13, E(119)^53, E(119)^-33, E(119)^-44, E(119)^-16, E(119)^37, E(119)^40, E(119)^-59, E(119)^-26, E(119)^47, E(119)^12, E(119)^30, E(119)^-3, E(119)^-46, E(119)^13, E(119)^22, E(119)^-32, E(119)^41, E(119)^-48, E(119)^10, E(119)^24, E(119)^-31, E(119)^-40, E(119)^-1, E(119)^-6, E(119)^-15, E(119)^-18, E(119)^2, E(119)^-2, E(119)^-37, E(119)^16, E(119)^5, E(119)^54, E(119)^-12, E(119)^-45, E(119)^-4, E(119)^-29, E(119)^4, E(119)^-20, E(119)^55, E(119)^-52, E(119)^45, E(119)^23, E(119)^50, E(119)^-57, E(119)^-53, E(119)^43, E(119)^8, E(119)^-58, E(119)^18, E(119)^29, E(119)^-9, E(119)^-30, E(119)^-47, E(119)^39, E(119)^-55, E(119)^58, E(119)^46, E(119)^-23, E(119)^-54, E(119)^32, E(119)^38, E(119)^48, E(119)^57, E(119)^52, E(119)^-43, E(119)^36, E(119)^27, E(119)^59, E(119)^11, E(119)^44, E(119)^-10, E(119)^25, E(119)^-8, E(119)^-25, E(119)^-24, E(119)^9, E(119)^33, E(119)^26, E(119)^-5, E(119)^-38, E(119)^19, E(119)^-19, E(119)^-39, E(119)^3, E(119)^-36, E(119)^-27, E(119)^20, E(119)^-11, E(119), 1], [1, 1, E(119)^34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-34, E(119)^-51, E(119)^-51, E(119)^51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^17, E(119)^-56, E(119)^-28, E(119)^-49, E(119)^49, E(119)^-7, E(119)^42, E(119)^7, E(119)^35, E(119)^-21, E(119)^-35, E(119)^-42, E(119)^56, E(119)^-14, E(119)^21, E(119)^14, E(119)^28, E(119)^56, E(119)^42, E(119)^7, E(119)^-21, E(119)^49, E(119)^14, E(119)^21, E(119)^-42, E(119)^28, E(119)^-56, E(119)^35, E(119)^-28, E(119)^-14, E(119)^-7, E(119)^-35, E(119)^-49, E(119)^54, E(119)^-38, E(119)^-43, E(119)^-33, E(119)^-13, E(119)^27, E(119)^19, E(119)^-52, E(119)^41, E(119)^2, E(119)^22, E(119)^58, E(119)^30, E(119)^50, E(119)^33, E(119)^13, E(119)^25, E(119)^47, E(119)^38, E(119)^52, E(119)^36, E(119)^24, E(119)^45, E(119)^57, E(119)^31, E(119)^59, E(119)^26, E(119)^4, E(119)^32, E(119)^12, E(119)^29, E(119)^53, E(119)^37, E(119)^43, E(119)^23, E(119)^20, E(119)^-30, E(119)^40, E(119)^6, E(119)^8, E(119)^-12, E(119)^55, E(119)^-3, E(119)^5, E(119)^-39, E(119)^10, E(119)^-41, E(119)^-53, E(119)^-4, E(119)^-58, E(119)^39, E(119)^-1, E(119)^44, E(119)^-55, E(119)^16, E(119)^-47, E(119)^-48, E(119)^9, E(119)^-40, E(119), E(119)^-25, E(119)^-57, E(119)^18, E(119)^-2, E(119)^48, E(119)^-10, E(119)^15, E(119)^-46, E(119)^11, E(119)^-45, E(119)^46, E(119)^-8, E(119)^-9, E(119)^-31, E(119)^-50, E(119)^-23, E(119)^-6, E(119)^-36, E(119)^-44, E(119)^-20, E(119)^-19, E(119)^-15, E(119)^-27, E(119)^-26, E(119)^-5, E(119)^-24, E(119)^-54, E(119)^-22, E(119)^-59, E(119)^-37, E(119)^-29, E(119)^-32, E(119)^3, E(119)^-11, E(119)^-18, E(119)^-16, E(119)^-6, E(119)^-15, E(119)^22, E(119)^-31, E(119)^41, E(119)^50, E(119)^13, E(119)^-53, E(119)^33, E(119)^44, E(119)^16, E(119)^-37, E(119)^-40, E(119)^59, E(119)^26, E(119)^-47, E(119)^-12, E(119)^-30, E(119)^3, E(119)^46, E(119)^-13, E(119)^-22, E(119)^32, E(119)^-41, E(119)^48, E(119)^-10, E(119)^-24, E(119)^31, E(119)^40, E(119), E(119)^6, E(119)^15, E(119)^18, E(119)^-2, E(119)^2, E(119)^37, E(119)^-16, E(119)^-5, E(119)^-54, E(119)^12, E(119)^45, E(119)^4, E(119)^29, E(119)^-4, E(119)^20, E(119)^-55, E(119)^52, E(119)^-45, E(119)^-23, E(119)^-50, E(119)^57, E(119)^53, E(119)^-43, E(119)^-8, E(119)^58, E(119)^-18, E(119)^-29, E(119)^9, E(119)^30, E(119)^47, E(119)^-39, E(119)^55, E(119)^-58, E(119)^-46, E(119)^23, E(119)^54, E(119)^-32, E(119)^-38, E(119)^-48, E(119)^-57, E(119)^-52, E(119)^43, E(119)^-36, E(119)^-27, E(119)^-59, E(119)^-11, E(119)^-44, E(119)^10, E(119)^-25, E(119)^8, E(119)^25, E(119)^24, E(119)^-9, E(119)^-33, E(119)^-26, E(119)^5, E(119)^38, E(119)^-19, E(119)^19, E(119)^39, E(119)^-3, E(119)^36, E(119)^27, E(119)^-20, E(119)^11, E(119)^-1, 1], [1, 1, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^34, E(119)^51, E(119)^51, E(119)^-51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-49, E(119)^35, E(119)^-28, E(119)^28, E(119)^-21, E(119)^7, E(119)^21, E(119)^-14, E(119)^56, E(119)^14, E(119)^-7, E(119)^49, E(119)^-42, E(119)^-56, E(119)^42, E(119)^-35, E(119)^49, E(119)^7, E(119)^21, E(119)^56, E(119)^28, E(119)^42, E(119)^-56, E(119)^-7, E(119)^-35, E(119)^-49, E(119)^-14, E(119)^35, E(119)^-42, E(119)^-21, E(119)^14, E(119)^-28, E(119)^9, E(119)^-46, E(119)^-27, E(119)^54, E(119)^-22, E(119)^-55, E(119)^23, E(119)^31, E(119)^-13, E(119)^40, E(119)^-36, E(119)^-30, E(119)^5, E(119)^48, E(119)^-54, E(119)^22, E(119)^24, E(119)^-12, E(119)^46, E(119)^-31, E(119)^6, E(119)^4, E(119)^-52, E(119)^-50, E(119)^25, E(119)^-10, E(119)^44, E(119)^-39, E(119)^45, E(119)^2, E(119)^-15, E(119)^-11, E(119)^26, E(119)^27, E(119)^-16, E(119)^43, E(119)^-5, E(119)^-33, E(119), E(119)^41, E(119)^-2, E(119)^29, E(119)^59, E(119)^-19, E(119)^53, E(119)^-38, E(119)^13, E(119)^11, E(119)^39, E(119)^30, E(119)^-53, E(119)^-20, E(119)^47, E(119)^-29, E(119)^-37, E(119)^12, E(119)^-8, E(119)^-58, E(119)^33, E(119)^20, E(119)^-24, E(119)^50, E(119)^3, E(119)^-40, E(119)^8, E(119)^38, E(119)^-57, E(119)^32, E(119)^-18, E(119)^52, E(119)^-32, E(119)^-41, E(119)^58, E(119)^-25, E(119)^-48, E(119)^16, E(119)^-1, E(119)^-6, E(119)^-47, E(119)^-43, E(119)^-23, E(119)^57, E(119)^55, E(119)^-44, E(119)^19, E(119)^-4, E(119)^-9, E(119)^36, E(119)^10, E(119)^-26, E(119)^15, E(119)^-45, E(119)^-59, E(119)^18, E(119)^-3, E(119)^37, E(119)^-1, E(119)^57, E(119)^-36, E(119)^-25, E(119)^-13, E(119)^48, E(119)^22, E(119)^11, E(119)^-54, E(119)^47, E(119)^-37, E(119)^-26, E(119)^33, E(119)^-10, E(119)^44, E(119)^12, E(119)^-2, E(119)^-5, E(119)^-59, E(119)^-32, E(119)^-22, E(119)^36, E(119)^45, E(119)^13, E(119)^8, E(119)^38, E(119)^-4, E(119)^25, E(119)^-33, E(119)^20, E(119), E(119)^-57, E(119)^3, E(119)^-40, E(119)^40, E(119)^26, E(119)^37, E(119)^19, E(119)^-9, E(119)^2, E(119)^-52, E(119)^-39, E(119)^-15, E(119)^39, E(119)^43, E(119)^-29, E(119)^-31, E(119)^52, E(119)^16, E(119)^-48, E(119)^-50, E(119)^-11, E(119)^-27, E(119)^-41, E(119)^-30, E(119)^-3, E(119)^15, E(119)^-58, E(119)^5, E(119)^-12, E(119)^53, E(119)^29, E(119)^30, E(119)^32, E(119)^-16, E(119)^9, E(119)^-45, E(119)^-46, E(119)^-8, E(119)^50, E(119)^31, E(119)^27, E(119)^-6, E(119)^55, E(119)^10, E(119)^18, E(119)^-47, E(119)^-38, E(119)^-24, E(119)^41, E(119)^24, E(119)^4, E(119)^58, E(119)^54, E(119)^-44, E(119)^-19, E(119)^46, E(119)^-23, E(119)^23, E(119)^-53, E(119)^59, E(119)^6, E(119)^-55, E(119)^-43, E(119)^-18, E(119)^-20, 1], [1, 1, E(119)^34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-34, E(119)^-51, E(119)^-51, E(119)^51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^17, E(119)^49, E(119)^-35, E(119)^28, E(119)^-28, E(119)^21, E(119)^-7, E(119)^-21, E(119)^14, E(119)^-56, E(119)^-14, E(119)^7, E(119)^-49, E(119)^42, E(119)^56, E(119)^-42, E(119)^35, E(119)^-49, E(119)^-7, E(119)^-21, E(119)^-56, E(119)^-28, E(119)^-42, E(119)^56, E(119)^7, E(119)^35, E(119)^49, E(119)^14, E(119)^-35, E(119)^42, E(119)^21, E(119)^-14, E(119)^28, E(119)^-9, E(119)^46, E(119)^27, E(119)^-54, E(119)^22, E(119)^55, E(119)^-23, E(119)^-31, E(119)^13, E(119)^-40, E(119)^36, E(119)^30, E(119)^-5, E(119)^-48, E(119)^54, E(119)^-22, E(119)^-24, E(119)^12, E(119)^-46, E(119)^31, E(119)^-6, E(119)^-4, E(119)^52, E(119)^50, E(119)^-25, E(119)^10, E(119)^-44, E(119)^39, E(119)^-45, E(119)^-2, E(119)^15, E(119)^11, E(119)^-26, E(119)^-27, E(119)^16, E(119)^-43, E(119)^5, E(119)^33, E(119)^-1, E(119)^-41, E(119)^2, E(119)^-29, E(119)^-59, E(119)^19, E(119)^-53, E(119)^38, E(119)^-13, E(119)^-11, E(119)^-39, E(119)^-30, E(119)^53, E(119)^20, E(119)^-47, E(119)^29, E(119)^37, E(119)^-12, E(119)^8, E(119)^58, E(119)^-33, E(119)^-20, E(119)^24, E(119)^-50, E(119)^-3, E(119)^40, E(119)^-8, E(119)^-38, E(119)^57, E(119)^-32, E(119)^18, E(119)^-52, E(119)^32, E(119)^41, E(119)^-58, E(119)^25, E(119)^48, E(119)^-16, E(119), E(119)^6, E(119)^47, E(119)^43, E(119)^23, E(119)^-57, E(119)^-55, E(119)^44, E(119)^-19, E(119)^4, E(119)^9, E(119)^-36, E(119)^-10, E(119)^26, E(119)^-15, E(119)^45, E(119)^59, E(119)^-18, E(119)^3, E(119)^-37, E(119), E(119)^-57, E(119)^36, E(119)^25, E(119)^13, E(119)^-48, E(119)^-22, E(119)^-11, E(119)^54, E(119)^-47, E(119)^37, E(119)^26, E(119)^-33, E(119)^10, E(119)^-44, E(119)^-12, E(119)^2, E(119)^5, E(119)^59, E(119)^32, E(119)^22, E(119)^-36, E(119)^-45, E(119)^-13, E(119)^-8, E(119)^-38, E(119)^4, E(119)^-25, E(119)^33, E(119)^-20, E(119)^-1, E(119)^57, E(119)^-3, E(119)^40, E(119)^-40, E(119)^-26, E(119)^-37, E(119)^-19, E(119)^9, E(119)^-2, E(119)^52, E(119)^39, E(119)^15, E(119)^-39, E(119)^-43, E(119)^29, E(119)^31, E(119)^-52, E(119)^-16, E(119)^48, E(119)^50, E(119)^11, E(119)^27, E(119)^41, E(119)^30, E(119)^3, E(119)^-15, E(119)^58, E(119)^-5, E(119)^12, E(119)^-53, E(119)^-29, E(119)^-30, E(119)^-32, E(119)^16, E(119)^-9, E(119)^45, E(119)^46, E(119)^8, E(119)^-50, E(119)^-31, E(119)^-27, E(119)^6, E(119)^-55, E(119)^-10, E(119)^-18, E(119)^47, E(119)^38, E(119)^24, E(119)^-41, E(119)^-24, E(119)^-4, E(119)^-58, E(119)^-54, E(119)^44, E(119)^19, E(119)^-46, E(119)^23, E(119)^-23, E(119)^53, E(119)^-59, E(119)^-6, E(119)^55, E(119)^43, E(119)^18, E(119)^20, 1], [1, 1, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^34, E(119)^51, E(119)^51, E(119)^-51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-17, E(119)^49, E(119)^-35, E(119)^28, E(119)^-28, E(119)^21, E(119)^-7, E(119)^-21, E(119)^14, E(119)^-56, E(119)^-14, E(119)^7, E(119)^-49, E(119)^42, E(119)^56, E(119)^-42, E(119)^35, E(119)^-49, E(119)^-7, E(119)^-21, E(119)^-56, E(119)^-28, E(119)^-42, E(119)^56, E(119)^7, E(119)^35, E(119)^49, E(119)^14, E(119)^-35, E(119)^42, E(119)^21, E(119)^-14, E(119)^28, E(119)^-26, E(119)^-39, E(119)^-41, E(119)^-37, E(119)^-29, E(119)^-13, E(119)^-40, E(119)^3, E(119)^-55, E(119)^-23, E(119)^-15, E(119)^47, E(119)^12, E(119)^20, E(119)^37, E(119)^29, E(119)^10, E(119)^-5, E(119)^39, E(119)^-3, E(119)^-57, E(119)^-38, E(119)^18, E(119)^-1, E(119)^-59, E(119)^-24, E(119)^58, E(119)^-46, E(119)^-11, E(119)^-19, E(119)^-36, E(119)^45, E(119)^-9, E(119)^41, E(119)^33, E(119)^8, E(119)^-12, E(119)^16, E(119)^50, E(119)^27, E(119)^19, E(119)^22, E(119)^-25, E(119)^2, E(119)^32, E(119)^4, E(119)^55, E(119)^-45, E(119)^46, E(119)^-47, E(119)^-32, E(119)^-48, E(119)^-30, E(119)^-22, E(119)^54, E(119)^5, E(119)^-43, E(119)^-44, E(119)^-16, E(119)^48, E(119)^-10, E(119), E(119)^31, E(119)^23, E(119)^43, E(119)^-4, E(119)^6, E(119)^53, E(119)^52, E(119)^-18, E(119)^-53, E(119)^-27, E(119)^44, E(119)^59, E(119)^-20, E(119)^-33, E(119)^-50, E(119)^57, E(119)^30, E(119)^-8, E(119)^40, E(119)^-6, E(119)^13, E(119)^-58, E(119)^-2, E(119)^38, E(119)^26, E(119)^15, E(119)^24, E(119)^9, E(119)^36, E(119)^11, E(119)^25, E(119)^-52, E(119)^-31, E(119)^-54, E(119)^-50, E(119)^-6, E(119)^-15, E(119)^59, E(119)^-55, E(119)^20, E(119)^29, E(119)^-45, E(119)^37, E(119)^-30, E(119)^54, E(119)^9, E(119)^-16, E(119)^-24, E(119)^58, E(119)^5, E(119)^19, E(119)^-12, E(119)^25, E(119)^-53, E(119)^-29, E(119)^15, E(119)^-11, E(119)^55, E(119)^43, E(119)^-4, E(119)^38, E(119)^-59, E(119)^16, E(119)^48, E(119)^50, E(119)^6, E(119)^31, E(119)^23, E(119)^-23, E(119)^-9, E(119)^-54, E(119)^-2, E(119)^26, E(119)^-19, E(119)^18, E(119)^-46, E(119)^-36, E(119)^46, E(119)^8, E(119)^-22, E(119)^-3, E(119)^-18, E(119)^-33, E(119)^-20, E(119)^-1, E(119)^45, E(119)^-41, E(119)^-27, E(119)^47, E(119)^-31, E(119)^36, E(119)^-44, E(119)^12, E(119)^-5, E(119)^32, E(119)^22, E(119)^-47, E(119)^53, E(119)^33, E(119)^-26, E(119)^11, E(119)^-39, E(119)^-43, E(119), E(119)^3, E(119)^41, E(119)^57, E(119)^13, E(119)^24, E(119)^-52, E(119)^30, E(119)^4, E(119)^-10, E(119)^27, E(119)^10, E(119)^-38, E(119)^44, E(119)^-37, E(119)^-58, E(119)^2, E(119)^39, E(119)^40, E(119)^-40, E(119)^-32, E(119)^-25, E(119)^-57, E(119)^-13, E(119)^-8, E(119)^52, E(119)^-48, 1], [1, 1, E(119)^34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-34, E(119)^-51, E(119)^-51, E(119)^51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^17, E(119)^-49, E(119)^35, E(119)^-28, E(119)^28, E(119)^-21, E(119)^7, E(119)^21, E(119)^-14, E(119)^56, E(119)^14, E(119)^-7, E(119)^49, E(119)^-42, E(119)^-56, E(119)^42, E(119)^-35, E(119)^49, E(119)^7, E(119)^21, E(119)^56, E(119)^28, E(119)^42, E(119)^-56, E(119)^-7, E(119)^-35, E(119)^-49, E(119)^-14, E(119)^35, E(119)^-42, E(119)^-21, E(119)^14, E(119)^-28, E(119)^26, E(119)^39, E(119)^41, E(119)^37, E(119)^29, E(119)^13, E(119)^40, E(119)^-3, E(119)^55, E(119)^23, E(119)^15, E(119)^-47, E(119)^-12, E(119)^-20, E(119)^-37, E(119)^-29, E(119)^-10, E(119)^5, E(119)^-39, E(119)^3, E(119)^57, E(119)^38, E(119)^-18, E(119), E(119)^59, E(119)^24, E(119)^-58, E(119)^46, E(119)^11, E(119)^19, E(119)^36, E(119)^-45, E(119)^9, E(119)^-41, E(119)^-33, E(119)^-8, E(119)^12, E(119)^-16, E(119)^-50, E(119)^-27, E(119)^-19, E(119)^-22, E(119)^25, E(119)^-2, E(119)^-32, E(119)^-4, E(119)^-55, E(119)^45, E(119)^-46, E(119)^47, E(119)^32, E(119)^48, E(119)^30, E(119)^22, E(119)^-54, E(119)^-5, E(119)^43, E(119)^44, E(119)^16, E(119)^-48, E(119)^10, E(119)^-1, E(119)^-31, E(119)^-23, E(119)^-43, E(119)^4, E(119)^-6, E(119)^-53, E(119)^-52, E(119)^18, E(119)^53, E(119)^27, E(119)^-44, E(119)^-59, E(119)^20, E(119)^33, E(119)^50, E(119)^-57, E(119)^-30, E(119)^8, E(119)^-40, E(119)^6, E(119)^-13, E(119)^58, E(119)^2, E(119)^-38, E(119)^-26, E(119)^-15, E(119)^-24, E(119)^-9, E(119)^-36, E(119)^-11, E(119)^-25, E(119)^52, E(119)^31, E(119)^54, E(119)^50, E(119)^6, E(119)^15, E(119)^-59, E(119)^55, E(119)^-20, E(119)^-29, E(119)^45, E(119)^-37, E(119)^30, E(119)^-54, E(119)^-9, E(119)^16, E(119)^24, E(119)^-58, E(119)^-5, E(119)^-19, E(119)^12, E(119)^-25, E(119)^53, E(119)^29, E(119)^-15, E(119)^11, E(119)^-55, E(119)^-43, E(119)^4, E(119)^-38, E(119)^59, E(119)^-16, E(119)^-48, E(119)^-50, E(119)^-6, E(119)^-31, E(119)^-23, E(119)^23, E(119)^9, E(119)^54, E(119)^2, E(119)^-26, E(119)^19, E(119)^-18, E(119)^46, E(119)^36, E(119)^-46, E(119)^-8, E(119)^22, E(119)^3, E(119)^18, E(119)^33, E(119)^20, E(119), E(119)^-45, E(119)^41, E(119)^27, E(119)^-47, E(119)^31, E(119)^-36, E(119)^44, E(119)^-12, E(119)^5, E(119)^-32, E(119)^-22, E(119)^47, E(119)^-53, E(119)^-33, E(119)^26, E(119)^-11, E(119)^39, E(119)^43, E(119)^-1, E(119)^-3, E(119)^-41, E(119)^-57, E(119)^-13, E(119)^-24, E(119)^52, E(119)^-30, E(119)^-4, E(119)^10, E(119)^-27, E(119)^-10, E(119)^38, E(119)^-44, E(119)^37, E(119)^58, E(119)^-2, E(119)^-39, E(119)^-40, E(119)^40, E(119)^32, E(119)^25, E(119)^57, E(119)^13, E(119)^8, E(119)^-52, E(119)^48, 1], [1, 1, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^34, E(119)^51, E(119)^51, E(119)^-51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-42, E(119)^-21, E(119)^-7, E(119)^7, E(119)^-35, E(119)^-28, E(119)^35, E(119)^56, E(119)^14, E(119)^-56, E(119)^28, E(119)^42, E(119)^49, E(119)^-14, E(119)^-49, E(119)^21, E(119)^42, E(119)^-28, E(119)^35, E(119)^14, E(119)^7, E(119)^-49, E(119)^-14, E(119)^28, E(119)^21, E(119)^-42, E(119)^56, E(119)^-21, E(119)^49, E(119)^-35, E(119)^-56, E(119)^-7, E(119)^-19, E(119)^31, E(119)^57, E(119)^5, E(119)^20, E(119)^50, E(119)^44, E(119)^-39, E(119), E(119)^-58, E(119)^-43, E(119)^-16, E(119)^-37, E(119)^-22, E(119)^-5, E(119)^-20, E(119)^-11, E(119)^-54, E(119)^-31, E(119)^39, E(119)^27, E(119)^18, E(119)^4, E(119)^13, E(119)^53, E(119)^-45, E(119)^-40, E(119)^3, E(119)^24, E(119)^9, E(119)^-8, E(119)^10, E(119)^-2, E(119)^-57, E(119)^47, E(119)^15, E(119)^37, E(119)^30, E(119)^-55, E(119)^6, E(119)^-9, E(119)^-48, E(119)^-32, E(119)^-26, E(119)^-59, E(119)^-52, E(119)^-1, E(119)^-10, E(119)^-3, E(119)^16, E(119)^59, E(119)^29, E(119)^33, E(119)^48, E(119)^12, E(119)^54, E(119)^-36, E(119)^-23, E(119)^-30, E(119)^-29, E(119)^11, E(119)^-13, E(119)^-46, E(119)^58, E(119)^36, E(119)^52, E(119)^41, E(119)^25, E(119)^38, E(119)^-4, E(119)^-25, E(119)^-6, E(119)^23, E(119)^-53, E(119)^22, E(119)^-47, E(119)^55, E(119)^-27, E(119)^-33, E(119)^-15, E(119)^-44, E(119)^-41, E(119)^-50, E(119)^40, E(119)^26, E(119)^-18, E(119)^19, E(119)^43, E(119)^45, E(119)^2, E(119)^8, E(119)^-24, E(119)^32, E(119)^-38, E(119)^46, E(119)^-12, E(119)^55, E(119)^-41, E(119)^-43, E(119)^-53, E(119), E(119)^-22, E(119)^-20, E(119)^-10, E(119)^-5, E(119)^33, E(119)^12, E(119)^2, E(119)^-30, E(119)^-45, E(119)^-40, E(119)^54, E(119)^-9, E(119)^37, E(119)^32, E(119)^-25, E(119)^20, E(119)^43, E(119)^24, E(119)^-1, E(119)^36, E(119)^52, E(119)^-18, E(119)^53, E(119)^30, E(119)^-29, E(119)^-55, E(119)^41, E(119)^-46, E(119)^58, E(119)^-58, E(119)^-2, E(119)^-12, E(119)^26, E(119)^19, E(119)^9, E(119)^4, E(119)^3, E(119)^-8, E(119)^-3, E(119)^15, E(119)^48, E(119)^39, E(119)^-4, E(119)^-47, E(119)^22, E(119)^13, E(119)^10, E(119)^57, E(119)^-6, E(119)^-16, E(119)^46, E(119)^8, E(119)^-23, E(119)^-37, E(119)^-54, E(119)^-59, E(119)^-48, E(119)^16, E(119)^25, E(119)^47, E(119)^-19, E(119)^-24, E(119)^31, E(119)^-36, E(119)^-13, E(119)^-39, E(119)^-57, E(119)^-27, E(119)^-50, E(119)^45, E(119)^-38, E(119)^-33, E(119)^-52, E(119)^11, E(119)^6, E(119)^-11, E(119)^18, E(119)^23, E(119)^5, E(119)^40, E(119)^-26, E(119)^-31, E(119)^-44, E(119)^44, E(119)^59, E(119)^-32, E(119)^27, E(119)^50, E(119)^-15, E(119)^38, E(119)^29, 1], [1, 1, E(119)^34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-34, E(119)^-51, E(119)^-51, E(119)^51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^17, E(119)^42, E(119)^21, E(119)^7, E(119)^-7, E(119)^35, E(119)^28, E(119)^-35, E(119)^-56, E(119)^-14, E(119)^56, E(119)^-28, E(119)^-42, E(119)^-49, E(119)^14, E(119)^49, E(119)^-21, E(119)^-42, E(119)^28, E(119)^-35, E(119)^-14, E(119)^-7, E(119)^49, E(119)^14, E(119)^-28, E(119)^-21, E(119)^42, E(119)^-56, E(119)^21, E(119)^-49, E(119)^35, E(119)^56, E(119)^7, E(119)^19, E(119)^-31, E(119)^-57, E(119)^-5, E(119)^-20, E(119)^-50, E(119)^-44, E(119)^39, E(119)^-1, E(119)^58, E(119)^43, E(119)^16, E(119)^37, E(119)^22, E(119)^5, E(119)^20, E(119)^11, E(119)^54, E(119)^31, E(119)^-39, E(119)^-27, E(119)^-18, E(119)^-4, E(119)^-13, E(119)^-53, E(119)^45, E(119)^40, E(119)^-3, E(119)^-24, E(119)^-9, E(119)^8, E(119)^-10, E(119)^2, E(119)^57, E(119)^-47, E(119)^-15, E(119)^-37, E(119)^-30, E(119)^55, E(119)^-6, E(119)^9, E(119)^48, E(119)^32, E(119)^26, E(119)^59, E(119)^52, E(119), E(119)^10, E(119)^3, E(119)^-16, E(119)^-59, E(119)^-29, E(119)^-33, E(119)^-48, E(119)^-12, E(119)^-54, E(119)^36, E(119)^23, E(119)^30, E(119)^29, E(119)^-11, E(119)^13, E(119)^46, E(119)^-58, E(119)^-36, E(119)^-52, E(119)^-41, E(119)^-25, E(119)^-38, E(119)^4, E(119)^25, E(119)^6, E(119)^-23, E(119)^53, E(119)^-22, E(119)^47, E(119)^-55, E(119)^27, E(119)^33, E(119)^15, E(119)^44, E(119)^41, E(119)^50, E(119)^-40, E(119)^-26, E(119)^18, E(119)^-19, E(119)^-43, E(119)^-45, E(119)^-2, E(119)^-8, E(119)^24, E(119)^-32, E(119)^38, E(119)^-46, E(119)^12, E(119)^-55, E(119)^41, E(119)^43, E(119)^53, E(119)^-1, E(119)^22, E(119)^20, E(119)^10, E(119)^5, E(119)^-33, E(119)^-12, E(119)^-2, E(119)^30, E(119)^45, E(119)^40, E(119)^-54, E(119)^9, E(119)^-37, E(119)^-32, E(119)^25, E(119)^-20, E(119)^-43, E(119)^-24, E(119), E(119)^-36, E(119)^-52, E(119)^18, E(119)^-53, E(119)^-30, E(119)^29, E(119)^55, E(119)^-41, E(119)^46, E(119)^-58, E(119)^58, E(119)^2, E(119)^12, E(119)^-26, E(119)^-19, E(119)^-9, E(119)^-4, E(119)^-3, E(119)^8, E(119)^3, E(119)^-15, E(119)^-48, E(119)^-39, E(119)^4, E(119)^47, E(119)^-22, E(119)^-13, E(119)^-10, E(119)^-57, E(119)^6, E(119)^16, E(119)^-46, E(119)^-8, E(119)^23, E(119)^37, E(119)^54, E(119)^59, E(119)^48, E(119)^-16, E(119)^-25, E(119)^-47, E(119)^19, E(119)^24, E(119)^-31, E(119)^36, E(119)^13, E(119)^39, E(119)^57, E(119)^27, E(119)^50, E(119)^-45, E(119)^38, E(119)^33, E(119)^52, E(119)^-11, E(119)^-6, E(119)^11, E(119)^-18, E(119)^-23, E(119)^-5, E(119)^-40, E(119)^26, E(119)^31, E(119)^44, E(119)^-44, E(119)^-59, E(119)^32, E(119)^-27, E(119)^-50, E(119)^15, E(119)^-38, E(119)^-29, 1], [1, 1, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^34, E(119)^51, E(119)^51, E(119)^-51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-17, E(119)^42, E(119)^21, E(119)^7, E(119)^-7, E(119)^35, E(119)^28, E(119)^-35, E(119)^-56, E(119)^-14, E(119)^56, E(119)^-28, E(119)^-42, E(119)^-49, E(119)^14, E(119)^49, E(119)^-21, E(119)^-42, E(119)^28, E(119)^-35, E(119)^-14, E(119)^-7, E(119)^49, E(119)^14, E(119)^-28, E(119)^-21, E(119)^42, E(119)^-56, E(119)^21, E(119)^-49, E(119)^35, E(119)^56, E(119)^7, E(119)^2, E(119)^3, E(119)^-6, E(119)^12, E(119)^48, E(119), E(119)^58, E(119)^-46, E(119)^50, E(119)^-44, E(119)^-8, E(119)^33, E(119)^54, E(119)^-29, E(119)^-12, E(119)^-48, E(119)^45, E(119)^37, E(119)^-3, E(119)^46, E(119)^41, E(119)^-52, E(119)^-38, E(119)^55, E(119)^32, E(119)^11, E(119)^23, E(119)^31, E(119)^10, E(119)^-26, E(119)^-43, E(119)^24, E(119)^19, E(119)^6, E(119)^-30, E(119)^36, E(119)^-54, E(119)^-47, E(119)^-13, E(119)^-57, E(119)^26, E(119)^-20, E(119)^-53, E(119)^9, E(119)^25, E(119)^18, E(119)^-50, E(119)^-24, E(119)^-31, E(119)^-33, E(119)^-25, E(119)^22, E(119)^-16, E(119)^20, E(119)^5, E(119)^-37, E(119)^-15, E(119)^40, E(119)^47, E(119)^-22, E(119)^-45, E(119)^-55, E(119)^-39, E(119)^44, E(119)^15, E(119)^-18, E(119)^27, E(119)^-59, E(119)^-4, E(119)^38, E(119)^59, E(119)^57, E(119)^-40, E(119)^-32, E(119)^29, E(119)^30, E(119)^13, E(119)^-41, E(119)^16, E(119)^-36, E(119)^-58, E(119)^-27, E(119)^-1, E(119)^-23, E(119)^-9, E(119)^52, E(119)^-2, E(119)^8, E(119)^-11, E(119)^-19, E(119)^43, E(119)^-10, E(119)^53, E(119)^4, E(119)^39, E(119)^-5, E(119)^13, E(119)^-27, E(119)^-8, E(119)^-32, E(119)^50, E(119)^-29, E(119)^-48, E(119)^-24, E(119)^-12, E(119)^-16, E(119)^5, E(119)^-19, E(119)^47, E(119)^11, E(119)^23, E(119)^-37, E(119)^26, E(119)^-54, E(119)^53, E(119)^59, E(119)^48, E(119)^8, E(119)^10, E(119)^-50, E(119)^15, E(119)^-18, E(119)^52, E(119)^32, E(119)^-47, E(119)^-22, E(119)^-13, E(119)^27, E(119)^-39, E(119)^44, E(119)^-44, E(119)^19, E(119)^-5, E(119)^-9, E(119)^-2, E(119)^-26, E(119)^-38, E(119)^31, E(119)^-43, E(119)^-31, E(119)^36, E(119)^20, E(119)^46, E(119)^38, E(119)^30, E(119)^29, E(119)^55, E(119)^24, E(119)^-6, E(119)^57, E(119)^33, E(119)^39, E(119)^43, E(119)^40, E(119)^54, E(119)^37, E(119)^25, E(119)^-20, E(119)^-33, E(119)^-59, E(119)^-30, E(119)^2, E(119)^-10, E(119)^3, E(119)^-15, E(119)^-55, E(119)^-46, E(119)^6, E(119)^-41, E(119)^-1, E(119)^-11, E(119)^4, E(119)^16, E(119)^18, E(119)^-45, E(119)^-57, E(119)^45, E(119)^-52, E(119)^-40, E(119)^12, E(119)^-23, E(119)^9, E(119)^-3, E(119)^-58, E(119)^58, E(119)^-25, E(119)^-53, E(119)^41, E(119), E(119)^-36, E(119)^-4, E(119)^22, 1], [1, 1, E(119)^34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-34, E(119)^-51, E(119)^-51, E(119)^51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^17, E(119)^-42, E(119)^-21, E(119)^-7, E(119)^7, E(119)^-35, E(119)^-28, E(119)^35, E(119)^56, E(119)^14, E(119)^-56, E(119)^28, E(119)^42, E(119)^49, E(119)^-14, E(119)^-49, E(119)^21, E(119)^42, E(119)^-28, E(119)^35, E(119)^14, E(119)^7, E(119)^-49, E(119)^-14, E(119)^28, E(119)^21, E(119)^-42, E(119)^56, E(119)^-21, E(119)^49, E(119)^-35, E(119)^-56, E(119)^-7, E(119)^-2, E(119)^-3, E(119)^6, E(119)^-12, E(119)^-48, E(119)^-1, E(119)^-58, E(119)^46, E(119)^-50, E(119)^44, E(119)^8, E(119)^-33, E(119)^-54, E(119)^29, E(119)^12, E(119)^48, E(119)^-45, E(119)^-37, E(119)^3, E(119)^-46, E(119)^-41, E(119)^52, E(119)^38, E(119)^-55, E(119)^-32, E(119)^-11, E(119)^-23, E(119)^-31, E(119)^-10, E(119)^26, E(119)^43, E(119)^-24, E(119)^-19, E(119)^-6, E(119)^30, E(119)^-36, E(119)^54, E(119)^47, E(119)^13, E(119)^57, E(119)^-26, E(119)^20, E(119)^53, E(119)^-9, E(119)^-25, E(119)^-18, E(119)^50, E(119)^24, E(119)^31, E(119)^33, E(119)^25, E(119)^-22, E(119)^16, E(119)^-20, E(119)^-5, E(119)^37, E(119)^15, E(119)^-40, E(119)^-47, E(119)^22, E(119)^45, E(119)^55, E(119)^39, E(119)^-44, E(119)^-15, E(119)^18, E(119)^-27, E(119)^59, E(119)^4, E(119)^-38, E(119)^-59, E(119)^-57, E(119)^40, E(119)^32, E(119)^-29, E(119)^-30, E(119)^-13, E(119)^41, E(119)^-16, E(119)^36, E(119)^58, E(119)^27, E(119), E(119)^23, E(119)^9, E(119)^-52, E(119)^2, E(119)^-8, E(119)^11, E(119)^19, E(119)^-43, E(119)^10, E(119)^-53, E(119)^-4, E(119)^-39, E(119)^5, E(119)^-13, E(119)^27, E(119)^8, E(119)^32, E(119)^-50, E(119)^29, E(119)^48, E(119)^24, E(119)^12, E(119)^16, E(119)^-5, E(119)^19, E(119)^-47, E(119)^-11, E(119)^-23, E(119)^37, E(119)^-26, E(119)^54, E(119)^-53, E(119)^-59, E(119)^-48, E(119)^-8, E(119)^-10, E(119)^50, E(119)^-15, E(119)^18, E(119)^-52, E(119)^-32, E(119)^47, E(119)^22, E(119)^13, E(119)^-27, E(119)^39, E(119)^-44, E(119)^44, E(119)^-19, E(119)^5, E(119)^9, E(119)^2, E(119)^26, E(119)^38, E(119)^-31, E(119)^43, E(119)^31, E(119)^-36, E(119)^-20, E(119)^-46, E(119)^-38, E(119)^-30, E(119)^-29, E(119)^-55, E(119)^-24, E(119)^6, E(119)^-57, E(119)^-33, E(119)^-39, E(119)^-43, E(119)^-40, E(119)^-54, E(119)^-37, E(119)^-25, E(119)^20, E(119)^33, E(119)^59, E(119)^30, E(119)^-2, E(119)^10, E(119)^-3, E(119)^15, E(119)^55, E(119)^46, E(119)^-6, E(119)^41, E(119), E(119)^11, E(119)^-4, E(119)^-16, E(119)^-18, E(119)^45, E(119)^57, E(119)^-45, E(119)^52, E(119)^40, E(119)^-12, E(119)^23, E(119)^-9, E(119)^3, E(119)^58, E(119)^-58, E(119)^25, E(119)^53, E(119)^-41, E(119)^-1, E(119)^36, E(119)^4, E(119)^-22, 1], [1, 1, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^34, E(119)^51, E(119)^51, E(119)^-51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-35, E(119)^42, E(119)^14, E(119)^-14, E(119)^-49, E(119)^56, E(119)^49, E(119)^7, E(119)^-28, E(119)^-7, E(119)^-56, E(119)^35, E(119)^21, E(119)^28, E(119)^-21, E(119)^-42, E(119)^35, E(119)^56, E(119)^49, E(119)^-28, E(119)^-14, E(119)^-21, E(119)^28, E(119)^-56, E(119)^-42, E(119)^-35, E(119)^7, E(119)^42, E(119)^21, E(119)^-49, E(119)^-7, E(119)^14, E(119)^-47, E(119)^-11, E(119)^22, E(119)^-44, E(119)^-57, E(119)^36, E(119)^-54, E(119)^10, E(119)^15, E(119)^-37, E(119)^-50, E(119)^-2, E(119)^40, E(119)^27, E(119)^44, E(119)^57, E(119)^-46, E(119)^23, E(119)^11, E(119)^-10, E(119)^48, E(119)^32, E(119)^-59, E(119)^-43, E(119)^-38, E(119)^39, E(119)^-5, E(119)^45, E(119)^3, E(119)^16, E(119)^-1, E(119)^31, E(119)^-30, E(119)^-22, E(119)^-9, E(119)^-13, E(119)^-40, E(119)^-26, E(119)^8, E(119)^-29, E(119)^-16, E(119)^-6, E(119)^-4, E(119)^-33, E(119)^-52, E(119)^53, E(119)^-15, E(119)^-31, E(119)^-45, E(119)^2, E(119)^52, E(119)^-41, E(119)^19, E(119)^6, E(119)^-58, E(119)^-23, E(119)^55, E(119)^12, E(119)^26, E(119)^41, E(119)^46, E(119)^43, E(119)^24, E(119)^37, E(119)^-55, E(119)^-53, E(119)^20, E(119)^18, E(119)^-25, E(119)^59, E(119)^-18, E(119)^29, E(119)^-12, E(119)^38, E(119)^-27, E(119)^9, E(119)^-8, E(119)^-48, E(119)^-19, E(119)^13, E(119)^54, E(119)^-20, E(119)^-36, E(119)^5, E(119)^33, E(119)^-32, E(119)^47, E(119)^50, E(119)^-39, E(119)^30, E(119), E(119)^-3, E(119)^4, E(119)^25, E(119)^-24, E(119)^58, E(119)^-8, E(119)^-20, E(119)^-50, E(119)^38, E(119)^15, E(119)^27, E(119)^57, E(119)^-31, E(119)^44, E(119)^19, E(119)^-58, E(119)^30, E(119)^26, E(119)^39, E(119)^-5, E(119)^-23, E(119)^-16, E(119)^-40, E(119)^4, E(119)^-18, E(119)^-57, E(119)^50, E(119)^3, E(119)^-15, E(119)^-55, E(119)^-53, E(119)^-32, E(119)^-38, E(119)^-26, E(119)^41, E(119)^8, E(119)^20, E(119)^24, E(119)^37, E(119)^-37, E(119)^-30, E(119)^58, E(119)^33, E(119)^47, E(119)^16, E(119)^-59, E(119)^45, E(119)^-1, E(119)^-45, E(119)^-13, E(119)^6, E(119)^-10, E(119)^59, E(119)^9, E(119)^-27, E(119)^-43, E(119)^31, E(119)^22, E(119)^29, E(119)^-2, E(119)^-24, E(119), E(119)^12, E(119)^40, E(119)^23, E(119)^-52, E(119)^-6, E(119)^2, E(119)^18, E(119)^-9, E(119)^-47, E(119)^-3, E(119)^-11, E(119)^55, E(119)^43, E(119)^10, E(119)^-22, E(119)^-48, E(119)^-36, E(119)^-39, E(119)^25, E(119)^-19, E(119)^53, E(119)^46, E(119)^-29, E(119)^-46, E(119)^32, E(119)^-12, E(119)^-44, E(119)^5, E(119)^-33, E(119)^11, E(119)^54, E(119)^-54, E(119)^52, E(119)^-4, E(119)^48, E(119)^36, E(119)^13, E(119)^-25, E(119)^-41, 1], [1, 1, E(119)^34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-34, E(119)^-51, E(119)^-51, E(119)^51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^17, E(119)^35, E(119)^-42, E(119)^-14, E(119)^14, E(119)^49, E(119)^-56, E(119)^-49, E(119)^-7, E(119)^28, E(119)^7, E(119)^56, E(119)^-35, E(119)^-21, E(119)^-28, E(119)^21, E(119)^42, E(119)^-35, E(119)^-56, E(119)^-49, E(119)^28, E(119)^14, E(119)^21, E(119)^-28, E(119)^56, E(119)^42, E(119)^35, E(119)^-7, E(119)^-42, E(119)^-21, E(119)^49, E(119)^7, E(119)^-14, E(119)^47, E(119)^11, E(119)^-22, E(119)^44, E(119)^57, E(119)^-36, E(119)^54, E(119)^-10, E(119)^-15, E(119)^37, E(119)^50, E(119)^2, E(119)^-40, E(119)^-27, E(119)^-44, E(119)^-57, E(119)^46, E(119)^-23, E(119)^-11, E(119)^10, E(119)^-48, E(119)^-32, E(119)^59, E(119)^43, E(119)^38, E(119)^-39, E(119)^5, E(119)^-45, E(119)^-3, E(119)^-16, E(119), E(119)^-31, E(119)^30, E(119)^22, E(119)^9, E(119)^13, E(119)^40, E(119)^26, E(119)^-8, E(119)^29, E(119)^16, E(119)^6, E(119)^4, E(119)^33, E(119)^52, E(119)^-53, E(119)^15, E(119)^31, E(119)^45, E(119)^-2, E(119)^-52, E(119)^41, E(119)^-19, E(119)^-6, E(119)^58, E(119)^23, E(119)^-55, E(119)^-12, E(119)^-26, E(119)^-41, E(119)^-46, E(119)^-43, E(119)^-24, E(119)^-37, E(119)^55, E(119)^53, E(119)^-20, E(119)^-18, E(119)^25, E(119)^-59, E(119)^18, E(119)^-29, E(119)^12, E(119)^-38, E(119)^27, E(119)^-9, E(119)^8, E(119)^48, E(119)^19, E(119)^-13, E(119)^-54, E(119)^20, E(119)^36, E(119)^-5, E(119)^-33, E(119)^32, E(119)^-47, E(119)^-50, E(119)^39, E(119)^-30, E(119)^-1, E(119)^3, E(119)^-4, E(119)^-25, E(119)^24, E(119)^-58, E(119)^8, E(119)^20, E(119)^50, E(119)^-38, E(119)^-15, E(119)^-27, E(119)^-57, E(119)^31, E(119)^-44, E(119)^-19, E(119)^58, E(119)^-30, E(119)^-26, E(119)^-39, E(119)^5, E(119)^23, E(119)^16, E(119)^40, E(119)^-4, E(119)^18, E(119)^57, E(119)^-50, E(119)^-3, E(119)^15, E(119)^55, E(119)^53, E(119)^32, E(119)^38, E(119)^26, E(119)^-41, E(119)^-8, E(119)^-20, E(119)^-24, E(119)^-37, E(119)^37, E(119)^30, E(119)^-58, E(119)^-33, E(119)^-47, E(119)^-16, E(119)^59, E(119)^-45, E(119), E(119)^45, E(119)^13, E(119)^-6, E(119)^10, E(119)^-59, E(119)^-9, E(119)^27, E(119)^43, E(119)^-31, E(119)^-22, E(119)^-29, E(119)^2, E(119)^24, E(119)^-1, E(119)^-12, E(119)^-40, E(119)^-23, E(119)^52, E(119)^6, E(119)^-2, E(119)^-18, E(119)^9, E(119)^47, E(119)^3, E(119)^11, E(119)^-55, E(119)^-43, E(119)^-10, E(119)^22, E(119)^48, E(119)^36, E(119)^39, E(119)^-25, E(119)^19, E(119)^-53, E(119)^-46, E(119)^29, E(119)^46, E(119)^-32, E(119)^12, E(119)^44, E(119)^-5, E(119)^33, E(119)^-11, E(119)^-54, E(119)^54, E(119)^-52, E(119)^4, E(119)^-48, E(119)^-36, E(119)^-13, E(119)^25, E(119)^41, 1], [1, 1, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^34, E(119)^51, E(119)^51, E(119)^-51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-17, E(119)^35, E(119)^-42, E(119)^-14, E(119)^14, E(119)^49, E(119)^-56, E(119)^-49, E(119)^-7, E(119)^28, E(119)^7, E(119)^56, E(119)^-35, E(119)^-21, E(119)^-28, E(119)^21, E(119)^42, E(119)^-35, E(119)^-56, E(119)^-49, E(119)^28, E(119)^14, E(119)^21, E(119)^-28, E(119)^56, E(119)^42, E(119)^35, E(119)^-7, E(119)^-42, E(119)^-21, E(119)^49, E(119)^7, E(119)^-14, E(119)^30, E(119)^45, E(119)^29, E(119)^-58, E(119)^6, E(119)^15, E(119)^37, E(119)^24, E(119)^36, E(119)^54, E(119)^-1, E(119)^19, E(119)^-23, E(119)^41, E(119)^58, E(119)^-6, E(119)^-39, E(119)^-40, E(119)^-45, E(119)^-24, E(119)^20, E(119)^53, E(119)^25, E(119)^-8, E(119)^4, E(119)^46, E(119)^-12, E(119)^-11, E(119)^31, E(119)^-33, E(119)^-50, E(119)^3, E(119)^47, E(119)^-29, E(119)^26, E(119)^-55, E(119)^23, E(119)^9, E(119)^43, E(119)^-22, E(119)^33, E(119)^57, E(119)^38, E(119)^16, E(119)^18, E(119)^32, E(119)^-36, E(119)^-3, E(119)^11, E(119)^-19, E(119)^-18, E(119)^-27, E(119)^-2, E(119)^-57, E(119)^-44, E(119)^40, E(119)^13, E(119)^5, E(119)^-9, E(119)^27, E(119)^39, E(119)^8, E(119)^10, E(119)^-54, E(119)^-13, E(119)^-32, E(119)^48, E(119)^-52, E(119)^59, E(119)^-25, E(119)^52, E(119)^22, E(119)^-5, E(119)^-4, E(119)^-41, E(119)^-26, E(119)^-43, E(119)^-20, E(119)^2, E(119)^55, E(119)^-37, E(119)^-48, E(119)^-15, E(119)^12, E(119)^-16, E(119)^-53, E(119)^-30, E(119), E(119)^-46, E(119)^-47, E(119)^50, E(119)^-31, E(119)^-38, E(119)^-59, E(119)^-10, E(119)^44, E(119)^-43, E(119)^-48, E(119)^-1, E(119)^-4, E(119)^36, E(119)^41, E(119)^-6, E(119)^-3, E(119)^58, E(119)^-2, E(119)^-44, E(119)^-47, E(119)^-9, E(119)^46, E(119)^-12, E(119)^40, E(119)^33, E(119)^23, E(119)^-38, E(119)^52, E(119)^6, E(119), E(119)^31, E(119)^-36, E(119)^-13, E(119)^-32, E(119)^-53, E(119)^4, E(119)^9, E(119)^27, E(119)^43, E(119)^48, E(119)^10, E(119)^-54, E(119)^54, E(119)^47, E(119)^44, E(119)^-16, E(119)^-30, E(119)^-33, E(119)^25, E(119)^-11, E(119)^-50, E(119)^11, E(119)^-55, E(119)^-57, E(119)^-24, E(119)^-25, E(119)^-26, E(119)^-41, E(119)^-8, E(119)^3, E(119)^29, E(119)^22, E(119)^19, E(119)^-10, E(119)^50, E(119)^5, E(119)^-23, E(119)^-40, E(119)^18, E(119)^57, E(119)^-19, E(119)^-52, E(119)^26, E(119)^30, E(119)^-31, E(119)^45, E(119)^13, E(119)^8, E(119)^24, E(119)^-29, E(119)^-20, E(119)^-15, E(119)^-46, E(119)^-59, E(119)^2, E(119)^32, E(119)^39, E(119)^-22, E(119)^-39, E(119)^53, E(119)^-5, E(119)^-58, E(119)^12, E(119)^16, E(119)^-45, E(119)^-37, E(119)^37, E(119)^-18, E(119)^38, E(119)^20, E(119)^15, E(119)^55, E(119)^59, E(119)^-27, 1], [1, 1, E(119)^34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-34, E(119)^-51, E(119)^-51, E(119)^51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^17, E(119)^-35, E(119)^42, E(119)^14, E(119)^-14, E(119)^-49, E(119)^56, E(119)^49, E(119)^7, E(119)^-28, E(119)^-7, E(119)^-56, E(119)^35, E(119)^21, E(119)^28, E(119)^-21, E(119)^-42, E(119)^35, E(119)^56, E(119)^49, E(119)^-28, E(119)^-14, E(119)^-21, E(119)^28, E(119)^-56, E(119)^-42, E(119)^-35, E(119)^7, E(119)^42, E(119)^21, E(119)^-49, E(119)^-7, E(119)^14, E(119)^-30, E(119)^-45, E(119)^-29, E(119)^58, E(119)^-6, E(119)^-15, E(119)^-37, E(119)^-24, E(119)^-36, E(119)^-54, E(119), E(119)^-19, E(119)^23, E(119)^-41, E(119)^-58, E(119)^6, E(119)^39, E(119)^40, E(119)^45, E(119)^24, E(119)^-20, E(119)^-53, E(119)^-25, E(119)^8, E(119)^-4, E(119)^-46, E(119)^12, E(119)^11, E(119)^-31, E(119)^33, E(119)^50, E(119)^-3, E(119)^-47, E(119)^29, E(119)^-26, E(119)^55, E(119)^-23, E(119)^-9, E(119)^-43, E(119)^22, E(119)^-33, E(119)^-57, E(119)^-38, E(119)^-16, E(119)^-18, E(119)^-32, E(119)^36, E(119)^3, E(119)^-11, E(119)^19, E(119)^18, E(119)^27, E(119)^2, E(119)^57, E(119)^44, E(119)^-40, E(119)^-13, E(119)^-5, E(119)^9, E(119)^-27, E(119)^-39, E(119)^-8, E(119)^-10, E(119)^54, E(119)^13, E(119)^32, E(119)^-48, E(119)^52, E(119)^-59, E(119)^25, E(119)^-52, E(119)^-22, E(119)^5, E(119)^4, E(119)^41, E(119)^26, E(119)^43, E(119)^20, E(119)^-2, E(119)^-55, E(119)^37, E(119)^48, E(119)^15, E(119)^-12, E(119)^16, E(119)^53, E(119)^30, E(119)^-1, E(119)^46, E(119)^47, E(119)^-50, E(119)^31, E(119)^38, E(119)^59, E(119)^10, E(119)^-44, E(119)^43, E(119)^48, E(119), E(119)^4, E(119)^-36, E(119)^-41, E(119)^6, E(119)^3, E(119)^-58, E(119)^2, E(119)^44, E(119)^47, E(119)^9, E(119)^-46, E(119)^12, E(119)^-40, E(119)^-33, E(119)^-23, E(119)^38, E(119)^-52, E(119)^-6, E(119)^-1, E(119)^-31, E(119)^36, E(119)^13, E(119)^32, E(119)^53, E(119)^-4, E(119)^-9, E(119)^-27, E(119)^-43, E(119)^-48, E(119)^-10, E(119)^54, E(119)^-54, E(119)^-47, E(119)^-44, E(119)^16, E(119)^30, E(119)^33, E(119)^-25, E(119)^11, E(119)^50, E(119)^-11, E(119)^55, E(119)^57, E(119)^24, E(119)^25, E(119)^26, E(119)^41, E(119)^8, E(119)^-3, E(119)^-29, E(119)^-22, E(119)^-19, E(119)^10, E(119)^-50, E(119)^-5, E(119)^23, E(119)^40, E(119)^-18, E(119)^-57, E(119)^19, E(119)^52, E(119)^-26, E(119)^-30, E(119)^31, E(119)^-45, E(119)^-13, E(119)^-8, E(119)^-24, E(119)^29, E(119)^20, E(119)^15, E(119)^46, E(119)^59, E(119)^-2, E(119)^-32, E(119)^-39, E(119)^22, E(119)^39, E(119)^-53, E(119)^5, E(119)^58, E(119)^-12, E(119)^-16, E(119)^45, E(119)^37, E(119)^-37, E(119)^18, E(119)^-38, E(119)^-20, E(119)^-15, E(119)^-55, E(119)^-59, E(119)^27, 1], [1, 1, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^34, E(119)^51, E(119)^51, E(119)^-51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-28, E(119)^-14, E(119)^35, E(119)^-35, E(119)^56, E(119)^21, E(119)^-56, E(119)^-42, E(119)^49, E(119)^42, E(119)^-21, E(119)^28, E(119)^-7, E(119)^-49, E(119)^7, E(119)^14, E(119)^28, E(119)^21, E(119)^-56, E(119)^49, E(119)^-35, E(119)^7, E(119)^-49, E(119)^-21, E(119)^14, E(119)^-28, E(119)^-42, E(119)^-14, E(119)^-7, E(119)^56, E(119)^42, E(119)^35, E(119)^44, E(119)^-53, E(119)^-13, E(119)^26, E(119)^-15, E(119)^22, E(119)^-33, E(119)^59, E(119)^29, E(119)^-16, E(119)^-57, E(119)^12, E(119)^-2, E(119)^-43, E(119)^-26, E(119)^15, E(119)^38, E(119)^-19, E(119)^53, E(119)^-59, E(119)^-50, E(119)^46, E(119)^-3, E(119)^20, E(119)^-10, E(119)^4, E(119)^30, E(119)^-32, E(119)^-18, E(119)^23, E(119)^6, E(119)^52, E(119)^-58, E(119)^13, E(119)^54, E(119)^-41, E(119)^2, E(119)^37, E(119)^-48, E(119)^55, E(119)^-23, E(119)^36, E(119)^24, E(119)^-40, E(119)^-45, E(119)^39, E(119)^-29, E(119)^-52, E(119)^32, E(119)^-12, E(119)^45, E(119)^8, E(119)^5, E(119)^-36, E(119)^-9, E(119)^19, E(119)^27, E(119)^47, E(119)^-37, E(119)^-8, E(119)^-38, E(119)^-20, E(119)^-25, E(119)^16, E(119)^-27, E(119)^-39, E(119)^-1, E(119)^11, E(119)^31, E(119)^3, E(119)^-11, E(119)^-55, E(119)^-47, E(119)^10, E(119)^43, E(119)^-54, E(119)^48, E(119)^50, E(119)^-5, E(119)^41, E(119)^33, E(119), E(119)^-22, E(119)^-30, E(119)^40, E(119)^-46, E(119)^-44, E(119)^57, E(119)^-4, E(119)^58, E(119)^-6, E(119)^18, E(119)^-24, E(119)^-31, E(119)^25, E(119)^9, E(119)^48, E(119), E(119)^-57, E(119)^10, E(119)^29, E(119)^-43, E(119)^15, E(119)^-52, E(119)^-26, E(119)^5, E(119)^-9, E(119)^58, E(119)^-37, E(119)^4, E(119)^30, E(119)^19, E(119)^-23, E(119)^2, E(119)^-24, E(119)^-11, E(119)^-15, E(119)^57, E(119)^-18, E(119)^-29, E(119)^-27, E(119)^-39, E(119)^-46, E(119)^-10, E(119)^37, E(119)^-8, E(119)^-48, E(119)^-1, E(119)^-25, E(119)^16, E(119)^-16, E(119)^-58, E(119)^9, E(119)^40, E(119)^-44, E(119)^23, E(119)^-3, E(119)^-32, E(119)^6, E(119)^32, E(119)^-41, E(119)^-36, E(119)^-59, E(119)^3, E(119)^-54, E(119)^43, E(119)^20, E(119)^52, E(119)^-13, E(119)^-55, E(119)^12, E(119)^25, E(119)^-6, E(119)^47, E(119)^-2, E(119)^-19, E(119)^-45, E(119)^36, E(119)^-12, E(119)^11, E(119)^54, E(119)^44, E(119)^18, E(119)^-53, E(119)^27, E(119)^-20, E(119)^59, E(119)^13, E(119)^50, E(119)^-22, E(119)^-4, E(119)^-31, E(119)^-5, E(119)^39, E(119)^-38, E(119)^55, E(119)^38, E(119)^46, E(119)^-47, E(119)^26, E(119)^-30, E(119)^-40, E(119)^53, E(119)^33, E(119)^-33, E(119)^45, E(119)^24, E(119)^-50, E(119)^22, E(119)^41, E(119)^31, E(119)^8, 1], [1, 1, E(119)^34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-34, E(119)^-51, E(119)^-51, E(119)^51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^17, E(119)^28, E(119)^14, E(119)^-35, E(119)^35, E(119)^-56, E(119)^-21, E(119)^56, E(119)^42, E(119)^-49, E(119)^-42, E(119)^21, E(119)^-28, E(119)^7, E(119)^49, E(119)^-7, E(119)^-14, E(119)^-28, E(119)^-21, E(119)^56, E(119)^-49, E(119)^35, E(119)^-7, E(119)^49, E(119)^21, E(119)^-14, E(119)^28, E(119)^42, E(119)^14, E(119)^7, E(119)^-56, E(119)^-42, E(119)^-35, E(119)^-44, E(119)^53, E(119)^13, E(119)^-26, E(119)^15, E(119)^-22, E(119)^33, E(119)^-59, E(119)^-29, E(119)^16, E(119)^57, E(119)^-12, E(119)^2, E(119)^43, E(119)^26, E(119)^-15, E(119)^-38, E(119)^19, E(119)^-53, E(119)^59, E(119)^50, E(119)^-46, E(119)^3, E(119)^-20, E(119)^10, E(119)^-4, E(119)^-30, E(119)^32, E(119)^18, E(119)^-23, E(119)^-6, E(119)^-52, E(119)^58, E(119)^-13, E(119)^-54, E(119)^41, E(119)^-2, E(119)^-37, E(119)^48, E(119)^-55, E(119)^23, E(119)^-36, E(119)^-24, E(119)^40, E(119)^45, E(119)^-39, E(119)^29, E(119)^52, E(119)^-32, E(119)^12, E(119)^-45, E(119)^-8, E(119)^-5, E(119)^36, E(119)^9, E(119)^-19, E(119)^-27, E(119)^-47, E(119)^37, E(119)^8, E(119)^38, E(119)^20, E(119)^25, E(119)^-16, E(119)^27, E(119)^39, E(119), E(119)^-11, E(119)^-31, E(119)^-3, E(119)^11, E(119)^55, E(119)^47, E(119)^-10, E(119)^-43, E(119)^54, E(119)^-48, E(119)^-50, E(119)^5, E(119)^-41, E(119)^-33, E(119)^-1, E(119)^22, E(119)^30, E(119)^-40, E(119)^46, E(119)^44, E(119)^-57, E(119)^4, E(119)^-58, E(119)^6, E(119)^-18, E(119)^24, E(119)^31, E(119)^-25, E(119)^-9, E(119)^-48, E(119)^-1, E(119)^57, E(119)^-10, E(119)^-29, E(119)^43, E(119)^-15, E(119)^52, E(119)^26, E(119)^-5, E(119)^9, E(119)^-58, E(119)^37, E(119)^-4, E(119)^-30, E(119)^-19, E(119)^23, E(119)^-2, E(119)^24, E(119)^11, E(119)^15, E(119)^-57, E(119)^18, E(119)^29, E(119)^27, E(119)^39, E(119)^46, E(119)^10, E(119)^-37, E(119)^8, E(119)^48, E(119), E(119)^25, E(119)^-16, E(119)^16, E(119)^58, E(119)^-9, E(119)^-40, E(119)^44, E(119)^-23, E(119)^3, E(119)^32, E(119)^-6, E(119)^-32, E(119)^41, E(119)^36, E(119)^59, E(119)^-3, E(119)^54, E(119)^-43, E(119)^-20, E(119)^-52, E(119)^13, E(119)^55, E(119)^-12, E(119)^-25, E(119)^6, E(119)^-47, E(119)^2, E(119)^19, E(119)^45, E(119)^-36, E(119)^12, E(119)^-11, E(119)^-54, E(119)^-44, E(119)^-18, E(119)^53, E(119)^-27, E(119)^20, E(119)^-59, E(119)^-13, E(119)^-50, E(119)^22, E(119)^4, E(119)^31, E(119)^5, E(119)^-39, E(119)^38, E(119)^-55, E(119)^-38, E(119)^-46, E(119)^47, E(119)^-26, E(119)^30, E(119)^40, E(119)^-53, E(119)^-33, E(119)^33, E(119)^-45, E(119)^-24, E(119)^50, E(119)^-22, E(119)^-41, E(119)^-31, E(119)^-8, 1], [1, 1, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^34, E(119)^51, E(119)^51, E(119)^-51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-17, E(119)^28, E(119)^14, E(119)^-35, E(119)^35, E(119)^-56, E(119)^-21, E(119)^56, E(119)^42, E(119)^-49, E(119)^-42, E(119)^21, E(119)^-28, E(119)^7, E(119)^49, E(119)^-7, E(119)^-14, E(119)^-28, E(119)^-21, E(119)^56, E(119)^-49, E(119)^35, E(119)^-7, E(119)^49, E(119)^21, E(119)^-14, E(119)^28, E(119)^42, E(119)^14, E(119)^7, E(119)^-56, E(119)^-42, E(119)^-35, E(119)^58, E(119)^-32, E(119)^-55, E(119)^-9, E(119)^-36, E(119)^29, E(119)^16, E(119)^-25, E(119)^22, E(119)^33, E(119)^6, E(119)^5, E(119)^19, E(119)^-8, E(119)^9, E(119)^36, E(119)^-4, E(119)^2, E(119)^32, E(119)^25, E(119)^-1, E(119)^39, E(119)^-31, E(119)^48, E(119)^-24, E(119)^-38, E(119)^-47, E(119)^-53, E(119)^52, E(119)^-40, E(119)^-57, E(119)^-18, E(119)^-44, E(119)^55, E(119)^-37, E(119)^-27, E(119)^-19, E(119)^-54, E(119)^-20, E(119)^13, E(119)^40, E(119)^15, E(119)^10, E(119)^23, E(119)^11, E(119)^46, E(119)^-22, E(119)^18, E(119)^53, E(119)^-5, E(119)^-11, E(119)^43, E(119)^12, E(119)^-15, E(119)^26, E(119)^-2, E(119)^41, E(119)^-30, E(119)^54, E(119)^-43, E(119)^4, E(119)^-48, E(119)^59, E(119)^-33, E(119)^-41, E(119)^-46, E(119)^-50, E(119)^-45, E(119)^3, E(119)^31, E(119)^45, E(119)^-13, E(119)^30, E(119)^24, E(119)^8, E(119)^37, E(119)^20, E(119), E(119)^-12, E(119)^27, E(119)^-16, E(119)^50, E(119)^-29, E(119)^47, E(119)^-23, E(119)^-39, E(119)^-58, E(119)^-6, E(119)^38, E(119)^44, E(119)^57, E(119)^-52, E(119)^-10, E(119)^-3, E(119)^-59, E(119)^-26, E(119)^20, E(119)^50, E(119)^6, E(119)^24, E(119)^22, E(119)^-8, E(119)^36, E(119)^18, E(119)^9, E(119)^12, E(119)^26, E(119)^44, E(119)^54, E(119)^-38, E(119)^-47, E(119)^-2, E(119)^40, E(119)^-19, E(119)^-10, E(119)^45, E(119)^-36, E(119)^-6, E(119)^52, E(119)^-22, E(119)^-41, E(119)^-46, E(119)^-39, E(119)^-24, E(119)^-54, E(119)^-43, E(119)^-20, E(119)^-50, E(119)^59, E(119)^-33, E(119)^33, E(119)^-44, E(119)^-26, E(119)^-23, E(119)^-58, E(119)^-40, E(119)^-31, E(119)^-53, E(119)^-57, E(119)^53, E(119)^-27, E(119)^-15, E(119)^25, E(119)^31, E(119)^37, E(119)^8, E(119)^48, E(119)^-18, E(119)^-55, E(119)^-13, E(119)^5, E(119)^-59, E(119)^57, E(119)^-30, E(119)^19, E(119)^2, E(119)^11, E(119)^15, E(119)^-5, E(119)^-45, E(119)^-37, E(119)^58, E(119)^-52, E(119)^-32, E(119)^41, E(119)^-48, E(119)^-25, E(119)^55, E(119), E(119)^-29, E(119)^38, E(119)^-3, E(119)^-12, E(119)^46, E(119)^4, E(119)^13, E(119)^-4, E(119)^39, E(119)^30, E(119)^-9, E(119)^47, E(119)^23, E(119)^32, E(119)^-16, E(119)^16, E(119)^-11, E(119)^10, E(119)^-1, E(119)^29, E(119)^27, E(119)^3, E(119)^43, 1], [1, 1, E(119)^34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-34, E(119)^-51, E(119)^-51, E(119)^51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^17, E(119)^-28, E(119)^-14, E(119)^35, E(119)^-35, E(119)^56, E(119)^21, E(119)^-56, E(119)^-42, E(119)^49, E(119)^42, E(119)^-21, E(119)^28, E(119)^-7, E(119)^-49, E(119)^7, E(119)^14, E(119)^28, E(119)^21, E(119)^-56, E(119)^49, E(119)^-35, E(119)^7, E(119)^-49, E(119)^-21, E(119)^14, E(119)^-28, E(119)^-42, E(119)^-14, E(119)^-7, E(119)^56, E(119)^42, E(119)^35, E(119)^-58, E(119)^32, E(119)^55, E(119)^9, E(119)^36, E(119)^-29, E(119)^-16, E(119)^25, E(119)^-22, E(119)^-33, E(119)^-6, E(119)^-5, E(119)^-19, E(119)^8, E(119)^-9, E(119)^-36, E(119)^4, E(119)^-2, E(119)^-32, E(119)^-25, E(119), E(119)^-39, E(119)^31, E(119)^-48, E(119)^24, E(119)^38, E(119)^47, E(119)^53, E(119)^-52, E(119)^40, E(119)^57, E(119)^18, E(119)^44, E(119)^-55, E(119)^37, E(119)^27, E(119)^19, E(119)^54, E(119)^20, E(119)^-13, E(119)^-40, E(119)^-15, E(119)^-10, E(119)^-23, E(119)^-11, E(119)^-46, E(119)^22, E(119)^-18, E(119)^-53, E(119)^5, E(119)^11, E(119)^-43, E(119)^-12, E(119)^15, E(119)^-26, E(119)^2, E(119)^-41, E(119)^30, E(119)^-54, E(119)^43, E(119)^-4, E(119)^48, E(119)^-59, E(119)^33, E(119)^41, E(119)^46, E(119)^50, E(119)^45, E(119)^-3, E(119)^-31, E(119)^-45, E(119)^13, E(119)^-30, E(119)^-24, E(119)^-8, E(119)^-37, E(119)^-20, E(119)^-1, E(119)^12, E(119)^-27, E(119)^16, E(119)^-50, E(119)^29, E(119)^-47, E(119)^23, E(119)^39, E(119)^58, E(119)^6, E(119)^-38, E(119)^-44, E(119)^-57, E(119)^52, E(119)^10, E(119)^3, E(119)^59, E(119)^26, E(119)^-20, E(119)^-50, E(119)^-6, E(119)^-24, E(119)^-22, E(119)^8, E(119)^-36, E(119)^-18, E(119)^-9, E(119)^-12, E(119)^-26, E(119)^-44, E(119)^-54, E(119)^38, E(119)^47, E(119)^2, E(119)^-40, E(119)^19, E(119)^10, E(119)^-45, E(119)^36, E(119)^6, E(119)^-52, E(119)^22, E(119)^41, E(119)^46, E(119)^39, E(119)^24, E(119)^54, E(119)^43, E(119)^20, E(119)^50, E(119)^-59, E(119)^33, E(119)^-33, E(119)^44, E(119)^26, E(119)^23, E(119)^58, E(119)^40, E(119)^31, E(119)^53, E(119)^57, E(119)^-53, E(119)^27, E(119)^15, E(119)^-25, E(119)^-31, E(119)^-37, E(119)^-8, E(119)^-48, E(119)^18, E(119)^55, E(119)^13, E(119)^-5, E(119)^59, E(119)^-57, E(119)^30, E(119)^-19, E(119)^-2, E(119)^-11, E(119)^-15, E(119)^5, E(119)^45, E(119)^37, E(119)^-58, E(119)^52, E(119)^32, E(119)^-41, E(119)^48, E(119)^25, E(119)^-55, E(119)^-1, E(119)^29, E(119)^-38, E(119)^3, E(119)^12, E(119)^-46, E(119)^-4, E(119)^-13, E(119)^4, E(119)^-39, E(119)^-30, E(119)^9, E(119)^-47, E(119)^-23, E(119)^-32, E(119)^16, E(119)^-16, E(119)^11, E(119)^-10, E(119), E(119)^-29, E(119)^-27, E(119)^-3, E(119)^-43, 1], [1, 1, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^34, E(119)^51, E(119)^51, E(119)^-51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-21, E(119)^49, E(119)^56, E(119)^-56, E(119)^42, E(119)^-14, E(119)^-42, E(119)^28, E(119)^7, E(119)^-28, E(119)^14, E(119)^21, E(119)^-35, E(119)^-7, E(119)^35, E(119)^-49, E(119)^21, E(119)^-14, E(119)^-42, E(119)^7, E(119)^-56, E(119)^35, E(119)^-7, E(119)^14, E(119)^-49, E(119)^-21, E(119)^28, E(119)^49, E(119)^-35, E(119)^42, E(119)^-28, E(119)^56, E(119)^16, E(119)^24, E(119)^-48, E(119)^-23, E(119)^27, E(119)^8, E(119)^-12, E(119)^-11, E(119)^43, E(119)^5, E(119)^55, E(119)^26, E(119)^-44, E(119)^6, E(119)^23, E(119)^-27, E(119)^3, E(119)^58, E(119)^-24, E(119)^11, E(119)^-29, E(119)^-59, E(119)^53, E(119)^-36, E(119)^18, E(119)^-31, E(119)^-54, E(119)^10, E(119)^-39, E(119)^30, E(119)^13, E(119)^-46, E(119)^33, E(119)^48, E(119)^-2, E(119)^50, E(119)^44, E(119)^-19, E(119)^15, E(119)^20, E(119)^-30, E(119)^-41, E(119)^52, E(119)^-47, E(119)^-38, E(119)^25, E(119)^-43, E(119)^46, E(119)^-10, E(119)^-26, E(119)^38, E(119)^57, E(119)^-9, E(119)^41, E(119)^40, E(119)^-58, E(119)^-1, E(119)^-37, E(119)^19, E(119)^-57, E(119)^-3, E(119)^36, E(119)^45, E(119)^-5, E(119), E(119)^-25, E(119)^-22, E(119)^4, E(119)^-32, E(119)^-53, E(119)^-4, E(119)^-20, E(119)^37, E(119)^-18, E(119)^-6, E(119)^2, E(119)^-15, E(119)^29, E(119)^9, E(119)^-50, E(119)^12, E(119)^22, E(119)^-8, E(119)^54, E(119)^47, E(119)^59, E(119)^-16, E(119)^-55, E(119)^31, E(119)^-33, E(119)^-13, E(119)^39, E(119)^-52, E(119)^32, E(119)^-45, E(119)^-40, E(119)^-15, E(119)^22, E(119)^55, E(119)^-18, E(119)^43, E(119)^6, E(119)^-27, E(119)^46, E(119)^23, E(119)^-9, E(119)^40, E(119)^-33, E(119)^19, E(119)^-31, E(119)^-54, E(119)^-58, E(119)^-30, E(119)^44, E(119)^-52, E(119)^-4, E(119)^27, E(119)^-55, E(119)^-39, E(119)^-43, E(119), E(119)^-25, E(119)^59, E(119)^18, E(119)^-19, E(119)^-57, E(119)^15, E(119)^-22, E(119)^45, E(119)^-5, E(119)^5, E(119)^33, E(119)^-40, E(119)^47, E(119)^-16, E(119)^30, E(119)^53, E(119)^10, E(119)^13, E(119)^-10, E(119)^50, E(119)^41, E(119)^11, E(119)^-53, E(119)^2, E(119)^-6, E(119)^-36, E(119)^-46, E(119)^-48, E(119)^-20, E(119)^26, E(119)^-45, E(119)^-13, E(119)^-37, E(119)^-44, E(119)^58, E(119)^-38, E(119)^-41, E(119)^-26, E(119)^4, E(119)^-2, E(119)^16, E(119)^39, E(119)^24, E(119)^-1, E(119)^36, E(119)^-11, E(119)^48, E(119)^29, E(119)^-8, E(119)^31, E(119)^32, E(119)^9, E(119)^25, E(119)^-3, E(119)^20, E(119)^3, E(119)^-59, E(119)^37, E(119)^-23, E(119)^54, E(119)^-47, E(119)^-24, E(119)^12, E(119)^-12, E(119)^38, E(119)^52, E(119)^-29, E(119)^8, E(119)^-50, E(119)^-32, E(119)^57, 1], [1, 1, E(119)^34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-34, E(119)^-51, E(119)^-51, E(119)^51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^17, E(119)^21, E(119)^-49, E(119)^-56, E(119)^56, E(119)^-42, E(119)^14, E(119)^42, E(119)^-28, E(119)^-7, E(119)^28, E(119)^-14, E(119)^-21, E(119)^35, E(119)^7, E(119)^-35, E(119)^49, E(119)^-21, E(119)^14, E(119)^42, E(119)^-7, E(119)^56, E(119)^-35, E(119)^7, E(119)^-14, E(119)^49, E(119)^21, E(119)^-28, E(119)^-49, E(119)^35, E(119)^-42, E(119)^28, E(119)^-56, E(119)^-16, E(119)^-24, E(119)^48, E(119)^23, E(119)^-27, E(119)^-8, E(119)^12, E(119)^11, E(119)^-43, E(119)^-5, E(119)^-55, E(119)^-26, E(119)^44, E(119)^-6, E(119)^-23, E(119)^27, E(119)^-3, E(119)^-58, E(119)^24, E(119)^-11, E(119)^29, E(119)^59, E(119)^-53, E(119)^36, E(119)^-18, E(119)^31, E(119)^54, E(119)^-10, E(119)^39, E(119)^-30, E(119)^-13, E(119)^46, E(119)^-33, E(119)^-48, E(119)^2, E(119)^-50, E(119)^-44, E(119)^19, E(119)^-15, E(119)^-20, E(119)^30, E(119)^41, E(119)^-52, E(119)^47, E(119)^38, E(119)^-25, E(119)^43, E(119)^-46, E(119)^10, E(119)^26, E(119)^-38, E(119)^-57, E(119)^9, E(119)^-41, E(119)^-40, E(119)^58, E(119), E(119)^37, E(119)^-19, E(119)^57, E(119)^3, E(119)^-36, E(119)^-45, E(119)^5, E(119)^-1, E(119)^25, E(119)^22, E(119)^-4, E(119)^32, E(119)^53, E(119)^4, E(119)^20, E(119)^-37, E(119)^18, E(119)^6, E(119)^-2, E(119)^15, E(119)^-29, E(119)^-9, E(119)^50, E(119)^-12, E(119)^-22, E(119)^8, E(119)^-54, E(119)^-47, E(119)^-59, E(119)^16, E(119)^55, E(119)^-31, E(119)^33, E(119)^13, E(119)^-39, E(119)^52, E(119)^-32, E(119)^45, E(119)^40, E(119)^15, E(119)^-22, E(119)^-55, E(119)^18, E(119)^-43, E(119)^-6, E(119)^27, E(119)^-46, E(119)^-23, E(119)^9, E(119)^-40, E(119)^33, E(119)^-19, E(119)^31, E(119)^54, E(119)^58, E(119)^30, E(119)^-44, E(119)^52, E(119)^4, E(119)^-27, E(119)^55, E(119)^39, E(119)^43, E(119)^-1, E(119)^25, E(119)^-59, E(119)^-18, E(119)^19, E(119)^57, E(119)^-15, E(119)^22, E(119)^-45, E(119)^5, E(119)^-5, E(119)^-33, E(119)^40, E(119)^-47, E(119)^16, E(119)^-30, E(119)^-53, E(119)^-10, E(119)^-13, E(119)^10, E(119)^-50, E(119)^-41, E(119)^-11, E(119)^53, E(119)^-2, E(119)^6, E(119)^36, E(119)^46, E(119)^48, E(119)^20, E(119)^-26, E(119)^45, E(119)^13, E(119)^37, E(119)^44, E(119)^-58, E(119)^38, E(119)^41, E(119)^26, E(119)^-4, E(119)^2, E(119)^-16, E(119)^-39, E(119)^-24, E(119), E(119)^-36, E(119)^11, E(119)^-48, E(119)^-29, E(119)^8, E(119)^-31, E(119)^-32, E(119)^-9, E(119)^-25, E(119)^3, E(119)^-20, E(119)^-3, E(119)^59, E(119)^-37, E(119)^23, E(119)^-54, E(119)^47, E(119)^24, E(119)^-12, E(119)^12, E(119)^-38, E(119)^-52, E(119)^29, E(119)^-8, E(119)^50, E(119)^32, E(119)^-57, 1], [1, 1, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^34, E(119)^51, E(119)^51, E(119)^-51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-17, E(119)^21, E(119)^-49, E(119)^-56, E(119)^56, E(119)^-42, E(119)^14, E(119)^42, E(119)^-28, E(119)^-7, E(119)^28, E(119)^-14, E(119)^-21, E(119)^35, E(119)^7, E(119)^-35, E(119)^49, E(119)^-21, E(119)^14, E(119)^42, E(119)^-7, E(119)^56, E(119)^-35, E(119)^7, E(119)^-14, E(119)^49, E(119)^21, E(119)^-28, E(119)^-49, E(119)^35, E(119)^-42, E(119)^28, E(119)^-56, E(119)^-33, E(119)^10, E(119)^-20, E(119)^40, E(119)^41, E(119)^43, E(119)^-5, E(119)^45, E(119)^8, E(119)^12, E(119)^13, E(119)^-9, E(119)^-58, E(119)^-57, E(119)^-40, E(119)^-41, E(119)^31, E(119)^44, E(119)^-10, E(119)^-45, E(119)^-22, E(119)^25, E(119)^32, E(119)^-15, E(119)^-52, E(119)^-3, E(119)^37, E(119)^24, E(119)^-46, E(119)^-47, E(119)^55, E(119)^-39, E(119)^-16, E(119)^20, E(119)^19, E(119), E(119)^58, E(119)^2, E(119)^36, E(119)^48, E(119)^47, E(119)^-27, E(119)^-18, E(119)^30, E(119)^4, E(119)^-59, E(119)^-8, E(119)^39, E(119)^-24, E(119)^9, E(119)^-4, E(119)^-6, E(119)^26, E(119)^27, E(119)^-23, E(119)^-44, E(119)^-50, E(119)^54, E(119)^-2, E(119)^6, E(119)^-31, E(119)^15, E(119)^-11, E(119)^-12, E(119)^50, E(119)^59, E(119)^-29, E(119)^-38, E(119)^-53, E(119)^-32, E(119)^38, E(119)^-48, E(119)^-54, E(119)^52, E(119)^57, E(119)^-19, E(119)^-36, E(119)^22, E(119)^-26, E(119)^-1, E(119)^5, E(119)^29, E(119)^-43, E(119)^-37, E(119)^-30, E(119)^-25, E(119)^33, E(119)^-13, E(119)^3, E(119)^16, E(119)^-55, E(119)^46, E(119)^18, E(119)^53, E(119)^11, E(119)^23, E(119)^-36, E(119)^29, E(119)^13, E(119)^52, E(119)^8, E(119)^-57, E(119)^-41, E(119)^39, E(119)^-40, E(119)^26, E(119)^-23, E(119)^16, E(119)^-2, E(119)^-3, E(119)^37, E(119)^-44, E(119)^47, E(119)^58, E(119)^18, E(119)^38, E(119)^41, E(119)^-13, E(119)^-46, E(119)^-8, E(119)^50, E(119)^59, E(119)^-25, E(119)^-52, E(119)^2, E(119)^6, E(119)^36, E(119)^-29, E(119)^-11, E(119)^-12, E(119)^12, E(119)^-16, E(119)^23, E(119)^-30, E(119)^33, E(119)^-47, E(119)^32, E(119)^24, E(119)^55, E(119)^-24, E(119), E(119)^27, E(119)^-45, E(119)^-32, E(119)^-19, E(119)^57, E(119)^-15, E(119)^-39, E(119)^-20, E(119)^-48, E(119)^-9, E(119)^11, E(119)^-55, E(119)^54, E(119)^-58, E(119)^44, E(119)^4, E(119)^-27, E(119)^9, E(119)^-38, E(119)^19, E(119)^-33, E(119)^46, E(119)^10, E(119)^-50, E(119)^15, E(119)^45, E(119)^20, E(119)^22, E(119)^-43, E(119)^3, E(119)^53, E(119)^-26, E(119)^-59, E(119)^-31, E(119)^48, E(119)^31, E(119)^25, E(119)^-54, E(119)^40, E(119)^-37, E(119)^30, E(119)^-10, E(119)^5, E(119)^-5, E(119)^-4, E(119)^-18, E(119)^-22, E(119)^43, E(119)^-1, E(119)^-53, E(119)^-6, 1], [1, 1, E(119)^34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-34, E(119)^-51, E(119)^-51, E(119)^51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^17, E(119)^-21, E(119)^49, E(119)^56, E(119)^-56, E(119)^42, E(119)^-14, E(119)^-42, E(119)^28, E(119)^7, E(119)^-28, E(119)^14, E(119)^21, E(119)^-35, E(119)^-7, E(119)^35, E(119)^-49, E(119)^21, E(119)^-14, E(119)^-42, E(119)^7, E(119)^-56, E(119)^35, E(119)^-7, E(119)^14, E(119)^-49, E(119)^-21, E(119)^28, E(119)^49, E(119)^-35, E(119)^42, E(119)^-28, E(119)^56, E(119)^33, E(119)^-10, E(119)^20, E(119)^-40, E(119)^-41, E(119)^-43, E(119)^5, E(119)^-45, E(119)^-8, E(119)^-12, E(119)^-13, E(119)^9, E(119)^58, E(119)^57, E(119)^40, E(119)^41, E(119)^-31, E(119)^-44, E(119)^10, E(119)^45, E(119)^22, E(119)^-25, E(119)^-32, E(119)^15, E(119)^52, E(119)^3, E(119)^-37, E(119)^-24, E(119)^46, E(119)^47, E(119)^-55, E(119)^39, E(119)^16, E(119)^-20, E(119)^-19, E(119)^-1, E(119)^-58, E(119)^-2, E(119)^-36, E(119)^-48, E(119)^-47, E(119)^27, E(119)^18, E(119)^-30, E(119)^-4, E(119)^59, E(119)^8, E(119)^-39, E(119)^24, E(119)^-9, E(119)^4, E(119)^6, E(119)^-26, E(119)^-27, E(119)^23, E(119)^44, E(119)^50, E(119)^-54, E(119)^2, E(119)^-6, E(119)^31, E(119)^-15, E(119)^11, E(119)^12, E(119)^-50, E(119)^-59, E(119)^29, E(119)^38, E(119)^53, E(119)^32, E(119)^-38, E(119)^48, E(119)^54, E(119)^-52, E(119)^-57, E(119)^19, E(119)^36, E(119)^-22, E(119)^26, E(119), E(119)^-5, E(119)^-29, E(119)^43, E(119)^37, E(119)^30, E(119)^25, E(119)^-33, E(119)^13, E(119)^-3, E(119)^-16, E(119)^55, E(119)^-46, E(119)^-18, E(119)^-53, E(119)^-11, E(119)^-23, E(119)^36, E(119)^-29, E(119)^-13, E(119)^-52, E(119)^-8, E(119)^57, E(119)^41, E(119)^-39, E(119)^40, E(119)^-26, E(119)^23, E(119)^-16, E(119)^2, E(119)^3, E(119)^-37, E(119)^44, E(119)^-47, E(119)^-58, E(119)^-18, E(119)^-38, E(119)^-41, E(119)^13, E(119)^46, E(119)^8, E(119)^-50, E(119)^-59, E(119)^25, E(119)^52, E(119)^-2, E(119)^-6, E(119)^-36, E(119)^29, E(119)^11, E(119)^12, E(119)^-12, E(119)^16, E(119)^-23, E(119)^30, E(119)^-33, E(119)^47, E(119)^-32, E(119)^-24, E(119)^-55, E(119)^24, E(119)^-1, E(119)^-27, E(119)^45, E(119)^32, E(119)^19, E(119)^-57, E(119)^15, E(119)^39, E(119)^20, E(119)^48, E(119)^9, E(119)^-11, E(119)^55, E(119)^-54, E(119)^58, E(119)^-44, E(119)^-4, E(119)^27, E(119)^-9, E(119)^38, E(119)^-19, E(119)^33, E(119)^-46, E(119)^-10, E(119)^50, E(119)^-15, E(119)^-45, E(119)^-20, E(119)^-22, E(119)^43, E(119)^-3, E(119)^-53, E(119)^26, E(119)^59, E(119)^31, E(119)^-48, E(119)^-31, E(119)^-25, E(119)^54, E(119)^-40, E(119)^37, E(119)^-30, E(119)^10, E(119)^-5, E(119)^5, E(119)^4, E(119)^18, E(119)^22, E(119)^-43, E(119), E(119)^53, E(119)^6, 1], [1, 1, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^34, E(119)^51, E(119)^51, E(119)^-51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-14, E(119)^-7, E(119)^-42, E(119)^42, E(119)^28, E(119)^-49, E(119)^-28, E(119)^-21, E(119)^-35, E(119)^21, E(119)^49, E(119)^14, E(119)^56, E(119)^35, E(119)^-56, E(119)^7, E(119)^14, E(119)^-49, E(119)^-28, E(119)^-35, E(119)^42, E(119)^-56, E(119)^35, E(119)^49, E(119)^7, E(119)^-14, E(119)^-21, E(119)^-7, E(119)^56, E(119)^28, E(119)^21, E(119)^-42, E(119)^-12, E(119)^-18, E(119)^36, E(119)^47, E(119)^-50, E(119)^-6, E(119)^9, E(119)^38, E(119)^57, E(119)^26, E(119)^48, E(119)^40, E(119)^33, E(119)^55, E(119)^-47, E(119)^50, E(119)^-32, E(119)^16, E(119)^18, E(119)^-38, E(119)^-8, E(119)^-45, E(119)^-10, E(119)^27, E(119)^46, E(119)^53, E(119)^-19, E(119)^52, E(119)^59, E(119)^37, E(119)^20, E(119)^-25, E(119)^5, E(119)^-36, E(119)^-58, E(119)^22, E(119)^-33, E(119)^44, E(119)^-41, E(119)^-15, E(119)^-37, E(119), E(119)^-39, E(119)^-54, E(119)^-31, E(119)^11, E(119)^-57, E(119)^25, E(119)^-52, E(119)^-40, E(119)^31, E(119)^-13, E(119)^-23, E(119)^-1, E(119)^-30, E(119)^-16, E(119)^-29, E(119)^-2, E(119)^-44, E(119)^13, E(119)^32, E(119)^-27, E(119)^-4, E(119)^-26, E(119)^29, E(119)^-11, E(119)^-43, E(119)^-3, E(119)^24, E(119)^10, E(119)^3, E(119)^15, E(119)^2, E(119)^-46, E(119)^-55, E(119)^58, E(119)^41, E(119)^8, E(119)^23, E(119)^-22, E(119)^-9, E(119)^43, E(119)^6, E(119)^19, E(119)^54, E(119)^45, E(119)^12, E(119)^-48, E(119)^-53, E(119)^-5, E(119)^-20, E(119)^-59, E(119)^39, E(119)^-24, E(119)^4, E(119)^30, E(119)^41, E(119)^43, E(119)^48, E(119)^-46, E(119)^57, E(119)^55, E(119)^50, E(119)^25, E(119)^-47, E(119)^-23, E(119)^-30, E(119)^-5, E(119)^-44, E(119)^53, E(119)^-19, E(119)^-16, E(119)^-37, E(119)^-33, E(119)^39, E(119)^3, E(119)^-50, E(119)^-48, E(119)^59, E(119)^-57, E(119)^29, E(119)^-11, E(119)^45, E(119)^46, E(119)^44, E(119)^13, E(119)^-41, E(119)^-43, E(119)^-4, E(119)^-26, E(119)^26, E(119)^5, E(119)^30, E(119)^54, E(119)^12, E(119)^37, E(119)^-10, E(119)^52, E(119)^20, E(119)^-52, E(119)^22, E(119)^-1, E(119)^-38, E(119)^10, E(119)^58, E(119)^-55, E(119)^27, E(119)^-25, E(119)^36, E(119)^15, E(119)^40, E(119)^4, E(119)^-20, E(119)^-2, E(119)^33, E(119)^16, E(119)^-31, E(119), E(119)^-40, E(119)^-3, E(119)^-58, E(119)^-12, E(119)^-59, E(119)^-18, E(119)^-29, E(119)^-27, E(119)^38, E(119)^-36, E(119)^8, E(119)^6, E(119)^-53, E(119)^-24, E(119)^23, E(119)^11, E(119)^32, E(119)^-15, E(119)^-32, E(119)^-45, E(119)^2, E(119)^47, E(119)^19, E(119)^-54, E(119)^18, E(119)^-9, E(119)^9, E(119)^31, E(119)^-39, E(119)^-8, E(119)^-6, E(119)^-22, E(119)^24, E(119)^-13, 1], [1, 1, E(119)^34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-34, E(119)^-51, E(119)^-51, E(119)^51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^17, E(119)^14, E(119)^7, E(119)^42, E(119)^-42, E(119)^-28, E(119)^49, E(119)^28, E(119)^21, E(119)^35, E(119)^-21, E(119)^-49, E(119)^-14, E(119)^-56, E(119)^-35, E(119)^56, E(119)^-7, E(119)^-14, E(119)^49, E(119)^28, E(119)^35, E(119)^-42, E(119)^56, E(119)^-35, E(119)^-49, E(119)^-7, E(119)^14, E(119)^21, E(119)^7, E(119)^-56, E(119)^-28, E(119)^-21, E(119)^42, E(119)^12, E(119)^18, E(119)^-36, E(119)^-47, E(119)^50, E(119)^6, E(119)^-9, E(119)^-38, E(119)^-57, E(119)^-26, E(119)^-48, E(119)^-40, E(119)^-33, E(119)^-55, E(119)^47, E(119)^-50, E(119)^32, E(119)^-16, E(119)^-18, E(119)^38, E(119)^8, E(119)^45, E(119)^10, E(119)^-27, E(119)^-46, E(119)^-53, E(119)^19, E(119)^-52, E(119)^-59, E(119)^-37, E(119)^-20, E(119)^25, E(119)^-5, E(119)^36, E(119)^58, E(119)^-22, E(119)^33, E(119)^-44, E(119)^41, E(119)^15, E(119)^37, E(119)^-1, E(119)^39, E(119)^54, E(119)^31, E(119)^-11, E(119)^57, E(119)^-25, E(119)^52, E(119)^40, E(119)^-31, E(119)^13, E(119)^23, E(119), E(119)^30, E(119)^16, E(119)^29, E(119)^2, E(119)^44, E(119)^-13, E(119)^-32, E(119)^27, E(119)^4, E(119)^26, E(119)^-29, E(119)^11, E(119)^43, E(119)^3, E(119)^-24, E(119)^-10, E(119)^-3, E(119)^-15, E(119)^-2, E(119)^46, E(119)^55, E(119)^-58, E(119)^-41, E(119)^-8, E(119)^-23, E(119)^22, E(119)^9, E(119)^-43, E(119)^-6, E(119)^-19, E(119)^-54, E(119)^-45, E(119)^-12, E(119)^48, E(119)^53, E(119)^5, E(119)^20, E(119)^59, E(119)^-39, E(119)^24, E(119)^-4, E(119)^-30, E(119)^-41, E(119)^-43, E(119)^-48, E(119)^46, E(119)^-57, E(119)^-55, E(119)^-50, E(119)^-25, E(119)^47, E(119)^23, E(119)^30, E(119)^5, E(119)^44, E(119)^-53, E(119)^19, E(119)^16, E(119)^37, E(119)^33, E(119)^-39, E(119)^-3, E(119)^50, E(119)^48, E(119)^-59, E(119)^57, E(119)^-29, E(119)^11, E(119)^-45, E(119)^-46, E(119)^-44, E(119)^-13, E(119)^41, E(119)^43, E(119)^4, E(119)^26, E(119)^-26, E(119)^-5, E(119)^-30, E(119)^-54, E(119)^-12, E(119)^-37, E(119)^10, E(119)^-52, E(119)^-20, E(119)^52, E(119)^-22, E(119), E(119)^38, E(119)^-10, E(119)^-58, E(119)^55, E(119)^-27, E(119)^25, E(119)^-36, E(119)^-15, E(119)^-40, E(119)^-4, E(119)^20, E(119)^2, E(119)^-33, E(119)^-16, E(119)^31, E(119)^-1, E(119)^40, E(119)^3, E(119)^58, E(119)^12, E(119)^59, E(119)^18, E(119)^29, E(119)^27, E(119)^-38, E(119)^36, E(119)^-8, E(119)^-6, E(119)^53, E(119)^24, E(119)^-23, E(119)^-11, E(119)^-32, E(119)^15, E(119)^32, E(119)^45, E(119)^-2, E(119)^-47, E(119)^-19, E(119)^54, E(119)^-18, E(119)^9, E(119)^-9, E(119)^-31, E(119)^39, E(119)^8, E(119)^6, E(119)^22, E(119)^-24, E(119)^13, 1], [1, 1, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^34, E(119)^51, E(119)^51, E(119)^-51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-17, E(119)^14, E(119)^7, E(119)^42, E(119)^-42, E(119)^-28, E(119)^49, E(119)^28, E(119)^21, E(119)^35, E(119)^-21, E(119)^-49, E(119)^-14, E(119)^-56, E(119)^-35, E(119)^56, E(119)^-7, E(119)^-14, E(119)^49, E(119)^28, E(119)^35, E(119)^-42, E(119)^56, E(119)^-35, E(119)^-49, E(119)^-7, E(119)^14, E(119)^21, E(119)^7, E(119)^-56, E(119)^-28, E(119)^-21, E(119)^42, E(119)^-5, E(119)^52, E(119)^15, E(119)^-30, E(119)^-1, E(119)^57, E(119)^-26, E(119)^-4, E(119)^-6, E(119)^-9, E(119)^20, E(119)^-23, E(119)^-16, E(119)^13, E(119)^30, E(119), E(119)^-53, E(119)^-33, E(119)^-52, E(119)^4, E(119)^-43, E(119)^11, E(119)^-24, E(119)^41, E(119)^39, E(119)^32, E(119)^2, E(119)^-18, E(119)^-25, E(119)^-54, E(119)^48, E(119)^59, E(119)^12, E(119)^-15, E(119)^-44, E(119)^29, E(119)^16, E(119)^58, E(119)^-27, E(119)^-36, E(119)^54, E(119)^50, E(119)^-46, E(119)^37, E(119)^-3, E(119)^-45, E(119)^6, E(119)^-59, E(119)^18, E(119)^23, E(119)^3, E(119)^-55, E(119)^40, E(119)^-50, E(119)^47, E(119)^33, E(119)^-22, E(119)^19, E(119)^-58, E(119)^55, E(119)^53, E(119)^-41, E(119)^38, E(119)^9, E(119)^22, E(119)^45, E(119)^-8, E(119)^-31, E(119)^10, E(119)^24, E(119)^31, E(119)^36, E(119)^-19, E(119)^-39, E(119)^-13, E(119)^44, E(119)^27, E(119)^43, E(119)^-40, E(119)^-29, E(119)^26, E(119)^8, E(119)^-57, E(119)^-2, E(119)^-37, E(119)^-11, E(119)^5, E(119)^-20, E(119)^-32, E(119)^-12, E(119)^-48, E(119)^25, E(119)^46, E(119)^-10, E(119)^-38, E(119)^-47, E(119)^27, E(119)^8, E(119)^20, E(119)^-39, E(119)^-6, E(119)^13, E(119), E(119)^-59, E(119)^30, E(119)^40, E(119)^47, E(119)^-12, E(119)^-58, E(119)^32, E(119)^2, E(119)^33, E(119)^54, E(119)^16, E(119)^46, E(119)^31, E(119)^-1, E(119)^-20, E(119)^-25, E(119)^6, E(119)^22, E(119)^45, E(119)^-11, E(119)^39, E(119)^58, E(119)^55, E(119)^-27, E(119)^-8, E(119)^38, E(119)^9, E(119)^-9, E(119)^12, E(119)^-47, E(119)^-37, E(119)^5, E(119)^-54, E(119)^-24, E(119)^-18, E(119)^48, E(119)^18, E(119)^29, E(119)^-50, E(119)^4, E(119)^24, E(119)^44, E(119)^-13, E(119)^41, E(119)^59, E(119)^15, E(119)^36, E(119)^-23, E(119)^-38, E(119)^-48, E(119)^19, E(119)^-16, E(119)^-33, E(119)^-3, E(119)^50, E(119)^23, E(119)^-31, E(119)^-44, E(119)^-5, E(119)^25, E(119)^52, E(119)^-22, E(119)^-41, E(119)^-4, E(119)^-15, E(119)^43, E(119)^-57, E(119)^-32, E(119)^-10, E(119)^-40, E(119)^-45, E(119)^53, E(119)^-36, E(119)^-53, E(119)^11, E(119)^-19, E(119)^-30, E(119)^-2, E(119)^37, E(119)^-52, E(119)^26, E(119)^-26, E(119)^3, E(119)^-46, E(119)^-43, E(119)^57, E(119)^-29, E(119)^10, E(119)^-55, 1], [1, 1, E(119)^34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-34, E(119)^-51, E(119)^-51, E(119)^51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^17, E(119)^-14, E(119)^-7, E(119)^-42, E(119)^42, E(119)^28, E(119)^-49, E(119)^-28, E(119)^-21, E(119)^-35, E(119)^21, E(119)^49, E(119)^14, E(119)^56, E(119)^35, E(119)^-56, E(119)^7, E(119)^14, E(119)^-49, E(119)^-28, E(119)^-35, E(119)^42, E(119)^-56, E(119)^35, E(119)^49, E(119)^7, E(119)^-14, E(119)^-21, E(119)^-7, E(119)^56, E(119)^28, E(119)^21, E(119)^-42, E(119)^5, E(119)^-52, E(119)^-15, E(119)^30, E(119), E(119)^-57, E(119)^26, E(119)^4, E(119)^6, E(119)^9, E(119)^-20, E(119)^23, E(119)^16, E(119)^-13, E(119)^-30, E(119)^-1, E(119)^53, E(119)^33, E(119)^52, E(119)^-4, E(119)^43, E(119)^-11, E(119)^24, E(119)^-41, E(119)^-39, E(119)^-32, E(119)^-2, E(119)^18, E(119)^25, E(119)^54, E(119)^-48, E(119)^-59, E(119)^-12, E(119)^15, E(119)^44, E(119)^-29, E(119)^-16, E(119)^-58, E(119)^27, E(119)^36, E(119)^-54, E(119)^-50, E(119)^46, E(119)^-37, E(119)^3, E(119)^45, E(119)^-6, E(119)^59, E(119)^-18, E(119)^-23, E(119)^-3, E(119)^55, E(119)^-40, E(119)^50, E(119)^-47, E(119)^-33, E(119)^22, E(119)^-19, E(119)^58, E(119)^-55, E(119)^-53, E(119)^41, E(119)^-38, E(119)^-9, E(119)^-22, E(119)^-45, E(119)^8, E(119)^31, E(119)^-10, E(119)^-24, E(119)^-31, E(119)^-36, E(119)^19, E(119)^39, E(119)^13, E(119)^-44, E(119)^-27, E(119)^-43, E(119)^40, E(119)^29, E(119)^-26, E(119)^-8, E(119)^57, E(119)^2, E(119)^37, E(119)^11, E(119)^-5, E(119)^20, E(119)^32, E(119)^12, E(119)^48, E(119)^-25, E(119)^-46, E(119)^10, E(119)^38, E(119)^47, E(119)^-27, E(119)^-8, E(119)^-20, E(119)^39, E(119)^6, E(119)^-13, E(119)^-1, E(119)^59, E(119)^-30, E(119)^-40, E(119)^-47, E(119)^12, E(119)^58, E(119)^-32, E(119)^-2, E(119)^-33, E(119)^-54, E(119)^-16, E(119)^-46, E(119)^-31, E(119), E(119)^20, E(119)^25, E(119)^-6, E(119)^-22, E(119)^-45, E(119)^11, E(119)^-39, E(119)^-58, E(119)^-55, E(119)^27, E(119)^8, E(119)^-38, E(119)^-9, E(119)^9, E(119)^-12, E(119)^47, E(119)^37, E(119)^-5, E(119)^54, E(119)^24, E(119)^18, E(119)^-48, E(119)^-18, E(119)^-29, E(119)^50, E(119)^-4, E(119)^-24, E(119)^-44, E(119)^13, E(119)^-41, E(119)^-59, E(119)^-15, E(119)^-36, E(119)^23, E(119)^38, E(119)^48, E(119)^-19, E(119)^16, E(119)^33, E(119)^3, E(119)^-50, E(119)^-23, E(119)^31, E(119)^44, E(119)^5, E(119)^-25, E(119)^-52, E(119)^22, E(119)^41, E(119)^4, E(119)^15, E(119)^-43, E(119)^57, E(119)^32, E(119)^10, E(119)^40, E(119)^45, E(119)^-53, E(119)^36, E(119)^53, E(119)^-11, E(119)^19, E(119)^30, E(119)^2, E(119)^-37, E(119)^52, E(119)^-26, E(119)^26, E(119)^-3, E(119)^46, E(119)^43, E(119)^-57, E(119)^29, E(119)^-10, E(119)^55, 1], [1, 1, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^34, E(119)^51, E(119)^51, E(119)^-51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-7, E(119)^56, E(119)^-21, E(119)^21, E(119)^14, E(119)^35, E(119)^-14, E(119)^49, E(119)^42, E(119)^-49, E(119)^-35, E(119)^7, E(119)^28, E(119)^-42, E(119)^-28, E(119)^-56, E(119)^7, E(119)^35, E(119)^-14, E(119)^42, E(119)^21, E(119)^-28, E(119)^-42, E(119)^-35, E(119)^-56, E(119)^-7, E(119)^49, E(119)^56, E(119)^28, E(119)^14, E(119)^-49, E(119)^-21, E(119)^-40, E(119)^59, E(119), E(119)^-2, E(119)^-8, E(119)^-20, E(119)^30, E(119)^-32, E(119)^-48, E(119)^47, E(119)^41, E(119)^54, E(119)^-9, E(119)^-15, E(119)^2, E(119)^8, E(119)^52, E(119)^-26, E(119)^-59, E(119)^32, E(119)^13, E(119)^-31, E(119)^46, E(119)^-29, E(119)^-45, E(119)^18, E(119)^16, E(119)^-25, E(119)^38, E(119)^44, E(119)^27, E(119)^-4, E(119)^-23, E(119)^-1, E(119)^5, E(119)^-6, E(119)^9, E(119)^-12, E(119)^22, E(119)^-50, E(119)^-44, E(119)^43, E(119)^-11, E(119)^58, E(119)^-24, E(119)^-3, E(119)^48, E(119)^4, E(119)^25, E(119)^-54, E(119)^24, E(119)^36, E(119)^-37, E(119)^-43, E(119)^19, E(119)^26, E(119)^-57, E(119)^33, E(119)^12, E(119)^-36, E(119)^-52, E(119)^29, E(119)^-53, E(119)^-47, E(119)^57, E(119)^3, E(119)^55, E(119)^-10, E(119)^-39, E(119)^-46, E(119)^10, E(119)^50, E(119)^-33, E(119)^45, E(119)^15, E(119)^-5, E(119)^-22, E(119)^-13, E(119)^37, E(119)^6, E(119)^-30, E(119)^-55, E(119)^20, E(119)^-16, E(119)^-58, E(119)^31, E(119)^40, E(119)^-41, E(119)^-18, E(119)^23, E(119)^-27, E(119)^-38, E(119)^11, E(119)^39, E(119)^53, E(119)^-19, E(119)^-22, E(119)^-55, E(119)^41, E(119)^45, E(119)^-48, E(119)^-15, E(119)^8, E(119)^4, E(119)^2, E(119)^-37, E(119)^19, E(119)^23, E(119)^12, E(119)^18, E(119)^16, E(119)^26, E(119)^-44, E(119)^9, E(119)^11, E(119)^10, E(119)^-8, E(119)^-41, E(119)^38, E(119)^48, E(119)^57, E(119)^3, E(119)^31, E(119)^-45, E(119)^-12, E(119)^-36, E(119)^22, E(119)^55, E(119)^-53, E(119)^-47, E(119)^47, E(119)^-23, E(119)^-19, E(119)^-58, E(119)^40, E(119)^44, E(119)^46, E(119)^-25, E(119)^27, E(119)^25, E(119)^-6, E(119)^-43, E(119)^32, E(119)^-46, E(119)^-5, E(119)^15, E(119)^-29, E(119)^-4, E(119), E(119)^50, E(119)^54, E(119)^53, E(119)^-27, E(119)^33, E(119)^-9, E(119)^-26, E(119)^-24, E(119)^43, E(119)^-54, E(119)^-10, E(119)^5, E(119)^-40, E(119)^-38, E(119)^59, E(119)^-57, E(119)^29, E(119)^-32, E(119)^-1, E(119)^-13, E(119)^20, E(119)^-18, E(119)^39, E(119)^37, E(119)^-3, E(119)^-52, E(119)^-50, E(119)^52, E(119)^-31, E(119)^-33, E(119)^-2, E(119)^-16, E(119)^58, E(119)^-59, E(119)^-30, E(119)^30, E(119)^24, E(119)^-11, E(119)^13, E(119)^-20, E(119)^6, E(119)^-39, E(119)^36, 1], [1, 1, E(119)^34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-34, E(119)^-51, E(119)^-51, E(119)^51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^17, E(119)^7, E(119)^-56, E(119)^21, E(119)^-21, E(119)^-14, E(119)^-35, E(119)^14, E(119)^-49, E(119)^-42, E(119)^49, E(119)^35, E(119)^-7, E(119)^-28, E(119)^42, E(119)^28, E(119)^56, E(119)^-7, E(119)^-35, E(119)^14, E(119)^-42, E(119)^-21, E(119)^28, E(119)^42, E(119)^35, E(119)^56, E(119)^7, E(119)^-49, E(119)^-56, E(119)^-28, E(119)^-14, E(119)^49, E(119)^21, E(119)^40, E(119)^-59, E(119)^-1, E(119)^2, E(119)^8, E(119)^20, E(119)^-30, E(119)^32, E(119)^48, E(119)^-47, E(119)^-41, E(119)^-54, E(119)^9, E(119)^15, E(119)^-2, E(119)^-8, E(119)^-52, E(119)^26, E(119)^59, E(119)^-32, E(119)^-13, E(119)^31, E(119)^-46, E(119)^29, E(119)^45, E(119)^-18, E(119)^-16, E(119)^25, E(119)^-38, E(119)^-44, E(119)^-27, E(119)^4, E(119)^23, E(119), E(119)^-5, E(119)^6, E(119)^-9, E(119)^12, E(119)^-22, E(119)^50, E(119)^44, E(119)^-43, E(119)^11, E(119)^-58, E(119)^24, E(119)^3, E(119)^-48, E(119)^-4, E(119)^-25, E(119)^54, E(119)^-24, E(119)^-36, E(119)^37, E(119)^43, E(119)^-19, E(119)^-26, E(119)^57, E(119)^-33, E(119)^-12, E(119)^36, E(119)^52, E(119)^-29, E(119)^53, E(119)^47, E(119)^-57, E(119)^-3, E(119)^-55, E(119)^10, E(119)^39, E(119)^46, E(119)^-10, E(119)^-50, E(119)^33, E(119)^-45, E(119)^-15, E(119)^5, E(119)^22, E(119)^13, E(119)^-37, E(119)^-6, E(119)^30, E(119)^55, E(119)^-20, E(119)^16, E(119)^58, E(119)^-31, E(119)^-40, E(119)^41, E(119)^18, E(119)^-23, E(119)^27, E(119)^38, E(119)^-11, E(119)^-39, E(119)^-53, E(119)^19, E(119)^22, E(119)^55, E(119)^-41, E(119)^-45, E(119)^48, E(119)^15, E(119)^-8, E(119)^-4, E(119)^-2, E(119)^37, E(119)^-19, E(119)^-23, E(119)^-12, E(119)^-18, E(119)^-16, E(119)^-26, E(119)^44, E(119)^-9, E(119)^-11, E(119)^-10, E(119)^8, E(119)^41, E(119)^-38, E(119)^-48, E(119)^-57, E(119)^-3, E(119)^-31, E(119)^45, E(119)^12, E(119)^36, E(119)^-22, E(119)^-55, E(119)^53, E(119)^47, E(119)^-47, E(119)^23, E(119)^19, E(119)^58, E(119)^-40, E(119)^-44, E(119)^-46, E(119)^25, E(119)^-27, E(119)^-25, E(119)^6, E(119)^43, E(119)^-32, E(119)^46, E(119)^5, E(119)^-15, E(119)^29, E(119)^4, E(119)^-1, E(119)^-50, E(119)^-54, E(119)^-53, E(119)^27, E(119)^-33, E(119)^9, E(119)^26, E(119)^24, E(119)^-43, E(119)^54, E(119)^10, E(119)^-5, E(119)^40, E(119)^38, E(119)^-59, E(119)^57, E(119)^-29, E(119)^32, E(119), E(119)^13, E(119)^-20, E(119)^18, E(119)^-39, E(119)^-37, E(119)^3, E(119)^52, E(119)^50, E(119)^-52, E(119)^31, E(119)^33, E(119)^2, E(119)^16, E(119)^-58, E(119)^59, E(119)^30, E(119)^-30, E(119)^-24, E(119)^11, E(119)^-13, E(119)^20, E(119)^-6, E(119)^39, E(119)^-36, 1], [1, 1, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^34, E(119)^51, E(119)^51, E(119)^-51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-17, E(119)^7, E(119)^-56, E(119)^21, E(119)^-21, E(119)^-14, E(119)^-35, E(119)^14, E(119)^-49, E(119)^-42, E(119)^49, E(119)^35, E(119)^-7, E(119)^-28, E(119)^42, E(119)^28, E(119)^56, E(119)^-7, E(119)^-35, E(119)^14, E(119)^-42, E(119)^-21, E(119)^28, E(119)^42, E(119)^35, E(119)^56, E(119)^7, E(119)^-49, E(119)^-56, E(119)^-28, E(119)^-14, E(119)^49, E(119)^21, E(119)^23, E(119)^-25, E(119)^50, E(119)^19, E(119)^-43, E(119)^-48, E(119)^-47, E(119)^-53, E(119)^-20, E(119)^-30, E(119)^27, E(119)^-37, E(119)^26, E(119)^-36, E(119)^-19, E(119)^43, E(119)^-18, E(119)^9, E(119)^25, E(119)^53, E(119)^55, E(119)^-3, E(119)^39, E(119)^-22, E(119)^11, E(119)^-52, E(119)^-33, E(119)^59, E(119)^-4, E(119)^58, E(119)^41, E(119)^38, E(119)^40, E(119)^-50, E(119)^12, E(119)^57, E(119)^-26, E(119)^-5, E(119)^29, E(119)^-1, E(119)^-58, E(119)^8, E(119)^45, E(119)^44, E(119)^-10, E(119)^-31, E(119)^20, E(119)^-38, E(119)^-59, E(119)^37, E(119)^10, E(119)^15, E(119)^54, E(119)^-8, E(119)^-2, E(119)^-9, E(119)^6, E(119)^-16, E(119)^5, E(119)^-15, E(119)^18, E(119)^22, E(119)^-32, E(119)^30, E(119)^-6, E(119)^31, E(119)^13, E(119)^-24, E(119)^-46, E(119)^-39, E(119)^24, E(119), E(119)^16, E(119)^-11, E(119)^36, E(119)^-12, E(119)^-29, E(119)^-55, E(119)^-54, E(119)^-57, E(119)^47, E(119)^-13, E(119)^48, E(119)^33, E(119)^-44, E(119)^3, E(119)^-23, E(119)^-27, E(119)^52, E(119)^-40, E(119)^-41, E(119)^4, E(119)^-45, E(119)^46, E(119)^32, E(119)^2, E(119)^-29, E(119)^-13, E(119)^27, E(119)^-11, E(119)^-20, E(119)^-36, E(119)^43, E(119)^-38, E(119)^-19, E(119)^54, E(119)^-2, E(119)^-40, E(119)^5, E(119)^-52, E(119)^-33, E(119)^-9, E(119)^-58, E(119)^-26, E(119)^-45, E(119)^24, E(119)^-43, E(119)^-27, E(119)^-4, E(119)^20, E(119)^-6, E(119)^31, E(119)^3, E(119)^11, E(119)^-5, E(119)^-15, E(119)^29, E(119)^13, E(119)^-32, E(119)^30, E(119)^-30, E(119)^40, E(119)^2, E(119)^-44, E(119)^-23, E(119)^58, E(119)^39, E(119)^59, E(119)^41, E(119)^-59, E(119)^57, E(119)^-8, E(119)^53, E(119)^-39, E(119)^-12, E(119)^36, E(119)^-22, E(119)^38, E(119)^50, E(119), E(119)^-37, E(119)^32, E(119)^-41, E(119)^-16, E(119)^26, E(119)^9, E(119)^-10, E(119)^8, E(119)^37, E(119)^-24, E(119)^12, E(119)^23, E(119)^4, E(119)^-25, E(119)^6, E(119)^22, E(119)^-53, E(119)^-50, E(119)^-55, E(119)^48, E(119)^52, E(119)^46, E(119)^-54, E(119)^-31, E(119)^18, E(119)^-1, E(119)^-18, E(119)^-3, E(119)^16, E(119)^19, E(119)^33, E(119)^44, E(119)^25, E(119)^47, E(119)^-47, E(119)^10, E(119)^45, E(119)^55, E(119)^-48, E(119)^-57, E(119)^-46, E(119)^15, 1], [1, 1, E(119)^34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-34, E(119)^-51, E(119)^-51, E(119)^51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^17, E(119)^-7, E(119)^56, E(119)^-21, E(119)^21, E(119)^14, E(119)^35, E(119)^-14, E(119)^49, E(119)^42, E(119)^-49, E(119)^-35, E(119)^7, E(119)^28, E(119)^-42, E(119)^-28, E(119)^-56, E(119)^7, E(119)^35, E(119)^-14, E(119)^42, E(119)^21, E(119)^-28, E(119)^-42, E(119)^-35, E(119)^-56, E(119)^-7, E(119)^49, E(119)^56, E(119)^28, E(119)^14, E(119)^-49, E(119)^-21, E(119)^-23, E(119)^25, E(119)^-50, E(119)^-19, E(119)^43, E(119)^48, E(119)^47, E(119)^53, E(119)^20, E(119)^30, E(119)^-27, E(119)^37, E(119)^-26, E(119)^36, E(119)^19, E(119)^-43, E(119)^18, E(119)^-9, E(119)^-25, E(119)^-53, E(119)^-55, E(119)^3, E(119)^-39, E(119)^22, E(119)^-11, E(119)^52, E(119)^33, E(119)^-59, E(119)^4, E(119)^-58, E(119)^-41, E(119)^-38, E(119)^-40, E(119)^50, E(119)^-12, E(119)^-57, E(119)^26, E(119)^5, E(119)^-29, E(119), E(119)^58, E(119)^-8, E(119)^-45, E(119)^-44, E(119)^10, E(119)^31, E(119)^-20, E(119)^38, E(119)^59, E(119)^-37, E(119)^-10, E(119)^-15, E(119)^-54, E(119)^8, E(119)^2, E(119)^9, E(119)^-6, E(119)^16, E(119)^-5, E(119)^15, E(119)^-18, E(119)^-22, E(119)^32, E(119)^-30, E(119)^6, E(119)^-31, E(119)^-13, E(119)^24, E(119)^46, E(119)^39, E(119)^-24, E(119)^-1, E(119)^-16, E(119)^11, E(119)^-36, E(119)^12, E(119)^29, E(119)^55, E(119)^54, E(119)^57, E(119)^-47, E(119)^13, E(119)^-48, E(119)^-33, E(119)^44, E(119)^-3, E(119)^23, E(119)^27, E(119)^-52, E(119)^40, E(119)^41, E(119)^-4, E(119)^45, E(119)^-46, E(119)^-32, E(119)^-2, E(119)^29, E(119)^13, E(119)^-27, E(119)^11, E(119)^20, E(119)^36, E(119)^-43, E(119)^38, E(119)^19, E(119)^-54, E(119)^2, E(119)^40, E(119)^-5, E(119)^52, E(119)^33, E(119)^9, E(119)^58, E(119)^26, E(119)^45, E(119)^-24, E(119)^43, E(119)^27, E(119)^4, E(119)^-20, E(119)^6, E(119)^-31, E(119)^-3, E(119)^-11, E(119)^5, E(119)^15, E(119)^-29, E(119)^-13, E(119)^32, E(119)^-30, E(119)^30, E(119)^-40, E(119)^-2, E(119)^44, E(119)^23, E(119)^-58, E(119)^-39, E(119)^-59, E(119)^-41, E(119)^59, E(119)^-57, E(119)^8, E(119)^-53, E(119)^39, E(119)^12, E(119)^-36, E(119)^22, E(119)^-38, E(119)^-50, E(119)^-1, E(119)^37, E(119)^-32, E(119)^41, E(119)^16, E(119)^-26, E(119)^-9, E(119)^10, E(119)^-8, E(119)^-37, E(119)^24, E(119)^-12, E(119)^-23, E(119)^-4, E(119)^25, E(119)^-6, E(119)^-22, E(119)^53, E(119)^50, E(119)^55, E(119)^-48, E(119)^-52, E(119)^-46, E(119)^54, E(119)^31, E(119)^-18, E(119), E(119)^18, E(119)^3, E(119)^-16, E(119)^-19, E(119)^-33, E(119)^-44, E(119)^-25, E(119)^-47, E(119)^47, E(119)^-10, E(119)^-45, E(119)^-55, E(119)^48, E(119)^57, E(119)^46, E(119)^-15, 1], [1, 1, E(119)^-17, E(119)^-51, E(119)^51, E(119)^34, E(119)^17, E(119)^-34, E(119)^-34, E(119)^34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^51, E(119)^-56, E(119)^-28, E(119)^-49, E(119)^49, E(119)^-7, E(119)^42, E(119)^7, E(119)^35, E(119)^-21, E(119)^-35, E(119)^-42, E(119)^56, E(119)^-14, E(119)^21, E(119)^14, E(119)^28, E(119)^56, E(119)^42, E(119)^7, E(119)^-21, E(119)^49, E(119)^14, E(119)^21, E(119)^-42, E(119)^28, E(119)^-56, E(119)^35, E(119)^-28, E(119)^-14, E(119)^-7, E(119)^-35, E(119)^-49, E(119)^-48, E(119)^47, E(119)^25, E(119)^-50, E(119)^38, E(119)^-24, E(119)^36, E(119)^33, E(119)^-10, E(119)^-15, E(119)^-46, E(119)^41, E(119)^13, E(119)^-18, E(119)^50, E(119)^-38, E(119)^-9, E(119)^-55, E(119)^-47, E(119)^-33, E(119)^-32, E(119)^58, E(119)^-40, E(119)^-11, E(119)^-54, E(119)^-26, E(119)^43, E(119)^-30, E(119)^-2, E(119)^29, E(119)^-39, E(119)^19, E(119)^20, E(119)^-25, E(119)^6, E(119)^-31, E(119)^-13, E(119)^57, E(119)^-45, E(119)^59, E(119)^-29, E(119)^4, E(119)^-37, E(119)^22, E(119)^-5, E(119)^44, E(119)^10, E(119)^-19, E(119)^30, E(119)^-41, E(119)^5, E(119)^-52, E(119)^27, E(119)^-4, E(119)^-1, E(119)^55, E(119)^3, E(119)^-8, E(119)^-57, E(119)^52, E(119)^9, E(119)^11, E(119)^-16, E(119)^15, E(119)^-3, E(119)^-44, E(119)^-53, E(119)^-12, E(119)^-23, E(119)^40, E(119)^12, E(119)^-59, E(119)^8, E(119)^54, E(119)^18, E(119)^-6, E(119)^45, E(119)^32, E(119)^-27, E(119)^31, E(119)^-36, E(119)^53, E(119)^24, E(119)^-43, E(119)^-22, E(119)^-58, E(119)^48, E(119)^46, E(119)^26, E(119)^-20, E(119)^39, E(119)^2, E(119)^37, E(119)^23, E(119)^16, E(119), E(119)^45, E(119)^53, E(119)^-46, E(119)^54, E(119)^-10, E(119)^-18, E(119)^-38, E(119)^-19, E(119)^50, E(119)^27, E(119)^-1, E(119)^-20, E(119)^-57, E(119)^-26, E(119)^43, E(119)^55, E(119)^-29, E(119)^-13, E(119)^37, E(119)^12, E(119)^38, E(119)^46, E(119)^-2, E(119)^10, E(119)^-3, E(119)^-44, E(119)^-58, E(119)^-54, E(119)^57, E(119)^52, E(119)^-45, E(119)^-53, E(119)^-16, E(119)^15, E(119)^-15, E(119)^20, E(119), E(119)^-22, E(119)^48, E(119)^29, E(119)^-40, E(119)^-30, E(119)^-39, E(119)^30, E(119)^-31, E(119)^-4, E(119)^-33, E(119)^40, E(119)^-6, E(119)^18, E(119)^-11, E(119)^19, E(119)^25, E(119)^-59, E(119)^41, E(119)^16, E(119)^39, E(119)^-8, E(119)^13, E(119)^-55, E(119)^-5, E(119)^4, E(119)^-41, E(119)^-12, E(119)^6, E(119)^-48, E(119)^2, E(119)^47, E(119)^3, E(119)^11, E(119)^33, E(119)^-25, E(119)^32, E(119)^24, E(119)^26, E(119)^23, E(119)^-27, E(119)^44, E(119)^9, E(119)^59, E(119)^-9, E(119)^58, E(119)^8, E(119)^-50, E(119)^-43, E(119)^22, E(119)^-47, E(119)^-36, E(119)^36, E(119)^5, E(119)^-37, E(119)^-32, E(119)^-24, E(119)^31, E(119)^-23, E(119)^-52, 1], [1, 1, E(119)^17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^-17, E(119)^34, E(119)^34, E(119)^-34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-51, E(119)^56, E(119)^28, E(119)^49, E(119)^-49, E(119)^7, E(119)^-42, E(119)^-7, E(119)^-35, E(119)^21, E(119)^35, E(119)^42, E(119)^-56, E(119)^14, E(119)^-21, E(119)^-14, E(119)^-28, E(119)^-56, E(119)^-42, E(119)^-7, E(119)^21, E(119)^-49, E(119)^-14, E(119)^-21, E(119)^42, E(119)^-28, E(119)^56, E(119)^-35, E(119)^28, E(119)^14, E(119)^7, E(119)^35, E(119)^49, E(119)^48, E(119)^-47, E(119)^-25, E(119)^50, E(119)^-38, E(119)^24, E(119)^-36, E(119)^-33, E(119)^10, E(119)^15, E(119)^46, E(119)^-41, E(119)^-13, E(119)^18, E(119)^-50, E(119)^38, E(119)^9, E(119)^55, E(119)^47, E(119)^33, E(119)^32, E(119)^-58, E(119)^40, E(119)^11, E(119)^54, E(119)^26, E(119)^-43, E(119)^30, E(119)^2, E(119)^-29, E(119)^39, E(119)^-19, E(119)^-20, E(119)^25, E(119)^-6, E(119)^31, E(119)^13, E(119)^-57, E(119)^45, E(119)^-59, E(119)^29, E(119)^-4, E(119)^37, E(119)^-22, E(119)^5, E(119)^-44, E(119)^-10, E(119)^19, E(119)^-30, E(119)^41, E(119)^-5, E(119)^52, E(119)^-27, E(119)^4, E(119), E(119)^-55, E(119)^-3, E(119)^8, E(119)^57, E(119)^-52, E(119)^-9, E(119)^-11, E(119)^16, E(119)^-15, E(119)^3, E(119)^44, E(119)^53, E(119)^12, E(119)^23, E(119)^-40, E(119)^-12, E(119)^59, E(119)^-8, E(119)^-54, E(119)^-18, E(119)^6, E(119)^-45, E(119)^-32, E(119)^27, E(119)^-31, E(119)^36, E(119)^-53, E(119)^-24, E(119)^43, E(119)^22, E(119)^58, E(119)^-48, E(119)^-46, E(119)^-26, E(119)^20, E(119)^-39, E(119)^-2, E(119)^-37, E(119)^-23, E(119)^-16, E(119)^-1, E(119)^-45, E(119)^-53, E(119)^46, E(119)^-54, E(119)^10, E(119)^18, E(119)^38, E(119)^19, E(119)^-50, E(119)^-27, E(119), E(119)^20, E(119)^57, E(119)^26, E(119)^-43, E(119)^-55, E(119)^29, E(119)^13, E(119)^-37, E(119)^-12, E(119)^-38, E(119)^-46, E(119)^2, E(119)^-10, E(119)^3, E(119)^44, E(119)^58, E(119)^54, E(119)^-57, E(119)^-52, E(119)^45, E(119)^53, E(119)^16, E(119)^-15, E(119)^15, E(119)^-20, E(119)^-1, E(119)^22, E(119)^-48, E(119)^-29, E(119)^40, E(119)^30, E(119)^39, E(119)^-30, E(119)^31, E(119)^4, E(119)^33, E(119)^-40, E(119)^6, E(119)^-18, E(119)^11, E(119)^-19, E(119)^-25, E(119)^59, E(119)^-41, E(119)^-16, E(119)^-39, E(119)^8, E(119)^-13, E(119)^55, E(119)^5, E(119)^-4, E(119)^41, E(119)^12, E(119)^-6, E(119)^48, E(119)^-2, E(119)^-47, E(119)^-3, E(119)^-11, E(119)^-33, E(119)^25, E(119)^-32, E(119)^-24, E(119)^-26, E(119)^-23, E(119)^27, E(119)^-44, E(119)^-9, E(119)^-59, E(119)^9, E(119)^-58, E(119)^-8, E(119)^50, E(119)^43, E(119)^-22, E(119)^47, E(119)^36, E(119)^-36, E(119)^-5, E(119)^37, E(119)^32, E(119)^24, E(119)^-31, E(119)^23, E(119)^52, 1], [1, 1, E(119)^-17, E(119)^-51, E(119)^51, E(119)^34, E(119)^17, E(119)^-34, E(119)^-34, E(119)^34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^51, E(119)^56, E(119)^28, E(119)^49, E(119)^-49, E(119)^7, E(119)^-42, E(119)^-7, E(119)^-35, E(119)^21, E(119)^35, E(119)^42, E(119)^-56, E(119)^14, E(119)^-21, E(119)^-14, E(119)^-28, E(119)^-56, E(119)^-42, E(119)^-7, E(119)^21, E(119)^-49, E(119)^-14, E(119)^-21, E(119)^42, E(119)^-28, E(119)^56, E(119)^-35, E(119)^28, E(119)^14, E(119)^7, E(119)^35, E(119)^49, E(119)^-20, E(119)^-30, E(119)^-59, E(119)^-1, E(119)^-4, E(119)^-10, E(119)^15, E(119)^-16, E(119)^-24, E(119)^-36, E(119)^-39, E(119)^27, E(119)^55, E(119)^52, E(119), E(119)^4, E(119)^26, E(119)^-13, E(119)^30, E(119)^16, E(119)^-53, E(119)^44, E(119)^23, E(119)^45, E(119)^37, E(119)^9, E(119)^8, E(119)^47, E(119)^19, E(119)^22, E(119)^-46, E(119)^-2, E(119)^48, E(119)^59, E(119)^-57, E(119)^-3, E(119)^-55, E(119)^-6, E(119)^11, E(119)^-25, E(119)^-22, E(119)^-38, E(119)^54, E(119)^29, E(119)^-12, E(119)^58, E(119)^24, E(119)^2, E(119)^-47, E(119)^-27, E(119)^12, E(119)^18, E(119)^41, E(119)^38, E(119)^-50, E(119)^13, E(119)^31, E(119)^-43, E(119)^6, E(119)^-18, E(119)^-26, E(119)^-45, E(119)^33, E(119)^36, E(119)^-31, E(119)^-58, E(119)^-32, E(119)^-5, E(119)^40, E(119)^-23, E(119)^5, E(119)^25, E(119)^43, E(119)^-37, E(119)^-52, E(119)^57, E(119)^-11, E(119)^53, E(119)^-41, E(119)^3, E(119)^-15, E(119)^32, E(119)^10, E(119)^-8, E(119)^-29, E(119)^-44, E(119)^20, E(119)^39, E(119)^-9, E(119)^-48, E(119)^46, E(119)^-19, E(119)^-54, E(119)^-40, E(119)^-33, E(119)^50, E(119)^-11, E(119)^32, E(119)^-39, E(119)^-37, E(119)^-24, E(119)^52, E(119)^4, E(119)^2, E(119), E(119)^41, E(119)^-50, E(119)^-48, E(119)^6, E(119)^9, E(119)^8, E(119)^13, E(119)^-22, E(119)^-55, E(119)^-54, E(119)^5, E(119)^-4, E(119)^39, E(119)^19, E(119)^24, E(119)^-31, E(119)^-58, E(119)^-44, E(119)^37, E(119)^-6, E(119)^-18, E(119)^11, E(119)^-32, E(119)^33, E(119)^36, E(119)^-36, E(119)^48, E(119)^50, E(119)^-29, E(119)^20, E(119)^22, E(119)^23, E(119)^47, E(119)^-46, E(119)^-47, E(119)^-3, E(119)^38, E(119)^16, E(119)^-23, E(119)^57, E(119)^-52, E(119)^45, E(119)^-2, E(119)^-59, E(119)^25, E(119)^27, E(119)^-33, E(119)^46, E(119)^-43, E(119)^55, E(119)^-13, E(119)^-12, E(119)^-38, E(119)^-27, E(119)^-5, E(119)^-57, E(119)^-20, E(119)^-19, E(119)^-30, E(119)^31, E(119)^-45, E(119)^-16, E(119)^59, E(119)^53, E(119)^10, E(119)^-9, E(119)^-40, E(119)^-41, E(119)^58, E(119)^-26, E(119)^-25, E(119)^26, E(119)^44, E(119)^43, E(119)^-1, E(119)^-8, E(119)^29, E(119)^30, E(119)^-15, E(119)^15, E(119)^12, E(119)^54, E(119)^-53, E(119)^-10, E(119)^3, E(119)^40, E(119)^18, 1], [1, 1, E(119)^17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^-17, E(119)^34, E(119)^34, E(119)^-34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-51, E(119)^-56, E(119)^-28, E(119)^-49, E(119)^49, E(119)^-7, E(119)^42, E(119)^7, E(119)^35, E(119)^-21, E(119)^-35, E(119)^-42, E(119)^56, E(119)^-14, E(119)^21, E(119)^14, E(119)^28, E(119)^56, E(119)^42, E(119)^7, E(119)^-21, E(119)^49, E(119)^14, E(119)^21, E(119)^-42, E(119)^28, E(119)^-56, E(119)^35, E(119)^-28, E(119)^-14, E(119)^-7, E(119)^-35, E(119)^-49, E(119)^20, E(119)^30, E(119)^59, E(119), E(119)^4, E(119)^10, E(119)^-15, E(119)^16, E(119)^24, E(119)^36, E(119)^39, E(119)^-27, E(119)^-55, E(119)^-52, E(119)^-1, E(119)^-4, E(119)^-26, E(119)^13, E(119)^-30, E(119)^-16, E(119)^53, E(119)^-44, E(119)^-23, E(119)^-45, E(119)^-37, E(119)^-9, E(119)^-8, E(119)^-47, E(119)^-19, E(119)^-22, E(119)^46, E(119)^2, E(119)^-48, E(119)^-59, E(119)^57, E(119)^3, E(119)^55, E(119)^6, E(119)^-11, E(119)^25, E(119)^22, E(119)^38, E(119)^-54, E(119)^-29, E(119)^12, E(119)^-58, E(119)^-24, E(119)^-2, E(119)^47, E(119)^27, E(119)^-12, E(119)^-18, E(119)^-41, E(119)^-38, E(119)^50, E(119)^-13, E(119)^-31, E(119)^43, E(119)^-6, E(119)^18, E(119)^26, E(119)^45, E(119)^-33, E(119)^-36, E(119)^31, E(119)^58, E(119)^32, E(119)^5, E(119)^-40, E(119)^23, E(119)^-5, E(119)^-25, E(119)^-43, E(119)^37, E(119)^52, E(119)^-57, E(119)^11, E(119)^-53, E(119)^41, E(119)^-3, E(119)^15, E(119)^-32, E(119)^-10, E(119)^8, E(119)^29, E(119)^44, E(119)^-20, E(119)^-39, E(119)^9, E(119)^48, E(119)^-46, E(119)^19, E(119)^54, E(119)^40, E(119)^33, E(119)^-50, E(119)^11, E(119)^-32, E(119)^39, E(119)^37, E(119)^24, E(119)^-52, E(119)^-4, E(119)^-2, E(119)^-1, E(119)^-41, E(119)^50, E(119)^48, E(119)^-6, E(119)^-9, E(119)^-8, E(119)^-13, E(119)^22, E(119)^55, E(119)^54, E(119)^-5, E(119)^4, E(119)^-39, E(119)^-19, E(119)^-24, E(119)^31, E(119)^58, E(119)^44, E(119)^-37, E(119)^6, E(119)^18, E(119)^-11, E(119)^32, E(119)^-33, E(119)^-36, E(119)^36, E(119)^-48, E(119)^-50, E(119)^29, E(119)^-20, E(119)^-22, E(119)^-23, E(119)^-47, E(119)^46, E(119)^47, E(119)^3, E(119)^-38, E(119)^-16, E(119)^23, E(119)^-57, E(119)^52, E(119)^-45, E(119)^2, E(119)^59, E(119)^-25, E(119)^-27, E(119)^33, E(119)^-46, E(119)^43, E(119)^-55, E(119)^13, E(119)^12, E(119)^38, E(119)^27, E(119)^5, E(119)^57, E(119)^20, E(119)^19, E(119)^30, E(119)^-31, E(119)^45, E(119)^16, E(119)^-59, E(119)^-53, E(119)^-10, E(119)^9, E(119)^40, E(119)^41, E(119)^-58, E(119)^26, E(119)^25, E(119)^-26, E(119)^-44, E(119)^-43, E(119), E(119)^8, E(119)^-29, E(119)^-30, E(119)^15, E(119)^-15, E(119)^-12, E(119)^-54, E(119)^53, E(119)^10, E(119)^-3, E(119)^-40, E(119)^-18, 1], [1, 1, E(119)^-17, E(119)^-51, E(119)^51, E(119)^34, E(119)^17, E(119)^-34, E(119)^-34, E(119)^34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^51, E(119)^-49, E(119)^35, E(119)^-28, E(119)^28, E(119)^-21, E(119)^7, E(119)^21, E(119)^-14, E(119)^56, E(119)^14, E(119)^-7, E(119)^49, E(119)^-42, E(119)^-56, E(119)^42, E(119)^-35, E(119)^49, E(119)^7, E(119)^21, E(119)^56, E(119)^28, E(119)^42, E(119)^-56, E(119)^-7, E(119)^-35, E(119)^-49, E(119)^-14, E(119)^35, E(119)^-42, E(119)^-21, E(119)^14, E(119)^-28, E(119)^43, E(119)^5, E(119)^-10, E(119)^20, E(119)^-39, E(119)^-38, E(119)^57, E(119)^-37, E(119)^4, E(119)^6, E(119)^-53, E(119)^55, E(119)^-29, E(119)^31, E(119)^-20, E(119)^39, E(119)^-44, E(119)^22, E(119)^-5, E(119)^37, E(119)^-11, E(119)^-47, E(119)^16, E(119)^52, E(119)^-26, E(119)^58, E(119)^-41, E(119)^12, E(119)^-23, E(119)^36, E(119)^-32, E(119)^40, E(119)^-8, E(119)^10, E(119)^-50, E(119)^-59, E(119)^29, E(119), E(119)^18, E(119)^24, E(119)^-36, E(119)^46, E(119)^-9, E(119)^15, E(119)^2, E(119)^30, E(119)^-4, E(119)^-40, E(119)^-12, E(119)^-55, E(119)^-2, E(119)^-3, E(119)^13, E(119)^-46, E(119)^48, E(119)^-22, E(119)^-25, E(119)^27, E(119)^-1, E(119)^3, E(119)^44, E(119)^-52, E(119)^54, E(119)^-6, E(119)^25, E(119)^-30, E(119)^45, E(119)^-19, E(119)^33, E(119)^-16, E(119)^19, E(119)^-24, E(119)^-27, E(119)^26, E(119)^-31, E(119)^50, E(119)^-18, E(119)^11, E(119)^-13, E(119)^59, E(119)^-57, E(119)^-45, E(119)^38, E(119)^41, E(119)^-15, E(119)^47, E(119)^-43, E(119)^53, E(119)^-58, E(119)^8, E(119)^32, E(119)^23, E(119)^9, E(119)^-33, E(119)^-54, E(119)^-48, E(119)^-18, E(119)^-45, E(119)^-53, E(119)^26, E(119)^4, E(119)^31, E(119)^39, E(119)^-40, E(119)^-20, E(119)^13, E(119)^48, E(119)^8, E(119)^-1, E(119)^58, E(119)^-41, E(119)^-22, E(119)^-36, E(119)^29, E(119)^9, E(119)^19, E(119)^-39, E(119)^53, E(119)^-23, E(119)^-4, E(119)^25, E(119)^-30, E(119)^47, E(119)^-26, E(119), E(119)^3, E(119)^18, E(119)^45, E(119)^54, E(119)^-6, E(119)^6, E(119)^-8, E(119)^-48, E(119)^-15, E(119)^-43, E(119)^36, E(119)^16, E(119)^12, E(119)^-32, E(119)^-12, E(119)^-59, E(119)^-46, E(119)^37, E(119)^-16, E(119)^50, E(119)^-31, E(119)^52, E(119)^40, E(119)^-10, E(119)^-24, E(119)^55, E(119)^-54, E(119)^32, E(119)^27, E(119)^-29, E(119)^22, E(119)^2, E(119)^46, E(119)^-55, E(119)^-19, E(119)^-50, E(119)^43, E(119)^23, E(119)^5, E(119)^-25, E(119)^-52, E(119)^-37, E(119)^10, E(119)^11, E(119)^38, E(119)^-58, E(119)^-33, E(119)^-13, E(119)^30, E(119)^44, E(119)^24, E(119)^-44, E(119)^-47, E(119)^-27, E(119)^20, E(119)^41, E(119)^15, E(119)^-5, E(119)^-57, E(119)^57, E(119)^-2, E(119)^-9, E(119)^-11, E(119)^-38, E(119)^59, E(119)^33, E(119)^-3, 1], [1, 1, E(119)^17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^-17, E(119)^34, E(119)^34, E(119)^-34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-51, E(119)^49, E(119)^-35, E(119)^28, E(119)^-28, E(119)^21, E(119)^-7, E(119)^-21, E(119)^14, E(119)^-56, E(119)^-14, E(119)^7, E(119)^-49, E(119)^42, E(119)^56, E(119)^-42, E(119)^35, E(119)^-49, E(119)^-7, E(119)^-21, E(119)^-56, E(119)^-28, E(119)^-42, E(119)^56, E(119)^7, E(119)^35, E(119)^49, E(119)^14, E(119)^-35, E(119)^42, E(119)^21, E(119)^-14, E(119)^28, E(119)^-43, E(119)^-5, E(119)^10, E(119)^-20, E(119)^39, E(119)^38, E(119)^-57, E(119)^37, E(119)^-4, E(119)^-6, E(119)^53, E(119)^-55, E(119)^29, E(119)^-31, E(119)^20, E(119)^-39, E(119)^44, E(119)^-22, E(119)^5, E(119)^-37, E(119)^11, E(119)^47, E(119)^-16, E(119)^-52, E(119)^26, E(119)^-58, E(119)^41, E(119)^-12, E(119)^23, E(119)^-36, E(119)^32, E(119)^-40, E(119)^8, E(119)^-10, E(119)^50, E(119)^59, E(119)^-29, E(119)^-1, E(119)^-18, E(119)^-24, E(119)^36, E(119)^-46, E(119)^9, E(119)^-15, E(119)^-2, E(119)^-30, E(119)^4, E(119)^40, E(119)^12, E(119)^55, E(119)^2, E(119)^3, E(119)^-13, E(119)^46, E(119)^-48, E(119)^22, E(119)^25, E(119)^-27, E(119), E(119)^-3, E(119)^-44, E(119)^52, E(119)^-54, E(119)^6, E(119)^-25, E(119)^30, E(119)^-45, E(119)^19, E(119)^-33, E(119)^16, E(119)^-19, E(119)^24, E(119)^27, E(119)^-26, E(119)^31, E(119)^-50, E(119)^18, E(119)^-11, E(119)^13, E(119)^-59, E(119)^57, E(119)^45, E(119)^-38, E(119)^-41, E(119)^15, E(119)^-47, E(119)^43, E(119)^-53, E(119)^58, E(119)^-8, E(119)^-32, E(119)^-23, E(119)^-9, E(119)^33, E(119)^54, E(119)^48, E(119)^18, E(119)^45, E(119)^53, E(119)^-26, E(119)^-4, E(119)^-31, E(119)^-39, E(119)^40, E(119)^20, E(119)^-13, E(119)^-48, E(119)^-8, E(119), E(119)^-58, E(119)^41, E(119)^22, E(119)^36, E(119)^-29, E(119)^-9, E(119)^-19, E(119)^39, E(119)^-53, E(119)^23, E(119)^4, E(119)^-25, E(119)^30, E(119)^-47, E(119)^26, E(119)^-1, E(119)^-3, E(119)^-18, E(119)^-45, E(119)^-54, E(119)^6, E(119)^-6, E(119)^8, E(119)^48, E(119)^15, E(119)^43, E(119)^-36, E(119)^-16, E(119)^-12, E(119)^32, E(119)^12, E(119)^59, E(119)^46, E(119)^-37, E(119)^16, E(119)^-50, E(119)^31, E(119)^-52, E(119)^-40, E(119)^10, E(119)^24, E(119)^-55, E(119)^54, E(119)^-32, E(119)^-27, E(119)^29, E(119)^-22, E(119)^-2, E(119)^-46, E(119)^55, E(119)^19, E(119)^50, E(119)^-43, E(119)^-23, E(119)^-5, E(119)^25, E(119)^52, E(119)^37, E(119)^-10, E(119)^-11, E(119)^-38, E(119)^58, E(119)^33, E(119)^13, E(119)^-30, E(119)^-44, E(119)^-24, E(119)^44, E(119)^47, E(119)^27, E(119)^-20, E(119)^-41, E(119)^-15, E(119)^5, E(119)^57, E(119)^-57, E(119)^2, E(119)^9, E(119)^11, E(119)^38, E(119)^-59, E(119)^-33, E(119)^3, 1], [1, 1, E(119)^-17, E(119)^-51, E(119)^51, E(119)^34, E(119)^17, E(119)^-34, E(119)^-34, E(119)^34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^51, E(119)^49, E(119)^-35, E(119)^28, E(119)^-28, E(119)^21, E(119)^-7, E(119)^-21, E(119)^14, E(119)^-56, E(119)^-14, E(119)^7, E(119)^-49, E(119)^42, E(119)^56, E(119)^-42, E(119)^35, E(119)^-49, E(119)^-7, E(119)^-21, E(119)^-56, E(119)^-28, E(119)^-42, E(119)^56, E(119)^7, E(119)^35, E(119)^49, E(119)^14, E(119)^-35, E(119)^42, E(119)^21, E(119)^-14, E(119)^28, E(119)^8, E(119)^12, E(119)^-24, E(119)^48, E(119)^-46, E(119)^4, E(119)^-6, E(119)^54, E(119)^-38, E(119)^-57, E(119)^-32, E(119)^13, E(119)^-22, E(119)^3, E(119)^-48, E(119)^46, E(119)^-58, E(119)^29, E(119)^-12, E(119)^-54, E(119)^45, E(119)^30, E(119)^-33, E(119)^-18, E(119)^9, E(119)^44, E(119)^-27, E(119)^5, E(119)^40, E(119)^15, E(119)^-53, E(119)^-23, E(119)^-43, E(119)^24, E(119)^-1, E(119)^25, E(119)^22, E(119)^50, E(119)^-52, E(119)^10, E(119)^-15, E(119)^39, E(119)^26, E(119)^36, E(119)^-19, E(119)^-47, E(119)^38, E(119)^23, E(119)^-5, E(119)^-13, E(119)^19, E(119)^-31, E(119)^55, E(119)^-39, E(119)^20, E(119)^-29, E(119)^59, E(119)^41, E(119)^-50, E(119)^31, E(119)^58, E(119)^18, E(119)^-37, E(119)^57, E(119)^-59, E(119)^47, E(119)^-11, E(119)^2, E(119)^-16, E(119)^33, E(119)^-2, E(119)^-10, E(119)^-41, E(119)^-9, E(119)^-3, E(119), E(119)^52, E(119)^-45, E(119)^-55, E(119)^-25, E(119)^6, E(119)^11, E(119)^-4, E(119)^27, E(119)^-36, E(119)^-30, E(119)^-8, E(119)^32, E(119)^-44, E(119)^43, E(119)^53, E(119)^-40, E(119)^-26, E(119)^16, E(119)^37, E(119)^-20, E(119)^52, E(119)^11, E(119)^-32, E(119)^-9, E(119)^-38, E(119)^3, E(119)^46, E(119)^23, E(119)^-48, E(119)^55, E(119)^20, E(119)^43, E(119)^-50, E(119)^44, E(119)^-27, E(119)^-29, E(119)^-15, E(119)^22, E(119)^-26, E(119)^-2, E(119)^-46, E(119)^32, E(119)^40, E(119)^38, E(119)^-59, E(119)^47, E(119)^-30, E(119)^9, E(119)^50, E(119)^31, E(119)^-52, E(119)^-11, E(119)^-37, E(119)^57, E(119)^-57, E(119)^-43, E(119)^-20, E(119)^-36, E(119)^-8, E(119)^15, E(119)^-33, E(119)^5, E(119)^-53, E(119)^-5, E(119)^25, E(119)^-39, E(119)^-54, E(119)^33, E(119), E(119)^-3, E(119)^-18, E(119)^-23, E(119)^-24, E(119)^-10, E(119)^13, E(119)^37, E(119)^53, E(119)^41, E(119)^-22, E(119)^29, E(119)^-19, E(119)^39, E(119)^-13, E(119)^2, E(119)^-1, E(119)^8, E(119)^-40, E(119)^12, E(119)^59, E(119)^18, E(119)^54, E(119)^24, E(119)^-45, E(119)^-4, E(119)^-44, E(119)^16, E(119)^-55, E(119)^-47, E(119)^58, E(119)^10, E(119)^-58, E(119)^30, E(119)^-41, E(119)^48, E(119)^27, E(119)^36, E(119)^-12, E(119)^6, E(119)^-6, E(119)^19, E(119)^26, E(119)^45, E(119)^4, E(119)^-25, E(119)^-16, E(119)^-31, 1], [1, 1, E(119)^17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^-17, E(119)^34, E(119)^34, E(119)^-34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-51, E(119)^-49, E(119)^35, E(119)^-28, E(119)^28, E(119)^-21, E(119)^7, E(119)^21, E(119)^-14, E(119)^56, E(119)^14, E(119)^-7, E(119)^49, E(119)^-42, E(119)^-56, E(119)^42, E(119)^-35, E(119)^49, E(119)^7, E(119)^21, E(119)^56, E(119)^28, E(119)^42, E(119)^-56, E(119)^-7, E(119)^-35, E(119)^-49, E(119)^-14, E(119)^35, E(119)^-42, E(119)^-21, E(119)^14, E(119)^-28, E(119)^-8, E(119)^-12, E(119)^24, E(119)^-48, E(119)^46, E(119)^-4, E(119)^6, E(119)^-54, E(119)^38, E(119)^57, E(119)^32, E(119)^-13, E(119)^22, E(119)^-3, E(119)^48, E(119)^-46, E(119)^58, E(119)^-29, E(119)^12, E(119)^54, E(119)^-45, E(119)^-30, E(119)^33, E(119)^18, E(119)^-9, E(119)^-44, E(119)^27, E(119)^-5, E(119)^-40, E(119)^-15, E(119)^53, E(119)^23, E(119)^43, E(119)^-24, E(119), E(119)^-25, E(119)^-22, E(119)^-50, E(119)^52, E(119)^-10, E(119)^15, E(119)^-39, E(119)^-26, E(119)^-36, E(119)^19, E(119)^47, E(119)^-38, E(119)^-23, E(119)^5, E(119)^13, E(119)^-19, E(119)^31, E(119)^-55, E(119)^39, E(119)^-20, E(119)^29, E(119)^-59, E(119)^-41, E(119)^50, E(119)^-31, E(119)^-58, E(119)^-18, E(119)^37, E(119)^-57, E(119)^59, E(119)^-47, E(119)^11, E(119)^-2, E(119)^16, E(119)^-33, E(119)^2, E(119)^10, E(119)^41, E(119)^9, E(119)^3, E(119)^-1, E(119)^-52, E(119)^45, E(119)^55, E(119)^25, E(119)^-6, E(119)^-11, E(119)^4, E(119)^-27, E(119)^36, E(119)^30, E(119)^8, E(119)^-32, E(119)^44, E(119)^-43, E(119)^-53, E(119)^40, E(119)^26, E(119)^-16, E(119)^-37, E(119)^20, E(119)^-52, E(119)^-11, E(119)^32, E(119)^9, E(119)^38, E(119)^-3, E(119)^-46, E(119)^-23, E(119)^48, E(119)^-55, E(119)^-20, E(119)^-43, E(119)^50, E(119)^-44, E(119)^27, E(119)^29, E(119)^15, E(119)^-22, E(119)^26, E(119)^2, E(119)^46, E(119)^-32, E(119)^-40, E(119)^-38, E(119)^59, E(119)^-47, E(119)^30, E(119)^-9, E(119)^-50, E(119)^-31, E(119)^52, E(119)^11, E(119)^37, E(119)^-57, E(119)^57, E(119)^43, E(119)^20, E(119)^36, E(119)^8, E(119)^-15, E(119)^33, E(119)^-5, E(119)^53, E(119)^5, E(119)^-25, E(119)^39, E(119)^54, E(119)^-33, E(119)^-1, E(119)^3, E(119)^18, E(119)^23, E(119)^24, E(119)^10, E(119)^-13, E(119)^-37, E(119)^-53, E(119)^-41, E(119)^22, E(119)^-29, E(119)^19, E(119)^-39, E(119)^13, E(119)^-2, E(119), E(119)^-8, E(119)^40, E(119)^-12, E(119)^-59, E(119)^-18, E(119)^-54, E(119)^-24, E(119)^45, E(119)^4, E(119)^44, E(119)^-16, E(119)^55, E(119)^47, E(119)^-58, E(119)^-10, E(119)^58, E(119)^-30, E(119)^41, E(119)^-48, E(119)^-27, E(119)^-36, E(119)^12, E(119)^-6, E(119)^6, E(119)^-19, E(119)^-26, E(119)^-45, E(119)^-4, E(119)^25, E(119)^16, E(119)^31, 1], [1, 1, E(119)^-17, E(119)^-51, E(119)^51, E(119)^34, E(119)^17, E(119)^-34, E(119)^-34, E(119)^34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^51, E(119)^-42, E(119)^-21, E(119)^-7, E(119)^7, E(119)^-35, E(119)^-28, E(119)^35, E(119)^56, E(119)^14, E(119)^-56, E(119)^28, E(119)^42, E(119)^49, E(119)^-14, E(119)^-49, E(119)^21, E(119)^42, E(119)^-28, E(119)^35, E(119)^14, E(119)^7, E(119)^-49, E(119)^-14, E(119)^28, E(119)^21, E(119)^-42, E(119)^56, E(119)^-21, E(119)^49, E(119)^-35, E(119)^-56, E(119)^-7, E(119)^15, E(119)^-37, E(119)^-45, E(119)^-29, E(119)^3, E(119)^-52, E(119)^-41, E(119)^12, E(119)^18, E(119)^27, E(119)^59, E(119)^-50, E(119)^48, E(119)^-39, E(119)^29, E(119)^-3, E(119)^40, E(119)^-20, E(119)^37, E(119)^-12, E(119)^10, E(119)^-33, E(119)^-47, E(119)^-4, E(119)^2, E(119)^23, E(119)^-6, E(119)^54, E(119)^-44, E(119)^43, E(119)^-25, E(119)^-58, E(119)^-36, E(119)^45, E(119)^13, E(119)^32, E(119)^-48, E(119)^-55, E(119)^-38, E(119)^-11, E(119)^-43, E(119)^-31, E(119)^19, E(119)^8, E(119)^9, E(119)^16, E(119)^-18, E(119)^58, E(119)^-54, E(119)^50, E(119)^-9, E(119)^46, E(119)^-1, E(119)^31, E(119)^-22, E(119)^20, E(119)^-53, E(119)^-57, E(119)^55, E(119)^-46, E(119)^-40, E(119)^4, E(119)^5, E(119)^-27, E(119)^53, E(119)^-16, E(119)^24, E(119)^-26, E(119)^-30, E(119)^47, E(119)^26, E(119)^11, E(119)^57, E(119)^-2, E(119)^39, E(119)^-13, E(119)^38, E(119)^-10, E(119), E(119)^-32, E(119)^41, E(119)^-24, E(119)^52, E(119)^6, E(119)^-8, E(119)^33, E(119)^-15, E(119)^-59, E(119)^-23, E(119)^36, E(119)^25, E(119)^44, E(119)^-19, E(119)^30, E(119)^-5, E(119)^22, E(119)^38, E(119)^-24, E(119)^59, E(119)^-2, E(119)^18, E(119)^-39, E(119)^-3, E(119)^58, E(119)^29, E(119)^-1, E(119)^-22, E(119)^36, E(119)^55, E(119)^23, E(119)^-6, E(119)^20, E(119)^-43, E(119)^-48, E(119)^-19, E(119)^26, E(119)^3, E(119)^-59, E(119)^-44, E(119)^-18, E(119)^53, E(119)^-16, E(119)^33, E(119)^2, E(119)^-55, E(119)^-46, E(119)^-38, E(119)^24, E(119)^5, E(119)^-27, E(119)^27, E(119)^-36, E(119)^22, E(119)^-8, E(119)^-15, E(119)^43, E(119)^-47, E(119)^54, E(119)^-25, E(119)^-54, E(119)^32, E(119)^31, E(119)^-12, E(119)^47, E(119)^-13, E(119)^39, E(119)^-4, E(119)^-58, E(119)^-45, E(119)^11, E(119)^-50, E(119)^-5, E(119)^25, E(119)^-57, E(119)^48, E(119)^-20, E(119)^9, E(119)^-31, E(119)^50, E(119)^-26, E(119)^13, E(119)^15, E(119)^44, E(119)^-37, E(119)^-53, E(119)^4, E(119)^12, E(119)^45, E(119)^-10, E(119)^52, E(119)^-23, E(119)^30, E(119), E(119)^16, E(119)^-40, E(119)^-11, E(119)^40, E(119)^-33, E(119)^57, E(119)^-29, E(119)^6, E(119)^8, E(119)^37, E(119)^41, E(119)^-41, E(119)^-9, E(119)^19, E(119)^10, E(119)^-52, E(119)^-32, E(119)^-30, E(119)^46, 1], [1, 1, E(119)^17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^-17, E(119)^34, E(119)^34, E(119)^-34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-51, E(119)^42, E(119)^21, E(119)^7, E(119)^-7, E(119)^35, E(119)^28, E(119)^-35, E(119)^-56, E(119)^-14, E(119)^56, E(119)^-28, E(119)^-42, E(119)^-49, E(119)^14, E(119)^49, E(119)^-21, E(119)^-42, E(119)^28, E(119)^-35, E(119)^-14, E(119)^-7, E(119)^49, E(119)^14, E(119)^-28, E(119)^-21, E(119)^42, E(119)^-56, E(119)^21, E(119)^-49, E(119)^35, E(119)^56, E(119)^7, E(119)^-15, E(119)^37, E(119)^45, E(119)^29, E(119)^-3, E(119)^52, E(119)^41, E(119)^-12, E(119)^-18, E(119)^-27, E(119)^-59, E(119)^50, E(119)^-48, E(119)^39, E(119)^-29, E(119)^3, E(119)^-40, E(119)^20, E(119)^-37, E(119)^12, E(119)^-10, E(119)^33, E(119)^47, E(119)^4, E(119)^-2, E(119)^-23, E(119)^6, E(119)^-54, E(119)^44, E(119)^-43, E(119)^25, E(119)^58, E(119)^36, E(119)^-45, E(119)^-13, E(119)^-32, E(119)^48, E(119)^55, E(119)^38, E(119)^11, E(119)^43, E(119)^31, E(119)^-19, E(119)^-8, E(119)^-9, E(119)^-16, E(119)^18, E(119)^-58, E(119)^54, E(119)^-50, E(119)^9, E(119)^-46, E(119), E(119)^-31, E(119)^22, E(119)^-20, E(119)^53, E(119)^57, E(119)^-55, E(119)^46, E(119)^40, E(119)^-4, E(119)^-5, E(119)^27, E(119)^-53, E(119)^16, E(119)^-24, E(119)^26, E(119)^30, E(119)^-47, E(119)^-26, E(119)^-11, E(119)^-57, E(119)^2, E(119)^-39, E(119)^13, E(119)^-38, E(119)^10, E(119)^-1, E(119)^32, E(119)^-41, E(119)^24, E(119)^-52, E(119)^-6, E(119)^8, E(119)^-33, E(119)^15, E(119)^59, E(119)^23, E(119)^-36, E(119)^-25, E(119)^-44, E(119)^19, E(119)^-30, E(119)^5, E(119)^-22, E(119)^-38, E(119)^24, E(119)^-59, E(119)^2, E(119)^-18, E(119)^39, E(119)^3, E(119)^-58, E(119)^-29, E(119), E(119)^22, E(119)^-36, E(119)^-55, E(119)^-23, E(119)^6, E(119)^-20, E(119)^43, E(119)^48, E(119)^19, E(119)^-26, E(119)^-3, E(119)^59, E(119)^44, E(119)^18, E(119)^-53, E(119)^16, E(119)^-33, E(119)^-2, E(119)^55, E(119)^46, E(119)^38, E(119)^-24, E(119)^-5, E(119)^27, E(119)^-27, E(119)^36, E(119)^-22, E(119)^8, E(119)^15, E(119)^-43, E(119)^47, E(119)^-54, E(119)^25, E(119)^54, E(119)^-32, E(119)^-31, E(119)^12, E(119)^-47, E(119)^13, E(119)^-39, E(119)^4, E(119)^58, E(119)^45, E(119)^-11, E(119)^50, E(119)^5, E(119)^-25, E(119)^57, E(119)^-48, E(119)^20, E(119)^-9, E(119)^31, E(119)^-50, E(119)^26, E(119)^-13, E(119)^-15, E(119)^-44, E(119)^37, E(119)^53, E(119)^-4, E(119)^-12, E(119)^-45, E(119)^10, E(119)^-52, E(119)^23, E(119)^-30, E(119)^-1, E(119)^-16, E(119)^40, E(119)^11, E(119)^-40, E(119)^33, E(119)^-57, E(119)^29, E(119)^-6, E(119)^-8, E(119)^-37, E(119)^-41, E(119)^41, E(119)^9, E(119)^-19, E(119)^-10, E(119)^52, E(119)^32, E(119)^30, E(119)^-46, 1], [1, 1, E(119)^-17, E(119)^-51, E(119)^51, E(119)^34, E(119)^17, E(119)^-34, E(119)^-34, E(119)^34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^51, E(119)^42, E(119)^21, E(119)^7, E(119)^-7, E(119)^35, E(119)^28, E(119)^-35, E(119)^-56, E(119)^-14, E(119)^56, E(119)^-28, E(119)^-42, E(119)^-49, E(119)^14, E(119)^49, E(119)^-21, E(119)^-42, E(119)^28, E(119)^-35, E(119)^-14, E(119)^-7, E(119)^49, E(119)^14, E(119)^-28, E(119)^-21, E(119)^42, E(119)^-56, E(119)^21, E(119)^-49, E(119)^35, E(119)^56, E(119)^7, E(119)^36, E(119)^54, E(119)^11, E(119)^-22, E(119)^31, E(119)^18, E(119)^-27, E(119)^5, E(119)^-52, E(119)^41, E(119)^-25, E(119)^-1, E(119)^20, E(119)^-46, E(119)^22, E(119)^-31, E(119)^-23, E(119)^-48, E(119)^-54, E(119)^-5, E(119)^24, E(119)^16, E(119)^30, E(119)^38, E(119)^-19, E(119)^-40, E(119)^57, E(119)^-37, E(119)^-58, E(119)^8, E(119)^59, E(119)^-44, E(119)^-15, E(119)^-11, E(119)^55, E(119)^53, E(119)^-20, E(119)^-13, E(119)^4, E(119)^45, E(119)^-8, E(119)^-3, E(119)^-2, E(119)^43, E(119)^-26, E(119)^-33, E(119)^52, E(119)^44, E(119)^37, E(119), E(119)^26, E(119)^39, E(119)^-50, E(119)^3, E(119)^-29, E(119)^48, E(119)^-32, E(119)^6, E(119)^13, E(119)^-39, E(119)^23, E(119)^-38, E(119)^12, E(119)^-41, E(119)^32, E(119)^33, E(119)^10, E(119)^9, E(119)^47, E(119)^-30, E(119)^-9, E(119)^-45, E(119)^-6, E(119)^19, E(119)^46, E(119)^-55, E(119)^-4, E(119)^-24, E(119)^50, E(119)^-53, E(119)^27, E(119)^-10, E(119)^-18, E(119)^-57, E(119)^-43, E(119)^-16, E(119)^-36, E(119)^25, E(119)^40, E(119)^15, E(119)^-59, E(119)^58, E(119)^2, E(119)^-47, E(119)^-12, E(119)^29, E(119)^-4, E(119)^-10, E(119)^-25, E(119)^19, E(119)^-52, E(119)^-46, E(119)^-31, E(119)^44, E(119)^22, E(119)^-50, E(119)^-29, E(119)^15, E(119)^13, E(119)^-40, E(119)^57, E(119)^48, E(119)^-8, E(119)^-20, E(119)^2, E(119)^-9, E(119)^31, E(119)^25, E(119)^-58, E(119)^52, E(119)^32, E(119)^33, E(119)^-16, E(119)^-19, E(119)^-13, E(119)^-39, E(119)^4, E(119)^10, E(119)^12, E(119)^-41, E(119)^41, E(119)^-15, E(119)^29, E(119)^-43, E(119)^-36, E(119)^8, E(119)^30, E(119)^-37, E(119)^59, E(119)^37, E(119)^53, E(119)^3, E(119)^-5, E(119)^-30, E(119)^-55, E(119)^46, E(119)^38, E(119)^-44, E(119)^11, E(119)^-45, E(119)^-1, E(119)^-12, E(119)^-59, E(119)^6, E(119)^20, E(119)^-48, E(119)^-26, E(119)^-3, E(119), E(119)^9, E(119)^55, E(119)^36, E(119)^58, E(119)^54, E(119)^-32, E(119)^-38, E(119)^5, E(119)^-11, E(119)^-24, E(119)^-18, E(119)^40, E(119)^-47, E(119)^50, E(119)^-33, E(119)^23, E(119)^45, E(119)^-23, E(119)^16, E(119)^-6, E(119)^-22, E(119)^-57, E(119)^43, E(119)^-54, E(119)^27, E(119)^-27, E(119)^26, E(119)^-2, E(119)^24, E(119)^18, E(119)^-53, E(119)^47, E(119)^39, 1], [1, 1, E(119)^17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^-17, E(119)^34, E(119)^34, E(119)^-34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-51, E(119)^-42, E(119)^-21, E(119)^-7, E(119)^7, E(119)^-35, E(119)^-28, E(119)^35, E(119)^56, E(119)^14, E(119)^-56, E(119)^28, E(119)^42, E(119)^49, E(119)^-14, E(119)^-49, E(119)^21, E(119)^42, E(119)^-28, E(119)^35, E(119)^14, E(119)^7, E(119)^-49, E(119)^-14, E(119)^28, E(119)^21, E(119)^-42, E(119)^56, E(119)^-21, E(119)^49, E(119)^-35, E(119)^-56, E(119)^-7, E(119)^-36, E(119)^-54, E(119)^-11, E(119)^22, E(119)^-31, E(119)^-18, E(119)^27, E(119)^-5, E(119)^52, E(119)^-41, E(119)^25, E(119), E(119)^-20, E(119)^46, E(119)^-22, E(119)^31, E(119)^23, E(119)^48, E(119)^54, E(119)^5, E(119)^-24, E(119)^-16, E(119)^-30, E(119)^-38, E(119)^19, E(119)^40, E(119)^-57, E(119)^37, E(119)^58, E(119)^-8, E(119)^-59, E(119)^44, E(119)^15, E(119)^11, E(119)^-55, E(119)^-53, E(119)^20, E(119)^13, E(119)^-4, E(119)^-45, E(119)^8, E(119)^3, E(119)^2, E(119)^-43, E(119)^26, E(119)^33, E(119)^-52, E(119)^-44, E(119)^-37, E(119)^-1, E(119)^-26, E(119)^-39, E(119)^50, E(119)^-3, E(119)^29, E(119)^-48, E(119)^32, E(119)^-6, E(119)^-13, E(119)^39, E(119)^-23, E(119)^38, E(119)^-12, E(119)^41, E(119)^-32, E(119)^-33, E(119)^-10, E(119)^-9, E(119)^-47, E(119)^30, E(119)^9, E(119)^45, E(119)^6, E(119)^-19, E(119)^-46, E(119)^55, E(119)^4, E(119)^24, E(119)^-50, E(119)^53, E(119)^-27, E(119)^10, E(119)^18, E(119)^57, E(119)^43, E(119)^16, E(119)^36, E(119)^-25, E(119)^-40, E(119)^-15, E(119)^59, E(119)^-58, E(119)^-2, E(119)^47, E(119)^12, E(119)^-29, E(119)^4, E(119)^10, E(119)^25, E(119)^-19, E(119)^52, E(119)^46, E(119)^31, E(119)^-44, E(119)^-22, E(119)^50, E(119)^29, E(119)^-15, E(119)^-13, E(119)^40, E(119)^-57, E(119)^-48, E(119)^8, E(119)^20, E(119)^-2, E(119)^9, E(119)^-31, E(119)^-25, E(119)^58, E(119)^-52, E(119)^-32, E(119)^-33, E(119)^16, E(119)^19, E(119)^13, E(119)^39, E(119)^-4, E(119)^-10, E(119)^-12, E(119)^41, E(119)^-41, E(119)^15, E(119)^-29, E(119)^43, E(119)^36, E(119)^-8, E(119)^-30, E(119)^37, E(119)^-59, E(119)^-37, E(119)^-53, E(119)^-3, E(119)^5, E(119)^30, E(119)^55, E(119)^-46, E(119)^-38, E(119)^44, E(119)^-11, E(119)^45, E(119), E(119)^12, E(119)^59, E(119)^-6, E(119)^-20, E(119)^48, E(119)^26, E(119)^3, E(119)^-1, E(119)^-9, E(119)^-55, E(119)^-36, E(119)^-58, E(119)^-54, E(119)^32, E(119)^38, E(119)^-5, E(119)^11, E(119)^24, E(119)^18, E(119)^-40, E(119)^47, E(119)^-50, E(119)^33, E(119)^-23, E(119)^-45, E(119)^23, E(119)^-16, E(119)^6, E(119)^22, E(119)^57, E(119)^-43, E(119)^54, E(119)^-27, E(119)^27, E(119)^-26, E(119)^2, E(119)^-24, E(119)^-18, E(119)^53, E(119)^-47, E(119)^-39, 1], [1, 1, E(119)^-17, E(119)^-51, E(119)^51, E(119)^34, E(119)^17, E(119)^-34, E(119)^-34, E(119)^34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^51, E(119)^-35, E(119)^42, E(119)^14, E(119)^-14, E(119)^-49, E(119)^56, E(119)^49, E(119)^7, E(119)^-28, E(119)^-7, E(119)^-56, E(119)^35, E(119)^21, E(119)^28, E(119)^-21, E(119)^-42, E(119)^35, E(119)^56, E(119)^49, E(119)^-28, E(119)^-14, E(119)^-21, E(119)^28, E(119)^-56, E(119)^-42, E(119)^-35, E(119)^7, E(119)^42, E(119)^21, E(119)^-49, E(119)^-7, E(119)^14, E(119)^-13, E(119)^40, E(119)^39, E(119)^41, E(119)^45, E(119)^53, E(119)^-20, E(119)^-58, E(119)^32, E(119)^48, E(119)^52, E(119)^-36, E(119)^6, E(119)^10, E(119)^-41, E(119)^-45, E(119)^5, E(119)^57, E(119)^-40, E(119)^58, E(119)^31, E(119)^-19, E(119)^9, E(119)^59, E(119)^30, E(119)^-12, E(119)^29, E(119)^-23, E(119)^54, E(119)^50, E(119)^-18, E(119)^-37, E(119)^55, E(119)^-39, E(119)^-43, E(119)^4, E(119)^-6, E(119)^8, E(119)^25, E(119)^-46, E(119)^-50, E(119)^11, E(119)^47, E(119), E(119)^16, E(119)^2, E(119)^-32, E(119)^37, E(119)^23, E(119)^36, E(119)^-16, E(119)^-24, E(119)^-15, E(119)^-11, E(119)^27, E(119)^-57, E(119)^38, E(119)^-22, E(119)^-8, E(119)^24, E(119)^-5, E(119)^-59, E(119)^-44, E(119)^-48, E(119)^-38, E(119)^-2, E(119)^3, E(119)^-33, E(119)^26, E(119)^-9, E(119)^33, E(119)^46, E(119)^22, E(119)^-30, E(119)^-10, E(119)^43, E(119)^-25, E(119)^-31, E(119)^15, E(119)^-4, E(119)^20, E(119)^-3, E(119)^-53, E(119)^-29, E(119)^-1, E(119)^19, E(119)^13, E(119)^-52, E(119)^12, E(119)^-55, E(119)^18, E(119)^-54, E(119)^-47, E(119)^-26, E(119)^44, E(119)^-27, E(119)^-25, E(119)^-3, E(119)^52, E(119)^-30, E(119)^32, E(119)^10, E(119)^-45, E(119)^37, E(119)^-41, E(119)^-15, E(119)^27, E(119)^-55, E(119)^-8, E(119)^-12, E(119)^29, E(119)^-57, E(119)^-50, E(119)^-6, E(119)^-47, E(119)^33, E(119)^45, E(119)^-52, E(119)^54, E(119)^-32, E(119)^-38, E(119)^-2, E(119)^19, E(119)^30, E(119)^8, E(119)^24, E(119)^25, E(119)^3, E(119)^-44, E(119)^-48, E(119)^48, E(119)^55, E(119)^-27, E(119)^-1, E(119)^13, E(119)^50, E(119)^9, E(119)^-23, E(119)^-18, E(119)^23, E(119)^4, E(119)^-11, E(119)^58, E(119)^-9, E(119)^43, E(119)^-10, E(119)^59, E(119)^-37, E(119)^39, E(119)^46, E(119)^-36, E(119)^44, E(119)^18, E(119)^-22, E(119)^6, E(119)^57, E(119)^16, E(119)^11, E(119)^36, E(119)^-33, E(119)^-43, E(119)^-13, E(119)^-54, E(119)^40, E(119)^38, E(119)^-59, E(119)^-58, E(119)^-39, E(119)^-31, E(119)^-53, E(119)^12, E(119)^-26, E(119)^15, E(119)^2, E(119)^-5, E(119)^-46, E(119)^5, E(119)^-19, E(119)^22, E(119)^41, E(119)^-29, E(119), E(119)^-40, E(119)^20, E(119)^-20, E(119)^-16, E(119)^47, E(119)^31, E(119)^53, E(119)^-4, E(119)^26, E(119)^-24, 1], [1, 1, E(119)^17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^-17, E(119)^34, E(119)^34, E(119)^-34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-51, E(119)^35, E(119)^-42, E(119)^-14, E(119)^14, E(119)^49, E(119)^-56, E(119)^-49, E(119)^-7, E(119)^28, E(119)^7, E(119)^56, E(119)^-35, E(119)^-21, E(119)^-28, E(119)^21, E(119)^42, E(119)^-35, E(119)^-56, E(119)^-49, E(119)^28, E(119)^14, E(119)^21, E(119)^-28, E(119)^56, E(119)^42, E(119)^35, E(119)^-7, E(119)^-42, E(119)^-21, E(119)^49, E(119)^7, E(119)^-14, E(119)^13, E(119)^-40, E(119)^-39, E(119)^-41, E(119)^-45, E(119)^-53, E(119)^20, E(119)^58, E(119)^-32, E(119)^-48, E(119)^-52, E(119)^36, E(119)^-6, E(119)^-10, E(119)^41, E(119)^45, E(119)^-5, E(119)^-57, E(119)^40, E(119)^-58, E(119)^-31, E(119)^19, E(119)^-9, E(119)^-59, E(119)^-30, E(119)^12, E(119)^-29, E(119)^23, E(119)^-54, E(119)^-50, E(119)^18, E(119)^37, E(119)^-55, E(119)^39, E(119)^43, E(119)^-4, E(119)^6, E(119)^-8, E(119)^-25, E(119)^46, E(119)^50, E(119)^-11, E(119)^-47, E(119)^-1, E(119)^-16, E(119)^-2, E(119)^32, E(119)^-37, E(119)^-23, E(119)^-36, E(119)^16, E(119)^24, E(119)^15, E(119)^11, E(119)^-27, E(119)^57, E(119)^-38, E(119)^22, E(119)^8, E(119)^-24, E(119)^5, E(119)^59, E(119)^44, E(119)^48, E(119)^38, E(119)^2, E(119)^-3, E(119)^33, E(119)^-26, E(119)^9, E(119)^-33, E(119)^-46, E(119)^-22, E(119)^30, E(119)^10, E(119)^-43, E(119)^25, E(119)^31, E(119)^-15, E(119)^4, E(119)^-20, E(119)^3, E(119)^53, E(119)^29, E(119), E(119)^-19, E(119)^-13, E(119)^52, E(119)^-12, E(119)^55, E(119)^-18, E(119)^54, E(119)^47, E(119)^26, E(119)^-44, E(119)^27, E(119)^25, E(119)^3, E(119)^-52, E(119)^30, E(119)^-32, E(119)^-10, E(119)^45, E(119)^-37, E(119)^41, E(119)^15, E(119)^-27, E(119)^55, E(119)^8, E(119)^12, E(119)^-29, E(119)^57, E(119)^50, E(119)^6, E(119)^47, E(119)^-33, E(119)^-45, E(119)^52, E(119)^-54, E(119)^32, E(119)^38, E(119)^2, E(119)^-19, E(119)^-30, E(119)^-8, E(119)^-24, E(119)^-25, E(119)^-3, E(119)^44, E(119)^48, E(119)^-48, E(119)^-55, E(119)^27, E(119), E(119)^-13, E(119)^-50, E(119)^-9, E(119)^23, E(119)^18, E(119)^-23, E(119)^-4, E(119)^11, E(119)^-58, E(119)^9, E(119)^-43, E(119)^10, E(119)^-59, E(119)^37, E(119)^-39, E(119)^-46, E(119)^36, E(119)^-44, E(119)^-18, E(119)^22, E(119)^-6, E(119)^-57, E(119)^-16, E(119)^-11, E(119)^-36, E(119)^33, E(119)^43, E(119)^13, E(119)^54, E(119)^-40, E(119)^-38, E(119)^59, E(119)^58, E(119)^39, E(119)^31, E(119)^53, E(119)^-12, E(119)^26, E(119)^-15, E(119)^-2, E(119)^5, E(119)^46, E(119)^-5, E(119)^19, E(119)^-22, E(119)^-41, E(119)^29, E(119)^-1, E(119)^40, E(119)^-20, E(119)^20, E(119)^16, E(119)^-47, E(119)^-31, E(119)^-53, E(119)^4, E(119)^-26, E(119)^24, 1], [1, 1, E(119)^-17, E(119)^-51, E(119)^51, E(119)^34, E(119)^17, E(119)^-34, E(119)^-34, E(119)^34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^51, E(119)^35, E(119)^-42, E(119)^-14, E(119)^14, E(119)^49, E(119)^-56, E(119)^-49, E(119)^-7, E(119)^28, E(119)^7, E(119)^56, E(119)^-35, E(119)^-21, E(119)^-28, E(119)^21, E(119)^42, E(119)^-35, E(119)^-56, E(119)^-49, E(119)^28, E(119)^14, E(119)^21, E(119)^-28, E(119)^56, E(119)^42, E(119)^35, E(119)^-7, E(119)^-42, E(119)^-21, E(119)^49, E(119)^7, E(119)^-14, E(119)^-55, E(119)^-23, E(119)^46, E(119)^27, E(119)^-11, E(119)^32, E(119)^-48, E(119)^-44, E(119)^53, E(119)^20, E(119)^-18, E(119)^-15, E(119)^-57, E(119)^24, E(119)^-27, E(119)^11, E(119)^12, E(119)^-6, E(119)^23, E(119)^44, E(119)^3, E(119)^2, E(119)^-26, E(119)^-25, E(119)^-47, E(119)^-5, E(119)^22, E(119)^40, E(119)^-37, E(119), E(119)^52, E(119)^54, E(119)^13, E(119)^-46, E(119)^-8, E(119)^-38, E(119)^57, E(119)^43, E(119)^-59, E(119)^-39, E(119)^-1, E(119)^-45, E(119)^-30, E(119)^50, E(119)^-33, E(119)^-19, E(119)^-53, E(119)^-54, E(119)^-40, E(119)^15, E(119)^33, E(119)^-10, E(119)^-36, E(119)^45, E(119)^41, E(119)^6, E(119)^-4, E(119)^-29, E(119)^-43, E(119)^10, E(119)^-12, E(119)^25, E(119)^-58, E(119)^-20, E(119)^4, E(119)^19, E(119)^31, E(119)^16, E(119)^-9, E(119)^26, E(119)^-16, E(119)^39, E(119)^29, E(119)^47, E(119)^-24, E(119)^8, E(119)^59, E(119)^-3, E(119)^36, E(119)^38, E(119)^48, E(119)^-31, E(119)^-32, E(119)^-22, E(119)^-50, E(119)^-2, E(119)^55, E(119)^18, E(119)^5, E(119)^-13, E(119)^-52, E(119)^37, E(119)^30, E(119)^9, E(119)^58, E(119)^-41, E(119)^59, E(119)^-31, E(119)^-18, E(119)^47, E(119)^53, E(119)^24, E(119)^11, E(119)^-54, E(119)^-27, E(119)^-36, E(119)^41, E(119)^-13, E(119)^-43, E(119)^-5, E(119)^22, E(119)^6, E(119)^-1, E(119)^57, E(119)^30, E(119)^-16, E(119)^-11, E(119)^18, E(119)^-37, E(119)^-53, E(119)^4, E(119)^19, E(119)^-2, E(119)^-47, E(119)^43, E(119)^10, E(119)^-59, E(119)^31, E(119)^-58, E(119)^-20, E(119)^20, E(119)^13, E(119)^-41, E(119)^-50, E(119)^55, E(119), E(119)^-26, E(119)^40, E(119)^52, E(119)^-40, E(119)^-38, E(119)^45, E(119)^44, E(119)^26, E(119)^8, E(119)^-24, E(119)^-25, E(119)^54, E(119)^46, E(119)^39, E(119)^-15, E(119)^58, E(119)^-52, E(119)^-29, E(119)^-57, E(119)^-6, E(119)^-33, E(119)^-45, E(119)^15, E(119)^16, E(119)^-8, E(119)^-55, E(119)^37, E(119)^-23, E(119)^-4, E(119)^25, E(119)^-44, E(119)^-46, E(119)^-3, E(119)^-32, E(119)^5, E(119)^9, E(119)^36, E(119)^-19, E(119)^-12, E(119)^-39, E(119)^12, E(119)^2, E(119)^29, E(119)^27, E(119)^-22, E(119)^50, E(119)^23, E(119)^48, E(119)^-48, E(119)^33, E(119)^-30, E(119)^3, E(119)^32, E(119)^38, E(119)^-9, E(119)^-10, 1], [1, 1, E(119)^17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^-17, E(119)^34, E(119)^34, E(119)^-34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-51, E(119)^-35, E(119)^42, E(119)^14, E(119)^-14, E(119)^-49, E(119)^56, E(119)^49, E(119)^7, E(119)^-28, E(119)^-7, E(119)^-56, E(119)^35, E(119)^21, E(119)^28, E(119)^-21, E(119)^-42, E(119)^35, E(119)^56, E(119)^49, E(119)^-28, E(119)^-14, E(119)^-21, E(119)^28, E(119)^-56, E(119)^-42, E(119)^-35, E(119)^7, E(119)^42, E(119)^21, E(119)^-49, E(119)^-7, E(119)^14, E(119)^55, E(119)^23, E(119)^-46, E(119)^-27, E(119)^11, E(119)^-32, E(119)^48, E(119)^44, E(119)^-53, E(119)^-20, E(119)^18, E(119)^15, E(119)^57, E(119)^-24, E(119)^27, E(119)^-11, E(119)^-12, E(119)^6, E(119)^-23, E(119)^-44, E(119)^-3, E(119)^-2, E(119)^26, E(119)^25, E(119)^47, E(119)^5, E(119)^-22, E(119)^-40, E(119)^37, E(119)^-1, E(119)^-52, E(119)^-54, E(119)^-13, E(119)^46, E(119)^8, E(119)^38, E(119)^-57, E(119)^-43, E(119)^59, E(119)^39, E(119), E(119)^45, E(119)^30, E(119)^-50, E(119)^33, E(119)^19, E(119)^53, E(119)^54, E(119)^40, E(119)^-15, E(119)^-33, E(119)^10, E(119)^36, E(119)^-45, E(119)^-41, E(119)^-6, E(119)^4, E(119)^29, E(119)^43, E(119)^-10, E(119)^12, E(119)^-25, E(119)^58, E(119)^20, E(119)^-4, E(119)^-19, E(119)^-31, E(119)^-16, E(119)^9, E(119)^-26, E(119)^16, E(119)^-39, E(119)^-29, E(119)^-47, E(119)^24, E(119)^-8, E(119)^-59, E(119)^3, E(119)^-36, E(119)^-38, E(119)^-48, E(119)^31, E(119)^32, E(119)^22, E(119)^50, E(119)^2, E(119)^-55, E(119)^-18, E(119)^-5, E(119)^13, E(119)^52, E(119)^-37, E(119)^-30, E(119)^-9, E(119)^-58, E(119)^41, E(119)^-59, E(119)^31, E(119)^18, E(119)^-47, E(119)^-53, E(119)^-24, E(119)^-11, E(119)^54, E(119)^27, E(119)^36, E(119)^-41, E(119)^13, E(119)^43, E(119)^5, E(119)^-22, E(119)^-6, E(119), E(119)^-57, E(119)^-30, E(119)^16, E(119)^11, E(119)^-18, E(119)^37, E(119)^53, E(119)^-4, E(119)^-19, E(119)^2, E(119)^47, E(119)^-43, E(119)^-10, E(119)^59, E(119)^-31, E(119)^58, E(119)^20, E(119)^-20, E(119)^-13, E(119)^41, E(119)^50, E(119)^-55, E(119)^-1, E(119)^26, E(119)^-40, E(119)^-52, E(119)^40, E(119)^38, E(119)^-45, E(119)^-44, E(119)^-26, E(119)^-8, E(119)^24, E(119)^25, E(119)^-54, E(119)^-46, E(119)^-39, E(119)^15, E(119)^-58, E(119)^52, E(119)^29, E(119)^57, E(119)^6, E(119)^33, E(119)^45, E(119)^-15, E(119)^-16, E(119)^8, E(119)^55, E(119)^-37, E(119)^23, E(119)^4, E(119)^-25, E(119)^44, E(119)^46, E(119)^3, E(119)^32, E(119)^-5, E(119)^-9, E(119)^-36, E(119)^19, E(119)^12, E(119)^39, E(119)^-12, E(119)^-2, E(119)^-29, E(119)^-27, E(119)^22, E(119)^-50, E(119)^-23, E(119)^-48, E(119)^48, E(119)^-33, E(119)^30, E(119)^-3, E(119)^-32, E(119)^-38, E(119)^9, E(119)^10, 1], [1, 1, E(119)^-17, E(119)^-51, E(119)^51, E(119)^34, E(119)^17, E(119)^-34, E(119)^-34, E(119)^34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^51, E(119)^-28, E(119)^-14, E(119)^35, E(119)^-35, E(119)^56, E(119)^21, E(119)^-56, E(119)^-42, E(119)^49, E(119)^42, E(119)^-21, E(119)^28, E(119)^-7, E(119)^-49, E(119)^7, E(119)^14, E(119)^28, E(119)^21, E(119)^-56, E(119)^49, E(119)^-35, E(119)^7, E(119)^-49, E(119)^-21, E(119)^14, E(119)^-28, E(119)^-42, E(119)^-14, E(119)^-7, E(119)^56, E(119)^42, E(119)^35, E(119)^-41, E(119)^-2, E(119)^4, E(119)^-8, E(119)^-32, E(119)^39, E(119), E(119)^-9, E(119)^46, E(119)^-50, E(119)^45, E(119)^-22, E(119)^-36, E(119)^59, E(119)^8, E(119)^32, E(119)^-30, E(119)^15, E(119)^2, E(119)^9, E(119)^52, E(119)^-5, E(119)^-54, E(119)^3, E(119)^58, E(119)^-47, E(119)^-55, E(119)^19, E(119)^33, E(119)^57, E(119)^-11, E(119)^-16, E(119)^27, E(119)^-4, E(119)^20, E(119)^-24, E(119)^36, E(119)^-48, E(119)^-31, E(119)^38, E(119)^-57, E(119)^53, E(119)^-44, E(119)^-6, E(119)^23, E(119)^-12, E(119)^-46, E(119)^16, E(119)^-19, E(119)^22, E(119)^-23, E(119)^25, E(119)^-29, E(119)^-53, E(119)^-43, E(119)^-15, E(119)^10, E(119)^13, E(119)^48, E(119)^-25, E(119)^30, E(119)^-3, E(119)^26, E(119)^50, E(119)^-10, E(119)^12, E(119)^-18, E(119)^-40, E(119)^-37, E(119)^54, E(119)^40, E(119)^-38, E(119)^-13, E(119)^-58, E(119)^-59, E(119)^-20, E(119)^31, E(119)^-52, E(119)^29, E(119)^24, E(119)^-1, E(119)^18, E(119)^-39, E(119)^55, E(119)^6, E(119)^5, E(119)^41, E(119)^-45, E(119)^47, E(119)^-27, E(119)^11, E(119)^-33, E(119)^44, E(119)^37, E(119)^-26, E(119)^43, E(119)^31, E(119)^18, E(119)^45, E(119)^-58, E(119)^46, E(119)^59, E(119)^32, E(119)^16, E(119)^8, E(119)^-29, E(119)^-43, E(119)^-27, E(119)^48, E(119)^-47, E(119)^-55, E(119)^-15, E(119)^-57, E(119)^36, E(119)^44, E(119)^40, E(119)^-32, E(119)^-45, E(119)^33, E(119)^-46, E(119)^-10, E(119)^12, E(119)^5, E(119)^58, E(119)^-48, E(119)^-25, E(119)^-31, E(119)^-18, E(119)^26, E(119)^50, E(119)^-50, E(119)^27, E(119)^43, E(119)^6, E(119)^41, E(119)^57, E(119)^-54, E(119)^19, E(119)^-11, E(119)^-19, E(119)^-24, E(119)^-53, E(119)^9, E(119)^54, E(119)^-20, E(119)^-59, E(119)^3, E(119)^-16, E(119)^4, E(119)^-38, E(119)^-22, E(119)^-26, E(119)^11, E(119)^13, E(119)^-36, E(119)^15, E(119)^23, E(119)^53, E(119)^22, E(119)^-40, E(119)^20, E(119)^-41, E(119)^-33, E(119)^-2, E(119)^10, E(119)^-3, E(119)^-9, E(119)^-4, E(119)^-52, E(119)^-39, E(119)^47, E(119)^37, E(119)^29, E(119)^-12, E(119)^30, E(119)^38, E(119)^-30, E(119)^-5, E(119)^-13, E(119)^-8, E(119)^55, E(119)^-6, E(119)^2, E(119)^-1, E(119), E(119)^-23, E(119)^-44, E(119)^52, E(119)^39, E(119)^24, E(119)^-37, E(119)^25, 1], [1, 1, E(119)^17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^-17, E(119)^34, E(119)^34, E(119)^-34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-51, E(119)^28, E(119)^14, E(119)^-35, E(119)^35, E(119)^-56, E(119)^-21, E(119)^56, E(119)^42, E(119)^-49, E(119)^-42, E(119)^21, E(119)^-28, E(119)^7, E(119)^49, E(119)^-7, E(119)^-14, E(119)^-28, E(119)^-21, E(119)^56, E(119)^-49, E(119)^35, E(119)^-7, E(119)^49, E(119)^21, E(119)^-14, E(119)^28, E(119)^42, E(119)^14, E(119)^7, E(119)^-56, E(119)^-42, E(119)^-35, E(119)^41, E(119)^2, E(119)^-4, E(119)^8, E(119)^32, E(119)^-39, E(119)^-1, E(119)^9, E(119)^-46, E(119)^50, E(119)^-45, E(119)^22, E(119)^36, E(119)^-59, E(119)^-8, E(119)^-32, E(119)^30, E(119)^-15, E(119)^-2, E(119)^-9, E(119)^-52, E(119)^5, E(119)^54, E(119)^-3, E(119)^-58, E(119)^47, E(119)^55, E(119)^-19, E(119)^-33, E(119)^-57, E(119)^11, E(119)^16, E(119)^-27, E(119)^4, E(119)^-20, E(119)^24, E(119)^-36, E(119)^48, E(119)^31, E(119)^-38, E(119)^57, E(119)^-53, E(119)^44, E(119)^6, E(119)^-23, E(119)^12, E(119)^46, E(119)^-16, E(119)^19, E(119)^-22, E(119)^23, E(119)^-25, E(119)^29, E(119)^53, E(119)^43, E(119)^15, E(119)^-10, E(119)^-13, E(119)^-48, E(119)^25, E(119)^-30, E(119)^3, E(119)^-26, E(119)^-50, E(119)^10, E(119)^-12, E(119)^18, E(119)^40, E(119)^37, E(119)^-54, E(119)^-40, E(119)^38, E(119)^13, E(119)^58, E(119)^59, E(119)^20, E(119)^-31, E(119)^52, E(119)^-29, E(119)^-24, E(119), E(119)^-18, E(119)^39, E(119)^-55, E(119)^-6, E(119)^-5, E(119)^-41, E(119)^45, E(119)^-47, E(119)^27, E(119)^-11, E(119)^33, E(119)^-44, E(119)^-37, E(119)^26, E(119)^-43, E(119)^-31, E(119)^-18, E(119)^-45, E(119)^58, E(119)^-46, E(119)^-59, E(119)^-32, E(119)^-16, E(119)^-8, E(119)^29, E(119)^43, E(119)^27, E(119)^-48, E(119)^47, E(119)^55, E(119)^15, E(119)^57, E(119)^-36, E(119)^-44, E(119)^-40, E(119)^32, E(119)^45, E(119)^-33, E(119)^46, E(119)^10, E(119)^-12, E(119)^-5, E(119)^-58, E(119)^48, E(119)^25, E(119)^31, E(119)^18, E(119)^-26, E(119)^-50, E(119)^50, E(119)^-27, E(119)^-43, E(119)^-6, E(119)^-41, E(119)^-57, E(119)^54, E(119)^-19, E(119)^11, E(119)^19, E(119)^24, E(119)^53, E(119)^-9, E(119)^-54, E(119)^20, E(119)^59, E(119)^-3, E(119)^16, E(119)^-4, E(119)^38, E(119)^22, E(119)^26, E(119)^-11, E(119)^-13, E(119)^36, E(119)^-15, E(119)^-23, E(119)^-53, E(119)^-22, E(119)^40, E(119)^-20, E(119)^41, E(119)^33, E(119)^2, E(119)^-10, E(119)^3, E(119)^9, E(119)^4, E(119)^52, E(119)^39, E(119)^-47, E(119)^-37, E(119)^-29, E(119)^12, E(119)^-30, E(119)^-38, E(119)^30, E(119)^5, E(119)^13, E(119)^8, E(119)^-55, E(119)^6, E(119)^-2, E(119), E(119)^-1, E(119)^23, E(119)^44, E(119)^-52, E(119)^-39, E(119)^-24, E(119)^37, E(119)^-25, 1], [1, 1, E(119)^-17, E(119)^-51, E(119)^51, E(119)^34, E(119)^17, E(119)^-34, E(119)^-34, E(119)^34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^51, E(119)^28, E(119)^14, E(119)^-35, E(119)^35, E(119)^-56, E(119)^-21, E(119)^56, E(119)^42, E(119)^-49, E(119)^-42, E(119)^21, E(119)^-28, E(119)^7, E(119)^49, E(119)^-7, E(119)^-14, E(119)^-28, E(119)^-21, E(119)^56, E(119)^-49, E(119)^35, E(119)^-7, E(119)^49, E(119)^21, E(119)^-14, E(119)^28, E(119)^42, E(119)^14, E(119)^7, E(119)^-56, E(119)^-42, E(119)^-35, E(119)^-27, E(119)^19, E(119)^-38, E(119)^-43, E(119)^-53, E(119)^46, E(119)^50, E(119)^26, E(119)^39, E(119)^-1, E(119)^-11, E(119)^-29, E(119)^-15, E(119)^-25, E(119)^43, E(119)^53, E(119)^47, E(119)^36, E(119)^-19, E(119)^-26, E(119)^-18, E(119)^-12, E(119)^37, E(119)^31, E(119)^44, E(119)^30, E(119)^-13, E(119)^-2, E(119)^-16, E(119)^-6, E(119)^45, E(119)^33, E(119)^41, E(119)^38, E(119)^48, E(119)^-10, E(119)^15, E(119)^-20, E(119)^-3, E(119)^-4, E(119)^6, E(119)^32, E(119)^-58, E(119)^57, E(119)^-40, E(119)^-5, E(119)^-39, E(119)^-33, E(119)^2, E(119)^29, E(119)^40, E(119)^-59, E(119)^-22, E(119)^-32, E(119)^-8, E(119)^-36, E(119)^24, E(119)^55, E(119)^20, E(119)^59, E(119)^-47, E(119)^-31, E(119)^-9, E(119), E(119)^-24, E(119)^5, E(119)^52, E(119)^23, E(119)^54, E(119)^-37, E(119)^-23, E(119)^4, E(119)^-55, E(119)^-44, E(119)^25, E(119)^-48, E(119)^3, E(119)^18, E(119)^22, E(119)^10, E(119)^-50, E(119)^-52, E(119)^-46, E(119)^13, E(119)^-57, E(119)^12, E(119)^27, E(119)^11, E(119)^-30, E(119)^-41, E(119)^-45, E(119)^16, E(119)^58, E(119)^-54, E(119)^9, E(119)^8, E(119)^3, E(119)^-52, E(119)^-11, E(119)^-44, E(119)^39, E(119)^-25, E(119)^53, E(119)^-33, E(119)^43, E(119)^-22, E(119)^-8, E(119)^-41, E(119)^20, E(119)^30, E(119)^-13, E(119)^-36, E(119)^6, E(119)^15, E(119)^58, E(119)^-23, E(119)^-53, E(119)^11, E(119)^-16, E(119)^-39, E(119)^-24, E(119)^5, E(119)^12, E(119)^44, E(119)^-20, E(119)^59, E(119)^-3, E(119)^52, E(119)^-9, E(119), E(119)^-1, E(119)^41, E(119)^8, E(119)^-57, E(119)^27, E(119)^-6, E(119)^37, E(119)^-2, E(119)^45, E(119)^2, E(119)^-10, E(119)^-32, E(119)^-26, E(119)^-37, E(119)^-48, E(119)^25, E(119)^31, E(119)^33, E(119)^-38, E(119)^4, E(119)^-29, E(119)^9, E(119)^-45, E(119)^55, E(119)^-15, E(119)^36, E(119)^-40, E(119)^32, E(119)^29, E(119)^23, E(119)^48, E(119)^-27, E(119)^16, E(119)^19, E(119)^24, E(119)^-31, E(119)^26, E(119)^38, E(119)^18, E(119)^-46, E(119)^-30, E(119)^-54, E(119)^22, E(119)^-5, E(119)^-47, E(119)^-4, E(119)^47, E(119)^-12, E(119)^-55, E(119)^-43, E(119)^13, E(119)^57, E(119)^-19, E(119)^-50, E(119)^50, E(119)^40, E(119)^-58, E(119)^-18, E(119)^46, E(119)^10, E(119)^54, E(119)^-59, 1], [1, 1, E(119)^17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^-17, E(119)^34, E(119)^34, E(119)^-34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-51, E(119)^-28, E(119)^-14, E(119)^35, E(119)^-35, E(119)^56, E(119)^21, E(119)^-56, E(119)^-42, E(119)^49, E(119)^42, E(119)^-21, E(119)^28, E(119)^-7, E(119)^-49, E(119)^7, E(119)^14, E(119)^28, E(119)^21, E(119)^-56, E(119)^49, E(119)^-35, E(119)^7, E(119)^-49, E(119)^-21, E(119)^14, E(119)^-28, E(119)^-42, E(119)^-14, E(119)^-7, E(119)^56, E(119)^42, E(119)^35, E(119)^27, E(119)^-19, E(119)^38, E(119)^43, E(119)^53, E(119)^-46, E(119)^-50, E(119)^-26, E(119)^-39, E(119), E(119)^11, E(119)^29, E(119)^15, E(119)^25, E(119)^-43, E(119)^-53, E(119)^-47, E(119)^-36, E(119)^19, E(119)^26, E(119)^18, E(119)^12, E(119)^-37, E(119)^-31, E(119)^-44, E(119)^-30, E(119)^13, E(119)^2, E(119)^16, E(119)^6, E(119)^-45, E(119)^-33, E(119)^-41, E(119)^-38, E(119)^-48, E(119)^10, E(119)^-15, E(119)^20, E(119)^3, E(119)^4, E(119)^-6, E(119)^-32, E(119)^58, E(119)^-57, E(119)^40, E(119)^5, E(119)^39, E(119)^33, E(119)^-2, E(119)^-29, E(119)^-40, E(119)^59, E(119)^22, E(119)^32, E(119)^8, E(119)^36, E(119)^-24, E(119)^-55, E(119)^-20, E(119)^-59, E(119)^47, E(119)^31, E(119)^9, E(119)^-1, E(119)^24, E(119)^-5, E(119)^-52, E(119)^-23, E(119)^-54, E(119)^37, E(119)^23, E(119)^-4, E(119)^55, E(119)^44, E(119)^-25, E(119)^48, E(119)^-3, E(119)^-18, E(119)^-22, E(119)^-10, E(119)^50, E(119)^52, E(119)^46, E(119)^-13, E(119)^57, E(119)^-12, E(119)^-27, E(119)^-11, E(119)^30, E(119)^41, E(119)^45, E(119)^-16, E(119)^-58, E(119)^54, E(119)^-9, E(119)^-8, E(119)^-3, E(119)^52, E(119)^11, E(119)^44, E(119)^-39, E(119)^25, E(119)^-53, E(119)^33, E(119)^-43, E(119)^22, E(119)^8, E(119)^41, E(119)^-20, E(119)^-30, E(119)^13, E(119)^36, E(119)^-6, E(119)^-15, E(119)^-58, E(119)^23, E(119)^53, E(119)^-11, E(119)^16, E(119)^39, E(119)^24, E(119)^-5, E(119)^-12, E(119)^-44, E(119)^20, E(119)^-59, E(119)^3, E(119)^-52, E(119)^9, E(119)^-1, E(119), E(119)^-41, E(119)^-8, E(119)^57, E(119)^-27, E(119)^6, E(119)^-37, E(119)^2, E(119)^-45, E(119)^-2, E(119)^10, E(119)^32, E(119)^26, E(119)^37, E(119)^48, E(119)^-25, E(119)^-31, E(119)^-33, E(119)^38, E(119)^-4, E(119)^29, E(119)^-9, E(119)^45, E(119)^-55, E(119)^15, E(119)^-36, E(119)^40, E(119)^-32, E(119)^-29, E(119)^-23, E(119)^-48, E(119)^27, E(119)^-16, E(119)^-19, E(119)^-24, E(119)^31, E(119)^-26, E(119)^-38, E(119)^-18, E(119)^46, E(119)^30, E(119)^54, E(119)^-22, E(119)^5, E(119)^47, E(119)^4, E(119)^-47, E(119)^12, E(119)^55, E(119)^43, E(119)^-13, E(119)^-57, E(119)^19, E(119)^50, E(119)^-50, E(119)^-40, E(119)^58, E(119)^18, E(119)^-46, E(119)^-10, E(119)^-54, E(119)^59, 1], [1, 1, E(119)^-17, E(119)^-51, E(119)^51, E(119)^34, E(119)^17, E(119)^-34, E(119)^-34, E(119)^34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^51, E(119)^-21, E(119)^49, E(119)^56, E(119)^-56, E(119)^42, E(119)^-14, E(119)^-42, E(119)^28, E(119)^7, E(119)^-28, E(119)^14, E(119)^21, E(119)^-35, E(119)^-7, E(119)^35, E(119)^-49, E(119)^21, E(119)^-14, E(119)^-42, E(119)^7, E(119)^-56, E(119)^35, E(119)^-7, E(119)^14, E(119)^-49, E(119)^-21, E(119)^28, E(119)^49, E(119)^-35, E(119)^42, E(119)^-28, E(119)^56, E(119)^50, E(119)^-44, E(119)^-31, E(119)^-57, E(119)^10, E(119)^25, E(119)^22, E(119)^40, E(119)^-59, E(119)^-29, E(119)^38, E(119)^-8, E(119)^41, E(119)^-11, E(119)^57, E(119)^-10, E(119)^54, E(119)^-27, E(119)^44, E(119)^-40, E(119)^-46, E(119)^9, E(119)^2, E(119)^-53, E(119)^-33, E(119)^37, E(119)^-20, E(119)^-58, E(119)^12, E(119)^-55, E(119)^-4, E(119)^5, E(119)^-1, E(119)^31, E(119)^-36, E(119)^-52, E(119)^-41, E(119)^15, E(119)^32, E(119)^3, E(119)^55, E(119)^-24, E(119)^-16, E(119)^-13, E(119)^30, E(119)^-26, E(119)^59, E(119)^-5, E(119)^58, E(119)^8, E(119)^-30, E(119)^-45, E(119)^-43, E(119)^24, E(119)^6, E(119)^27, E(119)^-18, E(119)^48, E(119)^-15, E(119)^45, E(119)^-54, E(119)^53, E(119)^-23, E(119)^29, E(119)^18, E(119)^26, E(119)^-39, E(119)^-47, E(119)^19, E(119)^-2, E(119)^47, E(119)^-3, E(119)^-48, E(119)^33, E(119)^11, E(119)^36, E(119)^-32, E(119)^46, E(119)^43, E(119)^52, E(119)^-22, E(119)^39, E(119)^-25, E(119)^20, E(119)^13, E(119)^-9, E(119)^-50, E(119)^-38, E(119)^-37, E(119), E(119)^4, E(119)^-12, E(119)^16, E(119)^-19, E(119)^23, E(119)^-6, E(119)^-32, E(119)^39, E(119)^38, E(119)^33, E(119)^-59, E(119)^-11, E(119)^-10, E(119)^-5, E(119)^57, E(119)^-43, E(119)^6, E(119), E(119)^-15, E(119)^37, E(119)^-20, E(119)^27, E(119)^55, E(119)^-41, E(119)^16, E(119)^47, E(119)^10, E(119)^-38, E(119)^12, E(119)^59, E(119)^18, E(119)^26, E(119)^-9, E(119)^-33, E(119)^15, E(119)^45, E(119)^32, E(119)^-39, E(119)^-23, E(119)^29, E(119)^-29, E(119)^-1, E(119)^-6, E(119)^13, E(119)^-50, E(119)^-55, E(119)^2, E(119)^-58, E(119)^-4, E(119)^58, E(119)^-52, E(119)^24, E(119)^-40, E(119)^-2, E(119)^36, E(119)^11, E(119)^-53, E(119)^5, E(119)^-31, E(119)^-3, E(119)^-8, E(119)^23, E(119)^4, E(119)^48, E(119)^41, E(119)^-27, E(119)^30, E(119)^-24, E(119)^8, E(119)^-47, E(119)^-36, E(119)^50, E(119)^-12, E(119)^-44, E(119)^-18, E(119)^53, E(119)^40, E(119)^31, E(119)^46, E(119)^-25, E(119)^-37, E(119)^-19, E(119)^43, E(119)^-26, E(119)^-54, E(119)^3, E(119)^54, E(119)^9, E(119)^-48, E(119)^-57, E(119)^20, E(119)^-13, E(119)^44, E(119)^-22, E(119)^22, E(119)^-30, E(119)^-16, E(119)^-46, E(119)^25, E(119)^52, E(119)^19, E(119)^-45, 1], [1, 1, E(119)^17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^-17, E(119)^34, E(119)^34, E(119)^-34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-51, E(119)^21, E(119)^-49, E(119)^-56, E(119)^56, E(119)^-42, E(119)^14, E(119)^42, E(119)^-28, E(119)^-7, E(119)^28, E(119)^-14, E(119)^-21, E(119)^35, E(119)^7, E(119)^-35, E(119)^49, E(119)^-21, E(119)^14, E(119)^42, E(119)^-7, E(119)^56, E(119)^-35, E(119)^7, E(119)^-14, E(119)^49, E(119)^21, E(119)^-28, E(119)^-49, E(119)^35, E(119)^-42, E(119)^28, E(119)^-56, E(119)^-50, E(119)^44, E(119)^31, E(119)^57, E(119)^-10, E(119)^-25, E(119)^-22, E(119)^-40, E(119)^59, E(119)^29, E(119)^-38, E(119)^8, E(119)^-41, E(119)^11, E(119)^-57, E(119)^10, E(119)^-54, E(119)^27, E(119)^-44, E(119)^40, E(119)^46, E(119)^-9, E(119)^-2, E(119)^53, E(119)^33, E(119)^-37, E(119)^20, E(119)^58, E(119)^-12, E(119)^55, E(119)^4, E(119)^-5, E(119), E(119)^-31, E(119)^36, E(119)^52, E(119)^41, E(119)^-15, E(119)^-32, E(119)^-3, E(119)^-55, E(119)^24, E(119)^16, E(119)^13, E(119)^-30, E(119)^26, E(119)^-59, E(119)^5, E(119)^-58, E(119)^-8, E(119)^30, E(119)^45, E(119)^43, E(119)^-24, E(119)^-6, E(119)^-27, E(119)^18, E(119)^-48, E(119)^15, E(119)^-45, E(119)^54, E(119)^-53, E(119)^23, E(119)^-29, E(119)^-18, E(119)^-26, E(119)^39, E(119)^47, E(119)^-19, E(119)^2, E(119)^-47, E(119)^3, E(119)^48, E(119)^-33, E(119)^-11, E(119)^-36, E(119)^32, E(119)^-46, E(119)^-43, E(119)^-52, E(119)^22, E(119)^-39, E(119)^25, E(119)^-20, E(119)^-13, E(119)^9, E(119)^50, E(119)^38, E(119)^37, E(119)^-1, E(119)^-4, E(119)^12, E(119)^-16, E(119)^19, E(119)^-23, E(119)^6, E(119)^32, E(119)^-39, E(119)^-38, E(119)^-33, E(119)^59, E(119)^11, E(119)^10, E(119)^5, E(119)^-57, E(119)^43, E(119)^-6, E(119)^-1, E(119)^15, E(119)^-37, E(119)^20, E(119)^-27, E(119)^-55, E(119)^41, E(119)^-16, E(119)^-47, E(119)^-10, E(119)^38, E(119)^-12, E(119)^-59, E(119)^-18, E(119)^-26, E(119)^9, E(119)^33, E(119)^-15, E(119)^-45, E(119)^-32, E(119)^39, E(119)^23, E(119)^-29, E(119)^29, E(119), E(119)^6, E(119)^-13, E(119)^50, E(119)^55, E(119)^-2, E(119)^58, E(119)^4, E(119)^-58, E(119)^52, E(119)^-24, E(119)^40, E(119)^2, E(119)^-36, E(119)^-11, E(119)^53, E(119)^-5, E(119)^31, E(119)^3, E(119)^8, E(119)^-23, E(119)^-4, E(119)^-48, E(119)^-41, E(119)^27, E(119)^-30, E(119)^24, E(119)^-8, E(119)^47, E(119)^36, E(119)^-50, E(119)^12, E(119)^44, E(119)^18, E(119)^-53, E(119)^-40, E(119)^-31, E(119)^-46, E(119)^25, E(119)^37, E(119)^19, E(119)^-43, E(119)^26, E(119)^54, E(119)^-3, E(119)^-54, E(119)^-9, E(119)^48, E(119)^57, E(119)^-20, E(119)^13, E(119)^-44, E(119)^22, E(119)^-22, E(119)^30, E(119)^16, E(119)^46, E(119)^-25, E(119)^-52, E(119)^-19, E(119)^45, 1], [1, 1, E(119)^-17, E(119)^-51, E(119)^51, E(119)^34, E(119)^17, E(119)^-34, E(119)^-34, E(119)^34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^51, E(119)^21, E(119)^-49, E(119)^-56, E(119)^56, E(119)^-42, E(119)^14, E(119)^42, E(119)^-28, E(119)^-7, E(119)^28, E(119)^-14, E(119)^-21, E(119)^35, E(119)^7, E(119)^-35, E(119)^49, E(119)^-21, E(119)^14, E(119)^42, E(119)^-7, E(119)^56, E(119)^-35, E(119)^7, E(119)^-14, E(119)^49, E(119)^21, E(119)^-28, E(119)^-49, E(119)^35, E(119)^-42, E(119)^28, E(119)^-56, E(119), E(119)^-58, E(119)^-3, E(119)^6, E(119)^24, E(119)^-59, E(119)^29, E(119)^-23, E(119)^25, E(119)^-22, E(119)^-4, E(119)^-43, E(119)^27, E(119)^45, E(119)^-6, E(119)^-24, E(119)^-37, E(119)^-41, E(119)^58, E(119)^23, E(119)^-39, E(119)^-26, E(119)^-19, E(119)^-32, E(119)^16, E(119)^-54, E(119)^-48, E(119)^-44, E(119)^5, E(119)^-13, E(119)^38, E(119)^12, E(119)^-50, E(119)^3, E(119)^-15, E(119)^18, E(119)^-27, E(119)^36, E(119)^53, E(119)^31, E(119)^13, E(119)^-10, E(119)^33, E(119)^-55, E(119)^-47, E(119)^9, E(119)^-25, E(119)^-12, E(119)^44, E(119)^43, E(119)^47, E(119)^11, E(119)^-8, E(119)^10, E(119)^-57, E(119)^41, E(119)^52, E(119)^20, E(119)^-36, E(119)^-11, E(119)^37, E(119)^32, E(119)^40, E(119)^22, E(119)^-52, E(119)^-9, E(119)^-46, E(119)^30, E(119)^-2, E(119)^19, E(119)^-30, E(119)^-31, E(119)^-20, E(119)^-16, E(119)^-45, E(119)^15, E(119)^-53, E(119)^39, E(119)^8, E(119)^-18, E(119)^-29, E(119)^46, E(119)^59, E(119)^48, E(119)^55, E(119)^26, E(119)^-1, E(119)^4, E(119)^54, E(119)^50, E(119)^-38, E(119)^-5, E(119)^-33, E(119)^2, E(119)^-40, E(119)^57, E(119)^-53, E(119)^46, E(119)^-4, E(119)^-16, E(119)^25, E(119)^45, E(119)^-24, E(119)^-12, E(119)^-6, E(119)^-8, E(119)^-57, E(119)^50, E(119)^-36, E(119)^-54, E(119)^-48, E(119)^41, E(119)^13, E(119)^-27, E(119)^-33, E(119)^-30, E(119)^24, E(119)^4, E(119)^5, E(119)^-25, E(119)^-52, E(119)^-9, E(119)^26, E(119)^16, E(119)^36, E(119)^-11, E(119)^53, E(119)^-46, E(119)^40, E(119)^22, E(119)^-22, E(119)^-50, E(119)^57, E(119)^55, E(119)^-1, E(119)^-13, E(119)^-19, E(119)^-44, E(119)^38, E(119)^44, E(119)^18, E(119)^10, E(119)^23, E(119)^19, E(119)^15, E(119)^-45, E(119)^-32, E(119)^12, E(119)^-3, E(119)^-31, E(119)^-43, E(119)^-40, E(119)^-38, E(119)^20, E(119)^27, E(119)^-41, E(119)^-47, E(119)^-10, E(119)^43, E(119)^30, E(119)^-15, E(119), E(119)^-5, E(119)^-58, E(119)^52, E(119)^32, E(119)^-23, E(119)^3, E(119)^39, E(119)^59, E(119)^54, E(119)^2, E(119)^8, E(119)^9, E(119)^37, E(119)^31, E(119)^-37, E(119)^-26, E(119)^-20, E(119)^6, E(119)^48, E(119)^-55, E(119)^58, E(119)^-29, E(119)^29, E(119)^47, E(119)^33, E(119)^-39, E(119)^-59, E(119)^-18, E(119)^-2, E(119)^11, 1], [1, 1, E(119)^17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^-17, E(119)^34, E(119)^34, E(119)^-34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-51, E(119)^-21, E(119)^49, E(119)^56, E(119)^-56, E(119)^42, E(119)^-14, E(119)^-42, E(119)^28, E(119)^7, E(119)^-28, E(119)^14, E(119)^21, E(119)^-35, E(119)^-7, E(119)^35, E(119)^-49, E(119)^21, E(119)^-14, E(119)^-42, E(119)^7, E(119)^-56, E(119)^35, E(119)^-7, E(119)^14, E(119)^-49, E(119)^-21, E(119)^28, E(119)^49, E(119)^-35, E(119)^42, E(119)^-28, E(119)^56, E(119)^-1, E(119)^58, E(119)^3, E(119)^-6, E(119)^-24, E(119)^59, E(119)^-29, E(119)^23, E(119)^-25, E(119)^22, E(119)^4, E(119)^43, E(119)^-27, E(119)^-45, E(119)^6, E(119)^24, E(119)^37, E(119)^41, E(119)^-58, E(119)^-23, E(119)^39, E(119)^26, E(119)^19, E(119)^32, E(119)^-16, E(119)^54, E(119)^48, E(119)^44, E(119)^-5, E(119)^13, E(119)^-38, E(119)^-12, E(119)^50, E(119)^-3, E(119)^15, E(119)^-18, E(119)^27, E(119)^-36, E(119)^-53, E(119)^-31, E(119)^-13, E(119)^10, E(119)^-33, E(119)^55, E(119)^47, E(119)^-9, E(119)^25, E(119)^12, E(119)^-44, E(119)^-43, E(119)^-47, E(119)^-11, E(119)^8, E(119)^-10, E(119)^57, E(119)^-41, E(119)^-52, E(119)^-20, E(119)^36, E(119)^11, E(119)^-37, E(119)^-32, E(119)^-40, E(119)^-22, E(119)^52, E(119)^9, E(119)^46, E(119)^-30, E(119)^2, E(119)^-19, E(119)^30, E(119)^31, E(119)^20, E(119)^16, E(119)^45, E(119)^-15, E(119)^53, E(119)^-39, E(119)^-8, E(119)^18, E(119)^29, E(119)^-46, E(119)^-59, E(119)^-48, E(119)^-55, E(119)^-26, E(119), E(119)^-4, E(119)^-54, E(119)^-50, E(119)^38, E(119)^5, E(119)^33, E(119)^-2, E(119)^40, E(119)^-57, E(119)^53, E(119)^-46, E(119)^4, E(119)^16, E(119)^-25, E(119)^-45, E(119)^24, E(119)^12, E(119)^6, E(119)^8, E(119)^57, E(119)^-50, E(119)^36, E(119)^54, E(119)^48, E(119)^-41, E(119)^-13, E(119)^27, E(119)^33, E(119)^30, E(119)^-24, E(119)^-4, E(119)^-5, E(119)^25, E(119)^52, E(119)^9, E(119)^-26, E(119)^-16, E(119)^-36, E(119)^11, E(119)^-53, E(119)^46, E(119)^-40, E(119)^-22, E(119)^22, E(119)^50, E(119)^-57, E(119)^-55, E(119), E(119)^13, E(119)^19, E(119)^44, E(119)^-38, E(119)^-44, E(119)^-18, E(119)^-10, E(119)^-23, E(119)^-19, E(119)^-15, E(119)^45, E(119)^32, E(119)^-12, E(119)^3, E(119)^31, E(119)^43, E(119)^40, E(119)^38, E(119)^-20, E(119)^-27, E(119)^41, E(119)^47, E(119)^10, E(119)^-43, E(119)^-30, E(119)^15, E(119)^-1, E(119)^5, E(119)^58, E(119)^-52, E(119)^-32, E(119)^23, E(119)^-3, E(119)^-39, E(119)^-59, E(119)^-54, E(119)^-2, E(119)^-8, E(119)^-9, E(119)^-37, E(119)^-31, E(119)^37, E(119)^26, E(119)^20, E(119)^-6, E(119)^-48, E(119)^55, E(119)^-58, E(119)^29, E(119)^-29, E(119)^-47, E(119)^-33, E(119)^39, E(119)^59, E(119)^18, E(119)^2, E(119)^-11, 1], [1, 1, E(119)^-17, E(119)^-51, E(119)^51, E(119)^34, E(119)^17, E(119)^-34, E(119)^-34, E(119)^34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^51, E(119)^-14, E(119)^-7, E(119)^-42, E(119)^42, E(119)^28, E(119)^-49, E(119)^-28, E(119)^-21, E(119)^-35, E(119)^21, E(119)^49, E(119)^14, E(119)^56, E(119)^35, E(119)^-56, E(119)^7, E(119)^14, E(119)^-49, E(119)^-28, E(119)^-35, E(119)^42, E(119)^-56, E(119)^35, E(119)^49, E(119)^7, E(119)^-14, E(119)^-21, E(119)^-7, E(119)^56, E(119)^28, E(119)^21, E(119)^-42, E(119)^22, E(119)^33, E(119)^53, E(119)^13, E(119)^52, E(119)^11, E(119)^43, E(119)^-30, E(119)^-45, E(119)^-8, E(119)^31, E(119)^6, E(119)^-1, E(119)^38, E(119)^-13, E(119)^-52, E(119)^19, E(119)^50, E(119)^-33, E(119)^30, E(119)^-25, E(119)^23, E(119)^58, E(119)^10, E(119)^-5, E(119)^2, E(119)^15, E(119)^-16, E(119)^-9, E(119)^-48, E(119)^3, E(119)^26, E(119)^-29, E(119)^-53, E(119)^27, E(119)^39, E(119), E(119)^-41, E(119)^-24, E(119)^-32, E(119)^48, E(119)^18, E(119)^12, E(119)^-20, E(119)^37, E(119)^-40, E(119)^45, E(119)^-26, E(119)^16, E(119)^-6, E(119)^-37, E(119)^4, E(119)^-57, E(119)^-18, E(119)^55, E(119)^-50, E(119)^-46, E(119)^-36, E(119)^41, E(119)^-4, E(119)^-19, E(119)^-10, E(119)^47, E(119)^8, E(119)^46, E(119)^40, E(119)^59, E(119)^-54, E(119)^-44, E(119)^-58, E(119)^54, E(119)^32, E(119)^36, E(119)^5, E(119)^-38, E(119)^-27, E(119)^24, E(119)^25, E(119)^57, E(119)^-39, E(119)^-43, E(119)^-59, E(119)^-11, E(119)^-15, E(119)^20, E(119)^-23, E(119)^-22, E(119)^-31, E(119)^-2, E(119)^29, E(119)^-3, E(119)^9, E(119)^-12, E(119)^44, E(119)^-47, E(119)^-55, E(119)^24, E(119)^-59, E(119)^31, E(119)^5, E(119)^-45, E(119)^38, E(119)^-52, E(119)^-26, E(119)^-13, E(119)^-57, E(119)^55, E(119)^29, E(119)^41, E(119)^2, E(119)^15, E(119)^-50, E(119)^48, E(119), E(119)^-12, E(119)^54, E(119)^52, E(119)^-31, E(119)^-9, E(119)^45, E(119)^46, E(119)^40, E(119)^-23, E(119)^-5, E(119)^-41, E(119)^-4, E(119)^-24, E(119)^59, E(119)^47, E(119)^8, E(119)^-8, E(119)^-29, E(119)^-55, E(119)^20, E(119)^-22, E(119)^-48, E(119)^58, E(119)^-16, E(119)^3, E(119)^16, E(119)^39, E(119)^-18, E(119)^30, E(119)^-58, E(119)^-27, E(119)^-38, E(119)^10, E(119)^26, E(119)^53, E(119)^32, E(119)^6, E(119)^-47, E(119)^-3, E(119)^-36, E(119)^-1, E(119)^50, E(119)^37, E(119)^18, E(119)^-6, E(119)^-54, E(119)^27, E(119)^22, E(119)^9, E(119)^33, E(119)^-46, E(119)^-10, E(119)^-30, E(119)^-53, E(119)^25, E(119)^-11, E(119)^-2, E(119)^44, E(119)^57, E(119)^-40, E(119)^-19, E(119)^-32, E(119)^19, E(119)^23, E(119)^36, E(119)^13, E(119)^-15, E(119)^-20, E(119)^-33, E(119)^-43, E(119)^43, E(119)^-37, E(119)^12, E(119)^-25, E(119)^11, E(119)^-39, E(119)^-44, E(119)^4, 1], [1, 1, E(119)^17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^-17, E(119)^34, E(119)^34, E(119)^-34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-51, E(119)^14, E(119)^7, E(119)^42, E(119)^-42, E(119)^-28, E(119)^49, E(119)^28, E(119)^21, E(119)^35, E(119)^-21, E(119)^-49, E(119)^-14, E(119)^-56, E(119)^-35, E(119)^56, E(119)^-7, E(119)^-14, E(119)^49, E(119)^28, E(119)^35, E(119)^-42, E(119)^56, E(119)^-35, E(119)^-49, E(119)^-7, E(119)^14, E(119)^21, E(119)^7, E(119)^-56, E(119)^-28, E(119)^-21, E(119)^42, E(119)^-22, E(119)^-33, E(119)^-53, E(119)^-13, E(119)^-52, E(119)^-11, E(119)^-43, E(119)^30, E(119)^45, E(119)^8, E(119)^-31, E(119)^-6, E(119), E(119)^-38, E(119)^13, E(119)^52, E(119)^-19, E(119)^-50, E(119)^33, E(119)^-30, E(119)^25, E(119)^-23, E(119)^-58, E(119)^-10, E(119)^5, E(119)^-2, E(119)^-15, E(119)^16, E(119)^9, E(119)^48, E(119)^-3, E(119)^-26, E(119)^29, E(119)^53, E(119)^-27, E(119)^-39, E(119)^-1, E(119)^41, E(119)^24, E(119)^32, E(119)^-48, E(119)^-18, E(119)^-12, E(119)^20, E(119)^-37, E(119)^40, E(119)^-45, E(119)^26, E(119)^-16, E(119)^6, E(119)^37, E(119)^-4, E(119)^57, E(119)^18, E(119)^-55, E(119)^50, E(119)^46, E(119)^36, E(119)^-41, E(119)^4, E(119)^19, E(119)^10, E(119)^-47, E(119)^-8, E(119)^-46, E(119)^-40, E(119)^-59, E(119)^54, E(119)^44, E(119)^58, E(119)^-54, E(119)^-32, E(119)^-36, E(119)^-5, E(119)^38, E(119)^27, E(119)^-24, E(119)^-25, E(119)^-57, E(119)^39, E(119)^43, E(119)^59, E(119)^11, E(119)^15, E(119)^-20, E(119)^23, E(119)^22, E(119)^31, E(119)^2, E(119)^-29, E(119)^3, E(119)^-9, E(119)^12, E(119)^-44, E(119)^47, E(119)^55, E(119)^-24, E(119)^59, E(119)^-31, E(119)^-5, E(119)^45, E(119)^-38, E(119)^52, E(119)^26, E(119)^13, E(119)^57, E(119)^-55, E(119)^-29, E(119)^-41, E(119)^-2, E(119)^-15, E(119)^50, E(119)^-48, E(119)^-1, E(119)^12, E(119)^-54, E(119)^-52, E(119)^31, E(119)^9, E(119)^-45, E(119)^-46, E(119)^-40, E(119)^23, E(119)^5, E(119)^41, E(119)^4, E(119)^24, E(119)^-59, E(119)^-47, E(119)^-8, E(119)^8, E(119)^29, E(119)^55, E(119)^-20, E(119)^22, E(119)^48, E(119)^-58, E(119)^16, E(119)^-3, E(119)^-16, E(119)^-39, E(119)^18, E(119)^-30, E(119)^58, E(119)^27, E(119)^38, E(119)^-10, E(119)^-26, E(119)^-53, E(119)^-32, E(119)^-6, E(119)^47, E(119)^3, E(119)^36, E(119), E(119)^-50, E(119)^-37, E(119)^-18, E(119)^6, E(119)^54, E(119)^-27, E(119)^-22, E(119)^-9, E(119)^-33, E(119)^46, E(119)^10, E(119)^30, E(119)^53, E(119)^-25, E(119)^11, E(119)^2, E(119)^-44, E(119)^-57, E(119)^40, E(119)^19, E(119)^32, E(119)^-19, E(119)^-23, E(119)^-36, E(119)^-13, E(119)^15, E(119)^20, E(119)^33, E(119)^43, E(119)^-43, E(119)^37, E(119)^-12, E(119)^25, E(119)^-11, E(119)^39, E(119)^44, E(119)^-4, 1], [1, 1, E(119)^-17, E(119)^-51, E(119)^51, E(119)^34, E(119)^17, E(119)^-34, E(119)^-34, E(119)^34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^51, E(119)^14, E(119)^7, E(119)^42, E(119)^-42, E(119)^-28, E(119)^49, E(119)^28, E(119)^21, E(119)^35, E(119)^-21, E(119)^-49, E(119)^-14, E(119)^-56, E(119)^-35, E(119)^56, E(119)^-7, E(119)^-14, E(119)^49, E(119)^28, E(119)^35, E(119)^-42, E(119)^56, E(119)^-35, E(119)^-49, E(119)^-7, E(119)^14, E(119)^21, E(119)^7, E(119)^-56, E(119)^-28, E(119)^-21, E(119)^42, E(119)^29, E(119)^-16, E(119)^32, E(119)^55, E(119)^-18, E(119)^-45, E(119)^8, E(119)^47, E(119)^11, E(119)^-43, E(119)^3, E(119)^-57, E(119)^-50, E(119)^-4, E(119)^-55, E(119)^18, E(119)^-2, E(119), E(119)^16, E(119)^-47, E(119)^59, E(119)^-40, E(119)^44, E(119)^24, E(119)^-12, E(119)^-19, E(119)^36, E(119)^33, E(119)^26, E(119)^-20, E(119)^31, E(119)^-9, E(119)^-22, E(119)^-32, E(119)^41, E(119)^46, E(119)^50, E(119)^-27, E(119)^-10, E(119)^-53, E(119)^20, E(119)^-52, E(119)^5, E(119)^-48, E(119)^-54, E(119)^23, E(119)^-11, E(119)^9, E(119)^-33, E(119)^57, E(119)^54, E(119)^-38, E(119)^6, E(119)^52, E(119)^13, E(119)^-1, E(119)^-39, E(119)^-15, E(119)^27, E(119)^38, E(119)^2, E(119)^-24, E(119)^-30, E(119)^43, E(119)^39, E(119)^-23, E(119)^-25, E(119)^37, E(119)^-58, E(119)^-44, E(119)^-37, E(119)^53, E(119)^15, E(119)^12, E(119)^4, E(119)^-41, E(119)^10, E(119)^-59, E(119)^-6, E(119)^-46, E(119)^-8, E(119)^25, E(119)^45, E(119)^-36, E(119)^48, E(119)^40, E(119)^-29, E(119)^-3, E(119)^19, E(119)^22, E(119)^-31, E(119)^-26, E(119)^-5, E(119)^58, E(119)^30, E(119)^-13, E(119)^10, E(119)^25, E(119)^3, E(119)^12, E(119)^11, E(119)^-4, E(119)^18, E(119)^9, E(119)^-55, E(119)^6, E(119)^13, E(119)^22, E(119)^27, E(119)^-19, E(119)^36, E(119)^-1, E(119)^20, E(119)^50, E(119)^-5, E(119)^-37, E(119)^-18, E(119)^-3, E(119)^26, E(119)^-11, E(119)^39, E(119)^-23, E(119)^40, E(119)^-12, E(119)^-27, E(119)^38, E(119)^-10, E(119)^-25, E(119)^-30, E(119)^43, E(119)^-43, E(119)^-22, E(119)^-13, E(119)^48, E(119)^-29, E(119)^-20, E(119)^44, E(119)^33, E(119)^31, E(119)^-33, E(119)^46, E(119)^52, E(119)^-47, E(119)^-44, E(119)^-41, E(119)^4, E(119)^24, E(119)^-9, E(119)^32, E(119)^53, E(119)^-57, E(119)^30, E(119)^-31, E(119)^-15, E(119)^-50, E(119), E(119)^-54, E(119)^-52, E(119)^57, E(119)^37, E(119)^41, E(119)^29, E(119)^-26, E(119)^-16, E(119)^-39, E(119)^-24, E(119)^47, E(119)^-32, E(119)^-59, E(119)^45, E(119)^19, E(119)^58, E(119)^-6, E(119)^23, E(119)^2, E(119)^-53, E(119)^-2, E(119)^-40, E(119)^15, E(119)^55, E(119)^-36, E(119)^-48, E(119)^16, E(119)^-8, E(119)^8, E(119)^54, E(119)^5, E(119)^59, E(119)^-45, E(119)^-46, E(119)^-58, E(119)^-38, 1], [1, 1, E(119)^17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^-17, E(119)^34, E(119)^34, E(119)^-34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-51, E(119)^-14, E(119)^-7, E(119)^-42, E(119)^42, E(119)^28, E(119)^-49, E(119)^-28, E(119)^-21, E(119)^-35, E(119)^21, E(119)^49, E(119)^14, E(119)^56, E(119)^35, E(119)^-56, E(119)^7, E(119)^14, E(119)^-49, E(119)^-28, E(119)^-35, E(119)^42, E(119)^-56, E(119)^35, E(119)^49, E(119)^7, E(119)^-14, E(119)^-21, E(119)^-7, E(119)^56, E(119)^28, E(119)^21, E(119)^-42, E(119)^-29, E(119)^16, E(119)^-32, E(119)^-55, E(119)^18, E(119)^45, E(119)^-8, E(119)^-47, E(119)^-11, E(119)^43, E(119)^-3, E(119)^57, E(119)^50, E(119)^4, E(119)^55, E(119)^-18, E(119)^2, E(119)^-1, E(119)^-16, E(119)^47, E(119)^-59, E(119)^40, E(119)^-44, E(119)^-24, E(119)^12, E(119)^19, E(119)^-36, E(119)^-33, E(119)^-26, E(119)^20, E(119)^-31, E(119)^9, E(119)^22, E(119)^32, E(119)^-41, E(119)^-46, E(119)^-50, E(119)^27, E(119)^10, E(119)^53, E(119)^-20, E(119)^52, E(119)^-5, E(119)^48, E(119)^54, E(119)^-23, E(119)^11, E(119)^-9, E(119)^33, E(119)^-57, E(119)^-54, E(119)^38, E(119)^-6, E(119)^-52, E(119)^-13, E(119), E(119)^39, E(119)^15, E(119)^-27, E(119)^-38, E(119)^-2, E(119)^24, E(119)^30, E(119)^-43, E(119)^-39, E(119)^23, E(119)^25, E(119)^-37, E(119)^58, E(119)^44, E(119)^37, E(119)^-53, E(119)^-15, E(119)^-12, E(119)^-4, E(119)^41, E(119)^-10, E(119)^59, E(119)^6, E(119)^46, E(119)^8, E(119)^-25, E(119)^-45, E(119)^36, E(119)^-48, E(119)^-40, E(119)^29, E(119)^3, E(119)^-19, E(119)^-22, E(119)^31, E(119)^26, E(119)^5, E(119)^-58, E(119)^-30, E(119)^13, E(119)^-10, E(119)^-25, E(119)^-3, E(119)^-12, E(119)^-11, E(119)^4, E(119)^-18, E(119)^-9, E(119)^55, E(119)^-6, E(119)^-13, E(119)^-22, E(119)^-27, E(119)^19, E(119)^-36, E(119), E(119)^-20, E(119)^-50, E(119)^5, E(119)^37, E(119)^18, E(119)^3, E(119)^-26, E(119)^11, E(119)^-39, E(119)^23, E(119)^-40, E(119)^12, E(119)^27, E(119)^-38, E(119)^10, E(119)^25, E(119)^30, E(119)^-43, E(119)^43, E(119)^22, E(119)^13, E(119)^-48, E(119)^29, E(119)^20, E(119)^-44, E(119)^-33, E(119)^-31, E(119)^33, E(119)^-46, E(119)^-52, E(119)^47, E(119)^44, E(119)^41, E(119)^-4, E(119)^-24, E(119)^9, E(119)^-32, E(119)^-53, E(119)^57, E(119)^-30, E(119)^31, E(119)^15, E(119)^50, E(119)^-1, E(119)^54, E(119)^52, E(119)^-57, E(119)^-37, E(119)^-41, E(119)^-29, E(119)^26, E(119)^16, E(119)^39, E(119)^24, E(119)^-47, E(119)^32, E(119)^59, E(119)^-45, E(119)^-19, E(119)^-58, E(119)^6, E(119)^-23, E(119)^-2, E(119)^53, E(119)^2, E(119)^40, E(119)^-15, E(119)^-55, E(119)^36, E(119)^48, E(119)^-16, E(119)^8, E(119)^-8, E(119)^-54, E(119)^-5, E(119)^-59, E(119)^45, E(119)^46, E(119)^58, E(119)^38, 1], [1, 1, E(119)^-17, E(119)^-51, E(119)^51, E(119)^34, E(119)^17, E(119)^-34, E(119)^-34, E(119)^34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^51, E(119)^-7, E(119)^56, E(119)^-21, E(119)^21, E(119)^14, E(119)^35, E(119)^-14, E(119)^49, E(119)^42, E(119)^-49, E(119)^-35, E(119)^7, E(119)^28, E(119)^-42, E(119)^-28, E(119)^-56, E(119)^7, E(119)^35, E(119)^-14, E(119)^42, E(119)^21, E(119)^-28, E(119)^-42, E(119)^-35, E(119)^-56, E(119)^-7, E(119)^49, E(119)^56, E(119)^28, E(119)^14, E(119)^-49, E(119)^-21, E(119)^-6, E(119)^-9, E(119)^18, E(119)^-36, E(119)^-25, E(119)^-3, E(119)^-55, E(119)^19, E(119)^-31, E(119)^13, E(119)^24, E(119)^20, E(119)^-43, E(119)^-32, E(119)^36, E(119)^25, E(119)^-16, E(119)^8, E(119)^9, E(119)^-19, E(119)^-4, E(119)^37, E(119)^-5, E(119)^-46, E(119)^23, E(119)^-33, E(119)^50, E(119)^26, E(119)^-30, E(119)^-41, E(119)^10, E(119)^47, E(119)^-57, E(119)^-18, E(119)^-29, E(119)^11, E(119)^43, E(119)^22, E(119)^39, E(119)^52, E(119)^41, E(119)^-59, E(119)^40, E(119)^-27, E(119)^44, E(119)^-54, E(119)^31, E(119)^-47, E(119)^-26, E(119)^-20, E(119)^-44, E(119)^53, E(119)^48, E(119)^59, E(119)^-15, E(119)^-8, E(119)^45, E(119)^-1, E(119)^-22, E(119)^-53, E(119)^16, E(119)^46, E(119)^-2, E(119)^-13, E(119)^-45, E(119)^54, E(119)^38, E(119)^58, E(119)^12, E(119)^5, E(119)^-58, E(119)^-52, E(119), E(119)^-23, E(119)^32, E(119)^29, E(119)^-39, E(119)^4, E(119)^-48, E(119)^-11, E(119)^55, E(119)^-38, E(119)^3, E(119)^-50, E(119)^27, E(119)^-37, E(119)^6, E(119)^-24, E(119)^33, E(119)^57, E(119)^-10, E(119)^30, E(119)^-40, E(119)^-12, E(119)^2, E(119)^15, E(119)^-39, E(119)^-38, E(119)^24, E(119)^-23, E(119)^-31, E(119)^-32, E(119)^25, E(119)^-47, E(119)^36, E(119)^48, E(119)^-15, E(119)^57, E(119)^-22, E(119)^-33, E(119)^50, E(119)^-8, E(119)^41, E(119)^43, E(119)^-40, E(119)^-58, E(119)^-25, E(119)^-24, E(119)^-30, E(119)^31, E(119)^-45, E(119)^54, E(119)^-37, E(119)^23, E(119)^22, E(119)^-53, E(119)^39, E(119)^38, E(119)^-2, E(119)^-13, E(119)^13, E(119)^-57, E(119)^15, E(119)^27, E(119)^6, E(119)^-41, E(119)^-5, E(119)^26, E(119)^10, E(119)^-26, E(119)^11, E(119)^59, E(119)^-19, E(119)^5, E(119)^29, E(119)^32, E(119)^-46, E(119)^47, E(119)^18, E(119)^-52, E(119)^20, E(119)^2, E(119)^-10, E(119)^-1, E(119)^-43, E(119)^8, E(119)^44, E(119)^-59, E(119)^-20, E(119)^58, E(119)^-29, E(119)^-6, E(119)^30, E(119)^-9, E(119)^45, E(119)^46, E(119)^19, E(119)^-18, E(119)^4, E(119)^3, E(119)^33, E(119)^-12, E(119)^-48, E(119)^-54, E(119)^16, E(119)^52, E(119)^-16, E(119)^37, E(119), E(119)^-36, E(119)^-50, E(119)^-27, E(119)^9, E(119)^55, E(119)^-55, E(119)^-44, E(119)^40, E(119)^-4, E(119)^-3, E(119)^-11, E(119)^12, E(119)^53, 1], [1, 1, E(119)^17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^-17, E(119)^34, E(119)^34, E(119)^-34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-51, E(119)^7, E(119)^-56, E(119)^21, E(119)^-21, E(119)^-14, E(119)^-35, E(119)^14, E(119)^-49, E(119)^-42, E(119)^49, E(119)^35, E(119)^-7, E(119)^-28, E(119)^42, E(119)^28, E(119)^56, E(119)^-7, E(119)^-35, E(119)^14, E(119)^-42, E(119)^-21, E(119)^28, E(119)^42, E(119)^35, E(119)^56, E(119)^7, E(119)^-49, E(119)^-56, E(119)^-28, E(119)^-14, E(119)^49, E(119)^21, E(119)^6, E(119)^9, E(119)^-18, E(119)^36, E(119)^25, E(119)^3, E(119)^55, E(119)^-19, E(119)^31, E(119)^-13, E(119)^-24, E(119)^-20, E(119)^43, E(119)^32, E(119)^-36, E(119)^-25, E(119)^16, E(119)^-8, E(119)^-9, E(119)^19, E(119)^4, E(119)^-37, E(119)^5, E(119)^46, E(119)^-23, E(119)^33, E(119)^-50, E(119)^-26, E(119)^30, E(119)^41, E(119)^-10, E(119)^-47, E(119)^57, E(119)^18, E(119)^29, E(119)^-11, E(119)^-43, E(119)^-22, E(119)^-39, E(119)^-52, E(119)^-41, E(119)^59, E(119)^-40, E(119)^27, E(119)^-44, E(119)^54, E(119)^-31, E(119)^47, E(119)^26, E(119)^20, E(119)^44, E(119)^-53, E(119)^-48, E(119)^-59, E(119)^15, E(119)^8, E(119)^-45, E(119), E(119)^22, E(119)^53, E(119)^-16, E(119)^-46, E(119)^2, E(119)^13, E(119)^45, E(119)^-54, E(119)^-38, E(119)^-58, E(119)^-12, E(119)^-5, E(119)^58, E(119)^52, E(119)^-1, E(119)^23, E(119)^-32, E(119)^-29, E(119)^39, E(119)^-4, E(119)^48, E(119)^11, E(119)^-55, E(119)^38, E(119)^-3, E(119)^50, E(119)^-27, E(119)^37, E(119)^-6, E(119)^24, E(119)^-33, E(119)^-57, E(119)^10, E(119)^-30, E(119)^40, E(119)^12, E(119)^-2, E(119)^-15, E(119)^39, E(119)^38, E(119)^-24, E(119)^23, E(119)^31, E(119)^32, E(119)^-25, E(119)^47, E(119)^-36, E(119)^-48, E(119)^15, E(119)^-57, E(119)^22, E(119)^33, E(119)^-50, E(119)^8, E(119)^-41, E(119)^-43, E(119)^40, E(119)^58, E(119)^25, E(119)^24, E(119)^30, E(119)^-31, E(119)^45, E(119)^-54, E(119)^37, E(119)^-23, E(119)^-22, E(119)^53, E(119)^-39, E(119)^-38, E(119)^2, E(119)^13, E(119)^-13, E(119)^57, E(119)^-15, E(119)^-27, E(119)^-6, E(119)^41, E(119)^5, E(119)^-26, E(119)^-10, E(119)^26, E(119)^-11, E(119)^-59, E(119)^19, E(119)^-5, E(119)^-29, E(119)^-32, E(119)^46, E(119)^-47, E(119)^-18, E(119)^52, E(119)^-20, E(119)^-2, E(119)^10, E(119), E(119)^43, E(119)^-8, E(119)^-44, E(119)^59, E(119)^20, E(119)^-58, E(119)^29, E(119)^6, E(119)^-30, E(119)^9, E(119)^-45, E(119)^-46, E(119)^-19, E(119)^18, E(119)^-4, E(119)^-3, E(119)^-33, E(119)^12, E(119)^48, E(119)^54, E(119)^-16, E(119)^-52, E(119)^16, E(119)^-37, E(119)^-1, E(119)^36, E(119)^50, E(119)^27, E(119)^-9, E(119)^-55, E(119)^55, E(119)^44, E(119)^-40, E(119)^4, E(119)^3, E(119)^11, E(119)^-12, E(119)^-53, 1], [1, 1, E(119)^-17, E(119)^-51, E(119)^51, E(119)^34, E(119)^17, E(119)^-34, E(119)^-34, E(119)^34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^51, E(119)^7, E(119)^-56, E(119)^21, E(119)^-21, E(119)^-14, E(119)^-35, E(119)^14, E(119)^-49, E(119)^-42, E(119)^49, E(119)^35, E(119)^-7, E(119)^-28, E(119)^42, E(119)^28, E(119)^56, E(119)^-7, E(119)^-35, E(119)^14, E(119)^-42, E(119)^-21, E(119)^28, E(119)^42, E(119)^35, E(119)^56, E(119)^7, E(119)^-49, E(119)^-56, E(119)^-28, E(119)^-14, E(119)^49, E(119)^21, E(119)^57, E(119)^26, E(119)^-52, E(119)^-15, E(119)^59, E(119)^-31, E(119)^-13, E(119)^-2, E(119)^-3, E(119)^55, E(119)^10, E(119)^48, E(119)^-8, E(119)^-53, E(119)^15, E(119)^-59, E(119)^33, E(119)^43, E(119)^-26, E(119)^2, E(119)^38, E(119)^-54, E(119)^-12, E(119)^-39, E(119)^-40, E(119)^16, E(119), E(119)^-9, E(119)^47, E(119)^-27, E(119)^24, E(119)^-30, E(119)^6, E(119)^52, E(119)^-22, E(119)^-45, E(119)^8, E(119)^29, E(119)^46, E(119)^-18, E(119)^27, E(119)^25, E(119)^-23, E(119)^-41, E(119)^58, E(119)^37, E(119)^3, E(119)^30, E(119)^9, E(119)^-48, E(119)^-58, E(119)^32, E(119)^20, E(119)^-25, E(119)^-36, E(119)^-43, E(119)^-11, E(119)^-50, E(119)^-29, E(119)^-32, E(119)^-33, E(119)^39, E(119)^19, E(119)^-55, E(119)^11, E(119)^-37, E(119)^-4, E(119)^44, E(119)^5, E(119)^12, E(119)^-44, E(119)^18, E(119)^50, E(119)^40, E(119)^53, E(119)^22, E(119)^-46, E(119)^-38, E(119)^-20, E(119)^45, E(119)^13, E(119)^4, E(119)^31, E(119)^-1, E(119)^41, E(119)^54, E(119)^-57, E(119)^-10, E(119)^-16, E(119)^-6, E(119)^-24, E(119)^-47, E(119)^23, E(119)^-5, E(119)^-19, E(119)^36, E(119)^-46, E(119)^4, E(119)^10, E(119)^40, E(119)^-3, E(119)^-53, E(119)^-59, E(119)^30, E(119)^15, E(119)^20, E(119)^-36, E(119)^-6, E(119)^-29, E(119)^16, E(119), E(119)^-43, E(119)^27, E(119)^8, E(119)^23, E(119)^-44, E(119)^59, E(119)^-10, E(119)^47, E(119)^3, E(119)^11, E(119)^-37, E(119)^54, E(119)^-40, E(119)^29, E(119)^-32, E(119)^46, E(119)^-4, E(119)^19, E(119)^-55, E(119)^55, E(119)^6, E(119)^36, E(119)^41, E(119)^-57, E(119)^-27, E(119)^-12, E(119)^-9, E(119)^24, E(119)^9, E(119)^-45, E(119)^-25, E(119)^2, E(119)^12, E(119)^22, E(119)^53, E(119)^-39, E(119)^-30, E(119)^-52, E(119)^18, E(119)^48, E(119)^-19, E(119)^-24, E(119)^-50, E(119)^-8, E(119)^43, E(119)^58, E(119)^25, E(119)^-48, E(119)^44, E(119)^-22, E(119)^57, E(119)^-47, E(119)^26, E(119)^-11, E(119)^39, E(119)^-2, E(119)^52, E(119)^-38, E(119)^31, E(119)^-16, E(119)^-5, E(119)^-20, E(119)^37, E(119)^-33, E(119)^-18, E(119)^33, E(119)^-54, E(119)^50, E(119)^-15, E(119)^-1, E(119)^-41, E(119)^-26, E(119)^13, E(119)^-13, E(119)^-58, E(119)^-23, E(119)^38, E(119)^-31, E(119)^45, E(119)^5, E(119)^32, 1], [1, 1, E(119)^17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^-17, E(119)^34, E(119)^34, E(119)^-34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-51, E(119)^-7, E(119)^56, E(119)^-21, E(119)^21, E(119)^14, E(119)^35, E(119)^-14, E(119)^49, E(119)^42, E(119)^-49, E(119)^-35, E(119)^7, E(119)^28, E(119)^-42, E(119)^-28, E(119)^-56, E(119)^7, E(119)^35, E(119)^-14, E(119)^42, E(119)^21, E(119)^-28, E(119)^-42, E(119)^-35, E(119)^-56, E(119)^-7, E(119)^49, E(119)^56, E(119)^28, E(119)^14, E(119)^-49, E(119)^-21, E(119)^-57, E(119)^-26, E(119)^52, E(119)^15, E(119)^-59, E(119)^31, E(119)^13, E(119)^2, E(119)^3, E(119)^-55, E(119)^-10, E(119)^-48, E(119)^8, E(119)^53, E(119)^-15, E(119)^59, E(119)^-33, E(119)^-43, E(119)^26, E(119)^-2, E(119)^-38, E(119)^54, E(119)^12, E(119)^39, E(119)^40, E(119)^-16, E(119)^-1, E(119)^9, E(119)^-47, E(119)^27, E(119)^-24, E(119)^30, E(119)^-6, E(119)^-52, E(119)^22, E(119)^45, E(119)^-8, E(119)^-29, E(119)^-46, E(119)^18, E(119)^-27, E(119)^-25, E(119)^23, E(119)^41, E(119)^-58, E(119)^-37, E(119)^-3, E(119)^-30, E(119)^-9, E(119)^48, E(119)^58, E(119)^-32, E(119)^-20, E(119)^25, E(119)^36, E(119)^43, E(119)^11, E(119)^50, E(119)^29, E(119)^32, E(119)^33, E(119)^-39, E(119)^-19, E(119)^55, E(119)^-11, E(119)^37, E(119)^4, E(119)^-44, E(119)^-5, E(119)^-12, E(119)^44, E(119)^-18, E(119)^-50, E(119)^-40, E(119)^-53, E(119)^-22, E(119)^46, E(119)^38, E(119)^20, E(119)^-45, E(119)^-13, E(119)^-4, E(119)^-31, E(119), E(119)^-41, E(119)^-54, E(119)^57, E(119)^10, E(119)^16, E(119)^6, E(119)^24, E(119)^47, E(119)^-23, E(119)^5, E(119)^19, E(119)^-36, E(119)^46, E(119)^-4, E(119)^-10, E(119)^-40, E(119)^3, E(119)^53, E(119)^59, E(119)^-30, E(119)^-15, E(119)^-20, E(119)^36, E(119)^6, E(119)^29, E(119)^-16, E(119)^-1, E(119)^43, E(119)^-27, E(119)^-8, E(119)^-23, E(119)^44, E(119)^-59, E(119)^10, E(119)^-47, E(119)^-3, E(119)^-11, E(119)^37, E(119)^-54, E(119)^40, E(119)^-29, E(119)^32, E(119)^-46, E(119)^4, E(119)^-19, E(119)^55, E(119)^-55, E(119)^-6, E(119)^-36, E(119)^-41, E(119)^57, E(119)^27, E(119)^12, E(119)^9, E(119)^-24, E(119)^-9, E(119)^45, E(119)^25, E(119)^-2, E(119)^-12, E(119)^-22, E(119)^-53, E(119)^39, E(119)^30, E(119)^52, E(119)^-18, E(119)^-48, E(119)^19, E(119)^24, E(119)^50, E(119)^8, E(119)^-43, E(119)^-58, E(119)^-25, E(119)^48, E(119)^-44, E(119)^22, E(119)^-57, E(119)^47, E(119)^-26, E(119)^11, E(119)^-39, E(119)^2, E(119)^-52, E(119)^38, E(119)^-31, E(119)^16, E(119)^5, E(119)^20, E(119)^-37, E(119)^33, E(119)^18, E(119)^-33, E(119)^54, E(119)^-50, E(119)^15, E(119), E(119)^41, E(119)^26, E(119)^-13, E(119)^13, E(119)^58, E(119)^23, E(119)^-38, E(119)^31, E(119)^-45, E(119)^-5, E(119)^-32, 1], [1, -1, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^51, E(119)^17, -1*E(119)^17, -1*E(119)^-17, -1*E(119)^51, -1*E(119)^-51, -1*E(119)^-34, -1*E(119)^34, E(119)^-56, E(119)^-28, E(119)^-49, E(119)^49, E(119)^-7, E(119)^42, E(119)^7, E(119)^35, E(119)^-21, E(119)^-35, E(119)^-42, E(119)^56, E(119)^-14, E(119)^21, E(119)^14, E(119)^28, -1*E(119)^56, -1*E(119)^42, -1*E(119)^7, -1*E(119)^-21, -1*E(119)^49, -1*E(119)^14, -1*E(119)^21, -1*E(119)^-42, -1*E(119)^28, -1*E(119)^-56, -1*E(119)^35, -1*E(119)^-28, -1*E(119)^-14, -1*E(119)^-7, -1*E(119)^-35, -1*E(119)^-49, E(119)^3, E(119)^-55, E(119)^-9, E(119)^18, E(119)^-47, E(119)^-58, E(119)^-32, E(119)^50, E(119)^-44, E(119)^53, E(119)^-12, E(119)^-10, E(119)^-38, E(119)^16, E(119)^-18, E(119)^47, E(119)^8, E(119)^-4, E(119)^55, E(119)^-50, E(119)^2, E(119)^41, E(119)^-57, E(119)^23, E(119)^48, E(119)^-43, E(119)^-25, E(119)^-13, E(119)^15, E(119)^-39, E(119)^-5, E(119)^36, E(119)^-31, E(119)^9, E(119)^-45, E(119)^54, E(119)^38, E(119)^-11, E(119)^40, E(119)^-26, E(119)^39, E(119)^-30, E(119)^-20, E(119)^-46, E(119)^-22, E(119)^27, E(119)^44, E(119)^-36, E(119)^13, E(119)^10, E(119)^22, E(119)^33, E(119)^-24, E(119)^30, E(119)^-52, E(119)^4, E(119)^37, E(119)^-59, E(119)^11, E(119)^-33, E(119)^-8, E(119)^-23, E(119), E(119)^-53, E(119)^-37, E(119)^-27, E(119)^-19, E(119)^-29, E(119)^-6, E(119)^57, E(119)^29, E(119)^26, E(119)^59, E(119)^-48, E(119)^-16, E(119)^45, E(119)^-40, E(119)^-2, E(119)^24, E(119)^-54, E(119)^32, E(119)^19, E(119)^58, E(119)^25, E(119)^46, E(119)^-41, E(119)^-3, E(119)^12, E(119)^43, E(119)^31, E(119)^5, E(119)^-15, E(119)^20, E(119)^6, E(119)^-1, E(119)^52, -1*E(119)^-40, -1*E(119)^19, -1*E(119)^-12, -1*E(119)^-48, -1*E(119)^-44, -1*E(119)^16, -1*E(119)^47, -1*E(119)^-36, -1*E(119)^-18, -1*E(119)^-24, -1*E(119)^-52, -1*E(119)^31, -1*E(119)^11, -1*E(119)^-43, -1*E(119)^-25, -1*E(119)^4, -1*E(119)^39, -1*E(119)^38, -1*E(119)^20, -1*E(119)^29, -1*E(119)^-47, -1*E(119)^12, -1*E(119)^15, -1*E(119)^44, -1*E(119)^-37, -1*E(119)^-27, -1*E(119)^-41, -1*E(119)^48, -1*E(119)^-11, -1*E(119)^-33, -1*E(119)^40, -1*E(119)^-19, -1*E(119), -1*E(119)^-53, -1*E(119)^53, -1*E(119)^-31, -1*E(119)^52, -1*E(119)^46, -1*E(119)^-3, -1*E(119)^-39, -1*E(119)^-57, -1*E(119)^-13, -1*E(119)^-5, -1*E(119)^13, -1*E(119)^54, -1*E(119)^30, -1*E(119)^-50, -1*E(119)^57, -1*E(119)^45, -1*E(119)^-16, -1*E(119)^23, -1*E(119)^36, -1*E(119)^-9, -1*E(119)^26, -1*E(119)^-10, -1*E(119)^-1, -1*E(119)^5, -1*E(119)^-59, -1*E(119)^-38, -1*E(119)^-4, -1*E(119)^-22, -1*E(119)^-30, -1*E(119)^10, -1*E(119)^-29, -1*E(119)^-45, -1*E(119)^3, -1*E(119)^-15, -1*E(119)^-55, -1*E(119)^37, -1*E(119)^-23, -1*E(119)^50, -1*E(119)^9, -1*E(119)^-2, -1*E(119)^58, -1*E(119)^43, -1*E(119)^6, -1*E(119)^24, -1*E(119)^27, -1*E(119)^-8, -1*E(119)^-26, -1*E(119)^8, -1*E(119)^41, -1*E(119)^59, -1*E(119)^18, -1*E(119)^25, -1*E(119)^-46, -1*E(119)^55, -1*E(119)^32, -1*E(119)^-32, -1*E(119)^22, -1*E(119)^-20, -1*E(119)^2, -1*E(119)^-58, -1*E(119)^-54, -1*E(119)^-6, -1*E(119)^33, 1], [1, -1, E(119)^51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-51, E(119)^-17, -1*E(119)^-17, -1*E(119)^17, -1*E(119)^-51, -1*E(119)^51, -1*E(119)^34, -1*E(119)^-34, E(119)^56, E(119)^28, E(119)^49, E(119)^-49, E(119)^7, E(119)^-42, E(119)^-7, E(119)^-35, E(119)^21, E(119)^35, E(119)^42, E(119)^-56, E(119)^14, E(119)^-21, E(119)^-14, E(119)^-28, -1*E(119)^-56, -1*E(119)^-42, -1*E(119)^-7, -1*E(119)^21, -1*E(119)^-49, -1*E(119)^-14, -1*E(119)^-21, -1*E(119)^42, -1*E(119)^-28, -1*E(119)^56, -1*E(119)^-35, -1*E(119)^28, -1*E(119)^14, -1*E(119)^7, -1*E(119)^35, -1*E(119)^49, E(119)^-3, E(119)^55, E(119)^9, E(119)^-18, E(119)^47, E(119)^58, E(119)^32, E(119)^-50, E(119)^44, E(119)^-53, E(119)^12, E(119)^10, E(119)^38, E(119)^-16, E(119)^18, E(119)^-47, E(119)^-8, E(119)^4, E(119)^-55, E(119)^50, E(119)^-2, E(119)^-41, E(119)^57, E(119)^-23, E(119)^-48, E(119)^43, E(119)^25, E(119)^13, E(119)^-15, E(119)^39, E(119)^5, E(119)^-36, E(119)^31, E(119)^-9, E(119)^45, E(119)^-54, E(119)^-38, E(119)^11, E(119)^-40, E(119)^26, E(119)^-39, E(119)^30, E(119)^20, E(119)^46, E(119)^22, E(119)^-27, E(119)^-44, E(119)^36, E(119)^-13, E(119)^-10, E(119)^-22, E(119)^-33, E(119)^24, E(119)^-30, E(119)^52, E(119)^-4, E(119)^-37, E(119)^59, E(119)^-11, E(119)^33, E(119)^8, E(119)^23, E(119)^-1, E(119)^53, E(119)^37, E(119)^27, E(119)^19, E(119)^29, E(119)^6, E(119)^-57, E(119)^-29, E(119)^-26, E(119)^-59, E(119)^48, E(119)^16, E(119)^-45, E(119)^40, E(119)^2, E(119)^-24, E(119)^54, E(119)^-32, E(119)^-19, E(119)^-58, E(119)^-25, E(119)^-46, E(119)^41, E(119)^3, E(119)^-12, E(119)^-43, E(119)^-31, E(119)^-5, E(119)^15, E(119)^-20, E(119)^-6, E(119), E(119)^-52, -1*E(119)^40, -1*E(119)^-19, -1*E(119)^12, -1*E(119)^48, -1*E(119)^44, -1*E(119)^-16, -1*E(119)^-47, -1*E(119)^36, -1*E(119)^18, -1*E(119)^24, -1*E(119)^52, -1*E(119)^-31, -1*E(119)^-11, -1*E(119)^43, -1*E(119)^25, -1*E(119)^-4, -1*E(119)^-39, -1*E(119)^-38, -1*E(119)^-20, -1*E(119)^-29, -1*E(119)^47, -1*E(119)^-12, -1*E(119)^-15, -1*E(119)^-44, -1*E(119)^37, -1*E(119)^27, -1*E(119)^41, -1*E(119)^-48, -1*E(119)^11, -1*E(119)^33, -1*E(119)^-40, -1*E(119)^19, -1*E(119)^-1, -1*E(119)^53, -1*E(119)^-53, -1*E(119)^31, -1*E(119)^-52, -1*E(119)^-46, -1*E(119)^3, -1*E(119)^39, -1*E(119)^57, -1*E(119)^13, -1*E(119)^5, -1*E(119)^-13, -1*E(119)^-54, -1*E(119)^-30, -1*E(119)^50, -1*E(119)^-57, -1*E(119)^-45, -1*E(119)^16, -1*E(119)^-23, -1*E(119)^-36, -1*E(119)^9, -1*E(119)^-26, -1*E(119)^10, -1*E(119), -1*E(119)^-5, -1*E(119)^59, -1*E(119)^38, -1*E(119)^4, -1*E(119)^22, -1*E(119)^30, -1*E(119)^-10, -1*E(119)^29, -1*E(119)^45, -1*E(119)^-3, -1*E(119)^15, -1*E(119)^55, -1*E(119)^-37, -1*E(119)^23, -1*E(119)^-50, -1*E(119)^-9, -1*E(119)^2, -1*E(119)^-58, -1*E(119)^-43, -1*E(119)^-6, -1*E(119)^-24, -1*E(119)^-27, -1*E(119)^8, -1*E(119)^26, -1*E(119)^-8, -1*E(119)^-41, -1*E(119)^-59, -1*E(119)^-18, -1*E(119)^-25, -1*E(119)^46, -1*E(119)^-55, -1*E(119)^-32, -1*E(119)^32, -1*E(119)^-22, -1*E(119)^20, -1*E(119)^-2, -1*E(119)^58, -1*E(119)^54, -1*E(119)^6, -1*E(119)^-33, 1], [1, -1, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^51, E(119)^17, -1*E(119)^17, -1*E(119)^-17, -1*E(119)^51, -1*E(119)^-51, -1*E(119)^-34, -1*E(119)^34, E(119)^56, E(119)^28, E(119)^49, E(119)^-49, E(119)^7, E(119)^-42, E(119)^-7, E(119)^-35, E(119)^21, E(119)^35, E(119)^42, E(119)^-56, E(119)^14, E(119)^-21, E(119)^-14, E(119)^-28, -1*E(119)^-56, -1*E(119)^-42, -1*E(119)^-7, -1*E(119)^21, -1*E(119)^-49, -1*E(119)^-14, -1*E(119)^-21, -1*E(119)^42, -1*E(119)^-28, -1*E(119)^56, -1*E(119)^-35, -1*E(119)^28, -1*E(119)^14, -1*E(119)^7, -1*E(119)^35, -1*E(119)^49, E(119)^31, E(119)^-13, E(119)^26, E(119)^-52, E(119)^30, E(119)^-44, E(119)^-53, E(119), E(119)^-58, E(119)^32, E(119)^-5, E(119)^-24, E(119)^4, E(119)^-33, E(119)^52, E(119)^-30, E(119)^43, E(119)^38, E(119)^13, E(119)^-1, E(119)^-19, E(119)^27, E(119)^6, E(119)^-40, E(119)^20, E(119)^-8, E(119)^59, E(119)^-55, E(119)^36, E(119)^-46, E(119)^-12, E(119)^15, E(119)^-3, E(119)^-26, E(119)^11, E(119)^-37, E(119)^-4, E(119)^45, E(119)^-23, E(119)^9, E(119)^46, E(119)^47, E(119)^-48, E(119)^-39, E(119)^-29, E(119)^41, E(119)^58, E(119)^-15, E(119)^55, E(119)^24, E(119)^29, E(119)^-16, E(119)^-10, E(119)^-47, E(119)^18, E(119)^-38, E(119)^-54, E(119)^25, E(119)^-45, E(119)^16, E(119)^-43, E(119)^40, E(119)^50, E(119)^-32, E(119)^54, E(119)^-41, E(119)^2, E(119)^-22, E(119)^57, E(119)^-6, E(119)^22, E(119)^-9, E(119)^-25, E(119)^-20, E(119)^33, E(119)^-11, E(119)^23, E(119)^19, E(119)^10, E(119)^37, E(119)^53, E(119)^-2, E(119)^44, E(119)^-59, E(119)^39, E(119)^-27, E(119)^-31, E(119)^5, E(119)^8, E(119)^3, E(119)^12, E(119)^-36, E(119)^48, E(119)^-57, E(119)^-50, E(119)^-18, -1*E(119)^23, -1*E(119)^-2, -1*E(119)^-5, -1*E(119)^-20, -1*E(119)^-58, -1*E(119)^-33, -1*E(119)^-30, -1*E(119)^-15, -1*E(119)^52, -1*E(119)^-10, -1*E(119)^18, -1*E(119)^3, -1*E(119)^-45, -1*E(119)^-8, -1*E(119)^59, -1*E(119)^-38, -1*E(119)^46, -1*E(119)^-4, -1*E(119)^48, -1*E(119)^22, -1*E(119)^30, -1*E(119)^5, -1*E(119)^36, -1*E(119)^58, -1*E(119)^54, -1*E(119)^-41, -1*E(119)^-27, -1*E(119)^20, -1*E(119)^45, -1*E(119)^16, -1*E(119)^-23, -1*E(119)^2, -1*E(119)^50, -1*E(119)^-32, -1*E(119)^32, -1*E(119)^-3, -1*E(119)^-18, -1*E(119)^39, -1*E(119)^-31, -1*E(119)^-46, -1*E(119)^6, -1*E(119)^-55, -1*E(119)^-12, -1*E(119)^55, -1*E(119)^-37, -1*E(119)^-47, -1*E(119)^-1, -1*E(119)^-6, -1*E(119)^-11, -1*E(119)^33, -1*E(119)^-40, -1*E(119)^15, -1*E(119)^26, -1*E(119)^-9, -1*E(119)^-24, -1*E(119)^-50, -1*E(119)^12, -1*E(119)^25, -1*E(119)^4, -1*E(119)^38, -1*E(119)^-29, -1*E(119)^47, -1*E(119)^24, -1*E(119)^-22, -1*E(119)^11, -1*E(119)^31, -1*E(119)^-36, -1*E(119)^-13, -1*E(119)^-54, -1*E(119)^40, -1*E(119), -1*E(119)^-26, -1*E(119)^19, -1*E(119)^44, -1*E(119)^8, -1*E(119)^-57, -1*E(119)^10, -1*E(119)^41, -1*E(119)^-43, -1*E(119)^9, -1*E(119)^43, -1*E(119)^27, -1*E(119)^-25, -1*E(119)^-52, -1*E(119)^-59, -1*E(119)^-39, -1*E(119)^13, -1*E(119)^53, -1*E(119)^-53, -1*E(119)^29, -1*E(119)^-48, -1*E(119)^-19, -1*E(119)^-44, -1*E(119)^37, -1*E(119)^57, -1*E(119)^-16, 1], [1, -1, E(119)^51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-51, E(119)^-17, -1*E(119)^-17, -1*E(119)^17, -1*E(119)^-51, -1*E(119)^51, -1*E(119)^34, -1*E(119)^-34, E(119)^-56, E(119)^-28, E(119)^-49, E(119)^49, E(119)^-7, E(119)^42, E(119)^7, E(119)^35, E(119)^-21, E(119)^-35, E(119)^-42, E(119)^56, E(119)^-14, E(119)^21, E(119)^14, E(119)^28, -1*E(119)^56, -1*E(119)^42, -1*E(119)^7, -1*E(119)^-21, -1*E(119)^49, -1*E(119)^14, -1*E(119)^21, -1*E(119)^-42, -1*E(119)^28, -1*E(119)^-56, -1*E(119)^35, -1*E(119)^-28, -1*E(119)^-14, -1*E(119)^-7, -1*E(119)^-35, -1*E(119)^-49, E(119)^-31, E(119)^13, E(119)^-26, E(119)^52, E(119)^-30, E(119)^44, E(119)^53, E(119)^-1, E(119)^58, E(119)^-32, E(119)^5, E(119)^24, E(119)^-4, E(119)^33, E(119)^-52, E(119)^30, E(119)^-43, E(119)^-38, E(119)^-13, E(119), E(119)^19, E(119)^-27, E(119)^-6, E(119)^40, E(119)^-20, E(119)^8, E(119)^-59, E(119)^55, E(119)^-36, E(119)^46, E(119)^12, E(119)^-15, E(119)^3, E(119)^26, E(119)^-11, E(119)^37, E(119)^4, E(119)^-45, E(119)^23, E(119)^-9, E(119)^-46, E(119)^-47, E(119)^48, E(119)^39, E(119)^29, E(119)^-41, E(119)^-58, E(119)^15, E(119)^-55, E(119)^-24, E(119)^-29, E(119)^16, E(119)^10, E(119)^47, E(119)^-18, E(119)^38, E(119)^54, E(119)^-25, E(119)^45, E(119)^-16, E(119)^43, E(119)^-40, E(119)^-50, E(119)^32, E(119)^-54, E(119)^41, E(119)^-2, E(119)^22, E(119)^-57, E(119)^6, E(119)^-22, E(119)^9, E(119)^25, E(119)^20, E(119)^-33, E(119)^11, E(119)^-23, E(119)^-19, E(119)^-10, E(119)^-37, E(119)^-53, E(119)^2, E(119)^-44, E(119)^59, E(119)^-39, E(119)^27, E(119)^31, E(119)^-5, E(119)^-8, E(119)^-3, E(119)^-12, E(119)^36, E(119)^-48, E(119)^57, E(119)^50, E(119)^18, -1*E(119)^-23, -1*E(119)^2, -1*E(119)^5, -1*E(119)^20, -1*E(119)^58, -1*E(119)^33, -1*E(119)^30, -1*E(119)^15, -1*E(119)^-52, -1*E(119)^10, -1*E(119)^-18, -1*E(119)^-3, -1*E(119)^45, -1*E(119)^8, -1*E(119)^-59, -1*E(119)^38, -1*E(119)^-46, -1*E(119)^4, -1*E(119)^-48, -1*E(119)^-22, -1*E(119)^-30, -1*E(119)^-5, -1*E(119)^-36, -1*E(119)^-58, -1*E(119)^-54, -1*E(119)^41, -1*E(119)^27, -1*E(119)^-20, -1*E(119)^-45, -1*E(119)^-16, -1*E(119)^23, -1*E(119)^-2, -1*E(119)^-50, -1*E(119)^32, -1*E(119)^-32, -1*E(119)^3, -1*E(119)^18, -1*E(119)^-39, -1*E(119)^31, -1*E(119)^46, -1*E(119)^-6, -1*E(119)^55, -1*E(119)^12, -1*E(119)^-55, -1*E(119)^37, -1*E(119)^47, -1*E(119), -1*E(119)^6, -1*E(119)^11, -1*E(119)^-33, -1*E(119)^40, -1*E(119)^-15, -1*E(119)^-26, -1*E(119)^9, -1*E(119)^24, -1*E(119)^50, -1*E(119)^-12, -1*E(119)^-25, -1*E(119)^-4, -1*E(119)^-38, -1*E(119)^29, -1*E(119)^-47, -1*E(119)^-24, -1*E(119)^22, -1*E(119)^-11, -1*E(119)^-31, -1*E(119)^36, -1*E(119)^13, -1*E(119)^54, -1*E(119)^-40, -1*E(119)^-1, -1*E(119)^26, -1*E(119)^-19, -1*E(119)^-44, -1*E(119)^-8, -1*E(119)^57, -1*E(119)^-10, -1*E(119)^-41, -1*E(119)^43, -1*E(119)^-9, -1*E(119)^-43, -1*E(119)^-27, -1*E(119)^25, -1*E(119)^52, -1*E(119)^59, -1*E(119)^39, -1*E(119)^-13, -1*E(119)^-53, -1*E(119)^53, -1*E(119)^-29, -1*E(119)^48, -1*E(119)^19, -1*E(119)^44, -1*E(119)^-37, -1*E(119)^-57, -1*E(119)^16, 1], [1, -1, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^51, E(119)^17, -1*E(119)^17, -1*E(119)^-17, -1*E(119)^51, -1*E(119)^-51, -1*E(119)^-34, -1*E(119)^34, E(119)^-49, E(119)^35, E(119)^-28, E(119)^28, E(119)^-21, E(119)^7, E(119)^21, E(119)^-14, E(119)^56, E(119)^14, E(119)^-7, E(119)^49, E(119)^-42, E(119)^-56, E(119)^42, E(119)^-35, -1*E(119)^49, -1*E(119)^7, -1*E(119)^21, -1*E(119)^56, -1*E(119)^28, -1*E(119)^42, -1*E(119)^-56, -1*E(119)^-7, -1*E(119)^-35, -1*E(119)^-49, -1*E(119)^-14, -1*E(119)^35, -1*E(119)^-42, -1*E(119)^-21, -1*E(119)^14, -1*E(119)^-28, E(119)^-25, E(119)^22, E(119)^-44, E(119)^-31, E(119)^-5, E(119)^47, E(119)^-11, E(119)^-20, E(119)^-30, E(119)^-45, E(119)^-19, E(119)^4, E(119)^39, E(119)^-54, E(119)^31, E(119)^5, E(119)^-27, E(119)^-46, E(119)^-22, E(119)^20, E(119)^23, E(119)^55, E(119)^-1, E(119)^-33, E(119)^-43, E(119)^41, E(119)^10, E(119)^29, E(119)^-6, E(119)^-32, E(119)^2, E(119)^57, E(119)^-59, E(119)^44, E(119)^18, E(119)^26, E(119)^-39, E(119)^52, E(119)^-16, E(119)^58, E(119)^32, E(119)^12, E(119)^8, E(119)^-53, E(119)^-15, E(119)^13, E(119)^30, E(119)^-57, E(119)^-29, E(119)^-4, E(119)^15, E(119)^-37, E(119)^-38, E(119)^-12, E(119)^-3, E(119)^46, E(119)^9, E(119)^-24, E(119)^-52, E(119)^37, E(119)^27, E(119)^33, E(119)^-48, E(119)^45, E(119)^-9, E(119)^-13, E(119)^-40, E(119)^-36, E(119)^50, E(119), E(119)^36, E(119)^-58, E(119)^24, E(119)^43, E(119)^54, E(119)^-18, E(119)^16, E(119)^-23, E(119)^38, E(119)^-26, E(119)^11, E(119)^40, E(119)^-47, E(119)^-10, E(119)^53, E(119)^-55, E(119)^25, E(119)^19, E(119)^-41, E(119)^59, E(119)^-2, E(119)^6, E(119)^-8, E(119)^-50, E(119)^48, E(119)^3, -1*E(119)^16, -1*E(119)^40, -1*E(119)^-19, -1*E(119)^43, -1*E(119)^-30, -1*E(119)^-54, -1*E(119)^5, -1*E(119)^-57, -1*E(119)^31, -1*E(119)^-38, -1*E(119)^-3, -1*E(119)^59, -1*E(119)^-52, -1*E(119)^41, -1*E(119)^10, -1*E(119)^46, -1*E(119)^32, -1*E(119)^-39, -1*E(119)^-8, -1*E(119)^36, -1*E(119)^-5, -1*E(119)^19, -1*E(119)^-6, -1*E(119)^30, -1*E(119)^-9, -1*E(119)^-13, -1*E(119)^-55, -1*E(119)^-43, -1*E(119)^52, -1*E(119)^37, -1*E(119)^-16, -1*E(119)^-40, -1*E(119)^-48, -1*E(119)^45, -1*E(119)^-45, -1*E(119)^-59, -1*E(119)^3, -1*E(119)^53, -1*E(119)^25, -1*E(119)^-32, -1*E(119)^-1, -1*E(119)^29, -1*E(119)^2, -1*E(119)^-29, -1*E(119)^26, -1*E(119)^-12, -1*E(119)^20, -1*E(119), -1*E(119)^-18, -1*E(119)^54, -1*E(119)^-33, -1*E(119)^57, -1*E(119)^-44, -1*E(119)^-58, -1*E(119)^4, -1*E(119)^48, -1*E(119)^-2, -1*E(119)^-24, -1*E(119)^39, -1*E(119)^-46, -1*E(119)^-15, -1*E(119)^12, -1*E(119)^-4, -1*E(119)^-36, -1*E(119)^18, -1*E(119)^-25, -1*E(119)^6, -1*E(119)^22, -1*E(119)^9, -1*E(119)^33, -1*E(119)^-20, -1*E(119)^44, -1*E(119)^-23, -1*E(119)^-47, -1*E(119)^-41, -1*E(119)^-50, -1*E(119)^38, -1*E(119)^13, -1*E(119)^27, -1*E(119)^58, -1*E(119)^-27, -1*E(119)^55, -1*E(119)^24, -1*E(119)^-31, -1*E(119)^-10, -1*E(119)^-53, -1*E(119)^-22, -1*E(119)^11, -1*E(119)^-11, -1*E(119)^15, -1*E(119)^8, -1*E(119)^23, -1*E(119)^47, -1*E(119)^-26, -1*E(119)^50, -1*E(119)^-37, 1], [1, -1, E(119)^51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-51, E(119)^-17, -1*E(119)^-17, -1*E(119)^17, -1*E(119)^-51, -1*E(119)^51, -1*E(119)^34, -1*E(119)^-34, E(119)^49, E(119)^-35, E(119)^28, E(119)^-28, E(119)^21, E(119)^-7, E(119)^-21, E(119)^14, E(119)^-56, E(119)^-14, E(119)^7, E(119)^-49, E(119)^42, E(119)^56, E(119)^-42, E(119)^35, -1*E(119)^-49, -1*E(119)^-7, -1*E(119)^-21, -1*E(119)^-56, -1*E(119)^-28, -1*E(119)^-42, -1*E(119)^56, -1*E(119)^7, -1*E(119)^35, -1*E(119)^49, -1*E(119)^14, -1*E(119)^-35, -1*E(119)^42, -1*E(119)^21, -1*E(119)^-14, -1*E(119)^28, E(119)^25, E(119)^-22, E(119)^44, E(119)^31, E(119)^5, E(119)^-47, E(119)^11, E(119)^20, E(119)^30, E(119)^45, E(119)^19, E(119)^-4, E(119)^-39, E(119)^54, E(119)^-31, E(119)^-5, E(119)^27, E(119)^46, E(119)^22, E(119)^-20, E(119)^-23, E(119)^-55, E(119), E(119)^33, E(119)^43, E(119)^-41, E(119)^-10, E(119)^-29, E(119)^6, E(119)^32, E(119)^-2, E(119)^-57, E(119)^59, E(119)^-44, E(119)^-18, E(119)^-26, E(119)^39, E(119)^-52, E(119)^16, E(119)^-58, E(119)^-32, E(119)^-12, E(119)^-8, E(119)^53, E(119)^15, E(119)^-13, E(119)^-30, E(119)^57, E(119)^29, E(119)^4, E(119)^-15, E(119)^37, E(119)^38, E(119)^12, E(119)^3, E(119)^-46, E(119)^-9, E(119)^24, E(119)^52, E(119)^-37, E(119)^-27, E(119)^-33, E(119)^48, E(119)^-45, E(119)^9, E(119)^13, E(119)^40, E(119)^36, E(119)^-50, E(119)^-1, E(119)^-36, E(119)^58, E(119)^-24, E(119)^-43, E(119)^-54, E(119)^18, E(119)^-16, E(119)^23, E(119)^-38, E(119)^26, E(119)^-11, E(119)^-40, E(119)^47, E(119)^10, E(119)^-53, E(119)^55, E(119)^-25, E(119)^-19, E(119)^41, E(119)^-59, E(119)^2, E(119)^-6, E(119)^8, E(119)^50, E(119)^-48, E(119)^-3, -1*E(119)^-16, -1*E(119)^-40, -1*E(119)^19, -1*E(119)^-43, -1*E(119)^30, -1*E(119)^54, -1*E(119)^-5, -1*E(119)^57, -1*E(119)^-31, -1*E(119)^38, -1*E(119)^3, -1*E(119)^-59, -1*E(119)^52, -1*E(119)^-41, -1*E(119)^-10, -1*E(119)^-46, -1*E(119)^-32, -1*E(119)^39, -1*E(119)^8, -1*E(119)^-36, -1*E(119)^5, -1*E(119)^-19, -1*E(119)^6, -1*E(119)^-30, -1*E(119)^9, -1*E(119)^13, -1*E(119)^55, -1*E(119)^43, -1*E(119)^-52, -1*E(119)^-37, -1*E(119)^16, -1*E(119)^40, -1*E(119)^48, -1*E(119)^-45, -1*E(119)^45, -1*E(119)^59, -1*E(119)^-3, -1*E(119)^-53, -1*E(119)^-25, -1*E(119)^32, -1*E(119), -1*E(119)^-29, -1*E(119)^-2, -1*E(119)^29, -1*E(119)^-26, -1*E(119)^12, -1*E(119)^-20, -1*E(119)^-1, -1*E(119)^18, -1*E(119)^-54, -1*E(119)^33, -1*E(119)^-57, -1*E(119)^44, -1*E(119)^58, -1*E(119)^-4, -1*E(119)^-48, -1*E(119)^2, -1*E(119)^24, -1*E(119)^-39, -1*E(119)^46, -1*E(119)^15, -1*E(119)^-12, -1*E(119)^4, -1*E(119)^36, -1*E(119)^-18, -1*E(119)^25, -1*E(119)^-6, -1*E(119)^-22, -1*E(119)^-9, -1*E(119)^-33, -1*E(119)^20, -1*E(119)^-44, -1*E(119)^23, -1*E(119)^47, -1*E(119)^41, -1*E(119)^50, -1*E(119)^-38, -1*E(119)^-13, -1*E(119)^-27, -1*E(119)^-58, -1*E(119)^27, -1*E(119)^-55, -1*E(119)^-24, -1*E(119)^31, -1*E(119)^10, -1*E(119)^53, -1*E(119)^22, -1*E(119)^-11, -1*E(119)^11, -1*E(119)^-15, -1*E(119)^-8, -1*E(119)^-23, -1*E(119)^-47, -1*E(119)^26, -1*E(119)^-50, -1*E(119)^37, 1], [1, -1, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^51, E(119)^17, -1*E(119)^17, -1*E(119)^-17, -1*E(119)^51, -1*E(119)^-51, -1*E(119)^-34, -1*E(119)^34, E(119)^49, E(119)^-35, E(119)^28, E(119)^-28, E(119)^21, E(119)^-7, E(119)^-21, E(119)^14, E(119)^-56, E(119)^-14, E(119)^7, E(119)^-49, E(119)^42, E(119)^56, E(119)^-42, E(119)^35, -1*E(119)^-49, -1*E(119)^-7, -1*E(119)^-21, -1*E(119)^-56, -1*E(119)^-28, -1*E(119)^-42, -1*E(119)^56, -1*E(119)^7, -1*E(119)^35, -1*E(119)^49, -1*E(119)^14, -1*E(119)^-35, -1*E(119)^42, -1*E(119)^21, -1*E(119)^-14, -1*E(119)^28, E(119)^59, E(119)^29, E(119)^-58, E(119)^-3, E(119)^-12, E(119)^-30, E(119)^45, E(119)^-48, E(119)^47, E(119)^11, E(119)^2, E(119)^-38, E(119)^46, E(119)^37, E(119)^3, E(119)^12, E(119)^-41, E(119)^-39, E(119)^-29, E(119)^48, E(119)^-40, E(119)^13, E(119)^-50, E(119)^16, E(119)^-8, E(119)^27, E(119)^24, E(119)^22, E(119)^57, E(119)^-53, E(119)^-19, E(119)^-6, E(119)^25, E(119)^58, E(119)^-52, E(119)^-9, E(119)^-46, E(119)^-18, E(119)^33, E(119)^44, E(119)^53, E(119)^5, E(119)^43, E(119)^-32, E(119)^-36, E(119)^55, E(119)^-47, E(119)^6, E(119)^-22, E(119)^38, E(119)^36, E(119)^54, E(119)^4, E(119)^-5, E(119)^-31, E(119)^39, E(119)^-26, E(119)^-10, E(119)^18, E(119)^-54, E(119)^41, E(119)^-16, E(119)^-20, E(119)^-11, E(119)^26, E(119)^-55, E(119)^23, E(119)^-15, E(119), E(119)^50, E(119)^15, E(119)^-44, E(119)^10, E(119)^8, E(119)^-37, E(119)^52, E(119)^-33, E(119)^40, E(119)^-4, E(119)^9, E(119)^-45, E(119)^-23, E(119)^30, E(119)^-24, E(119)^32, E(119)^-13, E(119)^-59, E(119)^-2, E(119)^-27, E(119)^-25, E(119)^19, E(119)^-57, E(119)^-43, E(119)^-1, E(119)^20, E(119)^31, -1*E(119)^-33, -1*E(119)^-23, -1*E(119)^2, -1*E(119)^8, -1*E(119)^47, -1*E(119)^37, -1*E(119)^12, -1*E(119)^6, -1*E(119)^3, -1*E(119)^4, -1*E(119)^-31, -1*E(119)^-25, -1*E(119)^18, -1*E(119)^27, -1*E(119)^24, -1*E(119)^39, -1*E(119)^53, -1*E(119)^-46, -1*E(119)^-43, -1*E(119)^15, -1*E(119)^-12, -1*E(119)^-2, -1*E(119)^57, -1*E(119)^-47, -1*E(119)^26, -1*E(119)^-55, -1*E(119)^-13, -1*E(119)^-8, -1*E(119)^-18, -1*E(119)^-54, -1*E(119)^33, -1*E(119)^23, -1*E(119)^-20, -1*E(119)^-11, -1*E(119)^11, -1*E(119)^25, -1*E(119)^31, -1*E(119)^32, -1*E(119)^-59, -1*E(119)^-53, -1*E(119)^-50, -1*E(119)^22, -1*E(119)^-19, -1*E(119)^-22, -1*E(119)^-9, -1*E(119)^-5, -1*E(119)^48, -1*E(119)^50, -1*E(119)^52, -1*E(119)^-37, -1*E(119)^16, -1*E(119)^-6, -1*E(119)^-58, -1*E(119)^-44, -1*E(119)^-38, -1*E(119)^20, -1*E(119)^19, -1*E(119)^-10, -1*E(119)^46, -1*E(119)^-39, -1*E(119)^-36, -1*E(119)^5, -1*E(119)^38, -1*E(119)^-15, -1*E(119)^-52, -1*E(119)^59, -1*E(119)^-57, -1*E(119)^29, -1*E(119)^-26, -1*E(119)^-16, -1*E(119)^-48, -1*E(119)^58, -1*E(119)^40, -1*E(119)^30, -1*E(119)^-27, -1*E(119)^-1, -1*E(119)^-4, -1*E(119)^55, -1*E(119)^41, -1*E(119)^44, -1*E(119)^-41, -1*E(119)^13, -1*E(119)^10, -1*E(119)^-3, -1*E(119)^-24, -1*E(119)^-32, -1*E(119)^-29, -1*E(119)^-45, -1*E(119)^45, -1*E(119)^36, -1*E(119)^43, -1*E(119)^-40, -1*E(119)^-30, -1*E(119)^9, -1*E(119), -1*E(119)^54, 1], [1, -1, E(119)^51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-51, E(119)^-17, -1*E(119)^-17, -1*E(119)^17, -1*E(119)^-51, -1*E(119)^51, -1*E(119)^34, -1*E(119)^-34, E(119)^-49, E(119)^35, E(119)^-28, E(119)^28, E(119)^-21, E(119)^7, E(119)^21, E(119)^-14, E(119)^56, E(119)^14, E(119)^-7, E(119)^49, E(119)^-42, E(119)^-56, E(119)^42, E(119)^-35, -1*E(119)^49, -1*E(119)^7, -1*E(119)^21, -1*E(119)^56, -1*E(119)^28, -1*E(119)^42, -1*E(119)^-56, -1*E(119)^-7, -1*E(119)^-35, -1*E(119)^-49, -1*E(119)^-14, -1*E(119)^35, -1*E(119)^-42, -1*E(119)^-21, -1*E(119)^14, -1*E(119)^-28, E(119)^-59, E(119)^-29, E(119)^58, E(119)^3, E(119)^12, E(119)^30, E(119)^-45, E(119)^48, E(119)^-47, E(119)^-11, E(119)^-2, E(119)^38, E(119)^-46, E(119)^-37, E(119)^-3, E(119)^-12, E(119)^41, E(119)^39, E(119)^29, E(119)^-48, E(119)^40, E(119)^-13, E(119)^50, E(119)^-16, E(119)^8, E(119)^-27, E(119)^-24, E(119)^-22, E(119)^-57, E(119)^53, E(119)^19, E(119)^6, E(119)^-25, E(119)^-58, E(119)^52, E(119)^9, E(119)^46, E(119)^18, E(119)^-33, E(119)^-44, E(119)^-53, E(119)^-5, E(119)^-43, E(119)^32, E(119)^36, E(119)^-55, E(119)^47, E(119)^-6, E(119)^22, E(119)^-38, E(119)^-36, E(119)^-54, E(119)^-4, E(119)^5, E(119)^31, E(119)^-39, E(119)^26, E(119)^10, E(119)^-18, E(119)^54, E(119)^-41, E(119)^16, E(119)^20, E(119)^11, E(119)^-26, E(119)^55, E(119)^-23, E(119)^15, E(119)^-1, E(119)^-50, E(119)^-15, E(119)^44, E(119)^-10, E(119)^-8, E(119)^37, E(119)^-52, E(119)^33, E(119)^-40, E(119)^4, E(119)^-9, E(119)^45, E(119)^23, E(119)^-30, E(119)^24, E(119)^-32, E(119)^13, E(119)^59, E(119)^2, E(119)^27, E(119)^25, E(119)^-19, E(119)^57, E(119)^43, E(119), E(119)^-20, E(119)^-31, -1*E(119)^33, -1*E(119)^23, -1*E(119)^-2, -1*E(119)^-8, -1*E(119)^-47, -1*E(119)^-37, -1*E(119)^-12, -1*E(119)^-6, -1*E(119)^-3, -1*E(119)^-4, -1*E(119)^31, -1*E(119)^25, -1*E(119)^-18, -1*E(119)^-27, -1*E(119)^-24, -1*E(119)^-39, -1*E(119)^-53, -1*E(119)^46, -1*E(119)^43, -1*E(119)^-15, -1*E(119)^12, -1*E(119)^2, -1*E(119)^-57, -1*E(119)^47, -1*E(119)^-26, -1*E(119)^55, -1*E(119)^13, -1*E(119)^8, -1*E(119)^18, -1*E(119)^54, -1*E(119)^-33, -1*E(119)^-23, -1*E(119)^20, -1*E(119)^11, -1*E(119)^-11, -1*E(119)^-25, -1*E(119)^-31, -1*E(119)^-32, -1*E(119)^59, -1*E(119)^53, -1*E(119)^50, -1*E(119)^-22, -1*E(119)^19, -1*E(119)^22, -1*E(119)^9, -1*E(119)^5, -1*E(119)^-48, -1*E(119)^-50, -1*E(119)^-52, -1*E(119)^37, -1*E(119)^-16, -1*E(119)^6, -1*E(119)^58, -1*E(119)^44, -1*E(119)^38, -1*E(119)^-20, -1*E(119)^-19, -1*E(119)^10, -1*E(119)^-46, -1*E(119)^39, -1*E(119)^36, -1*E(119)^-5, -1*E(119)^-38, -1*E(119)^15, -1*E(119)^52, -1*E(119)^-59, -1*E(119)^57, -1*E(119)^-29, -1*E(119)^26, -1*E(119)^16, -1*E(119)^48, -1*E(119)^-58, -1*E(119)^-40, -1*E(119)^-30, -1*E(119)^27, -1*E(119), -1*E(119)^4, -1*E(119)^-55, -1*E(119)^-41, -1*E(119)^-44, -1*E(119)^41, -1*E(119)^-13, -1*E(119)^-10, -1*E(119)^3, -1*E(119)^24, -1*E(119)^32, -1*E(119)^29, -1*E(119)^45, -1*E(119)^-45, -1*E(119)^-36, -1*E(119)^-43, -1*E(119)^40, -1*E(119)^30, -1*E(119)^-9, -1*E(119)^-1, -1*E(119)^-54, 1], [1, -1, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^51, E(119)^17, -1*E(119)^17, -1*E(119)^-17, -1*E(119)^51, -1*E(119)^-51, -1*E(119)^-34, -1*E(119)^34, E(119)^-42, E(119)^-21, E(119)^-7, E(119)^7, E(119)^-35, E(119)^-28, E(119)^35, E(119)^56, E(119)^14, E(119)^-56, E(119)^28, E(119)^42, E(119)^49, E(119)^-14, E(119)^-49, E(119)^21, -1*E(119)^42, -1*E(119)^-28, -1*E(119)^35, -1*E(119)^14, -1*E(119)^7, -1*E(119)^-49, -1*E(119)^-14, -1*E(119)^28, -1*E(119)^21, -1*E(119)^-42, -1*E(119)^56, -1*E(119)^-21, -1*E(119)^49, -1*E(119)^-35, -1*E(119)^-56, -1*E(119)^-7, E(119)^-53, E(119)^-20, E(119)^40, E(119)^39, E(119)^37, E(119)^33, E(119)^10, E(119)^29, E(119)^-16, E(119)^-24, E(119)^-26, E(119)^18, E(119)^-3, E(119)^-5, E(119)^-39, E(119)^-37, E(119)^57, E(119)^31, E(119)^20, E(119)^-29, E(119)^44, E(119)^-50, E(119)^55, E(119)^30, E(119)^-15, E(119)^6, E(119)^45, E(119)^-48, E(119)^-27, E(119)^-25, E(119)^9, E(119)^-41, E(119)^32, E(119)^-40, E(119)^-38, E(119)^-2, E(119)^3, E(119)^-4, E(119)^47, E(119)^23, E(119)^25, E(119)^54, E(119)^36, E(119)^59, E(119)^-8, E(119)^-1, E(119)^16, E(119)^41, E(119)^48, E(119)^-18, E(119)^8, E(119)^12, E(119)^-52, E(119)^-54, E(119)^46, E(119)^-31, E(119)^-19, E(119)^11, E(119)^4, E(119)^-12, E(119)^-57, E(119)^-30, E(119)^22, E(119)^24, E(119)^19, E(119), E(119)^58, E(119)^-43, E(119)^-13, E(119)^-55, E(119)^43, E(119)^-23, E(119)^-11, E(119)^15, E(119)^5, E(119)^38, E(119)^-47, E(119)^-44, E(119)^52, E(119)^2, E(119)^-10, E(119)^-58, E(119)^-33, E(119)^-45, E(119)^-59, E(119)^50, E(119)^53, E(119)^26, E(119)^-6, E(119)^-32, E(119)^-9, E(119)^27, E(119)^-36, E(119)^13, E(119)^-22, E(119)^-46, -1*E(119)^-47, -1*E(119)^-58, -1*E(119)^-26, -1*E(119)^15, -1*E(119)^-16, -1*E(119)^-5, -1*E(119)^-37, -1*E(119)^41, -1*E(119)^-39, -1*E(119)^-52, -1*E(119)^46, -1*E(119)^-32, -1*E(119)^4, -1*E(119)^6, -1*E(119)^45, -1*E(119)^-31, -1*E(119)^25, -1*E(119)^3, -1*E(119)^-36, -1*E(119)^43, -1*E(119)^37, -1*E(119)^26, -1*E(119)^-27, -1*E(119)^16, -1*E(119)^19, -1*E(119), -1*E(119)^50, -1*E(119)^-15, -1*E(119)^-4, -1*E(119)^-12, -1*E(119)^47, -1*E(119)^58, -1*E(119)^22, -1*E(119)^24, -1*E(119)^-24, -1*E(119)^32, -1*E(119)^-46, -1*E(119)^-59, -1*E(119)^53, -1*E(119)^-25, -1*E(119)^55, -1*E(119)^-48, -1*E(119)^9, -1*E(119)^48, -1*E(119)^-2, -1*E(119)^-54, -1*E(119)^-29, -1*E(119)^-55, -1*E(119)^38, -1*E(119)^5, -1*E(119)^30, -1*E(119)^-41, -1*E(119)^40, -1*E(119)^-23, -1*E(119)^18, -1*E(119)^-22, -1*E(119)^-9, -1*E(119)^11, -1*E(119)^-3, -1*E(119)^31, -1*E(119)^-8, -1*E(119)^54, -1*E(119)^-18, -1*E(119)^-43, -1*E(119)^-38, -1*E(119)^-53, -1*E(119)^27, -1*E(119)^-20, -1*E(119)^-19, -1*E(119)^-30, -1*E(119)^29, -1*E(119)^-40, -1*E(119)^-44, -1*E(119)^-33, -1*E(119)^-6, -1*E(119)^13, -1*E(119)^52, -1*E(119)^-1, -1*E(119)^-57, -1*E(119)^23, -1*E(119)^57, -1*E(119)^-50, -1*E(119)^-11, -1*E(119)^39, -1*E(119)^-45, -1*E(119)^59, -1*E(119)^20, -1*E(119)^-10, -1*E(119)^10, -1*E(119)^8, -1*E(119)^36, -1*E(119)^44, -1*E(119)^33, -1*E(119)^2, -1*E(119)^-13, -1*E(119)^12, 1], [1, -1, E(119)^51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-51, E(119)^-17, -1*E(119)^-17, -1*E(119)^17, -1*E(119)^-51, -1*E(119)^51, -1*E(119)^34, -1*E(119)^-34, E(119)^42, E(119)^21, E(119)^7, E(119)^-7, E(119)^35, E(119)^28, E(119)^-35, E(119)^-56, E(119)^-14, E(119)^56, E(119)^-28, E(119)^-42, E(119)^-49, E(119)^14, E(119)^49, E(119)^-21, -1*E(119)^-42, -1*E(119)^28, -1*E(119)^-35, -1*E(119)^-14, -1*E(119)^-7, -1*E(119)^49, -1*E(119)^14, -1*E(119)^-28, -1*E(119)^-21, -1*E(119)^42, -1*E(119)^-56, -1*E(119)^21, -1*E(119)^-49, -1*E(119)^35, -1*E(119)^56, -1*E(119)^7, E(119)^53, E(119)^20, E(119)^-40, E(119)^-39, E(119)^-37, E(119)^-33, E(119)^-10, E(119)^-29, E(119)^16, E(119)^24, E(119)^26, E(119)^-18, E(119)^3, E(119)^5, E(119)^39, E(119)^37, E(119)^-57, E(119)^-31, E(119)^-20, E(119)^29, E(119)^-44, E(119)^50, E(119)^-55, E(119)^-30, E(119)^15, E(119)^-6, E(119)^-45, E(119)^48, E(119)^27, E(119)^25, E(119)^-9, E(119)^41, E(119)^-32, E(119)^40, E(119)^38, E(119)^2, E(119)^-3, E(119)^4, E(119)^-47, E(119)^-23, E(119)^-25, E(119)^-54, E(119)^-36, E(119)^-59, E(119)^8, E(119), E(119)^-16, E(119)^-41, E(119)^-48, E(119)^18, E(119)^-8, E(119)^-12, E(119)^52, E(119)^54, E(119)^-46, E(119)^31, E(119)^19, E(119)^-11, E(119)^-4, E(119)^12, E(119)^57, E(119)^30, E(119)^-22, E(119)^-24, E(119)^-19, E(119)^-1, E(119)^-58, E(119)^43, E(119)^13, E(119)^55, E(119)^-43, E(119)^23, E(119)^11, E(119)^-15, E(119)^-5, E(119)^-38, E(119)^47, E(119)^44, E(119)^-52, E(119)^-2, E(119)^10, E(119)^58, E(119)^33, E(119)^45, E(119)^59, E(119)^-50, E(119)^-53, E(119)^-26, E(119)^6, E(119)^32, E(119)^9, E(119)^-27, E(119)^36, E(119)^-13, E(119)^22, E(119)^46, -1*E(119)^47, -1*E(119)^58, -1*E(119)^26, -1*E(119)^-15, -1*E(119)^16, -1*E(119)^5, -1*E(119)^37, -1*E(119)^-41, -1*E(119)^39, -1*E(119)^52, -1*E(119)^-46, -1*E(119)^32, -1*E(119)^-4, -1*E(119)^-6, -1*E(119)^-45, -1*E(119)^31, -1*E(119)^-25, -1*E(119)^-3, -1*E(119)^36, -1*E(119)^-43, -1*E(119)^-37, -1*E(119)^-26, -1*E(119)^27, -1*E(119)^-16, -1*E(119)^-19, -1*E(119)^-1, -1*E(119)^-50, -1*E(119)^15, -1*E(119)^4, -1*E(119)^12, -1*E(119)^-47, -1*E(119)^-58, -1*E(119)^-22, -1*E(119)^-24, -1*E(119)^24, -1*E(119)^-32, -1*E(119)^46, -1*E(119)^59, -1*E(119)^-53, -1*E(119)^25, -1*E(119)^-55, -1*E(119)^48, -1*E(119)^-9, -1*E(119)^-48, -1*E(119)^2, -1*E(119)^54, -1*E(119)^29, -1*E(119)^55, -1*E(119)^-38, -1*E(119)^-5, -1*E(119)^-30, -1*E(119)^41, -1*E(119)^-40, -1*E(119)^23, -1*E(119)^-18, -1*E(119)^22, -1*E(119)^9, -1*E(119)^-11, -1*E(119)^3, -1*E(119)^-31, -1*E(119)^8, -1*E(119)^-54, -1*E(119)^18, -1*E(119)^43, -1*E(119)^38, -1*E(119)^53, -1*E(119)^-27, -1*E(119)^20, -1*E(119)^19, -1*E(119)^30, -1*E(119)^-29, -1*E(119)^40, -1*E(119)^44, -1*E(119)^33, -1*E(119)^6, -1*E(119)^-13, -1*E(119)^-52, -1*E(119), -1*E(119)^57, -1*E(119)^-23, -1*E(119)^-57, -1*E(119)^50, -1*E(119)^11, -1*E(119)^-39, -1*E(119)^45, -1*E(119)^-59, -1*E(119)^-20, -1*E(119)^10, -1*E(119)^-10, -1*E(119)^-8, -1*E(119)^-36, -1*E(119)^-44, -1*E(119)^-33, -1*E(119)^-2, -1*E(119)^13, -1*E(119)^-12, 1], [1, -1, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^51, E(119)^17, -1*E(119)^17, -1*E(119)^-17, -1*E(119)^51, -1*E(119)^-51, -1*E(119)^-34, -1*E(119)^34, E(119)^42, E(119)^21, E(119)^7, E(119)^-7, E(119)^35, E(119)^28, E(119)^-35, E(119)^-56, E(119)^-14, E(119)^56, E(119)^-28, E(119)^-42, E(119)^-49, E(119)^14, E(119)^49, E(119)^-21, -1*E(119)^-42, -1*E(119)^28, -1*E(119)^-35, -1*E(119)^-14, -1*E(119)^-7, -1*E(119)^49, -1*E(119)^14, -1*E(119)^-28, -1*E(119)^-21, -1*E(119)^42, -1*E(119)^-56, -1*E(119)^21, -1*E(119)^-49, -1*E(119)^35, -1*E(119)^56, -1*E(119)^7, E(119)^-32, E(119)^-48, E(119)^-23, E(119)^46, E(119)^-54, E(119)^-16, E(119)^24, E(119)^22, E(119)^33, E(119)^-10, E(119)^9, E(119)^-52, E(119)^-31, E(119)^-12, E(119)^-46, E(119)^54, E(119)^-6, E(119)^3, E(119)^48, E(119)^-22, E(119)^58, E(119)^-1, E(119)^13, E(119)^-47, E(119)^-36, E(119)^-57, E(119)^-11, E(119)^-20, E(119)^-41, E(119)^59, E(119)^-26, E(119)^-27, E(119)^53, E(119)^23, E(119)^4, E(119)^19, E(119)^31, E(119)^38, E(119)^-30, E(119)^-40, E(119)^-59, E(119)^-37, E(119)^15, E(119)^-25, E(119)^-43, E(119)^-50, E(119)^-33, E(119)^27, E(119)^20, E(119)^52, E(119)^43, E(119)^5, E(119)^18, E(119)^37, E(119)^39, E(119)^-3, E(119)^2, E(119)^-45, E(119)^-38, E(119)^-5, E(119)^6, E(119)^47, E(119)^29, E(119)^10, E(119)^-2, E(119)^50, E(119)^44, E(119)^-8, E(119)^-55, E(119)^-13, E(119)^8, E(119)^40, E(119)^45, E(119)^36, E(119)^12, E(119)^-4, E(119)^30, E(119)^-58, E(119)^-18, E(119)^-19, E(119)^-24, E(119)^-44, E(119)^16, E(119)^11, E(119)^25, E(119), E(119)^32, E(119)^-9, E(119)^57, E(119)^-53, E(119)^26, E(119)^41, E(119)^-15, E(119)^55, E(119)^-29, E(119)^-39, -1*E(119)^30, -1*E(119)^-44, -1*E(119)^9, -1*E(119)^36, -1*E(119)^33, -1*E(119)^-12, -1*E(119)^54, -1*E(119)^27, -1*E(119)^-46, -1*E(119)^18, -1*E(119)^39, -1*E(119)^-53, -1*E(119)^-38, -1*E(119)^-57, -1*E(119)^-11, -1*E(119)^-3, -1*E(119)^-59, -1*E(119)^31, -1*E(119)^-15, -1*E(119)^8, -1*E(119)^-54, -1*E(119)^-9, -1*E(119)^-41, -1*E(119)^-33, -1*E(119)^-2, -1*E(119)^50, -1*E(119), -1*E(119)^-36, -1*E(119)^38, -1*E(119)^-5, -1*E(119)^-30, -1*E(119)^44, -1*E(119)^29, -1*E(119)^10, -1*E(119)^-10, -1*E(119)^53, -1*E(119)^-39, -1*E(119)^25, -1*E(119)^32, -1*E(119)^59, -1*E(119)^13, -1*E(119)^-20, -1*E(119)^-26, -1*E(119)^20, -1*E(119)^19, -1*E(119)^37, -1*E(119)^-22, -1*E(119)^-13, -1*E(119)^-4, -1*E(119)^12, -1*E(119)^-47, -1*E(119)^-27, -1*E(119)^-23, -1*E(119)^40, -1*E(119)^-52, -1*E(119)^-29, -1*E(119)^26, -1*E(119)^-45, -1*E(119)^-31, -1*E(119)^3, -1*E(119)^-43, -1*E(119)^-37, -1*E(119)^52, -1*E(119)^-8, -1*E(119)^4, -1*E(119)^-32, -1*E(119)^41, -1*E(119)^-48, -1*E(119)^2, -1*E(119)^47, -1*E(119)^22, -1*E(119)^23, -1*E(119)^-58, -1*E(119)^16, -1*E(119)^57, -1*E(119)^55, -1*E(119)^-18, -1*E(119)^-50, -1*E(119)^6, -1*E(119)^-40, -1*E(119)^-6, -1*E(119)^-1, -1*E(119)^45, -1*E(119)^46, -1*E(119)^11, -1*E(119)^-25, -1*E(119)^48, -1*E(119)^-24, -1*E(119)^24, -1*E(119)^43, -1*E(119)^15, -1*E(119)^58, -1*E(119)^-16, -1*E(119)^-19, -1*E(119)^-55, -1*E(119)^5, 1], [1, -1, E(119)^51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-51, E(119)^-17, -1*E(119)^-17, -1*E(119)^17, -1*E(119)^-51, -1*E(119)^51, -1*E(119)^34, -1*E(119)^-34, E(119)^-42, E(119)^-21, E(119)^-7, E(119)^7, E(119)^-35, E(119)^-28, E(119)^35, E(119)^56, E(119)^14, E(119)^-56, E(119)^28, E(119)^42, E(119)^49, E(119)^-14, E(119)^-49, E(119)^21, -1*E(119)^42, -1*E(119)^-28, -1*E(119)^35, -1*E(119)^14, -1*E(119)^7, -1*E(119)^-49, -1*E(119)^-14, -1*E(119)^28, -1*E(119)^21, -1*E(119)^-42, -1*E(119)^56, -1*E(119)^-21, -1*E(119)^49, -1*E(119)^-35, -1*E(119)^-56, -1*E(119)^-7, E(119)^32, E(119)^48, E(119)^23, E(119)^-46, E(119)^54, E(119)^16, E(119)^-24, E(119)^-22, E(119)^-33, E(119)^10, E(119)^-9, E(119)^52, E(119)^31, E(119)^12, E(119)^46, E(119)^-54, E(119)^6, E(119)^-3, E(119)^-48, E(119)^22, E(119)^-58, E(119), E(119)^-13, E(119)^47, E(119)^36, E(119)^57, E(119)^11, E(119)^20, E(119)^41, E(119)^-59, E(119)^26, E(119)^27, E(119)^-53, E(119)^-23, E(119)^-4, E(119)^-19, E(119)^-31, E(119)^-38, E(119)^30, E(119)^40, E(119)^59, E(119)^37, E(119)^-15, E(119)^25, E(119)^43, E(119)^50, E(119)^33, E(119)^-27, E(119)^-20, E(119)^-52, E(119)^-43, E(119)^-5, E(119)^-18, E(119)^-37, E(119)^-39, E(119)^3, E(119)^-2, E(119)^45, E(119)^38, E(119)^5, E(119)^-6, E(119)^-47, E(119)^-29, E(119)^-10, E(119)^2, E(119)^-50, E(119)^-44, E(119)^8, E(119)^55, E(119)^13, E(119)^-8, E(119)^-40, E(119)^-45, E(119)^-36, E(119)^-12, E(119)^4, E(119)^-30, E(119)^58, E(119)^18, E(119)^19, E(119)^24, E(119)^44, E(119)^-16, E(119)^-11, E(119)^-25, E(119)^-1, E(119)^-32, E(119)^9, E(119)^-57, E(119)^53, E(119)^-26, E(119)^-41, E(119)^15, E(119)^-55, E(119)^29, E(119)^39, -1*E(119)^-30, -1*E(119)^44, -1*E(119)^-9, -1*E(119)^-36, -1*E(119)^-33, -1*E(119)^12, -1*E(119)^-54, -1*E(119)^-27, -1*E(119)^46, -1*E(119)^-18, -1*E(119)^-39, -1*E(119)^53, -1*E(119)^38, -1*E(119)^57, -1*E(119)^11, -1*E(119)^3, -1*E(119)^59, -1*E(119)^-31, -1*E(119)^15, -1*E(119)^-8, -1*E(119)^54, -1*E(119)^9, -1*E(119)^41, -1*E(119)^33, -1*E(119)^2, -1*E(119)^-50, -1*E(119)^-1, -1*E(119)^36, -1*E(119)^-38, -1*E(119)^5, -1*E(119)^30, -1*E(119)^-44, -1*E(119)^-29, -1*E(119)^-10, -1*E(119)^10, -1*E(119)^-53, -1*E(119)^39, -1*E(119)^-25, -1*E(119)^-32, -1*E(119)^-59, -1*E(119)^-13, -1*E(119)^20, -1*E(119)^26, -1*E(119)^-20, -1*E(119)^-19, -1*E(119)^-37, -1*E(119)^22, -1*E(119)^13, -1*E(119)^4, -1*E(119)^-12, -1*E(119)^47, -1*E(119)^27, -1*E(119)^23, -1*E(119)^-40, -1*E(119)^52, -1*E(119)^29, -1*E(119)^-26, -1*E(119)^45, -1*E(119)^31, -1*E(119)^-3, -1*E(119)^43, -1*E(119)^37, -1*E(119)^-52, -1*E(119)^8, -1*E(119)^-4, -1*E(119)^32, -1*E(119)^-41, -1*E(119)^48, -1*E(119)^-2, -1*E(119)^-47, -1*E(119)^-22, -1*E(119)^-23, -1*E(119)^58, -1*E(119)^-16, -1*E(119)^-57, -1*E(119)^-55, -1*E(119)^18, -1*E(119)^50, -1*E(119)^-6, -1*E(119)^40, -1*E(119)^6, -1*E(119), -1*E(119)^-45, -1*E(119)^-46, -1*E(119)^-11, -1*E(119)^25, -1*E(119)^-48, -1*E(119)^24, -1*E(119)^-24, -1*E(119)^-43, -1*E(119)^-15, -1*E(119)^-58, -1*E(119)^16, -1*E(119)^19, -1*E(119)^55, -1*E(119)^-5, 1], [1, -1, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^51, E(119)^17, -1*E(119)^17, -1*E(119)^-17, -1*E(119)^51, -1*E(119)^-51, -1*E(119)^-34, -1*E(119)^34, E(119)^-35, E(119)^42, E(119)^14, E(119)^-14, E(119)^-49, E(119)^56, E(119)^49, E(119)^7, E(119)^-28, E(119)^-7, E(119)^-56, E(119)^35, E(119)^21, E(119)^28, E(119)^-21, E(119)^-42, -1*E(119)^35, -1*E(119)^56, -1*E(119)^49, -1*E(119)^-28, -1*E(119)^-14, -1*E(119)^-21, -1*E(119)^28, -1*E(119)^-56, -1*E(119)^-42, -1*E(119)^-35, -1*E(119)^7, -1*E(119)^42, -1*E(119)^21, -1*E(119)^-49, -1*E(119)^-7, -1*E(119)^14, E(119)^38, E(119)^57, E(119)^5, E(119)^-10, E(119)^-40, E(119)^19, E(119)^31, E(119)^-41, E(119)^-2, E(119)^-3, E(119)^-33, E(119)^32, E(119)^-45, E(119)^44, E(119)^10, E(119)^40, E(119)^22, E(119)^-11, E(119)^-57, E(119)^41, E(119)^-54, E(119)^-36, E(119)^-8, E(119)^-26, E(119)^13, E(119)^-29, E(119)^-39, E(119)^-6, E(119)^-48, E(119)^-18, E(119)^16, E(119)^-20, E(119)^4, E(119)^-5, E(119)^25, E(119)^-30, E(119)^45, E(119)^59, E(119)^-9, E(119)^-12, E(119)^18, E(119)^-23, E(119)^-55, E(119)^52, E(119)^-1, E(119)^-15, E(119)^2, E(119)^20, E(119)^6, E(119)^-32, E(119), E(119)^-58, E(119)^53, E(119)^23, E(119)^-24, E(119)^11, E(119)^-47, E(119)^46, E(119)^-59, E(119)^58, E(119)^-22, E(119)^26, E(119)^-27, E(119)^3, E(119)^47, E(119)^15, E(119)^37, E(119)^-50, E(119)^43, E(119)^8, E(119)^50, E(119)^12, E(119)^-46, E(119)^-13, E(119)^-44, E(119)^-25, E(119)^9, E(119)^54, E(119)^-53, E(119)^30, E(119)^-31, E(119)^-37, E(119)^-19, E(119)^39, E(119)^-52, E(119)^36, E(119)^-38, E(119)^33, E(119)^29, E(119)^-4, E(119)^-16, E(119)^48, E(119)^55, E(119)^-43, E(119)^27, E(119)^24, -1*E(119)^9, -1*E(119)^-37, -1*E(119)^-33, -1*E(119)^-13, -1*E(119)^-2, -1*E(119)^44, -1*E(119)^40, -1*E(119)^20, -1*E(119)^10, -1*E(119)^53, -1*E(119)^-24, -1*E(119)^-4, -1*E(119)^-59, -1*E(119)^-29, -1*E(119)^-39, -1*E(119)^11, -1*E(119)^18, -1*E(119)^45, -1*E(119)^55, -1*E(119)^50, -1*E(119)^-40, -1*E(119)^33, -1*E(119)^-48, -1*E(119)^2, -1*E(119)^47, -1*E(119)^15, -1*E(119)^36, -1*E(119)^13, -1*E(119)^59, -1*E(119)^58, -1*E(119)^-9, -1*E(119)^37, -1*E(119)^-27, -1*E(119)^3, -1*E(119)^-3, -1*E(119)^4, -1*E(119)^24, -1*E(119)^-52, -1*E(119)^-38, -1*E(119)^-18, -1*E(119)^-8, -1*E(119)^-6, -1*E(119)^16, -1*E(119)^6, -1*E(119)^-30, -1*E(119)^23, -1*E(119)^41, -1*E(119)^8, -1*E(119)^-25, -1*E(119)^-44, -1*E(119)^-26, -1*E(119)^-20, -1*E(119)^5, -1*E(119)^12, -1*E(119)^32, -1*E(119)^27, -1*E(119)^-16, -1*E(119)^46, -1*E(119)^-45, -1*E(119)^-11, -1*E(119)^-1, -1*E(119)^-23, -1*E(119)^-32, -1*E(119)^-50, -1*E(119)^25, -1*E(119)^38, -1*E(119)^48, -1*E(119)^57, -1*E(119)^-47, -1*E(119)^26, -1*E(119)^-41, -1*E(119)^-5, -1*E(119)^54, -1*E(119)^-19, -1*E(119)^29, -1*E(119)^-43, -1*E(119)^-53, -1*E(119)^-15, -1*E(119)^-22, -1*E(119)^-12, -1*E(119)^22, -1*E(119)^-36, -1*E(119)^-46, -1*E(119)^-10, -1*E(119)^39, -1*E(119)^52, -1*E(119)^-57, -1*E(119)^-31, -1*E(119)^31, -1*E(119), -1*E(119)^-55, -1*E(119)^-54, -1*E(119)^19, -1*E(119)^30, -1*E(119)^43, -1*E(119)^-58, 1], [1, -1, E(119)^51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-51, E(119)^-17, -1*E(119)^-17, -1*E(119)^17, -1*E(119)^-51, -1*E(119)^51, -1*E(119)^34, -1*E(119)^-34, E(119)^35, E(119)^-42, E(119)^-14, E(119)^14, E(119)^49, E(119)^-56, E(119)^-49, E(119)^-7, E(119)^28, E(119)^7, E(119)^56, E(119)^-35, E(119)^-21, E(119)^-28, E(119)^21, E(119)^42, -1*E(119)^-35, -1*E(119)^-56, -1*E(119)^-49, -1*E(119)^28, -1*E(119)^14, -1*E(119)^21, -1*E(119)^-28, -1*E(119)^56, -1*E(119)^42, -1*E(119)^35, -1*E(119)^-7, -1*E(119)^-42, -1*E(119)^-21, -1*E(119)^49, -1*E(119)^7, -1*E(119)^-14, E(119)^-38, E(119)^-57, E(119)^-5, E(119)^10, E(119)^40, E(119)^-19, E(119)^-31, E(119)^41, E(119)^2, E(119)^3, E(119)^33, E(119)^-32, E(119)^45, E(119)^-44, E(119)^-10, E(119)^-40, E(119)^-22, E(119)^11, E(119)^57, E(119)^-41, E(119)^54, E(119)^36, E(119)^8, E(119)^26, E(119)^-13, E(119)^29, E(119)^39, E(119)^6, E(119)^48, E(119)^18, E(119)^-16, E(119)^20, E(119)^-4, E(119)^5, E(119)^-25, E(119)^30, E(119)^-45, E(119)^-59, E(119)^9, E(119)^12, E(119)^-18, E(119)^23, E(119)^55, E(119)^-52, E(119), E(119)^15, E(119)^-2, E(119)^-20, E(119)^-6, E(119)^32, E(119)^-1, E(119)^58, E(119)^-53, E(119)^-23, E(119)^24, E(119)^-11, E(119)^47, E(119)^-46, E(119)^59, E(119)^-58, E(119)^22, E(119)^-26, E(119)^27, E(119)^-3, E(119)^-47, E(119)^-15, E(119)^-37, E(119)^50, E(119)^-43, E(119)^-8, E(119)^-50, E(119)^-12, E(119)^46, E(119)^13, E(119)^44, E(119)^25, E(119)^-9, E(119)^-54, E(119)^53, E(119)^-30, E(119)^31, E(119)^37, E(119)^19, E(119)^-39, E(119)^52, E(119)^-36, E(119)^38, E(119)^-33, E(119)^-29, E(119)^4, E(119)^16, E(119)^-48, E(119)^-55, E(119)^43, E(119)^-27, E(119)^-24, -1*E(119)^-9, -1*E(119)^37, -1*E(119)^33, -1*E(119)^13, -1*E(119)^2, -1*E(119)^-44, -1*E(119)^-40, -1*E(119)^-20, -1*E(119)^-10, -1*E(119)^-53, -1*E(119)^24, -1*E(119)^4, -1*E(119)^59, -1*E(119)^29, -1*E(119)^39, -1*E(119)^-11, -1*E(119)^-18, -1*E(119)^-45, -1*E(119)^-55, -1*E(119)^-50, -1*E(119)^40, -1*E(119)^-33, -1*E(119)^48, -1*E(119)^-2, -1*E(119)^-47, -1*E(119)^-15, -1*E(119)^-36, -1*E(119)^-13, -1*E(119)^-59, -1*E(119)^-58, -1*E(119)^9, -1*E(119)^-37, -1*E(119)^27, -1*E(119)^-3, -1*E(119)^3, -1*E(119)^-4, -1*E(119)^-24, -1*E(119)^52, -1*E(119)^38, -1*E(119)^18, -1*E(119)^8, -1*E(119)^6, -1*E(119)^-16, -1*E(119)^-6, -1*E(119)^30, -1*E(119)^-23, -1*E(119)^-41, -1*E(119)^-8, -1*E(119)^25, -1*E(119)^44, -1*E(119)^26, -1*E(119)^20, -1*E(119)^-5, -1*E(119)^-12, -1*E(119)^-32, -1*E(119)^-27, -1*E(119)^16, -1*E(119)^-46, -1*E(119)^45, -1*E(119)^11, -1*E(119), -1*E(119)^23, -1*E(119)^32, -1*E(119)^50, -1*E(119)^-25, -1*E(119)^-38, -1*E(119)^-48, -1*E(119)^-57, -1*E(119)^47, -1*E(119)^-26, -1*E(119)^41, -1*E(119)^5, -1*E(119)^-54, -1*E(119)^19, -1*E(119)^-29, -1*E(119)^43, -1*E(119)^53, -1*E(119)^15, -1*E(119)^22, -1*E(119)^12, -1*E(119)^-22, -1*E(119)^36, -1*E(119)^46, -1*E(119)^10, -1*E(119)^-39, -1*E(119)^-52, -1*E(119)^57, -1*E(119)^31, -1*E(119)^-31, -1*E(119)^-1, -1*E(119)^55, -1*E(119)^54, -1*E(119)^-19, -1*E(119)^-30, -1*E(119)^-43, -1*E(119)^58, 1], [1, -1, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^51, E(119)^17, -1*E(119)^17, -1*E(119)^-17, -1*E(119)^51, -1*E(119)^-51, -1*E(119)^-34, -1*E(119)^34, E(119)^35, E(119)^-42, E(119)^-14, E(119)^14, E(119)^49, E(119)^-56, E(119)^-49, E(119)^-7, E(119)^28, E(119)^7, E(119)^56, E(119)^-35, E(119)^-21, E(119)^-28, E(119)^21, E(119)^42, -1*E(119)^-35, -1*E(119)^-56, -1*E(119)^-49, -1*E(119)^28, -1*E(119)^14, -1*E(119)^21, -1*E(119)^-28, -1*E(119)^56, -1*E(119)^42, -1*E(119)^35, -1*E(119)^-7, -1*E(119)^-42, -1*E(119)^-21, -1*E(119)^49, -1*E(119)^7, -1*E(119)^-14, E(119)^-4, E(119)^-6, E(119)^12, E(119)^-24, E(119)^23, E(119)^-2, E(119)^3, E(119)^-27, E(119)^19, E(119)^-31, E(119)^16, E(119)^53, E(119)^11, E(119)^58, E(119)^24, E(119)^-23, E(119)^29, E(119)^45, E(119)^6, E(119)^27, E(119)^37, E(119)^-15, E(119)^-43, E(119)^9, E(119)^55, E(119)^-22, E(119)^-46, E(119)^57, E(119)^-20, E(119)^52, E(119)^-33, E(119)^-48, E(119)^-38, E(119)^-12, E(119)^-59, E(119)^47, E(119)^-11, E(119)^-25, E(119)^26, E(119)^-5, E(119)^-52, E(119)^40, E(119)^-13, E(119)^-18, E(119)^-50, E(119)^-36, E(119)^-19, E(119)^48, E(119)^-57, E(119)^-53, E(119)^50, E(119)^-44, E(119)^32, E(119)^-40, E(119)^-10, E(119)^-45, E(119)^30, E(119)^39, E(119)^25, E(119)^44, E(119)^-29, E(119)^-9, E(119)^-41, E(119)^31, E(119)^-30, E(119)^36, E(119)^-54, E(119)^-1, E(119)^8, E(119)^43, E(119), E(119)^5, E(119)^-39, E(119)^-55, E(119)^-58, E(119)^59, E(119)^-26, E(119)^-37, E(119)^-32, E(119)^-47, E(119)^-3, E(119)^54, E(119)^2, E(119)^46, E(119)^18, E(119)^15, E(119)^4, E(119)^-16, E(119)^22, E(119)^38, E(119)^33, E(119)^20, E(119)^13, E(119)^-8, E(119)^41, E(119)^10, -1*E(119)^-26, -1*E(119)^54, -1*E(119)^16, -1*E(119)^-55, -1*E(119)^19, -1*E(119)^58, -1*E(119)^-23, -1*E(119)^48, -1*E(119)^24, -1*E(119)^32, -1*E(119)^-10, -1*E(119)^38, -1*E(119)^25, -1*E(119)^-22, -1*E(119)^-46, -1*E(119)^-45, -1*E(119)^-52, -1*E(119)^-11, -1*E(119)^13, -1*E(119), -1*E(119)^23, -1*E(119)^-16, -1*E(119)^-20, -1*E(119)^-19, -1*E(119)^-30, -1*E(119)^36, -1*E(119)^15, -1*E(119)^55, -1*E(119)^-25, -1*E(119)^44, -1*E(119)^26, -1*E(119)^-54, -1*E(119)^-41, -1*E(119)^31, -1*E(119)^-31, -1*E(119)^-38, -1*E(119)^10, -1*E(119)^18, -1*E(119)^4, -1*E(119)^52, -1*E(119)^-43, -1*E(119)^57, -1*E(119)^-33, -1*E(119)^-57, -1*E(119)^47, -1*E(119)^-40, -1*E(119)^27, -1*E(119)^43, -1*E(119)^59, -1*E(119)^-58, -1*E(119)^9, -1*E(119)^-48, -1*E(119)^12, -1*E(119)^5, -1*E(119)^53, -1*E(119)^41, -1*E(119)^33, -1*E(119)^39, -1*E(119)^11, -1*E(119)^45, -1*E(119)^-50, -1*E(119)^40, -1*E(119)^-53, -1*E(119)^-1, -1*E(119)^-59, -1*E(119)^-4, -1*E(119)^20, -1*E(119)^-6, -1*E(119)^30, -1*E(119)^-9, -1*E(119)^-27, -1*E(119)^-12, -1*E(119)^-37, -1*E(119)^2, -1*E(119)^22, -1*E(119)^-8, -1*E(119)^-32, -1*E(119)^-36, -1*E(119)^-29, -1*E(119)^-5, -1*E(119)^29, -1*E(119)^-15, -1*E(119)^-39, -1*E(119)^-24, -1*E(119)^46, -1*E(119)^-18, -1*E(119)^6, -1*E(119)^-3, -1*E(119)^3, -1*E(119)^50, -1*E(119)^-13, -1*E(119)^37, -1*E(119)^-2, -1*E(119)^-47, -1*E(119)^8, -1*E(119)^-44, 1], [1, -1, E(119)^51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-51, E(119)^-17, -1*E(119)^-17, -1*E(119)^17, -1*E(119)^-51, -1*E(119)^51, -1*E(119)^34, -1*E(119)^-34, E(119)^-35, E(119)^42, E(119)^14, E(119)^-14, E(119)^-49, E(119)^56, E(119)^49, E(119)^7, E(119)^-28, E(119)^-7, E(119)^-56, E(119)^35, E(119)^21, E(119)^28, E(119)^-21, E(119)^-42, -1*E(119)^35, -1*E(119)^56, -1*E(119)^49, -1*E(119)^-28, -1*E(119)^-14, -1*E(119)^-21, -1*E(119)^28, -1*E(119)^-56, -1*E(119)^-42, -1*E(119)^-35, -1*E(119)^7, -1*E(119)^42, -1*E(119)^21, -1*E(119)^-49, -1*E(119)^-7, -1*E(119)^14, E(119)^4, E(119)^6, E(119)^-12, E(119)^24, E(119)^-23, E(119)^2, E(119)^-3, E(119)^27, E(119)^-19, E(119)^31, E(119)^-16, E(119)^-53, E(119)^-11, E(119)^-58, E(119)^-24, E(119)^23, E(119)^-29, E(119)^-45, E(119)^-6, E(119)^-27, E(119)^-37, E(119)^15, E(119)^43, E(119)^-9, E(119)^-55, E(119)^22, E(119)^46, E(119)^-57, E(119)^20, E(119)^-52, E(119)^33, E(119)^48, E(119)^38, E(119)^12, E(119)^59, E(119)^-47, E(119)^11, E(119)^25, E(119)^-26, E(119)^5, E(119)^52, E(119)^-40, E(119)^13, E(119)^18, E(119)^50, E(119)^36, E(119)^19, E(119)^-48, E(119)^57, E(119)^53, E(119)^-50, E(119)^44, E(119)^-32, E(119)^40, E(119)^10, E(119)^45, E(119)^-30, E(119)^-39, E(119)^-25, E(119)^-44, E(119)^29, E(119)^9, E(119)^41, E(119)^-31, E(119)^30, E(119)^-36, E(119)^54, E(119), E(119)^-8, E(119)^-43, E(119)^-1, E(119)^-5, E(119)^39, E(119)^55, E(119)^58, E(119)^-59, E(119)^26, E(119)^37, E(119)^32, E(119)^47, E(119)^3, E(119)^-54, E(119)^-2, E(119)^-46, E(119)^-18, E(119)^-15, E(119)^-4, E(119)^16, E(119)^-22, E(119)^-38, E(119)^-33, E(119)^-20, E(119)^-13, E(119)^8, E(119)^-41, E(119)^-10, -1*E(119)^26, -1*E(119)^-54, -1*E(119)^-16, -1*E(119)^55, -1*E(119)^-19, -1*E(119)^-58, -1*E(119)^23, -1*E(119)^-48, -1*E(119)^-24, -1*E(119)^-32, -1*E(119)^10, -1*E(119)^-38, -1*E(119)^-25, -1*E(119)^22, -1*E(119)^46, -1*E(119)^45, -1*E(119)^52, -1*E(119)^11, -1*E(119)^-13, -1*E(119)^-1, -1*E(119)^-23, -1*E(119)^16, -1*E(119)^20, -1*E(119)^19, -1*E(119)^30, -1*E(119)^-36, -1*E(119)^-15, -1*E(119)^-55, -1*E(119)^25, -1*E(119)^-44, -1*E(119)^-26, -1*E(119)^54, -1*E(119)^41, -1*E(119)^-31, -1*E(119)^31, -1*E(119)^38, -1*E(119)^-10, -1*E(119)^-18, -1*E(119)^-4, -1*E(119)^-52, -1*E(119)^43, -1*E(119)^-57, -1*E(119)^33, -1*E(119)^57, -1*E(119)^-47, -1*E(119)^40, -1*E(119)^-27, -1*E(119)^-43, -1*E(119)^-59, -1*E(119)^58, -1*E(119)^-9, -1*E(119)^48, -1*E(119)^-12, -1*E(119)^-5, -1*E(119)^-53, -1*E(119)^-41, -1*E(119)^-33, -1*E(119)^-39, -1*E(119)^-11, -1*E(119)^-45, -1*E(119)^50, -1*E(119)^-40, -1*E(119)^53, -1*E(119), -1*E(119)^59, -1*E(119)^4, -1*E(119)^-20, -1*E(119)^6, -1*E(119)^-30, -1*E(119)^9, -1*E(119)^27, -1*E(119)^12, -1*E(119)^37, -1*E(119)^-2, -1*E(119)^-22, -1*E(119)^8, -1*E(119)^32, -1*E(119)^36, -1*E(119)^29, -1*E(119)^5, -1*E(119)^-29, -1*E(119)^15, -1*E(119)^39, -1*E(119)^24, -1*E(119)^-46, -1*E(119)^18, -1*E(119)^-6, -1*E(119)^3, -1*E(119)^-3, -1*E(119)^-50, -1*E(119)^13, -1*E(119)^-37, -1*E(119)^2, -1*E(119)^47, -1*E(119)^-8, -1*E(119)^44, 1], [1, -1, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^51, E(119)^17, -1*E(119)^17, -1*E(119)^-17, -1*E(119)^51, -1*E(119)^-51, -1*E(119)^-34, -1*E(119)^34, E(119)^-28, E(119)^-14, E(119)^35, E(119)^-35, E(119)^56, E(119)^21, E(119)^-56, E(119)^-42, E(119)^49, E(119)^42, E(119)^-21, E(119)^28, E(119)^-7, E(119)^-49, E(119)^7, E(119)^14, -1*E(119)^28, -1*E(119)^21, -1*E(119)^-56, -1*E(119)^49, -1*E(119)^-35, -1*E(119)^7, -1*E(119)^-49, -1*E(119)^-21, -1*E(119)^14, -1*E(119)^-28, -1*E(119)^-42, -1*E(119)^-14, -1*E(119)^-7, -1*E(119)^56, -1*E(119)^42, -1*E(119)^35, E(119)^10, E(119)^15, E(119)^-30, E(119)^-59, E(119)^2, E(119)^5, E(119)^52, E(119)^8, E(119)^12, E(119)^18, E(119)^-40, E(119)^46, E(119)^32, E(119)^-26, E(119)^59, E(119)^-2, E(119)^-13, E(119)^-53, E(119)^-15, E(119)^-8, E(119)^-33, E(119)^-22, E(119)^48, E(119)^37, E(119)^41, E(119)^55, E(119)^-4, E(119)^36, E(119)^50, E(119)^-11, E(119)^23, E(119), E(119)^-24, E(119)^30, E(119)^-31, E(119)^-58, E(119)^-32, E(119)^3, E(119)^54, E(119)^-47, E(119)^11, E(119)^19, E(119)^-27, E(119)^45, E(119)^6, E(119)^-29, E(119)^-12, E(119)^-1, E(119)^-36, E(119)^-46, E(119)^-6, E(119)^-9, E(119)^39, E(119)^-19, E(119)^25, E(119)^53, E(119)^44, E(119)^-38, E(119)^-3, E(119)^9, E(119)^13, E(119)^-37, E(119)^43, E(119)^-18, E(119)^-44, E(119)^29, E(119)^16, E(119)^-57, E(119)^-20, E(119)^-48, E(119)^57, E(119)^47, E(119)^38, E(119)^-41, E(119)^26, E(119)^31, E(119)^-54, E(119)^33, E(119)^-39, E(119)^58, E(119)^-52, E(119)^-16, E(119)^-5, E(119)^4, E(119)^-45, E(119)^22, E(119)^-10, E(119)^40, E(119)^-55, E(119)^24, E(119)^-23, E(119)^-50, E(119)^27, E(119)^20, E(119)^-43, E(119)^-25, -1*E(119)^-54, -1*E(119)^-16, -1*E(119)^-40, -1*E(119)^-41, -1*E(119)^12, -1*E(119)^-26, -1*E(119)^-2, -1*E(119)^-1, -1*E(119)^59, -1*E(119)^39, -1*E(119)^25, -1*E(119)^24, -1*E(119)^-3, -1*E(119)^55, -1*E(119)^-4, -1*E(119)^53, -1*E(119)^11, -1*E(119)^-32, -1*E(119)^27, -1*E(119)^57, -1*E(119)^2, -1*E(119)^40, -1*E(119)^50, -1*E(119)^-12, -1*E(119)^-44, -1*E(119)^29, -1*E(119)^22, -1*E(119)^41, -1*E(119)^3, -1*E(119)^9, -1*E(119)^54, -1*E(119)^16, -1*E(119)^43, -1*E(119)^-18, -1*E(119)^18, -1*E(119)^-24, -1*E(119)^-25, -1*E(119)^-45, -1*E(119)^-10, -1*E(119)^-11, -1*E(119)^48, -1*E(119)^36, -1*E(119)^23, -1*E(119)^-36, -1*E(119)^-58, -1*E(119)^-19, -1*E(119)^-8, -1*E(119)^-48, -1*E(119)^31, -1*E(119)^26, -1*E(119)^37, -1*E(119), -1*E(119)^-30, -1*E(119)^47, -1*E(119)^46, -1*E(119)^-43, -1*E(119)^-23, -1*E(119)^-38, -1*E(119)^32, -1*E(119)^-53, -1*E(119)^6, -1*E(119)^19, -1*E(119)^-46, -1*E(119)^-57, -1*E(119)^-31, -1*E(119)^10, -1*E(119)^-50, -1*E(119)^15, -1*E(119)^44, -1*E(119)^-37, -1*E(119)^8, -1*E(119)^30, -1*E(119)^33, -1*E(119)^-5, -1*E(119)^-55, -1*E(119)^20, -1*E(119)^-39, -1*E(119)^-29, -1*E(119)^13, -1*E(119)^-47, -1*E(119)^-13, -1*E(119)^-22, -1*E(119)^38, -1*E(119)^-59, -1*E(119)^4, -1*E(119)^45, -1*E(119)^-15, -1*E(119)^-52, -1*E(119)^52, -1*E(119)^-6, -1*E(119)^-27, -1*E(119)^-33, -1*E(119)^5, -1*E(119)^58, -1*E(119)^-20, -1*E(119)^-9, 1], [1, -1, E(119)^51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-51, E(119)^-17, -1*E(119)^-17, -1*E(119)^17, -1*E(119)^-51, -1*E(119)^51, -1*E(119)^34, -1*E(119)^-34, E(119)^28, E(119)^14, E(119)^-35, E(119)^35, E(119)^-56, E(119)^-21, E(119)^56, E(119)^42, E(119)^-49, E(119)^-42, E(119)^21, E(119)^-28, E(119)^7, E(119)^49, E(119)^-7, E(119)^-14, -1*E(119)^-28, -1*E(119)^-21, -1*E(119)^56, -1*E(119)^-49, -1*E(119)^35, -1*E(119)^-7, -1*E(119)^49, -1*E(119)^21, -1*E(119)^-14, -1*E(119)^28, -1*E(119)^42, -1*E(119)^14, -1*E(119)^7, -1*E(119)^-56, -1*E(119)^-42, -1*E(119)^-35, E(119)^-10, E(119)^-15, E(119)^30, E(119)^59, E(119)^-2, E(119)^-5, E(119)^-52, E(119)^-8, E(119)^-12, E(119)^-18, E(119)^40, E(119)^-46, E(119)^-32, E(119)^26, E(119)^-59, E(119)^2, E(119)^13, E(119)^53, E(119)^15, E(119)^8, E(119)^33, E(119)^22, E(119)^-48, E(119)^-37, E(119)^-41, E(119)^-55, E(119)^4, E(119)^-36, E(119)^-50, E(119)^11, E(119)^-23, E(119)^-1, E(119)^24, E(119)^-30, E(119)^31, E(119)^58, E(119)^32, E(119)^-3, E(119)^-54, E(119)^47, E(119)^-11, E(119)^-19, E(119)^27, E(119)^-45, E(119)^-6, E(119)^29, E(119)^12, E(119), E(119)^36, E(119)^46, E(119)^6, E(119)^9, E(119)^-39, E(119)^19, E(119)^-25, E(119)^-53, E(119)^-44, E(119)^38, E(119)^3, E(119)^-9, E(119)^-13, E(119)^37, E(119)^-43, E(119)^18, E(119)^44, E(119)^-29, E(119)^-16, E(119)^57, E(119)^20, E(119)^48, E(119)^-57, E(119)^-47, E(119)^-38, E(119)^41, E(119)^-26, E(119)^-31, E(119)^54, E(119)^-33, E(119)^39, E(119)^-58, E(119)^52, E(119)^16, E(119)^5, E(119)^-4, E(119)^45, E(119)^-22, E(119)^10, E(119)^-40, E(119)^55, E(119)^-24, E(119)^23, E(119)^50, E(119)^-27, E(119)^-20, E(119)^43, E(119)^25, -1*E(119)^54, -1*E(119)^16, -1*E(119)^40, -1*E(119)^41, -1*E(119)^-12, -1*E(119)^26, -1*E(119)^2, -1*E(119), -1*E(119)^-59, -1*E(119)^-39, -1*E(119)^-25, -1*E(119)^-24, -1*E(119)^3, -1*E(119)^-55, -1*E(119)^4, -1*E(119)^-53, -1*E(119)^-11, -1*E(119)^32, -1*E(119)^-27, -1*E(119)^-57, -1*E(119)^-2, -1*E(119)^-40, -1*E(119)^-50, -1*E(119)^12, -1*E(119)^44, -1*E(119)^-29, -1*E(119)^-22, -1*E(119)^-41, -1*E(119)^-3, -1*E(119)^-9, -1*E(119)^-54, -1*E(119)^-16, -1*E(119)^-43, -1*E(119)^18, -1*E(119)^-18, -1*E(119)^24, -1*E(119)^25, -1*E(119)^45, -1*E(119)^10, -1*E(119)^11, -1*E(119)^-48, -1*E(119)^-36, -1*E(119)^-23, -1*E(119)^36, -1*E(119)^58, -1*E(119)^19, -1*E(119)^8, -1*E(119)^48, -1*E(119)^-31, -1*E(119)^-26, -1*E(119)^-37, -1*E(119)^-1, -1*E(119)^30, -1*E(119)^-47, -1*E(119)^-46, -1*E(119)^43, -1*E(119)^23, -1*E(119)^38, -1*E(119)^-32, -1*E(119)^53, -1*E(119)^-6, -1*E(119)^-19, -1*E(119)^46, -1*E(119)^57, -1*E(119)^31, -1*E(119)^-10, -1*E(119)^50, -1*E(119)^-15, -1*E(119)^-44, -1*E(119)^37, -1*E(119)^-8, -1*E(119)^-30, -1*E(119)^-33, -1*E(119)^5, -1*E(119)^55, -1*E(119)^-20, -1*E(119)^39, -1*E(119)^29, -1*E(119)^-13, -1*E(119)^47, -1*E(119)^13, -1*E(119)^22, -1*E(119)^-38, -1*E(119)^59, -1*E(119)^-4, -1*E(119)^-45, -1*E(119)^15, -1*E(119)^52, -1*E(119)^-52, -1*E(119)^6, -1*E(119)^27, -1*E(119)^33, -1*E(119)^-5, -1*E(119)^-58, -1*E(119)^20, -1*E(119)^9, 1], [1, -1, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^51, E(119)^17, -1*E(119)^17, -1*E(119)^-17, -1*E(119)^51, -1*E(119)^-51, -1*E(119)^-34, -1*E(119)^34, E(119)^28, E(119)^14, E(119)^-35, E(119)^35, E(119)^-56, E(119)^-21, E(119)^56, E(119)^42, E(119)^-49, E(119)^-42, E(119)^21, E(119)^-28, E(119)^7, E(119)^49, E(119)^-7, E(119)^-14, -1*E(119)^-28, -1*E(119)^-21, -1*E(119)^56, -1*E(119)^-49, -1*E(119)^35, -1*E(119)^-7, -1*E(119)^49, -1*E(119)^21, -1*E(119)^-14, -1*E(119)^28, -1*E(119)^42, -1*E(119)^14, -1*E(119)^7, -1*E(119)^-56, -1*E(119)^-42, -1*E(119)^-35, E(119)^24, E(119)^36, E(119)^47, E(119)^25, E(119)^-19, E(119)^12, E(119)^-18, E(119)^43, E(119)^5, E(119)^-52, E(119)^23, E(119)^39, E(119)^53, E(119)^9, E(119)^-25, E(119)^19, E(119)^-55, E(119)^-32, E(119)^-36, E(119)^-43, E(119)^16, E(119)^-29, E(119)^20, E(119)^-54, E(119)^27, E(119)^13, E(119)^38, E(119)^15, E(119), E(119)^45, E(119)^-40, E(119)^50, E(119)^-10, E(119)^-47, E(119)^-3, E(119)^-44, E(119)^-53, E(119)^31, E(119)^-37, E(119)^30, E(119)^-45, E(119)^-2, E(119)^-41, E(119)^-11, E(119)^-57, E(119)^-22, E(119)^-5, E(119)^-50, E(119)^-15, E(119)^-39, E(119)^57, E(119)^26, E(119)^46, E(119)^2, E(119)^-59, E(119)^32, E(119)^58, E(119)^4, E(119)^-31, E(119)^-26, E(119)^55, E(119)^54, E(119)^8, E(119)^52, E(119)^-58, E(119)^22, E(119)^-33, E(119)^6, E(119)^-48, E(119)^-20, E(119)^-6, E(119)^-30, E(119)^-4, E(119)^-27, E(119)^-9, E(119)^3, E(119)^37, E(119)^-16, E(119)^-46, E(119)^44, E(119)^18, E(119)^33, E(119)^-12, E(119)^-38, E(119)^11, E(119)^29, E(119)^-24, E(119)^-23, E(119)^-13, E(119)^10, E(119)^40, E(119)^-1, E(119)^41, E(119)^48, E(119)^-8, E(119)^59, -1*E(119)^37, -1*E(119)^33, -1*E(119)^23, -1*E(119)^-27, -1*E(119)^5, -1*E(119)^9, -1*E(119)^19, -1*E(119)^-50, -1*E(119)^-25, -1*E(119)^46, -1*E(119)^-59, -1*E(119)^10, -1*E(119)^-31, -1*E(119)^13, -1*E(119)^38, -1*E(119)^32, -1*E(119)^-45, -1*E(119)^-53, -1*E(119)^41, -1*E(119)^-6, -1*E(119)^-19, -1*E(119)^-23, -1*E(119), -1*E(119)^-5, -1*E(119)^-58, -1*E(119)^22, -1*E(119)^29, -1*E(119)^27, -1*E(119)^31, -1*E(119)^-26, -1*E(119)^-37, -1*E(119)^-33, -1*E(119)^8, -1*E(119)^52, -1*E(119)^-52, -1*E(119)^-10, -1*E(119)^59, -1*E(119)^11, -1*E(119)^-24, -1*E(119)^45, -1*E(119)^20, -1*E(119)^15, -1*E(119)^-40, -1*E(119)^-15, -1*E(119)^-44, -1*E(119)^2, -1*E(119)^-43, -1*E(119)^-20, -1*E(119)^3, -1*E(119)^-9, -1*E(119)^-54, -1*E(119)^50, -1*E(119)^47, -1*E(119)^-30, -1*E(119)^39, -1*E(119)^-8, -1*E(119)^40, -1*E(119)^4, -1*E(119)^53, -1*E(119)^-32, -1*E(119)^-57, -1*E(119)^-2, -1*E(119)^-39, -1*E(119)^6, -1*E(119)^-3, -1*E(119)^24, -1*E(119)^-1, -1*E(119)^36, -1*E(119)^58, -1*E(119)^54, -1*E(119)^43, -1*E(119)^-47, -1*E(119)^-16, -1*E(119)^-12, -1*E(119)^-13, -1*E(119)^48, -1*E(119)^-46, -1*E(119)^-22, -1*E(119)^55, -1*E(119)^30, -1*E(119)^-55, -1*E(119)^-29, -1*E(119)^-4, -1*E(119)^25, -1*E(119)^-38, -1*E(119)^-11, -1*E(119)^-36, -1*E(119)^18, -1*E(119)^-18, -1*E(119)^57, -1*E(119)^-41, -1*E(119)^16, -1*E(119)^12, -1*E(119)^44, -1*E(119)^-48, -1*E(119)^26, 1], [1, -1, E(119)^51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-51, E(119)^-17, -1*E(119)^-17, -1*E(119)^17, -1*E(119)^-51, -1*E(119)^51, -1*E(119)^34, -1*E(119)^-34, E(119)^-28, E(119)^-14, E(119)^35, E(119)^-35, E(119)^56, E(119)^21, E(119)^-56, E(119)^-42, E(119)^49, E(119)^42, E(119)^-21, E(119)^28, E(119)^-7, E(119)^-49, E(119)^7, E(119)^14, -1*E(119)^28, -1*E(119)^21, -1*E(119)^-56, -1*E(119)^49, -1*E(119)^-35, -1*E(119)^7, -1*E(119)^-49, -1*E(119)^-21, -1*E(119)^14, -1*E(119)^-28, -1*E(119)^-42, -1*E(119)^-14, -1*E(119)^-7, -1*E(119)^56, -1*E(119)^42, -1*E(119)^35, E(119)^-24, E(119)^-36, E(119)^-47, E(119)^-25, E(119)^19, E(119)^-12, E(119)^18, E(119)^-43, E(119)^-5, E(119)^52, E(119)^-23, E(119)^-39, E(119)^-53, E(119)^-9, E(119)^25, E(119)^-19, E(119)^55, E(119)^32, E(119)^36, E(119)^43, E(119)^-16, E(119)^29, E(119)^-20, E(119)^54, E(119)^-27, E(119)^-13, E(119)^-38, E(119)^-15, E(119)^-1, E(119)^-45, E(119)^40, E(119)^-50, E(119)^10, E(119)^47, E(119)^3, E(119)^44, E(119)^53, E(119)^-31, E(119)^37, E(119)^-30, E(119)^45, E(119)^2, E(119)^41, E(119)^11, E(119)^57, E(119)^22, E(119)^5, E(119)^50, E(119)^15, E(119)^39, E(119)^-57, E(119)^-26, E(119)^-46, E(119)^-2, E(119)^59, E(119)^-32, E(119)^-58, E(119)^-4, E(119)^31, E(119)^26, E(119)^-55, E(119)^-54, E(119)^-8, E(119)^-52, E(119)^58, E(119)^-22, E(119)^33, E(119)^-6, E(119)^48, E(119)^20, E(119)^6, E(119)^30, E(119)^4, E(119)^27, E(119)^9, E(119)^-3, E(119)^-37, E(119)^16, E(119)^46, E(119)^-44, E(119)^-18, E(119)^-33, E(119)^12, E(119)^38, E(119)^-11, E(119)^-29, E(119)^24, E(119)^23, E(119)^13, E(119)^-10, E(119)^-40, E(119), E(119)^-41, E(119)^-48, E(119)^8, E(119)^-59, -1*E(119)^-37, -1*E(119)^-33, -1*E(119)^-23, -1*E(119)^27, -1*E(119)^-5, -1*E(119)^-9, -1*E(119)^-19, -1*E(119)^50, -1*E(119)^25, -1*E(119)^-46, -1*E(119)^59, -1*E(119)^-10, -1*E(119)^31, -1*E(119)^-13, -1*E(119)^-38, -1*E(119)^-32, -1*E(119)^45, -1*E(119)^53, -1*E(119)^-41, -1*E(119)^6, -1*E(119)^19, -1*E(119)^23, -1*E(119)^-1, -1*E(119)^5, -1*E(119)^58, -1*E(119)^-22, -1*E(119)^-29, -1*E(119)^-27, -1*E(119)^-31, -1*E(119)^26, -1*E(119)^37, -1*E(119)^33, -1*E(119)^-8, -1*E(119)^-52, -1*E(119)^52, -1*E(119)^10, -1*E(119)^-59, -1*E(119)^-11, -1*E(119)^24, -1*E(119)^-45, -1*E(119)^-20, -1*E(119)^-15, -1*E(119)^40, -1*E(119)^15, -1*E(119)^44, -1*E(119)^-2, -1*E(119)^43, -1*E(119)^20, -1*E(119)^-3, -1*E(119)^9, -1*E(119)^54, -1*E(119)^-50, -1*E(119)^-47, -1*E(119)^30, -1*E(119)^-39, -1*E(119)^8, -1*E(119)^-40, -1*E(119)^-4, -1*E(119)^-53, -1*E(119)^32, -1*E(119)^57, -1*E(119)^2, -1*E(119)^39, -1*E(119)^-6, -1*E(119)^3, -1*E(119)^-24, -1*E(119), -1*E(119)^-36, -1*E(119)^-58, -1*E(119)^-54, -1*E(119)^-43, -1*E(119)^47, -1*E(119)^16, -1*E(119)^12, -1*E(119)^13, -1*E(119)^-48, -1*E(119)^46, -1*E(119)^22, -1*E(119)^-55, -1*E(119)^-30, -1*E(119)^55, -1*E(119)^29, -1*E(119)^4, -1*E(119)^-25, -1*E(119)^38, -1*E(119)^11, -1*E(119)^36, -1*E(119)^-18, -1*E(119)^18, -1*E(119)^-57, -1*E(119)^41, -1*E(119)^-16, -1*E(119)^-12, -1*E(119)^-44, -1*E(119)^48, -1*E(119)^-26, 1], [1, -1, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^51, E(119)^17, -1*E(119)^17, -1*E(119)^-17, -1*E(119)^51, -1*E(119)^-51, -1*E(119)^-34, -1*E(119)^34, E(119)^-21, E(119)^49, E(119)^56, E(119)^-56, E(119)^42, E(119)^-14, E(119)^-42, E(119)^28, E(119)^7, E(119)^-28, E(119)^14, E(119)^21, E(119)^-35, E(119)^-7, E(119)^35, E(119)^-49, -1*E(119)^21, -1*E(119)^-14, -1*E(119)^-42, -1*E(119)^7, -1*E(119)^-56, -1*E(119)^35, -1*E(119)^-7, -1*E(119)^14, -1*E(119)^-49, -1*E(119)^-21, -1*E(119)^28, -1*E(119)^49, -1*E(119)^-35, -1*E(119)^42, -1*E(119)^-28, -1*E(119)^56, E(119)^-18, E(119)^-27, E(119)^54, E(119)^11, E(119)^44, E(119)^-9, E(119)^-46, E(119)^57, E(119)^26, E(119)^39, E(119)^-47, E(119)^-59, E(119)^-10, E(119)^23, E(119)^-11, E(119)^-44, E(119)^-48, E(119)^24, E(119)^27, E(119)^-57, E(119)^-12, E(119)^-8, E(119)^-15, E(119)^-19, E(119)^-50, E(119)^20, E(119)^31, E(119)^-41, E(119)^29, E(119)^-4, E(119)^30, E(119)^22, E(119)^-52, E(119)^-54, E(119)^32, E(119)^33, E(119)^10, E(119)^-53, E(119)^-2, E(119)^37, E(119)^4, E(119)^-58, E(119), E(119)^38, E(119)^13, E(119)^-43, E(119)^-26, E(119)^-22, E(119)^41, E(119)^59, E(119)^-13, E(119)^40, E(119)^25, E(119)^58, E(119)^-45, E(119)^-24, E(119)^16, E(119)^-3, E(119)^53, E(119)^-40, E(119)^48, E(119)^19, E(119)^-6, E(119)^-39, E(119)^-16, E(119)^43, E(119)^-5, E(119)^55, E(119)^36, E(119)^15, E(119)^-55, E(119)^-37, E(119)^3, E(119)^50, E(119)^-23, E(119)^-32, E(119)^2, E(119)^12, E(119)^-25, E(119)^-33, E(119)^46, E(119)^5, E(119)^9, E(119)^-31, E(119)^-38, E(119)^8, E(119)^18, E(119)^47, E(119)^-20, E(119)^52, E(119)^-30, E(119)^-29, E(119)^-1, E(119)^-36, E(119)^6, E(119)^45, -1*E(119)^2, -1*E(119)^5, -1*E(119)^-47, -1*E(119)^50, -1*E(119)^26, -1*E(119)^23, -1*E(119)^-44, -1*E(119)^-22, -1*E(119)^-11, -1*E(119)^25, -1*E(119)^-45, -1*E(119)^52, -1*E(119)^53, -1*E(119)^20, -1*E(119)^31, -1*E(119)^-24, -1*E(119)^4, -1*E(119)^10, -1*E(119)^-1, -1*E(119)^-55, -1*E(119)^44, -1*E(119)^47, -1*E(119)^29, -1*E(119)^-26, -1*E(119)^-16, -1*E(119)^43, -1*E(119)^8, -1*E(119)^-50, -1*E(119)^-53, -1*E(119)^-40, -1*E(119)^-2, -1*E(119)^-5, -1*E(119)^-6, -1*E(119)^-39, -1*E(119)^39, -1*E(119)^-52, -1*E(119)^45, -1*E(119)^-38, -1*E(119)^18, -1*E(119)^-4, -1*E(119)^-15, -1*E(119)^-41, -1*E(119)^30, -1*E(119)^41, -1*E(119)^33, -1*E(119)^58, -1*E(119)^-57, -1*E(119)^15, -1*E(119)^-32, -1*E(119)^-23, -1*E(119)^-19, -1*E(119)^22, -1*E(119)^54, -1*E(119)^-37, -1*E(119)^-59, -1*E(119)^6, -1*E(119)^-30, -1*E(119)^-3, -1*E(119)^-10, -1*E(119)^24, -1*E(119)^13, -1*E(119)^-58, -1*E(119)^59, -1*E(119)^55, -1*E(119)^32, -1*E(119)^-18, -1*E(119)^-29, -1*E(119)^-27, -1*E(119)^16, -1*E(119)^19, -1*E(119)^57, -1*E(119)^-54, -1*E(119)^12, -1*E(119)^9, -1*E(119)^-20, -1*E(119)^-36, -1*E(119)^-25, -1*E(119)^-43, -1*E(119)^48, -1*E(119)^37, -1*E(119)^-48, -1*E(119)^-8, -1*E(119)^3, -1*E(119)^11, -1*E(119)^-31, -1*E(119)^38, -1*E(119)^27, -1*E(119)^46, -1*E(119)^-46, -1*E(119)^-13, -1*E(119), -1*E(119)^-12, -1*E(119)^-9, -1*E(119)^-33, -1*E(119)^36, -1*E(119)^40, 1], [1, -1, E(119)^51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-51, E(119)^-17, -1*E(119)^-17, -1*E(119)^17, -1*E(119)^-51, -1*E(119)^51, -1*E(119)^34, -1*E(119)^-34, E(119)^21, E(119)^-49, E(119)^-56, E(119)^56, E(119)^-42, E(119)^14, E(119)^42, E(119)^-28, E(119)^-7, E(119)^28, E(119)^-14, E(119)^-21, E(119)^35, E(119)^7, E(119)^-35, E(119)^49, -1*E(119)^-21, -1*E(119)^14, -1*E(119)^42, -1*E(119)^-7, -1*E(119)^56, -1*E(119)^-35, -1*E(119)^7, -1*E(119)^-14, -1*E(119)^49, -1*E(119)^21, -1*E(119)^-28, -1*E(119)^-49, -1*E(119)^35, -1*E(119)^-42, -1*E(119)^28, -1*E(119)^-56, E(119)^18, E(119)^27, E(119)^-54, E(119)^-11, E(119)^-44, E(119)^9, E(119)^46, E(119)^-57, E(119)^-26, E(119)^-39, E(119)^47, E(119)^59, E(119)^10, E(119)^-23, E(119)^11, E(119)^44, E(119)^48, E(119)^-24, E(119)^-27, E(119)^57, E(119)^12, E(119)^8, E(119)^15, E(119)^19, E(119)^50, E(119)^-20, E(119)^-31, E(119)^41, E(119)^-29, E(119)^4, E(119)^-30, E(119)^-22, E(119)^52, E(119)^54, E(119)^-32, E(119)^-33, E(119)^-10, E(119)^53, E(119)^2, E(119)^-37, E(119)^-4, E(119)^58, E(119)^-1, E(119)^-38, E(119)^-13, E(119)^43, E(119)^26, E(119)^22, E(119)^-41, E(119)^-59, E(119)^13, E(119)^-40, E(119)^-25, E(119)^-58, E(119)^45, E(119)^24, E(119)^-16, E(119)^3, E(119)^-53, E(119)^40, E(119)^-48, E(119)^-19, E(119)^6, E(119)^39, E(119)^16, E(119)^-43, E(119)^5, E(119)^-55, E(119)^-36, E(119)^-15, E(119)^55, E(119)^37, E(119)^-3, E(119)^-50, E(119)^23, E(119)^32, E(119)^-2, E(119)^-12, E(119)^25, E(119)^33, E(119)^-46, E(119)^-5, E(119)^-9, E(119)^31, E(119)^38, E(119)^-8, E(119)^-18, E(119)^-47, E(119)^20, E(119)^-52, E(119)^30, E(119)^29, E(119), E(119)^36, E(119)^-6, E(119)^-45, -1*E(119)^-2, -1*E(119)^-5, -1*E(119)^47, -1*E(119)^-50, -1*E(119)^-26, -1*E(119)^-23, -1*E(119)^44, -1*E(119)^22, -1*E(119)^11, -1*E(119)^-25, -1*E(119)^45, -1*E(119)^-52, -1*E(119)^-53, -1*E(119)^-20, -1*E(119)^-31, -1*E(119)^24, -1*E(119)^-4, -1*E(119)^-10, -1*E(119), -1*E(119)^55, -1*E(119)^-44, -1*E(119)^-47, -1*E(119)^-29, -1*E(119)^26, -1*E(119)^16, -1*E(119)^-43, -1*E(119)^-8, -1*E(119)^50, -1*E(119)^53, -1*E(119)^40, -1*E(119)^2, -1*E(119)^5, -1*E(119)^6, -1*E(119)^39, -1*E(119)^-39, -1*E(119)^52, -1*E(119)^-45, -1*E(119)^38, -1*E(119)^-18, -1*E(119)^4, -1*E(119)^15, -1*E(119)^41, -1*E(119)^-30, -1*E(119)^-41, -1*E(119)^-33, -1*E(119)^-58, -1*E(119)^57, -1*E(119)^-15, -1*E(119)^32, -1*E(119)^23, -1*E(119)^19, -1*E(119)^-22, -1*E(119)^-54, -1*E(119)^37, -1*E(119)^59, -1*E(119)^-6, -1*E(119)^30, -1*E(119)^3, -1*E(119)^10, -1*E(119)^-24, -1*E(119)^-13, -1*E(119)^58, -1*E(119)^-59, -1*E(119)^-55, -1*E(119)^-32, -1*E(119)^18, -1*E(119)^29, -1*E(119)^27, -1*E(119)^-16, -1*E(119)^-19, -1*E(119)^-57, -1*E(119)^54, -1*E(119)^-12, -1*E(119)^-9, -1*E(119)^20, -1*E(119)^36, -1*E(119)^25, -1*E(119)^43, -1*E(119)^-48, -1*E(119)^-37, -1*E(119)^48, -1*E(119)^8, -1*E(119)^-3, -1*E(119)^-11, -1*E(119)^31, -1*E(119)^-38, -1*E(119)^-27, -1*E(119)^-46, -1*E(119)^46, -1*E(119)^13, -1*E(119)^-1, -1*E(119)^12, -1*E(119)^9, -1*E(119)^33, -1*E(119)^-36, -1*E(119)^-40, 1], [1, -1, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^51, E(119)^17, -1*E(119)^17, -1*E(119)^-17, -1*E(119)^51, -1*E(119)^-51, -1*E(119)^-34, -1*E(119)^34, E(119)^21, E(119)^-49, E(119)^-56, E(119)^56, E(119)^-42, E(119)^14, E(119)^42, E(119)^-28, E(119)^-7, E(119)^28, E(119)^-14, E(119)^-21, E(119)^35, E(119)^7, E(119)^-35, E(119)^49, -1*E(119)^-21, -1*E(119)^14, -1*E(119)^42, -1*E(119)^-7, -1*E(119)^56, -1*E(119)^-35, -1*E(119)^7, -1*E(119)^-14, -1*E(119)^49, -1*E(119)^21, -1*E(119)^-28, -1*E(119)^-49, -1*E(119)^35, -1*E(119)^-42, -1*E(119)^28, -1*E(119)^-56, E(119)^52, E(119)^-41, E(119)^-37, E(119)^-45, E(119)^58, E(119)^26, E(119)^-39, E(119)^-6, E(119)^-9, E(119)^46, E(119)^30, E(119)^25, E(119)^-24, E(119)^-40, E(119)^45, E(119)^-58, E(119)^-20, E(119)^10, E(119)^41, E(119)^6, E(119)^-5, E(119)^-43, E(119)^-36, E(119)^2, E(119)^-1, E(119)^48, E(119)^3, E(119)^-27, E(119)^22, E(119)^38, E(119)^-47, E(119)^29, E(119)^18, E(119)^37, E(119)^53, E(119)^-16, E(119)^24, E(119)^-32, E(119)^19, E(119)^-54, E(119)^-38, E(119)^-44, E(119)^50, E(119)^-4, E(119)^55, E(119)^-8, E(119)^9, E(119)^-29, E(119)^27, E(119)^-25, E(119)^-55, E(119)^-23, E(119)^-59, E(119)^44, E(119)^11, E(119)^-10, E(119)^-33, E(119)^-31, E(119)^32, E(119)^23, E(119)^20, E(119)^-2, E(119)^57, E(119)^-46, E(119)^33, E(119)^8, E(119)^-12, E(119)^13, E(119)^15, E(119)^36, E(119)^-13, E(119)^54, E(119)^31, E(119), E(119)^40, E(119)^-53, E(119)^-19, E(119)^5, E(119)^59, E(119)^16, E(119)^39, E(119)^12, E(119)^-26, E(119)^-3, E(119)^4, E(119)^43, E(119)^-52, E(119)^-30, E(119)^-48, E(119)^-18, E(119)^47, E(119)^-22, E(119)^-50, E(119)^-15, E(119)^-57, E(119)^-11, -1*E(119)^-19, -1*E(119)^12, -1*E(119)^30, -1*E(119), -1*E(119)^-9, -1*E(119)^-40, -1*E(119)^-58, -1*E(119)^-29, -1*E(119)^45, -1*E(119)^-59, -1*E(119)^11, -1*E(119)^-18, -1*E(119)^32, -1*E(119)^48, -1*E(119)^3, -1*E(119)^-10, -1*E(119)^-38, -1*E(119)^24, -1*E(119)^-50, -1*E(119)^-13, -1*E(119)^58, -1*E(119)^-30, -1*E(119)^22, -1*E(119)^9, -1*E(119)^33, -1*E(119)^8, -1*E(119)^43, -1*E(119)^-1, -1*E(119)^-32, -1*E(119)^23, -1*E(119)^19, -1*E(119)^-12, -1*E(119)^57, -1*E(119)^-46, -1*E(119)^46, -1*E(119)^18, -1*E(119)^-11, -1*E(119)^4, -1*E(119)^-52, -1*E(119)^38, -1*E(119)^-36, -1*E(119)^-27, -1*E(119)^-47, -1*E(119)^27, -1*E(119)^-16, -1*E(119)^44, -1*E(119)^6, -1*E(119)^36, -1*E(119)^-53, -1*E(119)^40, -1*E(119)^2, -1*E(119)^29, -1*E(119)^-37, -1*E(119)^54, -1*E(119)^25, -1*E(119)^-57, -1*E(119)^47, -1*E(119)^-31, -1*E(119)^-24, -1*E(119)^10, -1*E(119)^55, -1*E(119)^-44, -1*E(119)^-25, -1*E(119)^13, -1*E(119)^53, -1*E(119)^52, -1*E(119)^-22, -1*E(119)^-41, -1*E(119)^-33, -1*E(119)^-2, -1*E(119)^-6, -1*E(119)^37, -1*E(119)^5, -1*E(119)^-26, -1*E(119)^-48, -1*E(119)^-15, -1*E(119)^59, -1*E(119)^-8, -1*E(119)^20, -1*E(119)^-54, -1*E(119)^-20, -1*E(119)^-43, -1*E(119)^31, -1*E(119)^-45, -1*E(119)^-3, -1*E(119)^-4, -1*E(119)^41, -1*E(119)^39, -1*E(119)^-39, -1*E(119)^-55, -1*E(119)^50, -1*E(119)^-5, -1*E(119)^26, -1*E(119)^16, -1*E(119)^15, -1*E(119)^-23, 1], [1, -1, E(119)^51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-51, E(119)^-17, -1*E(119)^-17, -1*E(119)^17, -1*E(119)^-51, -1*E(119)^51, -1*E(119)^34, -1*E(119)^-34, E(119)^-21, E(119)^49, E(119)^56, E(119)^-56, E(119)^42, E(119)^-14, E(119)^-42, E(119)^28, E(119)^7, E(119)^-28, E(119)^14, E(119)^21, E(119)^-35, E(119)^-7, E(119)^35, E(119)^-49, -1*E(119)^21, -1*E(119)^-14, -1*E(119)^-42, -1*E(119)^7, -1*E(119)^-56, -1*E(119)^35, -1*E(119)^-7, -1*E(119)^14, -1*E(119)^-49, -1*E(119)^-21, -1*E(119)^28, -1*E(119)^49, -1*E(119)^-35, -1*E(119)^42, -1*E(119)^-28, -1*E(119)^56, E(119)^-52, E(119)^41, E(119)^37, E(119)^45, E(119)^-58, E(119)^-26, E(119)^39, E(119)^6, E(119)^9, E(119)^-46, E(119)^-30, E(119)^-25, E(119)^24, E(119)^40, E(119)^-45, E(119)^58, E(119)^20, E(119)^-10, E(119)^-41, E(119)^-6, E(119)^5, E(119)^43, E(119)^36, E(119)^-2, E(119), E(119)^-48, E(119)^-3, E(119)^27, E(119)^-22, E(119)^-38, E(119)^47, E(119)^-29, E(119)^-18, E(119)^-37, E(119)^-53, E(119)^16, E(119)^-24, E(119)^32, E(119)^-19, E(119)^54, E(119)^38, E(119)^44, E(119)^-50, E(119)^4, E(119)^-55, E(119)^8, E(119)^-9, E(119)^29, E(119)^-27, E(119)^25, E(119)^55, E(119)^23, E(119)^59, E(119)^-44, E(119)^-11, E(119)^10, E(119)^33, E(119)^31, E(119)^-32, E(119)^-23, E(119)^-20, E(119)^2, E(119)^-57, E(119)^46, E(119)^-33, E(119)^-8, E(119)^12, E(119)^-13, E(119)^-15, E(119)^-36, E(119)^13, E(119)^-54, E(119)^-31, E(119)^-1, E(119)^-40, E(119)^53, E(119)^19, E(119)^-5, E(119)^-59, E(119)^-16, E(119)^-39, E(119)^-12, E(119)^26, E(119)^3, E(119)^-4, E(119)^-43, E(119)^52, E(119)^30, E(119)^48, E(119)^18, E(119)^-47, E(119)^22, E(119)^50, E(119)^15, E(119)^57, E(119)^11, -1*E(119)^19, -1*E(119)^-12, -1*E(119)^-30, -1*E(119)^-1, -1*E(119)^9, -1*E(119)^40, -1*E(119)^58, -1*E(119)^29, -1*E(119)^-45, -1*E(119)^59, -1*E(119)^-11, -1*E(119)^18, -1*E(119)^-32, -1*E(119)^-48, -1*E(119)^-3, -1*E(119)^10, -1*E(119)^38, -1*E(119)^-24, -1*E(119)^50, -1*E(119)^13, -1*E(119)^-58, -1*E(119)^30, -1*E(119)^-22, -1*E(119)^-9, -1*E(119)^-33, -1*E(119)^-8, -1*E(119)^-43, -1*E(119), -1*E(119)^32, -1*E(119)^-23, -1*E(119)^-19, -1*E(119)^12, -1*E(119)^-57, -1*E(119)^46, -1*E(119)^-46, -1*E(119)^-18, -1*E(119)^11, -1*E(119)^-4, -1*E(119)^52, -1*E(119)^-38, -1*E(119)^36, -1*E(119)^27, -1*E(119)^47, -1*E(119)^-27, -1*E(119)^16, -1*E(119)^-44, -1*E(119)^-6, -1*E(119)^-36, -1*E(119)^53, -1*E(119)^-40, -1*E(119)^-2, -1*E(119)^-29, -1*E(119)^37, -1*E(119)^-54, -1*E(119)^-25, -1*E(119)^57, -1*E(119)^-47, -1*E(119)^31, -1*E(119)^24, -1*E(119)^-10, -1*E(119)^-55, -1*E(119)^44, -1*E(119)^25, -1*E(119)^-13, -1*E(119)^-53, -1*E(119)^-52, -1*E(119)^22, -1*E(119)^41, -1*E(119)^33, -1*E(119)^2, -1*E(119)^6, -1*E(119)^-37, -1*E(119)^-5, -1*E(119)^26, -1*E(119)^48, -1*E(119)^15, -1*E(119)^-59, -1*E(119)^8, -1*E(119)^-20, -1*E(119)^54, -1*E(119)^20, -1*E(119)^43, -1*E(119)^-31, -1*E(119)^45, -1*E(119)^3, -1*E(119)^4, -1*E(119)^-41, -1*E(119)^-39, -1*E(119)^39, -1*E(119)^55, -1*E(119)^-50, -1*E(119)^5, -1*E(119)^-26, -1*E(119)^-16, -1*E(119)^-15, -1*E(119)^23, 1], [1, -1, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^51, E(119)^17, -1*E(119)^17, -1*E(119)^-17, -1*E(119)^51, -1*E(119)^-51, -1*E(119)^-34, -1*E(119)^34, E(119)^-14, E(119)^-7, E(119)^-42, E(119)^42, E(119)^28, E(119)^-49, E(119)^-28, E(119)^-21, E(119)^-35, E(119)^21, E(119)^49, E(119)^14, E(119)^56, E(119)^35, E(119)^-56, E(119)^7, -1*E(119)^14, -1*E(119)^-49, -1*E(119)^-28, -1*E(119)^-35, -1*E(119)^42, -1*E(119)^-56, -1*E(119)^35, -1*E(119)^49, -1*E(119)^7, -1*E(119)^-14, -1*E(119)^-21, -1*E(119)^-7, -1*E(119)^56, -1*E(119)^28, -1*E(119)^21, -1*E(119)^-42, E(119)^-46, E(119)^50, E(119)^19, E(119)^-38, E(119)^-33, E(119)^-23, E(119)^-25, E(119)^-13, E(119)^40, E(119)^-59, E(119)^-54, E(119)^-45, E(119)^-52, E(119)^-47, E(119)^38, E(119)^33, E(119)^36, E(119)^-18, E(119)^-50, E(119)^13, E(119)^9, E(119)^6, E(119)^41, E(119)^44, E(119)^-22, E(119)^-15, E(119)^-53, E(119), E(119)^8, E(119)^3, E(119)^37, E(119)^43, E(119)^39, E(119)^-19, E(119)^-24, E(119)^5, E(119)^52, E(119)^10, E(119)^-58, E(119)^2, E(119)^-3, E(119)^-16, E(119)^29, E(119)^31, E(119)^20, E(119)^-57, E(119)^-40, E(119)^-43, E(119)^-1, E(119)^45, E(119)^-20, E(119)^-30, E(119)^11, E(119)^16, E(119)^4, E(119)^18, E(119)^-12, E(119)^32, E(119)^-10, E(119)^30, E(119)^-36, E(119)^-44, E(119)^-55, E(119)^59, E(119)^12, E(119)^57, E(119)^-26, E(119)^48, E(119)^-27, E(119)^-41, E(119)^-48, E(119)^-2, E(119)^-32, E(119)^22, E(119)^47, E(119)^24, E(119)^58, E(119)^-9, E(119)^-11, E(119)^-5, E(119)^25, E(119)^26, E(119)^23, E(119)^53, E(119)^-31, E(119)^-6, E(119)^46, E(119)^54, E(119)^15, E(119)^-39, E(119)^-37, E(119)^-8, E(119)^-29, E(119)^27, E(119)^55, E(119)^-4, -1*E(119)^58, -1*E(119)^26, -1*E(119)^-54, -1*E(119)^22, -1*E(119)^40, -1*E(119)^-47, -1*E(119)^33, -1*E(119)^-43, -1*E(119)^38, -1*E(119)^11, -1*E(119)^4, -1*E(119)^-39, -1*E(119)^-10, -1*E(119)^-15, -1*E(119)^-53, -1*E(119)^18, -1*E(119)^-3, -1*E(119)^52, -1*E(119)^-29, -1*E(119)^-48, -1*E(119)^-33, -1*E(119)^54, -1*E(119)^8, -1*E(119)^-40, -1*E(119)^12, -1*E(119)^57, -1*E(119)^-6, -1*E(119)^-22, -1*E(119)^10, -1*E(119)^30, -1*E(119)^-58, -1*E(119)^-26, -1*E(119)^-55, -1*E(119)^59, -1*E(119)^-59, -1*E(119)^39, -1*E(119)^-4, -1*E(119)^-31, -1*E(119)^46, -1*E(119)^3, -1*E(119)^41, -1*E(119), -1*E(119)^37, -1*E(119)^-1, -1*E(119)^5, -1*E(119)^16, -1*E(119)^13, -1*E(119)^-41, -1*E(119)^24, -1*E(119)^47, -1*E(119)^44, -1*E(119)^43, -1*E(119)^19, -1*E(119)^-2, -1*E(119)^-45, -1*E(119)^55, -1*E(119)^-37, -1*E(119)^32, -1*E(119)^-52, -1*E(119)^-18, -1*E(119)^20, -1*E(119)^-16, -1*E(119)^45, -1*E(119)^48, -1*E(119)^-24, -1*E(119)^-46, -1*E(119)^-8, -1*E(119)^50, -1*E(119)^-12, -1*E(119)^-44, -1*E(119)^-13, -1*E(119)^-19, -1*E(119)^-9, -1*E(119)^23, -1*E(119)^15, -1*E(119)^27, -1*E(119)^-11, -1*E(119)^-57, -1*E(119)^-36, -1*E(119)^2, -1*E(119)^36, -1*E(119)^6, -1*E(119)^-32, -1*E(119)^-38, -1*E(119)^53, -1*E(119)^31, -1*E(119)^-50, -1*E(119)^25, -1*E(119)^-25, -1*E(119)^-20, -1*E(119)^29, -1*E(119)^9, -1*E(119)^-23, -1*E(119)^-5, -1*E(119)^-27, -1*E(119)^-30, 1], [1, -1, E(119)^51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-51, E(119)^-17, -1*E(119)^-17, -1*E(119)^17, -1*E(119)^-51, -1*E(119)^51, -1*E(119)^34, -1*E(119)^-34, E(119)^14, E(119)^7, E(119)^42, E(119)^-42, E(119)^-28, E(119)^49, E(119)^28, E(119)^21, E(119)^35, E(119)^-21, E(119)^-49, E(119)^-14, E(119)^-56, E(119)^-35, E(119)^56, E(119)^-7, -1*E(119)^-14, -1*E(119)^49, -1*E(119)^28, -1*E(119)^35, -1*E(119)^-42, -1*E(119)^56, -1*E(119)^-35, -1*E(119)^-49, -1*E(119)^-7, -1*E(119)^14, -1*E(119)^21, -1*E(119)^7, -1*E(119)^-56, -1*E(119)^-28, -1*E(119)^-21, -1*E(119)^42, E(119)^46, E(119)^-50, E(119)^-19, E(119)^38, E(119)^33, E(119)^23, E(119)^25, E(119)^13, E(119)^-40, E(119)^59, E(119)^54, E(119)^45, E(119)^52, E(119)^47, E(119)^-38, E(119)^-33, E(119)^-36, E(119)^18, E(119)^50, E(119)^-13, E(119)^-9, E(119)^-6, E(119)^-41, E(119)^-44, E(119)^22, E(119)^15, E(119)^53, E(119)^-1, E(119)^-8, E(119)^-3, E(119)^-37, E(119)^-43, E(119)^-39, E(119)^19, E(119)^24, E(119)^-5, E(119)^-52, E(119)^-10, E(119)^58, E(119)^-2, E(119)^3, E(119)^16, E(119)^-29, E(119)^-31, E(119)^-20, E(119)^57, E(119)^40, E(119)^43, E(119), E(119)^-45, E(119)^20, E(119)^30, E(119)^-11, E(119)^-16, E(119)^-4, E(119)^-18, E(119)^12, E(119)^-32, E(119)^10, E(119)^-30, E(119)^36, E(119)^44, E(119)^55, E(119)^-59, E(119)^-12, E(119)^-57, E(119)^26, E(119)^-48, E(119)^27, E(119)^41, E(119)^48, E(119)^2, E(119)^32, E(119)^-22, E(119)^-47, E(119)^-24, E(119)^-58, E(119)^9, E(119)^11, E(119)^5, E(119)^-25, E(119)^-26, E(119)^-23, E(119)^-53, E(119)^31, E(119)^6, E(119)^-46, E(119)^-54, E(119)^-15, E(119)^39, E(119)^37, E(119)^8, E(119)^29, E(119)^-27, E(119)^-55, E(119)^4, -1*E(119)^-58, -1*E(119)^-26, -1*E(119)^54, -1*E(119)^-22, -1*E(119)^-40, -1*E(119)^47, -1*E(119)^-33, -1*E(119)^43, -1*E(119)^-38, -1*E(119)^-11, -1*E(119)^-4, -1*E(119)^39, -1*E(119)^10, -1*E(119)^15, -1*E(119)^53, -1*E(119)^-18, -1*E(119)^3, -1*E(119)^-52, -1*E(119)^29, -1*E(119)^48, -1*E(119)^33, -1*E(119)^-54, -1*E(119)^-8, -1*E(119)^40, -1*E(119)^-12, -1*E(119)^-57, -1*E(119)^6, -1*E(119)^22, -1*E(119)^-10, -1*E(119)^-30, -1*E(119)^58, -1*E(119)^26, -1*E(119)^55, -1*E(119)^-59, -1*E(119)^59, -1*E(119)^-39, -1*E(119)^4, -1*E(119)^31, -1*E(119)^-46, -1*E(119)^-3, -1*E(119)^-41, -1*E(119)^-1, -1*E(119)^-37, -1*E(119), -1*E(119)^-5, -1*E(119)^-16, -1*E(119)^-13, -1*E(119)^41, -1*E(119)^-24, -1*E(119)^-47, -1*E(119)^-44, -1*E(119)^-43, -1*E(119)^-19, -1*E(119)^2, -1*E(119)^45, -1*E(119)^-55, -1*E(119)^37, -1*E(119)^-32, -1*E(119)^52, -1*E(119)^18, -1*E(119)^-20, -1*E(119)^16, -1*E(119)^-45, -1*E(119)^-48, -1*E(119)^24, -1*E(119)^46, -1*E(119)^8, -1*E(119)^-50, -1*E(119)^12, -1*E(119)^44, -1*E(119)^13, -1*E(119)^19, -1*E(119)^9, -1*E(119)^-23, -1*E(119)^-15, -1*E(119)^-27, -1*E(119)^11, -1*E(119)^57, -1*E(119)^36, -1*E(119)^-2, -1*E(119)^-36, -1*E(119)^-6, -1*E(119)^32, -1*E(119)^38, -1*E(119)^-53, -1*E(119)^-31, -1*E(119)^50, -1*E(119)^-25, -1*E(119)^25, -1*E(119)^20, -1*E(119)^-29, -1*E(119)^-9, -1*E(119)^23, -1*E(119)^5, -1*E(119)^27, -1*E(119)^30, 1], [1, -1, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^51, E(119)^17, -1*E(119)^17, -1*E(119)^-17, -1*E(119)^51, -1*E(119)^-51, -1*E(119)^-34, -1*E(119)^34, E(119)^14, E(119)^7, E(119)^42, E(119)^-42, E(119)^-28, E(119)^49, E(119)^28, E(119)^21, E(119)^35, E(119)^-21, E(119)^-49, E(119)^-14, E(119)^-56, E(119)^-35, E(119)^56, E(119)^-7, -1*E(119)^-14, -1*E(119)^49, -1*E(119)^28, -1*E(119)^35, -1*E(119)^-42, -1*E(119)^56, -1*E(119)^-35, -1*E(119)^-49, -1*E(119)^-7, -1*E(119)^14, -1*E(119)^21, -1*E(119)^7, -1*E(119)^-56, -1*E(119)^-28, -1*E(119)^-21, -1*E(119)^42, E(119)^-39, E(119), E(119)^-2, E(119)^4, E(119)^16, E(119)^40, E(119)^59, E(119)^-55, E(119)^-23, E(119)^25, E(119)^37, E(119)^11, E(119)^18, E(119)^30, E(119)^-4, E(119)^-16, E(119)^15, E(119)^52, E(119)^-1, E(119)^55, E(119)^-26, E(119)^-57, E(119)^27, E(119)^58, E(119)^-29, E(119)^-36, E(119)^-32, E(119)^50, E(119)^43, E(119)^31, E(119)^-54, E(119)^8, E(119)^46, E(119)^2, E(119)^-10, E(119)^12, E(119)^-18, E(119)^24, E(119)^-44, E(119)^-19, E(119)^-31, E(119)^33, E(119)^22, E(119)^3, E(119)^48, E(119)^6, E(119)^23, E(119)^-8, E(119)^-50, E(119)^-11, E(119)^-48, E(119)^47, E(119)^-45, E(119)^-33, E(119)^-38, E(119)^-52, E(119)^-5, E(119)^53, E(119)^-24, E(119)^-47, E(119)^-15, E(119)^-58, E(119)^-13, E(119)^-25, E(119)^5, E(119)^-6, E(119)^9, E(119)^20, E(119)^-41, E(119)^-27, E(119)^-20, E(119)^19, E(119)^-53, E(119)^29, E(119)^-30, E(119)^10, E(119)^44, E(119)^26, E(119)^45, E(119)^-12, E(119)^-59, E(119)^-9, E(119)^-40, E(119)^32, E(119)^-3, E(119)^57, E(119)^39, E(119)^-37, E(119)^36, E(119)^-46, E(119)^54, E(119)^-43, E(119)^-22, E(119)^41, E(119)^13, E(119)^38, -1*E(119)^44, -1*E(119)^-9, -1*E(119)^37, -1*E(119)^29, -1*E(119)^-23, -1*E(119)^30, -1*E(119)^-16, -1*E(119)^-8, -1*E(119)^-4, -1*E(119)^-45, -1*E(119)^-38, -1*E(119)^-46, -1*E(119)^-24, -1*E(119)^-36, -1*E(119)^-32, -1*E(119)^-52, -1*E(119)^-31, -1*E(119)^-18, -1*E(119)^-22, -1*E(119)^-20, -1*E(119)^16, -1*E(119)^-37, -1*E(119)^43, -1*E(119)^23, -1*E(119)^5, -1*E(119)^-6, -1*E(119)^57, -1*E(119)^-29, -1*E(119)^24, -1*E(119)^-47, -1*E(119)^-44, -1*E(119)^9, -1*E(119)^-13, -1*E(119)^-25, -1*E(119)^25, -1*E(119)^46, -1*E(119)^38, -1*E(119)^-3, -1*E(119)^39, -1*E(119)^31, -1*E(119)^27, -1*E(119)^50, -1*E(119)^-54, -1*E(119)^-50, -1*E(119)^12, -1*E(119)^-33, -1*E(119)^55, -1*E(119)^-27, -1*E(119)^10, -1*E(119)^-30, -1*E(119)^58, -1*E(119)^8, -1*E(119)^-2, -1*E(119)^19, -1*E(119)^11, -1*E(119)^13, -1*E(119)^54, -1*E(119)^53, -1*E(119)^18, -1*E(119)^52, -1*E(119)^48, -1*E(119)^33, -1*E(119)^-11, -1*E(119)^20, -1*E(119)^-10, -1*E(119)^-39, -1*E(119)^-43, -1*E(119), -1*E(119)^-5, -1*E(119)^-58, -1*E(119)^-55, -1*E(119)^2, -1*E(119)^26, -1*E(119)^-40, -1*E(119)^36, -1*E(119)^41, -1*E(119)^45, -1*E(119)^6, -1*E(119)^-15, -1*E(119)^-19, -1*E(119)^15, -1*E(119)^-57, -1*E(119)^-53, -1*E(119)^4, -1*E(119)^32, -1*E(119)^3, -1*E(119)^-1, -1*E(119)^-59, -1*E(119)^59, -1*E(119)^-48, -1*E(119)^22, -1*E(119)^-26, -1*E(119)^40, -1*E(119)^-12, -1*E(119)^-41, -1*E(119)^47, 1], [1, -1, E(119)^51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-51, E(119)^-17, -1*E(119)^-17, -1*E(119)^17, -1*E(119)^-51, -1*E(119)^51, -1*E(119)^34, -1*E(119)^-34, E(119)^-14, E(119)^-7, E(119)^-42, E(119)^42, E(119)^28, E(119)^-49, E(119)^-28, E(119)^-21, E(119)^-35, E(119)^21, E(119)^49, E(119)^14, E(119)^56, E(119)^35, E(119)^-56, E(119)^7, -1*E(119)^14, -1*E(119)^-49, -1*E(119)^-28, -1*E(119)^-35, -1*E(119)^42, -1*E(119)^-56, -1*E(119)^35, -1*E(119)^49, -1*E(119)^7, -1*E(119)^-14, -1*E(119)^-21, -1*E(119)^-7, -1*E(119)^56, -1*E(119)^28, -1*E(119)^21, -1*E(119)^-42, E(119)^39, E(119)^-1, E(119)^2, E(119)^-4, E(119)^-16, E(119)^-40, E(119)^-59, E(119)^55, E(119)^23, E(119)^-25, E(119)^-37, E(119)^-11, E(119)^-18, E(119)^-30, E(119)^4, E(119)^16, E(119)^-15, E(119)^-52, E(119), E(119)^-55, E(119)^26, E(119)^57, E(119)^-27, E(119)^-58, E(119)^29, E(119)^36, E(119)^32, E(119)^-50, E(119)^-43, E(119)^-31, E(119)^54, E(119)^-8, E(119)^-46, E(119)^-2, E(119)^10, E(119)^-12, E(119)^18, E(119)^-24, E(119)^44, E(119)^19, E(119)^31, E(119)^-33, E(119)^-22, E(119)^-3, E(119)^-48, E(119)^-6, E(119)^-23, E(119)^8, E(119)^50, E(119)^11, E(119)^48, E(119)^-47, E(119)^45, E(119)^33, E(119)^38, E(119)^52, E(119)^5, E(119)^-53, E(119)^24, E(119)^47, E(119)^15, E(119)^58, E(119)^13, E(119)^25, E(119)^-5, E(119)^6, E(119)^-9, E(119)^-20, E(119)^41, E(119)^27, E(119)^20, E(119)^-19, E(119)^53, E(119)^-29, E(119)^30, E(119)^-10, E(119)^-44, E(119)^-26, E(119)^-45, E(119)^12, E(119)^59, E(119)^9, E(119)^40, E(119)^-32, E(119)^3, E(119)^-57, E(119)^-39, E(119)^37, E(119)^-36, E(119)^46, E(119)^-54, E(119)^43, E(119)^22, E(119)^-41, E(119)^-13, E(119)^-38, -1*E(119)^-44, -1*E(119)^9, -1*E(119)^-37, -1*E(119)^-29, -1*E(119)^23, -1*E(119)^-30, -1*E(119)^16, -1*E(119)^8, -1*E(119)^4, -1*E(119)^45, -1*E(119)^38, -1*E(119)^46, -1*E(119)^24, -1*E(119)^36, -1*E(119)^32, -1*E(119)^52, -1*E(119)^31, -1*E(119)^18, -1*E(119)^22, -1*E(119)^20, -1*E(119)^-16, -1*E(119)^37, -1*E(119)^-43, -1*E(119)^-23, -1*E(119)^-5, -1*E(119)^6, -1*E(119)^-57, -1*E(119)^29, -1*E(119)^-24, -1*E(119)^47, -1*E(119)^44, -1*E(119)^-9, -1*E(119)^13, -1*E(119)^25, -1*E(119)^-25, -1*E(119)^-46, -1*E(119)^-38, -1*E(119)^3, -1*E(119)^-39, -1*E(119)^-31, -1*E(119)^-27, -1*E(119)^-50, -1*E(119)^54, -1*E(119)^50, -1*E(119)^-12, -1*E(119)^33, -1*E(119)^-55, -1*E(119)^27, -1*E(119)^-10, -1*E(119)^30, -1*E(119)^-58, -1*E(119)^-8, -1*E(119)^2, -1*E(119)^-19, -1*E(119)^-11, -1*E(119)^-13, -1*E(119)^-54, -1*E(119)^-53, -1*E(119)^-18, -1*E(119)^-52, -1*E(119)^-48, -1*E(119)^-33, -1*E(119)^11, -1*E(119)^-20, -1*E(119)^10, -1*E(119)^39, -1*E(119)^43, -1*E(119)^-1, -1*E(119)^5, -1*E(119)^58, -1*E(119)^55, -1*E(119)^-2, -1*E(119)^-26, -1*E(119)^40, -1*E(119)^-36, -1*E(119)^-41, -1*E(119)^-45, -1*E(119)^-6, -1*E(119)^15, -1*E(119)^19, -1*E(119)^-15, -1*E(119)^57, -1*E(119)^53, -1*E(119)^-4, -1*E(119)^-32, -1*E(119)^-3, -1*E(119), -1*E(119)^59, -1*E(119)^-59, -1*E(119)^48, -1*E(119)^-22, -1*E(119)^26, -1*E(119)^-40, -1*E(119)^12, -1*E(119)^41, -1*E(119)^-47, 1], [1, -1, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^51, E(119)^17, -1*E(119)^17, -1*E(119)^-17, -1*E(119)^51, -1*E(119)^-51, -1*E(119)^-34, -1*E(119)^34, E(119)^-7, E(119)^56, E(119)^-21, E(119)^21, E(119)^14, E(119)^35, E(119)^-14, E(119)^49, E(119)^42, E(119)^-49, E(119)^-35, E(119)^7, E(119)^28, E(119)^-42, E(119)^-28, E(119)^-56, -1*E(119)^7, -1*E(119)^35, -1*E(119)^-14, -1*E(119)^42, -1*E(119)^21, -1*E(119)^-28, -1*E(119)^-42, -1*E(119)^-35, -1*E(119)^-56, -1*E(119)^-7, -1*E(119)^49, -1*E(119)^56, -1*E(119)^28, -1*E(119)^14, -1*E(119)^-49, -1*E(119)^-21, E(119)^45, E(119)^8, E(119)^-16, E(119)^32, E(119)^9, E(119)^-37, E(119)^-4, E(119)^36, E(119)^54, E(119)^-38, E(119)^58, E(119)^-31, E(119)^25, E(119)^2, E(119)^-32, E(119)^-9, E(119), E(119)^59, E(119)^-8, E(119)^-36, E(119)^30, E(119)^20, E(119)^-22, E(119)^-12, E(119)^6, E(119)^-50, E(119)^-18, E(119)^43, E(119)^-13, E(119)^10, E(119)^44, E(119)^-55, E(119)^11, E(119)^16, E(119)^39, E(119)^-23, E(119)^-25, E(119)^-46, E(119)^5, E(119)^-33, E(119)^-10, E(119)^26, E(119)^57, E(119)^24, E(119)^27, E(119)^48, E(119)^-54, E(119)^55, E(119)^-43, E(119)^31, E(119)^-27, E(119)^19, E(119)^-3, E(119)^-26, E(119)^53, E(119)^-59, E(119)^-40, E(119)^-52, E(119)^46, E(119)^-19, E(119)^-1, E(119)^12, E(119)^15, E(119)^38, E(119)^40, E(119)^-48, E(119)^-47, E(119)^41, E(119)^29, E(119)^22, E(119)^-41, E(119)^33, E(119)^52, E(119)^-6, E(119)^-2, E(119)^-39, E(119)^-5, E(119)^-30, E(119)^3, E(119)^23, E(119)^4, E(119)^47, E(119)^37, E(119)^18, E(119)^-24, E(119)^-20, E(119)^-45, E(119)^-58, E(119)^50, E(119)^-11, E(119)^-44, E(119)^13, E(119)^-57, E(119)^-29, E(119)^-15, E(119)^-53, -1*E(119)^-5, -1*E(119)^47, -1*E(119)^58, -1*E(119)^-6, -1*E(119)^54, -1*E(119)^2, -1*E(119)^-9, -1*E(119)^55, -1*E(119)^-32, -1*E(119)^-3, -1*E(119)^53, -1*E(119)^-11, -1*E(119)^46, -1*E(119)^-50, -1*E(119)^-18, -1*E(119)^-59, -1*E(119)^-10, -1*E(119)^-25, -1*E(119)^-57, -1*E(119)^-41, -1*E(119)^9, -1*E(119)^-58, -1*E(119)^-13, -1*E(119)^-54, -1*E(119)^40, -1*E(119)^-48, -1*E(119)^-20, -1*E(119)^6, -1*E(119)^-46, -1*E(119)^-19, -1*E(119)^5, -1*E(119)^-47, -1*E(119)^15, -1*E(119)^38, -1*E(119)^-38, -1*E(119)^11, -1*E(119)^-53, -1*E(119)^-24, -1*E(119)^-45, -1*E(119)^10, -1*E(119)^-22, -1*E(119)^43, -1*E(119)^44, -1*E(119)^-43, -1*E(119)^-23, -1*E(119)^-26, -1*E(119)^-36, -1*E(119)^22, -1*E(119)^-39, -1*E(119)^-2, -1*E(119)^-12, -1*E(119)^-55, -1*E(119)^-16, -1*E(119)^33, -1*E(119)^-31, -1*E(119)^-15, -1*E(119)^-44, -1*E(119)^-52, -1*E(119)^25, -1*E(119)^59, -1*E(119)^27, -1*E(119)^26, -1*E(119)^31, -1*E(119)^41, -1*E(119)^39, -1*E(119)^45, -1*E(119)^13, -1*E(119)^8, -1*E(119)^-40, -1*E(119)^12, -1*E(119)^36, -1*E(119)^16, -1*E(119)^-30, -1*E(119)^37, -1*E(119)^50, -1*E(119)^-29, -1*E(119)^3, -1*E(119)^48, -1*E(119)^-1, -1*E(119)^-33, -1*E(119), -1*E(119)^20, -1*E(119)^52, -1*E(119)^32, -1*E(119)^18, -1*E(119)^24, -1*E(119)^-8, -1*E(119)^4, -1*E(119)^-4, -1*E(119)^-27, -1*E(119)^57, -1*E(119)^30, -1*E(119)^-37, -1*E(119)^23, -1*E(119)^29, -1*E(119)^19, 1], [1, -1, E(119)^51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-51, E(119)^-17, -1*E(119)^-17, -1*E(119)^17, -1*E(119)^-51, -1*E(119)^51, -1*E(119)^34, -1*E(119)^-34, E(119)^7, E(119)^-56, E(119)^21, E(119)^-21, E(119)^-14, E(119)^-35, E(119)^14, E(119)^-49, E(119)^-42, E(119)^49, E(119)^35, E(119)^-7, E(119)^-28, E(119)^42, E(119)^28, E(119)^56, -1*E(119)^-7, -1*E(119)^-35, -1*E(119)^14, -1*E(119)^-42, -1*E(119)^-21, -1*E(119)^28, -1*E(119)^42, -1*E(119)^35, -1*E(119)^56, -1*E(119)^7, -1*E(119)^-49, -1*E(119)^-56, -1*E(119)^-28, -1*E(119)^-14, -1*E(119)^49, -1*E(119)^21, E(119)^-45, E(119)^-8, E(119)^16, E(119)^-32, E(119)^-9, E(119)^37, E(119)^4, E(119)^-36, E(119)^-54, E(119)^38, E(119)^-58, E(119)^31, E(119)^-25, E(119)^-2, E(119)^32, E(119)^9, E(119)^-1, E(119)^-59, E(119)^8, E(119)^36, E(119)^-30, E(119)^-20, E(119)^22, E(119)^12, E(119)^-6, E(119)^50, E(119)^18, E(119)^-43, E(119)^13, E(119)^-10, E(119)^-44, E(119)^55, E(119)^-11, E(119)^-16, E(119)^-39, E(119)^23, E(119)^25, E(119)^46, E(119)^-5, E(119)^33, E(119)^10, E(119)^-26, E(119)^-57, E(119)^-24, E(119)^-27, E(119)^-48, E(119)^54, E(119)^-55, E(119)^43, E(119)^-31, E(119)^27, E(119)^-19, E(119)^3, E(119)^26, E(119)^-53, E(119)^59, E(119)^40, E(119)^52, E(119)^-46, E(119)^19, E(119), E(119)^-12, E(119)^-15, E(119)^-38, E(119)^-40, E(119)^48, E(119)^47, E(119)^-41, E(119)^-29, E(119)^-22, E(119)^41, E(119)^-33, E(119)^-52, E(119)^6, E(119)^2, E(119)^39, E(119)^5, E(119)^30, E(119)^-3, E(119)^-23, E(119)^-4, E(119)^-47, E(119)^-37, E(119)^-18, E(119)^24, E(119)^20, E(119)^45, E(119)^58, E(119)^-50, E(119)^11, E(119)^44, E(119)^-13, E(119)^57, E(119)^29, E(119)^15, E(119)^53, -1*E(119)^5, -1*E(119)^-47, -1*E(119)^-58, -1*E(119)^6, -1*E(119)^-54, -1*E(119)^-2, -1*E(119)^9, -1*E(119)^-55, -1*E(119)^32, -1*E(119)^3, -1*E(119)^-53, -1*E(119)^11, -1*E(119)^-46, -1*E(119)^50, -1*E(119)^18, -1*E(119)^59, -1*E(119)^10, -1*E(119)^25, -1*E(119)^57, -1*E(119)^41, -1*E(119)^-9, -1*E(119)^58, -1*E(119)^13, -1*E(119)^54, -1*E(119)^-40, -1*E(119)^48, -1*E(119)^20, -1*E(119)^-6, -1*E(119)^46, -1*E(119)^19, -1*E(119)^-5, -1*E(119)^47, -1*E(119)^-15, -1*E(119)^-38, -1*E(119)^38, -1*E(119)^-11, -1*E(119)^53, -1*E(119)^24, -1*E(119)^45, -1*E(119)^-10, -1*E(119)^22, -1*E(119)^-43, -1*E(119)^-44, -1*E(119)^43, -1*E(119)^23, -1*E(119)^26, -1*E(119)^36, -1*E(119)^-22, -1*E(119)^39, -1*E(119)^2, -1*E(119)^12, -1*E(119)^55, -1*E(119)^16, -1*E(119)^-33, -1*E(119)^31, -1*E(119)^15, -1*E(119)^44, -1*E(119)^52, -1*E(119)^-25, -1*E(119)^-59, -1*E(119)^-27, -1*E(119)^-26, -1*E(119)^-31, -1*E(119)^-41, -1*E(119)^-39, -1*E(119)^-45, -1*E(119)^-13, -1*E(119)^-8, -1*E(119)^40, -1*E(119)^-12, -1*E(119)^-36, -1*E(119)^-16, -1*E(119)^30, -1*E(119)^-37, -1*E(119)^-50, -1*E(119)^29, -1*E(119)^-3, -1*E(119)^-48, -1*E(119), -1*E(119)^33, -1*E(119)^-1, -1*E(119)^-20, -1*E(119)^-52, -1*E(119)^-32, -1*E(119)^-18, -1*E(119)^-24, -1*E(119)^8, -1*E(119)^-4, -1*E(119)^4, -1*E(119)^27, -1*E(119)^-57, -1*E(119)^-30, -1*E(119)^37, -1*E(119)^-23, -1*E(119)^-29, -1*E(119)^-19, 1], [1, -1, E(119)^-51, E(119)^-34, E(119)^34, E(119)^-17, E(119)^51, E(119)^17, -1*E(119)^17, -1*E(119)^-17, -1*E(119)^51, -1*E(119)^-51, -1*E(119)^-34, -1*E(119)^34, E(119)^7, E(119)^-56, E(119)^21, E(119)^-21, E(119)^-14, E(119)^-35, E(119)^14, E(119)^-49, E(119)^-42, E(119)^49, E(119)^35, E(119)^-7, E(119)^-28, E(119)^42, E(119)^28, E(119)^56, -1*E(119)^-7, -1*E(119)^-35, -1*E(119)^14, -1*E(119)^-42, -1*E(119)^-21, -1*E(119)^28, -1*E(119)^42, -1*E(119)^35, -1*E(119)^56, -1*E(119)^7, -1*E(119)^-49, -1*E(119)^-56, -1*E(119)^-28, -1*E(119)^-14, -1*E(119)^49, -1*E(119)^21, E(119)^-11, E(119)^43, E(119)^33, E(119)^53, E(119)^-26, E(119)^54, E(119)^38, E(119)^15, E(119)^-37, E(119)^4, E(119)^44, E(119)^-3, E(119)^-59, E(119)^-19, E(119)^-53, E(119)^26, E(119)^50, E(119)^-25, E(119)^-43, E(119)^-15, E(119)^-47, E(119)^48, E(119)^-29, E(119)^-5, E(119)^-57, E(119)^-1, E(119)^52, E(119)^8, E(119)^-55, E(119)^24, E(119)^58, E(119)^-13, E(119)^-45, E(119)^-33, E(119)^46, E(119)^40, E(119)^59, E(119)^-39, E(119)^12, E(119)^16, E(119)^-24, E(119)^-9, E(119)^-6, E(119)^10, E(119)^41, E(119)^20, E(119)^37, E(119)^13, E(119)^-8, E(119)^3, E(119)^-41, E(119)^-2, E(119)^-31, E(119)^9, E(119)^32, E(119)^25, E(119)^23, E(119)^18, E(119)^39, E(119)^2, E(119)^-50, E(119)^5, E(119)^36, E(119)^-4, E(119)^-23, E(119)^-20, E(119)^30, E(119)^27, E(119)^22, E(119)^29, E(119)^-27, E(119)^-16, E(119)^-18, E(119)^57, E(119)^19, E(119)^-46, E(119)^-12, E(119)^47, E(119)^31, E(119)^-40, E(119)^-38, E(119)^-30, E(119)^-54, E(119)^-52, E(119)^-10, E(119)^-48, E(119)^11, E(119)^-44, E(119), E(119)^45, E(119)^-58, E(119)^55, E(119)^6, E(119)^-22, E(119)^-36, E(119)^-32, -1*E(119)^-12, -1*E(119)^-30, -1*E(119)^44, -1*E(119)^57, -1*E(119)^-37, -1*E(119)^-19, -1*E(119)^26, -1*E(119)^13, -1*E(119)^-53, -1*E(119)^-31, -1*E(119)^32, -1*E(119)^45, -1*E(119)^39, -1*E(119)^-1, -1*E(119)^52, -1*E(119)^25, -1*E(119)^-24, -1*E(119)^59, -1*E(119)^6, -1*E(119)^-27, -1*E(119)^-26, -1*E(119)^-44, -1*E(119)^-55, -1*E(119)^37, -1*E(119)^-23, -1*E(119)^-20, -1*E(119)^-48, -1*E(119)^-57, -1*E(119)^-39, -1*E(119)^2, -1*E(119)^12, -1*E(119)^30, -1*E(119)^36, -1*E(119)^-4, -1*E(119)^4, -1*E(119)^-45, -1*E(119)^-32, -1*E(119)^-10, -1*E(119)^11, -1*E(119)^24, -1*E(119)^-29, -1*E(119)^8, -1*E(119)^58, -1*E(119)^-8, -1*E(119)^40, -1*E(119)^9, -1*E(119)^-15, -1*E(119)^29, -1*E(119)^-46, -1*E(119)^19, -1*E(119)^-5, -1*E(119)^-13, -1*E(119)^33, -1*E(119)^-16, -1*E(119)^-3, -1*E(119)^-36, -1*E(119)^-58, -1*E(119)^18, -1*E(119)^-59, -1*E(119)^-25, -1*E(119)^41, -1*E(119)^-9, -1*E(119)^3, -1*E(119)^27, -1*E(119)^46, -1*E(119)^-11, -1*E(119)^55, -1*E(119)^43, -1*E(119)^23, -1*E(119)^5, -1*E(119)^15, -1*E(119)^-33, -1*E(119)^47, -1*E(119)^-54, -1*E(119), -1*E(119)^-22, -1*E(119)^31, -1*E(119)^20, -1*E(119)^-50, -1*E(119)^16, -1*E(119)^50, -1*E(119)^48, -1*E(119)^-18, -1*E(119)^53, -1*E(119)^-52, -1*E(119)^10, -1*E(119)^-43, -1*E(119)^-38, -1*E(119)^38, -1*E(119)^-41, -1*E(119)^-6, -1*E(119)^-47, -1*E(119)^54, -1*E(119)^-40, -1*E(119)^22, -1*E(119)^-2, 1], [1, -1, E(119)^51, E(119)^34, E(119)^-34, E(119)^17, E(119)^-51, E(119)^-17, -1*E(119)^-17, -1*E(119)^17, -1*E(119)^-51, -1*E(119)^51, -1*E(119)^34, -1*E(119)^-34, E(119)^-7, E(119)^56, E(119)^-21, E(119)^21, E(119)^14, E(119)^35, E(119)^-14, E(119)^49, E(119)^42, E(119)^-49, E(119)^-35, E(119)^7, E(119)^28, E(119)^-42, E(119)^-28, E(119)^-56, -1*E(119)^7, -1*E(119)^35, -1*E(119)^-14, -1*E(119)^42, -1*E(119)^21, -1*E(119)^-28, -1*E(119)^-42, -1*E(119)^-35, -1*E(119)^-56, -1*E(119)^-7, -1*E(119)^49, -1*E(119)^56, -1*E(119)^28, -1*E(119)^14, -1*E(119)^-49, -1*E(119)^-21, E(119)^11, E(119)^-43, E(119)^-33, E(119)^-53, E(119)^26, E(119)^-54, E(119)^-38, E(119)^-15, E(119)^37, E(119)^-4, E(119)^-44, E(119)^3, E(119)^59, E(119)^19, E(119)^53, E(119)^-26, E(119)^-50, E(119)^25, E(119)^43, E(119)^15, E(119)^47, E(119)^-48, E(119)^29, E(119)^5, E(119)^57, E(119), E(119)^-52, E(119)^-8, E(119)^55, E(119)^-24, E(119)^-58, E(119)^13, E(119)^45, E(119)^33, E(119)^-46, E(119)^-40, E(119)^-59, E(119)^39, E(119)^-12, E(119)^-16, E(119)^24, E(119)^9, E(119)^6, E(119)^-10, E(119)^-41, E(119)^-20, E(119)^-37, E(119)^-13, E(119)^8, E(119)^-3, E(119)^41, E(119)^2, E(119)^31, E(119)^-9, E(119)^-32, E(119)^-25, E(119)^-23, E(119)^-18, E(119)^-39, E(119)^-2, E(119)^50, E(119)^-5, E(119)^-36, E(119)^4, E(119)^23, E(119)^20, E(119)^-30, E(119)^-27, E(119)^-22, E(119)^-29, E(119)^27, E(119)^16, E(119)^18, E(119)^-57, E(119)^-19, E(119)^46, E(119)^12, E(119)^-47, E(119)^-31, E(119)^40, E(119)^38, E(119)^30, E(119)^54, E(119)^52, E(119)^10, E(119)^48, E(119)^-11, E(119)^44, E(119)^-1, E(119)^-45, E(119)^58, E(119)^-55, E(119)^-6, E(119)^22, E(119)^36, E(119)^32, -1*E(119)^12, -1*E(119)^30, -1*E(119)^-44, -1*E(119)^-57, -1*E(119)^37, -1*E(119)^19, -1*E(119)^-26, -1*E(119)^-13, -1*E(119)^53, -1*E(119)^31, -1*E(119)^-32, -1*E(119)^-45, -1*E(119)^-39, -1*E(119), -1*E(119)^-52, -1*E(119)^-25, -1*E(119)^24, -1*E(119)^-59, -1*E(119)^-6, -1*E(119)^27, -1*E(119)^26, -1*E(119)^44, -1*E(119)^55, -1*E(119)^-37, -1*E(119)^23, -1*E(119)^20, -1*E(119)^48, -1*E(119)^57, -1*E(119)^39, -1*E(119)^-2, -1*E(119)^-12, -1*E(119)^-30, -1*E(119)^-36, -1*E(119)^4, -1*E(119)^-4, -1*E(119)^45, -1*E(119)^32, -1*E(119)^10, -1*E(119)^-11, -1*E(119)^-24, -1*E(119)^29, -1*E(119)^-8, -1*E(119)^-58, -1*E(119)^8, -1*E(119)^-40, -1*E(119)^-9, -1*E(119)^15, -1*E(119)^-29, -1*E(119)^46, -1*E(119)^-19, -1*E(119)^5, -1*E(119)^13, -1*E(119)^-33, -1*E(119)^16, -1*E(119)^3, -1*E(119)^36, -1*E(119)^58, -1*E(119)^-18, -1*E(119)^59, -1*E(119)^25, -1*E(119)^-41, -1*E(119)^9, -1*E(119)^-3, -1*E(119)^-27, -1*E(119)^-46, -1*E(119)^11, -1*E(119)^-55, -1*E(119)^-43, -1*E(119)^-23, -1*E(119)^-5, -1*E(119)^-15, -1*E(119)^33, -1*E(119)^-47, -1*E(119)^54, -1*E(119)^-1, -1*E(119)^22, -1*E(119)^-31, -1*E(119)^-20, -1*E(119)^50, -1*E(119)^-16, -1*E(119)^-50, -1*E(119)^-48, -1*E(119)^18, -1*E(119)^-53, -1*E(119)^52, -1*E(119)^-10, -1*E(119)^43, -1*E(119)^38, -1*E(119)^-38, -1*E(119)^41, -1*E(119)^6, -1*E(119)^47, -1*E(119)^-54, -1*E(119)^40, -1*E(119)^-22, -1*E(119)^2, 1], [1, -1, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^34, E(119)^51, -1*E(119)^51, -1*E(119)^-51, -1*E(119)^34, -1*E(119)^-34, -1*E(119)^17, -1*E(119)^-17, E(119)^-56, E(119)^-28, E(119)^-49, E(119)^49, E(119)^-7, E(119)^42, E(119)^7, E(119)^35, E(119)^-21, E(119)^-35, E(119)^-42, E(119)^56, E(119)^-14, E(119)^21, E(119)^14, E(119)^28, -1*E(119)^56, -1*E(119)^42, -1*E(119)^7, -1*E(119)^-21, -1*E(119)^49, -1*E(119)^14, -1*E(119)^21, -1*E(119)^-42, -1*E(119)^28, -1*E(119)^-56, -1*E(119)^35, -1*E(119)^-28, -1*E(119)^-14, -1*E(119)^-7, -1*E(119)^-35, -1*E(119)^-49, E(119)^37, E(119)^-4, E(119)^8, E(119)^-16, E(119)^55, E(119)^-41, E(119)^2, E(119)^-18, E(119)^-27, E(119)^19, E(119)^-29, E(119)^-44, E(119)^47, E(119)^-1, E(119)^16, E(119)^-55, E(119)^59, E(119)^30, E(119)^4, E(119)^18, E(119)^-15, E(119)^-10, E(119)^11, E(119)^6, E(119)^-3, E(119)^25, E(119)^9, E(119)^38, E(119)^-53, E(119)^-5, E(119)^-22, E(119)^-32, E(119)^54, E(119)^-8, E(119)^40, E(119)^-48, E(119)^-47, E(119)^23, E(119)^57, E(119)^-43, E(119)^5, E(119)^-13, E(119)^31, E(119)^-12, E(119)^46, E(119)^-24, E(119)^27, E(119)^32, E(119)^-38, E(119)^44, E(119)^-46, E(119)^50, E(119)^-58, E(119)^13, E(119)^33, E(119)^-30, E(119)^20, E(119)^26, E(119)^-23, E(119)^-50, E(119)^-59, E(119)^-6, E(119)^52, E(119)^-19, E(119)^-20, E(119)^24, E(119)^-36, E(119)^39, E(119)^45, E(119)^-11, E(119)^-39, E(119)^43, E(119)^-26, E(119)^3, E(119), E(119)^-40, E(119)^-57, E(119)^15, E(119)^58, E(119)^48, E(119)^-2, E(119)^36, E(119)^41, E(119)^-9, E(119)^12, E(119)^10, E(119)^-37, E(119)^29, E(119)^-25, E(119)^-54, E(119)^22, E(119)^53, E(119)^-31, E(119)^-45, E(119)^-52, E(119)^-33, -1*E(119)^-57, -1*E(119)^36, -1*E(119)^-29, -1*E(119)^3, -1*E(119)^-27, -1*E(119)^-1, -1*E(119)^-55, -1*E(119)^32, -1*E(119)^16, -1*E(119)^-58, -1*E(119)^33, -1*E(119)^-54, -1*E(119)^-23, -1*E(119)^25, -1*E(119)^9, -1*E(119)^-30, -1*E(119)^5, -1*E(119)^-47, -1*E(119)^-31, -1*E(119)^-39, -1*E(119)^55, -1*E(119)^29, -1*E(119)^-53, -1*E(119)^27, -1*E(119)^-20, -1*E(119)^24, -1*E(119)^10, -1*E(119)^-3, -1*E(119)^23, -1*E(119)^-50, -1*E(119)^57, -1*E(119)^-36, -1*E(119)^52, -1*E(119)^-19, -1*E(119)^19, -1*E(119)^54, -1*E(119)^-33, -1*E(119)^12, -1*E(119)^-37, -1*E(119)^-5, -1*E(119)^11, -1*E(119)^38, -1*E(119)^-22, -1*E(119)^-38, -1*E(119)^-48, -1*E(119)^13, -1*E(119)^18, -1*E(119)^-11, -1*E(119)^-40, -1*E(119), -1*E(119)^6, -1*E(119)^-32, -1*E(119)^8, -1*E(119)^43, -1*E(119)^-44, -1*E(119)^-52, -1*E(119)^22, -1*E(119)^26, -1*E(119)^47, -1*E(119)^30, -1*E(119)^46, -1*E(119)^-13, -1*E(119)^44, -1*E(119)^39, -1*E(119)^40, -1*E(119)^37, -1*E(119)^53, -1*E(119)^-4, -1*E(119)^20, -1*E(119)^-6, -1*E(119)^-18, -1*E(119)^-8, -1*E(119)^15, -1*E(119)^41, -1*E(119)^-25, -1*E(119)^-45, -1*E(119)^58, -1*E(119)^-24, -1*E(119)^-59, -1*E(119)^-43, -1*E(119)^59, -1*E(119)^-10, -1*E(119)^-26, -1*E(119)^-16, -1*E(119)^-9, -1*E(119)^-12, -1*E(119)^4, -1*E(119)^-2, -1*E(119)^2, -1*E(119)^-46, -1*E(119)^31, -1*E(119)^-15, -1*E(119)^-41, -1*E(119)^48, -1*E(119)^45, -1*E(119)^50, 1], [1, -1, E(119)^34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-34, E(119)^-51, -1*E(119)^-51, -1*E(119)^51, -1*E(119)^-34, -1*E(119)^34, -1*E(119)^-17, -1*E(119)^17, E(119)^56, E(119)^28, E(119)^49, E(119)^-49, E(119)^7, E(119)^-42, E(119)^-7, E(119)^-35, E(119)^21, E(119)^35, E(119)^42, E(119)^-56, E(119)^14, E(119)^-21, E(119)^-14, E(119)^-28, -1*E(119)^-56, -1*E(119)^-42, -1*E(119)^-7, -1*E(119)^21, -1*E(119)^-49, -1*E(119)^-14, -1*E(119)^-21, -1*E(119)^42, -1*E(119)^-28, -1*E(119)^56, -1*E(119)^-35, -1*E(119)^28, -1*E(119)^14, -1*E(119)^7, -1*E(119)^35, -1*E(119)^49, E(119)^-37, E(119)^4, E(119)^-8, E(119)^16, E(119)^-55, E(119)^41, E(119)^-2, E(119)^18, E(119)^27, E(119)^-19, E(119)^29, E(119)^44, E(119)^-47, E(119), E(119)^-16, E(119)^55, E(119)^-59, E(119)^-30, E(119)^-4, E(119)^-18, E(119)^15, E(119)^10, E(119)^-11, E(119)^-6, E(119)^3, E(119)^-25, E(119)^-9, E(119)^-38, E(119)^53, E(119)^5, E(119)^22, E(119)^32, E(119)^-54, E(119)^8, E(119)^-40, E(119)^48, E(119)^47, E(119)^-23, E(119)^-57, E(119)^43, E(119)^-5, E(119)^13, E(119)^-31, E(119)^12, E(119)^-46, E(119)^24, E(119)^-27, E(119)^-32, E(119)^38, E(119)^-44, E(119)^46, E(119)^-50, E(119)^58, E(119)^-13, E(119)^-33, E(119)^30, E(119)^-20, E(119)^-26, E(119)^23, E(119)^50, E(119)^59, E(119)^6, E(119)^-52, E(119)^19, E(119)^20, E(119)^-24, E(119)^36, E(119)^-39, E(119)^-45, E(119)^11, E(119)^39, E(119)^-43, E(119)^26, E(119)^-3, E(119)^-1, E(119)^40, E(119)^57, E(119)^-15, E(119)^-58, E(119)^-48, E(119)^2, E(119)^-36, E(119)^-41, E(119)^9, E(119)^-12, E(119)^-10, E(119)^37, E(119)^-29, E(119)^25, E(119)^54, E(119)^-22, E(119)^-53, E(119)^31, E(119)^45, E(119)^52, E(119)^33, -1*E(119)^57, -1*E(119)^-36, -1*E(119)^29, -1*E(119)^-3, -1*E(119)^27, -1*E(119), -1*E(119)^55, -1*E(119)^-32, -1*E(119)^-16, -1*E(119)^58, -1*E(119)^-33, -1*E(119)^54, -1*E(119)^23, -1*E(119)^-25, -1*E(119)^-9, -1*E(119)^30, -1*E(119)^-5, -1*E(119)^47, -1*E(119)^31, -1*E(119)^39, -1*E(119)^-55, -1*E(119)^-29, -1*E(119)^53, -1*E(119)^-27, -1*E(119)^20, -1*E(119)^-24, -1*E(119)^-10, -1*E(119)^3, -1*E(119)^-23, -1*E(119)^50, -1*E(119)^-57, -1*E(119)^36, -1*E(119)^-52, -1*E(119)^19, -1*E(119)^-19, -1*E(119)^-54, -1*E(119)^33, -1*E(119)^-12, -1*E(119)^37, -1*E(119)^5, -1*E(119)^-11, -1*E(119)^-38, -1*E(119)^22, -1*E(119)^38, -1*E(119)^48, -1*E(119)^-13, -1*E(119)^-18, -1*E(119)^11, -1*E(119)^40, -1*E(119)^-1, -1*E(119)^-6, -1*E(119)^32, -1*E(119)^-8, -1*E(119)^-43, -1*E(119)^44, -1*E(119)^52, -1*E(119)^-22, -1*E(119)^-26, -1*E(119)^-47, -1*E(119)^-30, -1*E(119)^-46, -1*E(119)^13, -1*E(119)^-44, -1*E(119)^-39, -1*E(119)^-40, -1*E(119)^-37, -1*E(119)^-53, -1*E(119)^4, -1*E(119)^-20, -1*E(119)^6, -1*E(119)^18, -1*E(119)^8, -1*E(119)^-15, -1*E(119)^-41, -1*E(119)^25, -1*E(119)^45, -1*E(119)^-58, -1*E(119)^24, -1*E(119)^59, -1*E(119)^43, -1*E(119)^-59, -1*E(119)^10, -1*E(119)^26, -1*E(119)^16, -1*E(119)^9, -1*E(119)^12, -1*E(119)^-4, -1*E(119)^2, -1*E(119)^-2, -1*E(119)^46, -1*E(119)^-31, -1*E(119)^15, -1*E(119)^41, -1*E(119)^-48, -1*E(119)^-45, -1*E(119)^-50, 1], [1, -1, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^34, E(119)^51, -1*E(119)^51, -1*E(119)^-51, -1*E(119)^34, -1*E(119)^-34, -1*E(119)^17, -1*E(119)^-17, E(119)^56, E(119)^28, E(119)^49, E(119)^-49, E(119)^7, E(119)^-42, E(119)^-7, E(119)^-35, E(119)^21, E(119)^35, E(119)^42, E(119)^-56, E(119)^14, E(119)^-21, E(119)^-14, E(119)^-28, -1*E(119)^-56, -1*E(119)^-42, -1*E(119)^-7, -1*E(119)^21, -1*E(119)^-49, -1*E(119)^-14, -1*E(119)^-21, -1*E(119)^42, -1*E(119)^-28, -1*E(119)^56, -1*E(119)^-35, -1*E(119)^28, -1*E(119)^14, -1*E(119)^7, -1*E(119)^35, -1*E(119)^49, E(119)^-54, E(119)^38, E(119)^43, E(119)^33, E(119)^13, E(119)^-27, E(119)^-19, E(119)^52, E(119)^-41, E(119)^-2, E(119)^-22, E(119)^-58, E(119)^-30, E(119)^-50, E(119)^-33, E(119)^-13, E(119)^-25, E(119)^-47, E(119)^-38, E(119)^-52, E(119)^-36, E(119)^-24, E(119)^-45, E(119)^-57, E(119)^-31, E(119)^-59, E(119)^-26, E(119)^-4, E(119)^-32, E(119)^-12, E(119)^-29, E(119)^-53, E(119)^-37, E(119)^-43, E(119)^-23, E(119)^-20, E(119)^30, E(119)^-40, E(119)^-6, E(119)^-8, E(119)^12, E(119)^-55, E(119)^3, E(119)^-5, E(119)^39, E(119)^-10, E(119)^41, E(119)^53, E(119)^4, E(119)^58, E(119)^-39, E(119), E(119)^-44, E(119)^55, E(119)^-16, E(119)^47, E(119)^48, E(119)^-9, E(119)^40, E(119)^-1, E(119)^25, E(119)^57, E(119)^-18, E(119)^2, E(119)^-48, E(119)^10, E(119)^-15, E(119)^46, E(119)^-11, E(119)^45, E(119)^-46, E(119)^8, E(119)^9, E(119)^31, E(119)^50, E(119)^23, E(119)^6, E(119)^36, E(119)^44, E(119)^20, E(119)^19, E(119)^15, E(119)^27, E(119)^26, E(119)^5, E(119)^24, E(119)^54, E(119)^22, E(119)^59, E(119)^37, E(119)^29, E(119)^32, E(119)^-3, E(119)^11, E(119)^18, E(119)^16, -1*E(119)^6, -1*E(119)^15, -1*E(119)^-22, -1*E(119)^31, -1*E(119)^-41, -1*E(119)^-50, -1*E(119)^-13, -1*E(119)^53, -1*E(119)^-33, -1*E(119)^-44, -1*E(119)^-16, -1*E(119)^37, -1*E(119)^40, -1*E(119)^-59, -1*E(119)^-26, -1*E(119)^47, -1*E(119)^12, -1*E(119)^30, -1*E(119)^-3, -1*E(119)^-46, -1*E(119)^13, -1*E(119)^22, -1*E(119)^-32, -1*E(119)^41, -1*E(119)^-48, -1*E(119)^10, -1*E(119)^24, -1*E(119)^-31, -1*E(119)^-40, -1*E(119)^-1, -1*E(119)^-6, -1*E(119)^-15, -1*E(119)^-18, -1*E(119)^2, -1*E(119)^-2, -1*E(119)^-37, -1*E(119)^16, -1*E(119)^5, -1*E(119)^54, -1*E(119)^-12, -1*E(119)^-45, -1*E(119)^-4, -1*E(119)^-29, -1*E(119)^4, -1*E(119)^-20, -1*E(119)^55, -1*E(119)^-52, -1*E(119)^45, -1*E(119)^23, -1*E(119)^50, -1*E(119)^-57, -1*E(119)^-53, -1*E(119)^43, -1*E(119)^8, -1*E(119)^-58, -1*E(119)^18, -1*E(119)^29, -1*E(119)^-9, -1*E(119)^-30, -1*E(119)^-47, -1*E(119)^39, -1*E(119)^-55, -1*E(119)^58, -1*E(119)^46, -1*E(119)^-23, -1*E(119)^-54, -1*E(119)^32, -1*E(119)^38, -1*E(119)^48, -1*E(119)^57, -1*E(119)^52, -1*E(119)^-43, -1*E(119)^36, -1*E(119)^27, -1*E(119)^59, -1*E(119)^11, -1*E(119)^44, -1*E(119)^-10, -1*E(119)^25, -1*E(119)^-8, -1*E(119)^-25, -1*E(119)^-24, -1*E(119)^9, -1*E(119)^33, -1*E(119)^26, -1*E(119)^-5, -1*E(119)^-38, -1*E(119)^19, -1*E(119)^-19, -1*E(119)^-39, -1*E(119)^3, -1*E(119)^-36, -1*E(119)^-27, -1*E(119)^20, -1*E(119)^-11, -1*E(119), 1], [1, -1, E(119)^34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-34, E(119)^-51, -1*E(119)^-51, -1*E(119)^51, -1*E(119)^-34, -1*E(119)^34, -1*E(119)^-17, -1*E(119)^17, E(119)^-56, E(119)^-28, E(119)^-49, E(119)^49, E(119)^-7, E(119)^42, E(119)^7, E(119)^35, E(119)^-21, E(119)^-35, E(119)^-42, E(119)^56, E(119)^-14, E(119)^21, E(119)^14, E(119)^28, -1*E(119)^56, -1*E(119)^42, -1*E(119)^7, -1*E(119)^-21, -1*E(119)^49, -1*E(119)^14, -1*E(119)^21, -1*E(119)^-42, -1*E(119)^28, -1*E(119)^-56, -1*E(119)^35, -1*E(119)^-28, -1*E(119)^-14, -1*E(119)^-7, -1*E(119)^-35, -1*E(119)^-49, E(119)^54, E(119)^-38, E(119)^-43, E(119)^-33, E(119)^-13, E(119)^27, E(119)^19, E(119)^-52, E(119)^41, E(119)^2, E(119)^22, E(119)^58, E(119)^30, E(119)^50, E(119)^33, E(119)^13, E(119)^25, E(119)^47, E(119)^38, E(119)^52, E(119)^36, E(119)^24, E(119)^45, E(119)^57, E(119)^31, E(119)^59, E(119)^26, E(119)^4, E(119)^32, E(119)^12, E(119)^29, E(119)^53, E(119)^37, E(119)^43, E(119)^23, E(119)^20, E(119)^-30, E(119)^40, E(119)^6, E(119)^8, E(119)^-12, E(119)^55, E(119)^-3, E(119)^5, E(119)^-39, E(119)^10, E(119)^-41, E(119)^-53, E(119)^-4, E(119)^-58, E(119)^39, E(119)^-1, E(119)^44, E(119)^-55, E(119)^16, E(119)^-47, E(119)^-48, E(119)^9, E(119)^-40, E(119), E(119)^-25, E(119)^-57, E(119)^18, E(119)^-2, E(119)^48, E(119)^-10, E(119)^15, E(119)^-46, E(119)^11, E(119)^-45, E(119)^46, E(119)^-8, E(119)^-9, E(119)^-31, E(119)^-50, E(119)^-23, E(119)^-6, E(119)^-36, E(119)^-44, E(119)^-20, E(119)^-19, E(119)^-15, E(119)^-27, E(119)^-26, E(119)^-5, E(119)^-24, E(119)^-54, E(119)^-22, E(119)^-59, E(119)^-37, E(119)^-29, E(119)^-32, E(119)^3, E(119)^-11, E(119)^-18, E(119)^-16, -1*E(119)^-6, -1*E(119)^-15, -1*E(119)^22, -1*E(119)^-31, -1*E(119)^41, -1*E(119)^50, -1*E(119)^13, -1*E(119)^-53, -1*E(119)^33, -1*E(119)^44, -1*E(119)^16, -1*E(119)^-37, -1*E(119)^-40, -1*E(119)^59, -1*E(119)^26, -1*E(119)^-47, -1*E(119)^-12, -1*E(119)^-30, -1*E(119)^3, -1*E(119)^46, -1*E(119)^-13, -1*E(119)^-22, -1*E(119)^32, -1*E(119)^-41, -1*E(119)^48, -1*E(119)^-10, -1*E(119)^-24, -1*E(119)^31, -1*E(119)^40, -1*E(119), -1*E(119)^6, -1*E(119)^15, -1*E(119)^18, -1*E(119)^-2, -1*E(119)^2, -1*E(119)^37, -1*E(119)^-16, -1*E(119)^-5, -1*E(119)^-54, -1*E(119)^12, -1*E(119)^45, -1*E(119)^4, -1*E(119)^29, -1*E(119)^-4, -1*E(119)^20, -1*E(119)^-55, -1*E(119)^52, -1*E(119)^-45, -1*E(119)^-23, -1*E(119)^-50, -1*E(119)^57, -1*E(119)^53, -1*E(119)^-43, -1*E(119)^-8, -1*E(119)^58, -1*E(119)^-18, -1*E(119)^-29, -1*E(119)^9, -1*E(119)^30, -1*E(119)^47, -1*E(119)^-39, -1*E(119)^55, -1*E(119)^-58, -1*E(119)^-46, -1*E(119)^23, -1*E(119)^54, -1*E(119)^-32, -1*E(119)^-38, -1*E(119)^-48, -1*E(119)^-57, -1*E(119)^-52, -1*E(119)^43, -1*E(119)^-36, -1*E(119)^-27, -1*E(119)^-59, -1*E(119)^-11, -1*E(119)^-44, -1*E(119)^10, -1*E(119)^-25, -1*E(119)^8, -1*E(119)^25, -1*E(119)^24, -1*E(119)^-9, -1*E(119)^-33, -1*E(119)^-26, -1*E(119)^5, -1*E(119)^38, -1*E(119)^-19, -1*E(119)^19, -1*E(119)^39, -1*E(119)^-3, -1*E(119)^36, -1*E(119)^27, -1*E(119)^-20, -1*E(119)^11, -1*E(119)^-1, 1], [1, -1, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^34, E(119)^51, -1*E(119)^51, -1*E(119)^-51, -1*E(119)^34, -1*E(119)^-34, -1*E(119)^17, -1*E(119)^-17, E(119)^-49, E(119)^35, E(119)^-28, E(119)^28, E(119)^-21, E(119)^7, E(119)^21, E(119)^-14, E(119)^56, E(119)^14, E(119)^-7, E(119)^49, E(119)^-42, E(119)^-56, E(119)^42, E(119)^-35, -1*E(119)^49, -1*E(119)^7, -1*E(119)^21, -1*E(119)^56, -1*E(119)^28, -1*E(119)^42, -1*E(119)^-56, -1*E(119)^-7, -1*E(119)^-35, -1*E(119)^-49, -1*E(119)^-14, -1*E(119)^35, -1*E(119)^-42, -1*E(119)^-21, -1*E(119)^14, -1*E(119)^-28, E(119)^9, E(119)^-46, E(119)^-27, E(119)^54, E(119)^-22, E(119)^-55, E(119)^23, E(119)^31, E(119)^-13, E(119)^40, E(119)^-36, E(119)^-30, E(119)^5, E(119)^48, E(119)^-54, E(119)^22, E(119)^24, E(119)^-12, E(119)^46, E(119)^-31, E(119)^6, E(119)^4, E(119)^-52, E(119)^-50, E(119)^25, E(119)^-10, E(119)^44, E(119)^-39, E(119)^45, E(119)^2, E(119)^-15, E(119)^-11, E(119)^26, E(119)^27, E(119)^-16, E(119)^43, E(119)^-5, E(119)^-33, E(119), E(119)^41, E(119)^-2, E(119)^29, E(119)^59, E(119)^-19, E(119)^53, E(119)^-38, E(119)^13, E(119)^11, E(119)^39, E(119)^30, E(119)^-53, E(119)^-20, E(119)^47, E(119)^-29, E(119)^-37, E(119)^12, E(119)^-8, E(119)^-58, E(119)^33, E(119)^20, E(119)^-24, E(119)^50, E(119)^3, E(119)^-40, E(119)^8, E(119)^38, E(119)^-57, E(119)^32, E(119)^-18, E(119)^52, E(119)^-32, E(119)^-41, E(119)^58, E(119)^-25, E(119)^-48, E(119)^16, E(119)^-1, E(119)^-6, E(119)^-47, E(119)^-43, E(119)^-23, E(119)^57, E(119)^55, E(119)^-44, E(119)^19, E(119)^-4, E(119)^-9, E(119)^36, E(119)^10, E(119)^-26, E(119)^15, E(119)^-45, E(119)^-59, E(119)^18, E(119)^-3, E(119)^37, -1*E(119)^-1, -1*E(119)^57, -1*E(119)^-36, -1*E(119)^-25, -1*E(119)^-13, -1*E(119)^48, -1*E(119)^22, -1*E(119)^11, -1*E(119)^-54, -1*E(119)^47, -1*E(119)^-37, -1*E(119)^-26, -1*E(119)^33, -1*E(119)^-10, -1*E(119)^44, -1*E(119)^12, -1*E(119)^-2, -1*E(119)^-5, -1*E(119)^-59, -1*E(119)^-32, -1*E(119)^-22, -1*E(119)^36, -1*E(119)^45, -1*E(119)^13, -1*E(119)^8, -1*E(119)^38, -1*E(119)^-4, -1*E(119)^25, -1*E(119)^-33, -1*E(119)^20, -1*E(119), -1*E(119)^-57, -1*E(119)^3, -1*E(119)^-40, -1*E(119)^40, -1*E(119)^26, -1*E(119)^37, -1*E(119)^19, -1*E(119)^-9, -1*E(119)^2, -1*E(119)^-52, -1*E(119)^-39, -1*E(119)^-15, -1*E(119)^39, -1*E(119)^43, -1*E(119)^-29, -1*E(119)^-31, -1*E(119)^52, -1*E(119)^16, -1*E(119)^-48, -1*E(119)^-50, -1*E(119)^-11, -1*E(119)^-27, -1*E(119)^-41, -1*E(119)^-30, -1*E(119)^-3, -1*E(119)^15, -1*E(119)^-58, -1*E(119)^5, -1*E(119)^-12, -1*E(119)^53, -1*E(119)^29, -1*E(119)^30, -1*E(119)^32, -1*E(119)^-16, -1*E(119)^9, -1*E(119)^-45, -1*E(119)^-46, -1*E(119)^-8, -1*E(119)^50, -1*E(119)^31, -1*E(119)^27, -1*E(119)^-6, -1*E(119)^55, -1*E(119)^10, -1*E(119)^18, -1*E(119)^-47, -1*E(119)^-38, -1*E(119)^-24, -1*E(119)^41, -1*E(119)^24, -1*E(119)^4, -1*E(119)^58, -1*E(119)^54, -1*E(119)^-44, -1*E(119)^-19, -1*E(119)^46, -1*E(119)^-23, -1*E(119)^23, -1*E(119)^-53, -1*E(119)^59, -1*E(119)^6, -1*E(119)^-55, -1*E(119)^-43, -1*E(119)^-18, -1*E(119)^-20, 1], [1, -1, E(119)^34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-34, E(119)^-51, -1*E(119)^-51, -1*E(119)^51, -1*E(119)^-34, -1*E(119)^34, -1*E(119)^-17, -1*E(119)^17, E(119)^49, E(119)^-35, E(119)^28, E(119)^-28, E(119)^21, E(119)^-7, E(119)^-21, E(119)^14, E(119)^-56, E(119)^-14, E(119)^7, E(119)^-49, E(119)^42, E(119)^56, E(119)^-42, E(119)^35, -1*E(119)^-49, -1*E(119)^-7, -1*E(119)^-21, -1*E(119)^-56, -1*E(119)^-28, -1*E(119)^-42, -1*E(119)^56, -1*E(119)^7, -1*E(119)^35, -1*E(119)^49, -1*E(119)^14, -1*E(119)^-35, -1*E(119)^42, -1*E(119)^21, -1*E(119)^-14, -1*E(119)^28, E(119)^-9, E(119)^46, E(119)^27, E(119)^-54, E(119)^22, E(119)^55, E(119)^-23, E(119)^-31, E(119)^13, E(119)^-40, E(119)^36, E(119)^30, E(119)^-5, E(119)^-48, E(119)^54, E(119)^-22, E(119)^-24, E(119)^12, E(119)^-46, E(119)^31, E(119)^-6, E(119)^-4, E(119)^52, E(119)^50, E(119)^-25, E(119)^10, E(119)^-44, E(119)^39, E(119)^-45, E(119)^-2, E(119)^15, E(119)^11, E(119)^-26, E(119)^-27, E(119)^16, E(119)^-43, E(119)^5, E(119)^33, E(119)^-1, E(119)^-41, E(119)^2, E(119)^-29, E(119)^-59, E(119)^19, E(119)^-53, E(119)^38, E(119)^-13, E(119)^-11, E(119)^-39, E(119)^-30, E(119)^53, E(119)^20, E(119)^-47, E(119)^29, E(119)^37, E(119)^-12, E(119)^8, E(119)^58, E(119)^-33, E(119)^-20, E(119)^24, E(119)^-50, E(119)^-3, E(119)^40, E(119)^-8, E(119)^-38, E(119)^57, E(119)^-32, E(119)^18, E(119)^-52, E(119)^32, E(119)^41, E(119)^-58, E(119)^25, E(119)^48, E(119)^-16, E(119), E(119)^6, E(119)^47, E(119)^43, E(119)^23, E(119)^-57, E(119)^-55, E(119)^44, E(119)^-19, E(119)^4, E(119)^9, E(119)^-36, E(119)^-10, E(119)^26, E(119)^-15, E(119)^45, E(119)^59, E(119)^-18, E(119)^3, E(119)^-37, -1*E(119), -1*E(119)^-57, -1*E(119)^36, -1*E(119)^25, -1*E(119)^13, -1*E(119)^-48, -1*E(119)^-22, -1*E(119)^-11, -1*E(119)^54, -1*E(119)^-47, -1*E(119)^37, -1*E(119)^26, -1*E(119)^-33, -1*E(119)^10, -1*E(119)^-44, -1*E(119)^-12, -1*E(119)^2, -1*E(119)^5, -1*E(119)^59, -1*E(119)^32, -1*E(119)^22, -1*E(119)^-36, -1*E(119)^-45, -1*E(119)^-13, -1*E(119)^-8, -1*E(119)^-38, -1*E(119)^4, -1*E(119)^-25, -1*E(119)^33, -1*E(119)^-20, -1*E(119)^-1, -1*E(119)^57, -1*E(119)^-3, -1*E(119)^40, -1*E(119)^-40, -1*E(119)^-26, -1*E(119)^-37, -1*E(119)^-19, -1*E(119)^9, -1*E(119)^-2, -1*E(119)^52, -1*E(119)^39, -1*E(119)^15, -1*E(119)^-39, -1*E(119)^-43, -1*E(119)^29, -1*E(119)^31, -1*E(119)^-52, -1*E(119)^-16, -1*E(119)^48, -1*E(119)^50, -1*E(119)^11, -1*E(119)^27, -1*E(119)^41, -1*E(119)^30, -1*E(119)^3, -1*E(119)^-15, -1*E(119)^58, -1*E(119)^-5, -1*E(119)^12, -1*E(119)^-53, -1*E(119)^-29, -1*E(119)^-30, -1*E(119)^-32, -1*E(119)^16, -1*E(119)^-9, -1*E(119)^45, -1*E(119)^46, -1*E(119)^8, -1*E(119)^-50, -1*E(119)^-31, -1*E(119)^-27, -1*E(119)^6, -1*E(119)^-55, -1*E(119)^-10, -1*E(119)^-18, -1*E(119)^47, -1*E(119)^38, -1*E(119)^24, -1*E(119)^-41, -1*E(119)^-24, -1*E(119)^-4, -1*E(119)^-58, -1*E(119)^-54, -1*E(119)^44, -1*E(119)^19, -1*E(119)^-46, -1*E(119)^23, -1*E(119)^-23, -1*E(119)^53, -1*E(119)^-59, -1*E(119)^-6, -1*E(119)^55, -1*E(119)^43, -1*E(119)^18, -1*E(119)^20, 1], [1, -1, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^34, E(119)^51, -1*E(119)^51, -1*E(119)^-51, -1*E(119)^34, -1*E(119)^-34, -1*E(119)^17, -1*E(119)^-17, E(119)^49, E(119)^-35, E(119)^28, E(119)^-28, E(119)^21, E(119)^-7, E(119)^-21, E(119)^14, E(119)^-56, E(119)^-14, E(119)^7, E(119)^-49, E(119)^42, E(119)^56, E(119)^-42, E(119)^35, -1*E(119)^-49, -1*E(119)^-7, -1*E(119)^-21, -1*E(119)^-56, -1*E(119)^-28, -1*E(119)^-42, -1*E(119)^56, -1*E(119)^7, -1*E(119)^35, -1*E(119)^49, -1*E(119)^14, -1*E(119)^-35, -1*E(119)^42, -1*E(119)^21, -1*E(119)^-14, -1*E(119)^28, E(119)^-26, E(119)^-39, E(119)^-41, E(119)^-37, E(119)^-29, E(119)^-13, E(119)^-40, E(119)^3, E(119)^-55, E(119)^-23, E(119)^-15, E(119)^47, E(119)^12, E(119)^20, E(119)^37, E(119)^29, E(119)^10, E(119)^-5, E(119)^39, E(119)^-3, E(119)^-57, E(119)^-38, E(119)^18, E(119)^-1, E(119)^-59, E(119)^-24, E(119)^58, E(119)^-46, E(119)^-11, E(119)^-19, E(119)^-36, E(119)^45, E(119)^-9, E(119)^41, E(119)^33, E(119)^8, E(119)^-12, E(119)^16, E(119)^50, E(119)^27, E(119)^19, E(119)^22, E(119)^-25, E(119)^2, E(119)^32, E(119)^4, E(119)^55, E(119)^-45, E(119)^46, E(119)^-47, E(119)^-32, E(119)^-48, E(119)^-30, E(119)^-22, E(119)^54, E(119)^5, E(119)^-43, E(119)^-44, E(119)^-16, E(119)^48, E(119)^-10, E(119), E(119)^31, E(119)^23, E(119)^43, E(119)^-4, E(119)^6, E(119)^53, E(119)^52, E(119)^-18, E(119)^-53, E(119)^-27, E(119)^44, E(119)^59, E(119)^-20, E(119)^-33, E(119)^-50, E(119)^57, E(119)^30, E(119)^-8, E(119)^40, E(119)^-6, E(119)^13, E(119)^-58, E(119)^-2, E(119)^38, E(119)^26, E(119)^15, E(119)^24, E(119)^9, E(119)^36, E(119)^11, E(119)^25, E(119)^-52, E(119)^-31, E(119)^-54, -1*E(119)^-50, -1*E(119)^-6, -1*E(119)^-15, -1*E(119)^59, -1*E(119)^-55, -1*E(119)^20, -1*E(119)^29, -1*E(119)^-45, -1*E(119)^37, -1*E(119)^-30, -1*E(119)^54, -1*E(119)^9, -1*E(119)^-16, -1*E(119)^-24, -1*E(119)^58, -1*E(119)^5, -1*E(119)^19, -1*E(119)^-12, -1*E(119)^25, -1*E(119)^-53, -1*E(119)^-29, -1*E(119)^15, -1*E(119)^-11, -1*E(119)^55, -1*E(119)^43, -1*E(119)^-4, -1*E(119)^38, -1*E(119)^-59, -1*E(119)^16, -1*E(119)^48, -1*E(119)^50, -1*E(119)^6, -1*E(119)^31, -1*E(119)^23, -1*E(119)^-23, -1*E(119)^-9, -1*E(119)^-54, -1*E(119)^-2, -1*E(119)^26, -1*E(119)^-19, -1*E(119)^18, -1*E(119)^-46, -1*E(119)^-36, -1*E(119)^46, -1*E(119)^8, -1*E(119)^-22, -1*E(119)^-3, -1*E(119)^-18, -1*E(119)^-33, -1*E(119)^-20, -1*E(119)^-1, -1*E(119)^45, -1*E(119)^-41, -1*E(119)^-27, -1*E(119)^47, -1*E(119)^-31, -1*E(119)^36, -1*E(119)^-44, -1*E(119)^12, -1*E(119)^-5, -1*E(119)^32, -1*E(119)^22, -1*E(119)^-47, -1*E(119)^53, -1*E(119)^33, -1*E(119)^-26, -1*E(119)^11, -1*E(119)^-39, -1*E(119)^-43, -1*E(119), -1*E(119)^3, -1*E(119)^41, -1*E(119)^57, -1*E(119)^13, -1*E(119)^24, -1*E(119)^-52, -1*E(119)^30, -1*E(119)^4, -1*E(119)^-10, -1*E(119)^27, -1*E(119)^10, -1*E(119)^-38, -1*E(119)^44, -1*E(119)^-37, -1*E(119)^-58, -1*E(119)^2, -1*E(119)^39, -1*E(119)^40, -1*E(119)^-40, -1*E(119)^-32, -1*E(119)^-25, -1*E(119)^-57, -1*E(119)^-13, -1*E(119)^-8, -1*E(119)^52, -1*E(119)^-48, 1], [1, -1, E(119)^34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-34, E(119)^-51, -1*E(119)^-51, -1*E(119)^51, -1*E(119)^-34, -1*E(119)^34, -1*E(119)^-17, -1*E(119)^17, E(119)^-49, E(119)^35, E(119)^-28, E(119)^28, E(119)^-21, E(119)^7, E(119)^21, E(119)^-14, E(119)^56, E(119)^14, E(119)^-7, E(119)^49, E(119)^-42, E(119)^-56, E(119)^42, E(119)^-35, -1*E(119)^49, -1*E(119)^7, -1*E(119)^21, -1*E(119)^56, -1*E(119)^28, -1*E(119)^42, -1*E(119)^-56, -1*E(119)^-7, -1*E(119)^-35, -1*E(119)^-49, -1*E(119)^-14, -1*E(119)^35, -1*E(119)^-42, -1*E(119)^-21, -1*E(119)^14, -1*E(119)^-28, E(119)^26, E(119)^39, E(119)^41, E(119)^37, E(119)^29, E(119)^13, E(119)^40, E(119)^-3, E(119)^55, E(119)^23, E(119)^15, E(119)^-47, E(119)^-12, E(119)^-20, E(119)^-37, E(119)^-29, E(119)^-10, E(119)^5, E(119)^-39, E(119)^3, E(119)^57, E(119)^38, E(119)^-18, E(119), E(119)^59, E(119)^24, E(119)^-58, E(119)^46, E(119)^11, E(119)^19, E(119)^36, E(119)^-45, E(119)^9, E(119)^-41, E(119)^-33, E(119)^-8, E(119)^12, E(119)^-16, E(119)^-50, E(119)^-27, E(119)^-19, E(119)^-22, E(119)^25, E(119)^-2, E(119)^-32, E(119)^-4, E(119)^-55, E(119)^45, E(119)^-46, E(119)^47, E(119)^32, E(119)^48, E(119)^30, E(119)^22, E(119)^-54, E(119)^-5, E(119)^43, E(119)^44, E(119)^16, E(119)^-48, E(119)^10, E(119)^-1, E(119)^-31, E(119)^-23, E(119)^-43, E(119)^4, E(119)^-6, E(119)^-53, E(119)^-52, E(119)^18, E(119)^53, E(119)^27, E(119)^-44, E(119)^-59, E(119)^20, E(119)^33, E(119)^50, E(119)^-57, E(119)^-30, E(119)^8, E(119)^-40, E(119)^6, E(119)^-13, E(119)^58, E(119)^2, E(119)^-38, E(119)^-26, E(119)^-15, E(119)^-24, E(119)^-9, E(119)^-36, E(119)^-11, E(119)^-25, E(119)^52, E(119)^31, E(119)^54, -1*E(119)^50, -1*E(119)^6, -1*E(119)^15, -1*E(119)^-59, -1*E(119)^55, -1*E(119)^-20, -1*E(119)^-29, -1*E(119)^45, -1*E(119)^-37, -1*E(119)^30, -1*E(119)^-54, -1*E(119)^-9, -1*E(119)^16, -1*E(119)^24, -1*E(119)^-58, -1*E(119)^-5, -1*E(119)^-19, -1*E(119)^12, -1*E(119)^-25, -1*E(119)^53, -1*E(119)^29, -1*E(119)^-15, -1*E(119)^11, -1*E(119)^-55, -1*E(119)^-43, -1*E(119)^4, -1*E(119)^-38, -1*E(119)^59, -1*E(119)^-16, -1*E(119)^-48, -1*E(119)^-50, -1*E(119)^-6, -1*E(119)^-31, -1*E(119)^-23, -1*E(119)^23, -1*E(119)^9, -1*E(119)^54, -1*E(119)^2, -1*E(119)^-26, -1*E(119)^19, -1*E(119)^-18, -1*E(119)^46, -1*E(119)^36, -1*E(119)^-46, -1*E(119)^-8, -1*E(119)^22, -1*E(119)^3, -1*E(119)^18, -1*E(119)^33, -1*E(119)^20, -1*E(119), -1*E(119)^-45, -1*E(119)^41, -1*E(119)^27, -1*E(119)^-47, -1*E(119)^31, -1*E(119)^-36, -1*E(119)^44, -1*E(119)^-12, -1*E(119)^5, -1*E(119)^-32, -1*E(119)^-22, -1*E(119)^47, -1*E(119)^-53, -1*E(119)^-33, -1*E(119)^26, -1*E(119)^-11, -1*E(119)^39, -1*E(119)^43, -1*E(119)^-1, -1*E(119)^-3, -1*E(119)^-41, -1*E(119)^-57, -1*E(119)^-13, -1*E(119)^-24, -1*E(119)^52, -1*E(119)^-30, -1*E(119)^-4, -1*E(119)^10, -1*E(119)^-27, -1*E(119)^-10, -1*E(119)^38, -1*E(119)^-44, -1*E(119)^37, -1*E(119)^58, -1*E(119)^-2, -1*E(119)^-39, -1*E(119)^-40, -1*E(119)^40, -1*E(119)^32, -1*E(119)^25, -1*E(119)^57, -1*E(119)^13, -1*E(119)^8, -1*E(119)^-52, -1*E(119)^48, 1], [1, -1, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^34, E(119)^51, -1*E(119)^51, -1*E(119)^-51, -1*E(119)^34, -1*E(119)^-34, -1*E(119)^17, -1*E(119)^-17, E(119)^-42, E(119)^-21, E(119)^-7, E(119)^7, E(119)^-35, E(119)^-28, E(119)^35, E(119)^56, E(119)^14, E(119)^-56, E(119)^28, E(119)^42, E(119)^49, E(119)^-14, E(119)^-49, E(119)^21, -1*E(119)^42, -1*E(119)^-28, -1*E(119)^35, -1*E(119)^14, -1*E(119)^7, -1*E(119)^-49, -1*E(119)^-14, -1*E(119)^28, -1*E(119)^21, -1*E(119)^-42, -1*E(119)^56, -1*E(119)^-21, -1*E(119)^49, -1*E(119)^-35, -1*E(119)^-56, -1*E(119)^-7, E(119)^-19, E(119)^31, E(119)^57, E(119)^5, E(119)^20, E(119)^50, E(119)^44, E(119)^-39, E(119), E(119)^-58, E(119)^-43, E(119)^-16, E(119)^-37, E(119)^-22, E(119)^-5, E(119)^-20, E(119)^-11, E(119)^-54, E(119)^-31, E(119)^39, E(119)^27, E(119)^18, E(119)^4, E(119)^13, E(119)^53, E(119)^-45, E(119)^-40, E(119)^3, E(119)^24, E(119)^9, E(119)^-8, E(119)^10, E(119)^-2, E(119)^-57, E(119)^47, E(119)^15, E(119)^37, E(119)^30, E(119)^-55, E(119)^6, E(119)^-9, E(119)^-48, E(119)^-32, E(119)^-26, E(119)^-59, E(119)^-52, E(119)^-1, E(119)^-10, E(119)^-3, E(119)^16, E(119)^59, E(119)^29, E(119)^33, E(119)^48, E(119)^12, E(119)^54, E(119)^-36, E(119)^-23, E(119)^-30, E(119)^-29, E(119)^11, E(119)^-13, E(119)^-46, E(119)^58, E(119)^36, E(119)^52, E(119)^41, E(119)^25, E(119)^38, E(119)^-4, E(119)^-25, E(119)^-6, E(119)^23, E(119)^-53, E(119)^22, E(119)^-47, E(119)^55, E(119)^-27, E(119)^-33, E(119)^-15, E(119)^-44, E(119)^-41, E(119)^-50, E(119)^40, E(119)^26, E(119)^-18, E(119)^19, E(119)^43, E(119)^45, E(119)^2, E(119)^8, E(119)^-24, E(119)^32, E(119)^-38, E(119)^46, E(119)^-12, -1*E(119)^55, -1*E(119)^-41, -1*E(119)^-43, -1*E(119)^-53, -1*E(119), -1*E(119)^-22, -1*E(119)^-20, -1*E(119)^-10, -1*E(119)^-5, -1*E(119)^33, -1*E(119)^12, -1*E(119)^2, -1*E(119)^-30, -1*E(119)^-45, -1*E(119)^-40, -1*E(119)^54, -1*E(119)^-9, -1*E(119)^37, -1*E(119)^32, -1*E(119)^-25, -1*E(119)^20, -1*E(119)^43, -1*E(119)^24, -1*E(119)^-1, -1*E(119)^36, -1*E(119)^52, -1*E(119)^-18, -1*E(119)^53, -1*E(119)^30, -1*E(119)^-29, -1*E(119)^-55, -1*E(119)^41, -1*E(119)^-46, -1*E(119)^58, -1*E(119)^-58, -1*E(119)^-2, -1*E(119)^-12, -1*E(119)^26, -1*E(119)^19, -1*E(119)^9, -1*E(119)^4, -1*E(119)^3, -1*E(119)^-8, -1*E(119)^-3, -1*E(119)^15, -1*E(119)^48, -1*E(119)^39, -1*E(119)^-4, -1*E(119)^-47, -1*E(119)^22, -1*E(119)^13, -1*E(119)^10, -1*E(119)^57, -1*E(119)^-6, -1*E(119)^-16, -1*E(119)^46, -1*E(119)^8, -1*E(119)^-23, -1*E(119)^-37, -1*E(119)^-54, -1*E(119)^-59, -1*E(119)^-48, -1*E(119)^16, -1*E(119)^25, -1*E(119)^47, -1*E(119)^-19, -1*E(119)^-24, -1*E(119)^31, -1*E(119)^-36, -1*E(119)^-13, -1*E(119)^-39, -1*E(119)^-57, -1*E(119)^-27, -1*E(119)^-50, -1*E(119)^45, -1*E(119)^-38, -1*E(119)^-33, -1*E(119)^-52, -1*E(119)^11, -1*E(119)^6, -1*E(119)^-11, -1*E(119)^18, -1*E(119)^23, -1*E(119)^5, -1*E(119)^40, -1*E(119)^-26, -1*E(119)^-31, -1*E(119)^-44, -1*E(119)^44, -1*E(119)^59, -1*E(119)^-32, -1*E(119)^27, -1*E(119)^50, -1*E(119)^-15, -1*E(119)^38, -1*E(119)^29, 1], [1, -1, E(119)^34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-34, E(119)^-51, -1*E(119)^-51, -1*E(119)^51, -1*E(119)^-34, -1*E(119)^34, -1*E(119)^-17, -1*E(119)^17, E(119)^42, E(119)^21, E(119)^7, E(119)^-7, E(119)^35, E(119)^28, E(119)^-35, E(119)^-56, E(119)^-14, E(119)^56, E(119)^-28, E(119)^-42, E(119)^-49, E(119)^14, E(119)^49, E(119)^-21, -1*E(119)^-42, -1*E(119)^28, -1*E(119)^-35, -1*E(119)^-14, -1*E(119)^-7, -1*E(119)^49, -1*E(119)^14, -1*E(119)^-28, -1*E(119)^-21, -1*E(119)^42, -1*E(119)^-56, -1*E(119)^21, -1*E(119)^-49, -1*E(119)^35, -1*E(119)^56, -1*E(119)^7, E(119)^19, E(119)^-31, E(119)^-57, E(119)^-5, E(119)^-20, E(119)^-50, E(119)^-44, E(119)^39, E(119)^-1, E(119)^58, E(119)^43, E(119)^16, E(119)^37, E(119)^22, E(119)^5, E(119)^20, E(119)^11, E(119)^54, E(119)^31, E(119)^-39, E(119)^-27, E(119)^-18, E(119)^-4, E(119)^-13, E(119)^-53, E(119)^45, E(119)^40, E(119)^-3, E(119)^-24, E(119)^-9, E(119)^8, E(119)^-10, E(119)^2, E(119)^57, E(119)^-47, E(119)^-15, E(119)^-37, E(119)^-30, E(119)^55, E(119)^-6, E(119)^9, E(119)^48, E(119)^32, E(119)^26, E(119)^59, E(119)^52, E(119), E(119)^10, E(119)^3, E(119)^-16, E(119)^-59, E(119)^-29, E(119)^-33, E(119)^-48, E(119)^-12, E(119)^-54, E(119)^36, E(119)^23, E(119)^30, E(119)^29, E(119)^-11, E(119)^13, E(119)^46, E(119)^-58, E(119)^-36, E(119)^-52, E(119)^-41, E(119)^-25, E(119)^-38, E(119)^4, E(119)^25, E(119)^6, E(119)^-23, E(119)^53, E(119)^-22, E(119)^47, E(119)^-55, E(119)^27, E(119)^33, E(119)^15, E(119)^44, E(119)^41, E(119)^50, E(119)^-40, E(119)^-26, E(119)^18, E(119)^-19, E(119)^-43, E(119)^-45, E(119)^-2, E(119)^-8, E(119)^24, E(119)^-32, E(119)^38, E(119)^-46, E(119)^12, -1*E(119)^-55, -1*E(119)^41, -1*E(119)^43, -1*E(119)^53, -1*E(119)^-1, -1*E(119)^22, -1*E(119)^20, -1*E(119)^10, -1*E(119)^5, -1*E(119)^-33, -1*E(119)^-12, -1*E(119)^-2, -1*E(119)^30, -1*E(119)^45, -1*E(119)^40, -1*E(119)^-54, -1*E(119)^9, -1*E(119)^-37, -1*E(119)^-32, -1*E(119)^25, -1*E(119)^-20, -1*E(119)^-43, -1*E(119)^-24, -1*E(119), -1*E(119)^-36, -1*E(119)^-52, -1*E(119)^18, -1*E(119)^-53, -1*E(119)^-30, -1*E(119)^29, -1*E(119)^55, -1*E(119)^-41, -1*E(119)^46, -1*E(119)^-58, -1*E(119)^58, -1*E(119)^2, -1*E(119)^12, -1*E(119)^-26, -1*E(119)^-19, -1*E(119)^-9, -1*E(119)^-4, -1*E(119)^-3, -1*E(119)^8, -1*E(119)^3, -1*E(119)^-15, -1*E(119)^-48, -1*E(119)^-39, -1*E(119)^4, -1*E(119)^47, -1*E(119)^-22, -1*E(119)^-13, -1*E(119)^-10, -1*E(119)^-57, -1*E(119)^6, -1*E(119)^16, -1*E(119)^-46, -1*E(119)^-8, -1*E(119)^23, -1*E(119)^37, -1*E(119)^54, -1*E(119)^59, -1*E(119)^48, -1*E(119)^-16, -1*E(119)^-25, -1*E(119)^-47, -1*E(119)^19, -1*E(119)^24, -1*E(119)^-31, -1*E(119)^36, -1*E(119)^13, -1*E(119)^39, -1*E(119)^57, -1*E(119)^27, -1*E(119)^50, -1*E(119)^-45, -1*E(119)^38, -1*E(119)^33, -1*E(119)^52, -1*E(119)^-11, -1*E(119)^-6, -1*E(119)^11, -1*E(119)^-18, -1*E(119)^-23, -1*E(119)^-5, -1*E(119)^-40, -1*E(119)^26, -1*E(119)^31, -1*E(119)^44, -1*E(119)^-44, -1*E(119)^-59, -1*E(119)^32, -1*E(119)^-27, -1*E(119)^-50, -1*E(119)^15, -1*E(119)^-38, -1*E(119)^-29, 1], [1, -1, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^34, E(119)^51, -1*E(119)^51, -1*E(119)^-51, -1*E(119)^34, -1*E(119)^-34, -1*E(119)^17, -1*E(119)^-17, E(119)^42, E(119)^21, E(119)^7, E(119)^-7, E(119)^35, E(119)^28, E(119)^-35, E(119)^-56, E(119)^-14, E(119)^56, E(119)^-28, E(119)^-42, E(119)^-49, E(119)^14, E(119)^49, E(119)^-21, -1*E(119)^-42, -1*E(119)^28, -1*E(119)^-35, -1*E(119)^-14, -1*E(119)^-7, -1*E(119)^49, -1*E(119)^14, -1*E(119)^-28, -1*E(119)^-21, -1*E(119)^42, -1*E(119)^-56, -1*E(119)^21, -1*E(119)^-49, -1*E(119)^35, -1*E(119)^56, -1*E(119)^7, E(119)^2, E(119)^3, E(119)^-6, E(119)^12, E(119)^48, E(119), E(119)^58, E(119)^-46, E(119)^50, E(119)^-44, E(119)^-8, E(119)^33, E(119)^54, E(119)^-29, E(119)^-12, E(119)^-48, E(119)^45, E(119)^37, E(119)^-3, E(119)^46, E(119)^41, E(119)^-52, E(119)^-38, E(119)^55, E(119)^32, E(119)^11, E(119)^23, E(119)^31, E(119)^10, E(119)^-26, E(119)^-43, E(119)^24, E(119)^19, E(119)^6, E(119)^-30, E(119)^36, E(119)^-54, E(119)^-47, E(119)^-13, E(119)^-57, E(119)^26, E(119)^-20, E(119)^-53, E(119)^9, E(119)^25, E(119)^18, E(119)^-50, E(119)^-24, E(119)^-31, E(119)^-33, E(119)^-25, E(119)^22, E(119)^-16, E(119)^20, E(119)^5, E(119)^-37, E(119)^-15, E(119)^40, E(119)^47, E(119)^-22, E(119)^-45, E(119)^-55, E(119)^-39, E(119)^44, E(119)^15, E(119)^-18, E(119)^27, E(119)^-59, E(119)^-4, E(119)^38, E(119)^59, E(119)^57, E(119)^-40, E(119)^-32, E(119)^29, E(119)^30, E(119)^13, E(119)^-41, E(119)^16, E(119)^-36, E(119)^-58, E(119)^-27, E(119)^-1, E(119)^-23, E(119)^-9, E(119)^52, E(119)^-2, E(119)^8, E(119)^-11, E(119)^-19, E(119)^43, E(119)^-10, E(119)^53, E(119)^4, E(119)^39, E(119)^-5, -1*E(119)^13, -1*E(119)^-27, -1*E(119)^-8, -1*E(119)^-32, -1*E(119)^50, -1*E(119)^-29, -1*E(119)^-48, -1*E(119)^-24, -1*E(119)^-12, -1*E(119)^-16, -1*E(119)^5, -1*E(119)^-19, -1*E(119)^47, -1*E(119)^11, -1*E(119)^23, -1*E(119)^-37, -1*E(119)^26, -1*E(119)^-54, -1*E(119)^53, -1*E(119)^59, -1*E(119)^48, -1*E(119)^8, -1*E(119)^10, -1*E(119)^-50, -1*E(119)^15, -1*E(119)^-18, -1*E(119)^52, -1*E(119)^32, -1*E(119)^-47, -1*E(119)^-22, -1*E(119)^-13, -1*E(119)^27, -1*E(119)^-39, -1*E(119)^44, -1*E(119)^-44, -1*E(119)^19, -1*E(119)^-5, -1*E(119)^-9, -1*E(119)^-2, -1*E(119)^-26, -1*E(119)^-38, -1*E(119)^31, -1*E(119)^-43, -1*E(119)^-31, -1*E(119)^36, -1*E(119)^20, -1*E(119)^46, -1*E(119)^38, -1*E(119)^30, -1*E(119)^29, -1*E(119)^55, -1*E(119)^24, -1*E(119)^-6, -1*E(119)^57, -1*E(119)^33, -1*E(119)^39, -1*E(119)^43, -1*E(119)^40, -1*E(119)^54, -1*E(119)^37, -1*E(119)^25, -1*E(119)^-20, -1*E(119)^-33, -1*E(119)^-59, -1*E(119)^-30, -1*E(119)^2, -1*E(119)^-10, -1*E(119)^3, -1*E(119)^-15, -1*E(119)^-55, -1*E(119)^-46, -1*E(119)^6, -1*E(119)^-41, -1*E(119)^-1, -1*E(119)^-11, -1*E(119)^4, -1*E(119)^16, -1*E(119)^18, -1*E(119)^-45, -1*E(119)^-57, -1*E(119)^45, -1*E(119)^-52, -1*E(119)^-40, -1*E(119)^12, -1*E(119)^-23, -1*E(119)^9, -1*E(119)^-3, -1*E(119)^-58, -1*E(119)^58, -1*E(119)^-25, -1*E(119)^-53, -1*E(119)^41, -1*E(119), -1*E(119)^-36, -1*E(119)^-4, -1*E(119)^22, 1], [1, -1, E(119)^34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-34, E(119)^-51, -1*E(119)^-51, -1*E(119)^51, -1*E(119)^-34, -1*E(119)^34, -1*E(119)^-17, -1*E(119)^17, E(119)^-42, E(119)^-21, E(119)^-7, E(119)^7, E(119)^-35, E(119)^-28, E(119)^35, E(119)^56, E(119)^14, E(119)^-56, E(119)^28, E(119)^42, E(119)^49, E(119)^-14, E(119)^-49, E(119)^21, -1*E(119)^42, -1*E(119)^-28, -1*E(119)^35, -1*E(119)^14, -1*E(119)^7, -1*E(119)^-49, -1*E(119)^-14, -1*E(119)^28, -1*E(119)^21, -1*E(119)^-42, -1*E(119)^56, -1*E(119)^-21, -1*E(119)^49, -1*E(119)^-35, -1*E(119)^-56, -1*E(119)^-7, E(119)^-2, E(119)^-3, E(119)^6, E(119)^-12, E(119)^-48, E(119)^-1, E(119)^-58, E(119)^46, E(119)^-50, E(119)^44, E(119)^8, E(119)^-33, E(119)^-54, E(119)^29, E(119)^12, E(119)^48, E(119)^-45, E(119)^-37, E(119)^3, E(119)^-46, E(119)^-41, E(119)^52, E(119)^38, E(119)^-55, E(119)^-32, E(119)^-11, E(119)^-23, E(119)^-31, E(119)^-10, E(119)^26, E(119)^43, E(119)^-24, E(119)^-19, E(119)^-6, E(119)^30, E(119)^-36, E(119)^54, E(119)^47, E(119)^13, E(119)^57, E(119)^-26, E(119)^20, E(119)^53, E(119)^-9, E(119)^-25, E(119)^-18, E(119)^50, E(119)^24, E(119)^31, E(119)^33, E(119)^25, E(119)^-22, E(119)^16, E(119)^-20, E(119)^-5, E(119)^37, E(119)^15, E(119)^-40, E(119)^-47, E(119)^22, E(119)^45, E(119)^55, E(119)^39, E(119)^-44, E(119)^-15, E(119)^18, E(119)^-27, E(119)^59, E(119)^4, E(119)^-38, E(119)^-59, E(119)^-57, E(119)^40, E(119)^32, E(119)^-29, E(119)^-30, E(119)^-13, E(119)^41, E(119)^-16, E(119)^36, E(119)^58, E(119)^27, E(119), E(119)^23, E(119)^9, E(119)^-52, E(119)^2, E(119)^-8, E(119)^11, E(119)^19, E(119)^-43, E(119)^10, E(119)^-53, E(119)^-4, E(119)^-39, E(119)^5, -1*E(119)^-13, -1*E(119)^27, -1*E(119)^8, -1*E(119)^32, -1*E(119)^-50, -1*E(119)^29, -1*E(119)^48, -1*E(119)^24, -1*E(119)^12, -1*E(119)^16, -1*E(119)^-5, -1*E(119)^19, -1*E(119)^-47, -1*E(119)^-11, -1*E(119)^-23, -1*E(119)^37, -1*E(119)^-26, -1*E(119)^54, -1*E(119)^-53, -1*E(119)^-59, -1*E(119)^-48, -1*E(119)^-8, -1*E(119)^-10, -1*E(119)^50, -1*E(119)^-15, -1*E(119)^18, -1*E(119)^-52, -1*E(119)^-32, -1*E(119)^47, -1*E(119)^22, -1*E(119)^13, -1*E(119)^-27, -1*E(119)^39, -1*E(119)^-44, -1*E(119)^44, -1*E(119)^-19, -1*E(119)^5, -1*E(119)^9, -1*E(119)^2, -1*E(119)^26, -1*E(119)^38, -1*E(119)^-31, -1*E(119)^43, -1*E(119)^31, -1*E(119)^-36, -1*E(119)^-20, -1*E(119)^-46, -1*E(119)^-38, -1*E(119)^-30, -1*E(119)^-29, -1*E(119)^-55, -1*E(119)^-24, -1*E(119)^6, -1*E(119)^-57, -1*E(119)^-33, -1*E(119)^-39, -1*E(119)^-43, -1*E(119)^-40, -1*E(119)^-54, -1*E(119)^-37, -1*E(119)^-25, -1*E(119)^20, -1*E(119)^33, -1*E(119)^59, -1*E(119)^30, -1*E(119)^-2, -1*E(119)^10, -1*E(119)^-3, -1*E(119)^15, -1*E(119)^55, -1*E(119)^46, -1*E(119)^-6, -1*E(119)^41, -1*E(119), -1*E(119)^11, -1*E(119)^-4, -1*E(119)^-16, -1*E(119)^-18, -1*E(119)^45, -1*E(119)^57, -1*E(119)^-45, -1*E(119)^52, -1*E(119)^40, -1*E(119)^-12, -1*E(119)^23, -1*E(119)^-9, -1*E(119)^3, -1*E(119)^58, -1*E(119)^-58, -1*E(119)^25, -1*E(119)^53, -1*E(119)^-41, -1*E(119)^-1, -1*E(119)^36, -1*E(119)^4, -1*E(119)^-22, 1], [1, -1, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^34, E(119)^51, -1*E(119)^51, -1*E(119)^-51, -1*E(119)^34, -1*E(119)^-34, -1*E(119)^17, -1*E(119)^-17, E(119)^-35, E(119)^42, E(119)^14, E(119)^-14, E(119)^-49, E(119)^56, E(119)^49, E(119)^7, E(119)^-28, E(119)^-7, E(119)^-56, E(119)^35, E(119)^21, E(119)^28, E(119)^-21, E(119)^-42, -1*E(119)^35, -1*E(119)^56, -1*E(119)^49, -1*E(119)^-28, -1*E(119)^-14, -1*E(119)^-21, -1*E(119)^28, -1*E(119)^-56, -1*E(119)^-42, -1*E(119)^-35, -1*E(119)^7, -1*E(119)^42, -1*E(119)^21, -1*E(119)^-49, -1*E(119)^-7, -1*E(119)^14, E(119)^-47, E(119)^-11, E(119)^22, E(119)^-44, E(119)^-57, E(119)^36, E(119)^-54, E(119)^10, E(119)^15, E(119)^-37, E(119)^-50, E(119)^-2, E(119)^40, E(119)^27, E(119)^44, E(119)^57, E(119)^-46, E(119)^23, E(119)^11, E(119)^-10, E(119)^48, E(119)^32, E(119)^-59, E(119)^-43, E(119)^-38, E(119)^39, E(119)^-5, E(119)^45, E(119)^3, E(119)^16, E(119)^-1, E(119)^31, E(119)^-30, E(119)^-22, E(119)^-9, E(119)^-13, E(119)^-40, E(119)^-26, E(119)^8, E(119)^-29, E(119)^-16, E(119)^-6, E(119)^-4, E(119)^-33, E(119)^-52, E(119)^53, E(119)^-15, E(119)^-31, E(119)^-45, E(119)^2, E(119)^52, E(119)^-41, E(119)^19, E(119)^6, E(119)^-58, E(119)^-23, E(119)^55, E(119)^12, E(119)^26, E(119)^41, E(119)^46, E(119)^43, E(119)^24, E(119)^37, E(119)^-55, E(119)^-53, E(119)^20, E(119)^18, E(119)^-25, E(119)^59, E(119)^-18, E(119)^29, E(119)^-12, E(119)^38, E(119)^-27, E(119)^9, E(119)^-8, E(119)^-48, E(119)^-19, E(119)^13, E(119)^54, E(119)^-20, E(119)^-36, E(119)^5, E(119)^33, E(119)^-32, E(119)^47, E(119)^50, E(119)^-39, E(119)^30, E(119), E(119)^-3, E(119)^4, E(119)^25, E(119)^-24, E(119)^58, -1*E(119)^-8, -1*E(119)^-20, -1*E(119)^-50, -1*E(119)^38, -1*E(119)^15, -1*E(119)^27, -1*E(119)^57, -1*E(119)^-31, -1*E(119)^44, -1*E(119)^19, -1*E(119)^-58, -1*E(119)^30, -1*E(119)^26, -1*E(119)^39, -1*E(119)^-5, -1*E(119)^-23, -1*E(119)^-16, -1*E(119)^-40, -1*E(119)^4, -1*E(119)^-18, -1*E(119)^-57, -1*E(119)^50, -1*E(119)^3, -1*E(119)^-15, -1*E(119)^-55, -1*E(119)^-53, -1*E(119)^-32, -1*E(119)^-38, -1*E(119)^-26, -1*E(119)^41, -1*E(119)^8, -1*E(119)^20, -1*E(119)^24, -1*E(119)^37, -1*E(119)^-37, -1*E(119)^-30, -1*E(119)^58, -1*E(119)^33, -1*E(119)^47, -1*E(119)^16, -1*E(119)^-59, -1*E(119)^45, -1*E(119)^-1, -1*E(119)^-45, -1*E(119)^-13, -1*E(119)^6, -1*E(119)^-10, -1*E(119)^59, -1*E(119)^9, -1*E(119)^-27, -1*E(119)^-43, -1*E(119)^31, -1*E(119)^22, -1*E(119)^29, -1*E(119)^-2, -1*E(119)^-24, -1*E(119), -1*E(119)^12, -1*E(119)^40, -1*E(119)^23, -1*E(119)^-52, -1*E(119)^-6, -1*E(119)^2, -1*E(119)^18, -1*E(119)^-9, -1*E(119)^-47, -1*E(119)^-3, -1*E(119)^-11, -1*E(119)^55, -1*E(119)^43, -1*E(119)^10, -1*E(119)^-22, -1*E(119)^-48, -1*E(119)^-36, -1*E(119)^-39, -1*E(119)^25, -1*E(119)^-19, -1*E(119)^53, -1*E(119)^46, -1*E(119)^-29, -1*E(119)^-46, -1*E(119)^32, -1*E(119)^-12, -1*E(119)^-44, -1*E(119)^5, -1*E(119)^-33, -1*E(119)^11, -1*E(119)^54, -1*E(119)^-54, -1*E(119)^52, -1*E(119)^-4, -1*E(119)^48, -1*E(119)^36, -1*E(119)^13, -1*E(119)^-25, -1*E(119)^-41, 1], [1, -1, E(119)^34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-34, E(119)^-51, -1*E(119)^-51, -1*E(119)^51, -1*E(119)^-34, -1*E(119)^34, -1*E(119)^-17, -1*E(119)^17, E(119)^35, E(119)^-42, E(119)^-14, E(119)^14, E(119)^49, E(119)^-56, E(119)^-49, E(119)^-7, E(119)^28, E(119)^7, E(119)^56, E(119)^-35, E(119)^-21, E(119)^-28, E(119)^21, E(119)^42, -1*E(119)^-35, -1*E(119)^-56, -1*E(119)^-49, -1*E(119)^28, -1*E(119)^14, -1*E(119)^21, -1*E(119)^-28, -1*E(119)^56, -1*E(119)^42, -1*E(119)^35, -1*E(119)^-7, -1*E(119)^-42, -1*E(119)^-21, -1*E(119)^49, -1*E(119)^7, -1*E(119)^-14, E(119)^47, E(119)^11, E(119)^-22, E(119)^44, E(119)^57, E(119)^-36, E(119)^54, E(119)^-10, E(119)^-15, E(119)^37, E(119)^50, E(119)^2, E(119)^-40, E(119)^-27, E(119)^-44, E(119)^-57, E(119)^46, E(119)^-23, E(119)^-11, E(119)^10, E(119)^-48, E(119)^-32, E(119)^59, E(119)^43, E(119)^38, E(119)^-39, E(119)^5, E(119)^-45, E(119)^-3, E(119)^-16, E(119), E(119)^-31, E(119)^30, E(119)^22, E(119)^9, E(119)^13, E(119)^40, E(119)^26, E(119)^-8, E(119)^29, E(119)^16, E(119)^6, E(119)^4, E(119)^33, E(119)^52, E(119)^-53, E(119)^15, E(119)^31, E(119)^45, E(119)^-2, E(119)^-52, E(119)^41, E(119)^-19, E(119)^-6, E(119)^58, E(119)^23, E(119)^-55, E(119)^-12, E(119)^-26, E(119)^-41, E(119)^-46, E(119)^-43, E(119)^-24, E(119)^-37, E(119)^55, E(119)^53, E(119)^-20, E(119)^-18, E(119)^25, E(119)^-59, E(119)^18, E(119)^-29, E(119)^12, E(119)^-38, E(119)^27, E(119)^-9, E(119)^8, E(119)^48, E(119)^19, E(119)^-13, E(119)^-54, E(119)^20, E(119)^36, E(119)^-5, E(119)^-33, E(119)^32, E(119)^-47, E(119)^-50, E(119)^39, E(119)^-30, E(119)^-1, E(119)^3, E(119)^-4, E(119)^-25, E(119)^24, E(119)^-58, -1*E(119)^8, -1*E(119)^20, -1*E(119)^50, -1*E(119)^-38, -1*E(119)^-15, -1*E(119)^-27, -1*E(119)^-57, -1*E(119)^31, -1*E(119)^-44, -1*E(119)^-19, -1*E(119)^58, -1*E(119)^-30, -1*E(119)^-26, -1*E(119)^-39, -1*E(119)^5, -1*E(119)^23, -1*E(119)^16, -1*E(119)^40, -1*E(119)^-4, -1*E(119)^18, -1*E(119)^57, -1*E(119)^-50, -1*E(119)^-3, -1*E(119)^15, -1*E(119)^55, -1*E(119)^53, -1*E(119)^32, -1*E(119)^38, -1*E(119)^26, -1*E(119)^-41, -1*E(119)^-8, -1*E(119)^-20, -1*E(119)^-24, -1*E(119)^-37, -1*E(119)^37, -1*E(119)^30, -1*E(119)^-58, -1*E(119)^-33, -1*E(119)^-47, -1*E(119)^-16, -1*E(119)^59, -1*E(119)^-45, -1*E(119), -1*E(119)^45, -1*E(119)^13, -1*E(119)^-6, -1*E(119)^10, -1*E(119)^-59, -1*E(119)^-9, -1*E(119)^27, -1*E(119)^43, -1*E(119)^-31, -1*E(119)^-22, -1*E(119)^-29, -1*E(119)^2, -1*E(119)^24, -1*E(119)^-1, -1*E(119)^-12, -1*E(119)^-40, -1*E(119)^-23, -1*E(119)^52, -1*E(119)^6, -1*E(119)^-2, -1*E(119)^-18, -1*E(119)^9, -1*E(119)^47, -1*E(119)^3, -1*E(119)^11, -1*E(119)^-55, -1*E(119)^-43, -1*E(119)^-10, -1*E(119)^22, -1*E(119)^48, -1*E(119)^36, -1*E(119)^39, -1*E(119)^-25, -1*E(119)^19, -1*E(119)^-53, -1*E(119)^-46, -1*E(119)^29, -1*E(119)^46, -1*E(119)^-32, -1*E(119)^12, -1*E(119)^44, -1*E(119)^-5, -1*E(119)^33, -1*E(119)^-11, -1*E(119)^-54, -1*E(119)^54, -1*E(119)^-52, -1*E(119)^4, -1*E(119)^-48, -1*E(119)^-36, -1*E(119)^-13, -1*E(119)^25, -1*E(119)^41, 1], [1, -1, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^34, E(119)^51, -1*E(119)^51, -1*E(119)^-51, -1*E(119)^34, -1*E(119)^-34, -1*E(119)^17, -1*E(119)^-17, E(119)^35, E(119)^-42, E(119)^-14, E(119)^14, E(119)^49, E(119)^-56, E(119)^-49, E(119)^-7, E(119)^28, E(119)^7, E(119)^56, E(119)^-35, E(119)^-21, E(119)^-28, E(119)^21, E(119)^42, -1*E(119)^-35, -1*E(119)^-56, -1*E(119)^-49, -1*E(119)^28, -1*E(119)^14, -1*E(119)^21, -1*E(119)^-28, -1*E(119)^56, -1*E(119)^42, -1*E(119)^35, -1*E(119)^-7, -1*E(119)^-42, -1*E(119)^-21, -1*E(119)^49, -1*E(119)^7, -1*E(119)^-14, E(119)^30, E(119)^45, E(119)^29, E(119)^-58, E(119)^6, E(119)^15, E(119)^37, E(119)^24, E(119)^36, E(119)^54, E(119)^-1, E(119)^19, E(119)^-23, E(119)^41, E(119)^58, E(119)^-6, E(119)^-39, E(119)^-40, E(119)^-45, E(119)^-24, E(119)^20, E(119)^53, E(119)^25, E(119)^-8, E(119)^4, E(119)^46, E(119)^-12, E(119)^-11, E(119)^31, E(119)^-33, E(119)^-50, E(119)^3, E(119)^47, E(119)^-29, E(119)^26, E(119)^-55, E(119)^23, E(119)^9, E(119)^43, E(119)^-22, E(119)^33, E(119)^57, E(119)^38, E(119)^16, E(119)^18, E(119)^32, E(119)^-36, E(119)^-3, E(119)^11, E(119)^-19, E(119)^-18, E(119)^-27, E(119)^-2, E(119)^-57, E(119)^-44, E(119)^40, E(119)^13, E(119)^5, E(119)^-9, E(119)^27, E(119)^39, E(119)^8, E(119)^10, E(119)^-54, E(119)^-13, E(119)^-32, E(119)^48, E(119)^-52, E(119)^59, E(119)^-25, E(119)^52, E(119)^22, E(119)^-5, E(119)^-4, E(119)^-41, E(119)^-26, E(119)^-43, E(119)^-20, E(119)^2, E(119)^55, E(119)^-37, E(119)^-48, E(119)^-15, E(119)^12, E(119)^-16, E(119)^-53, E(119)^-30, E(119), E(119)^-46, E(119)^-47, E(119)^50, E(119)^-31, E(119)^-38, E(119)^-59, E(119)^-10, E(119)^44, -1*E(119)^-43, -1*E(119)^-48, -1*E(119)^-1, -1*E(119)^-4, -1*E(119)^36, -1*E(119)^41, -1*E(119)^-6, -1*E(119)^-3, -1*E(119)^58, -1*E(119)^-2, -1*E(119)^-44, -1*E(119)^-47, -1*E(119)^-9, -1*E(119)^46, -1*E(119)^-12, -1*E(119)^40, -1*E(119)^33, -1*E(119)^23, -1*E(119)^-38, -1*E(119)^52, -1*E(119)^6, -1*E(119), -1*E(119)^31, -1*E(119)^-36, -1*E(119)^-13, -1*E(119)^-32, -1*E(119)^-53, -1*E(119)^4, -1*E(119)^9, -1*E(119)^27, -1*E(119)^43, -1*E(119)^48, -1*E(119)^10, -1*E(119)^-54, -1*E(119)^54, -1*E(119)^47, -1*E(119)^44, -1*E(119)^-16, -1*E(119)^-30, -1*E(119)^-33, -1*E(119)^25, -1*E(119)^-11, -1*E(119)^-50, -1*E(119)^11, -1*E(119)^-55, -1*E(119)^-57, -1*E(119)^-24, -1*E(119)^-25, -1*E(119)^-26, -1*E(119)^-41, -1*E(119)^-8, -1*E(119)^3, -1*E(119)^29, -1*E(119)^22, -1*E(119)^19, -1*E(119)^-10, -1*E(119)^50, -1*E(119)^5, -1*E(119)^-23, -1*E(119)^-40, -1*E(119)^18, -1*E(119)^57, -1*E(119)^-19, -1*E(119)^-52, -1*E(119)^26, -1*E(119)^30, -1*E(119)^-31, -1*E(119)^45, -1*E(119)^13, -1*E(119)^8, -1*E(119)^24, -1*E(119)^-29, -1*E(119)^-20, -1*E(119)^-15, -1*E(119)^-46, -1*E(119)^-59, -1*E(119)^2, -1*E(119)^32, -1*E(119)^39, -1*E(119)^-22, -1*E(119)^-39, -1*E(119)^53, -1*E(119)^-5, -1*E(119)^-58, -1*E(119)^12, -1*E(119)^16, -1*E(119)^-45, -1*E(119)^-37, -1*E(119)^37, -1*E(119)^-18, -1*E(119)^38, -1*E(119)^20, -1*E(119)^15, -1*E(119)^55, -1*E(119)^59, -1*E(119)^-27, 1], [1, -1, E(119)^34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-34, E(119)^-51, -1*E(119)^-51, -1*E(119)^51, -1*E(119)^-34, -1*E(119)^34, -1*E(119)^-17, -1*E(119)^17, E(119)^-35, E(119)^42, E(119)^14, E(119)^-14, E(119)^-49, E(119)^56, E(119)^49, E(119)^7, E(119)^-28, E(119)^-7, E(119)^-56, E(119)^35, E(119)^21, E(119)^28, E(119)^-21, E(119)^-42, -1*E(119)^35, -1*E(119)^56, -1*E(119)^49, -1*E(119)^-28, -1*E(119)^-14, -1*E(119)^-21, -1*E(119)^28, -1*E(119)^-56, -1*E(119)^-42, -1*E(119)^-35, -1*E(119)^7, -1*E(119)^42, -1*E(119)^21, -1*E(119)^-49, -1*E(119)^-7, -1*E(119)^14, E(119)^-30, E(119)^-45, E(119)^-29, E(119)^58, E(119)^-6, E(119)^-15, E(119)^-37, E(119)^-24, E(119)^-36, E(119)^-54, E(119), E(119)^-19, E(119)^23, E(119)^-41, E(119)^-58, E(119)^6, E(119)^39, E(119)^40, E(119)^45, E(119)^24, E(119)^-20, E(119)^-53, E(119)^-25, E(119)^8, E(119)^-4, E(119)^-46, E(119)^12, E(119)^11, E(119)^-31, E(119)^33, E(119)^50, E(119)^-3, E(119)^-47, E(119)^29, E(119)^-26, E(119)^55, E(119)^-23, E(119)^-9, E(119)^-43, E(119)^22, E(119)^-33, E(119)^-57, E(119)^-38, E(119)^-16, E(119)^-18, E(119)^-32, E(119)^36, E(119)^3, E(119)^-11, E(119)^19, E(119)^18, E(119)^27, E(119)^2, E(119)^57, E(119)^44, E(119)^-40, E(119)^-13, E(119)^-5, E(119)^9, E(119)^-27, E(119)^-39, E(119)^-8, E(119)^-10, E(119)^54, E(119)^13, E(119)^32, E(119)^-48, E(119)^52, E(119)^-59, E(119)^25, E(119)^-52, E(119)^-22, E(119)^5, E(119)^4, E(119)^41, E(119)^26, E(119)^43, E(119)^20, E(119)^-2, E(119)^-55, E(119)^37, E(119)^48, E(119)^15, E(119)^-12, E(119)^16, E(119)^53, E(119)^30, E(119)^-1, E(119)^46, E(119)^47, E(119)^-50, E(119)^31, E(119)^38, E(119)^59, E(119)^10, E(119)^-44, -1*E(119)^43, -1*E(119)^48, -1*E(119), -1*E(119)^4, -1*E(119)^-36, -1*E(119)^-41, -1*E(119)^6, -1*E(119)^3, -1*E(119)^-58, -1*E(119)^2, -1*E(119)^44, -1*E(119)^47, -1*E(119)^9, -1*E(119)^-46, -1*E(119)^12, -1*E(119)^-40, -1*E(119)^-33, -1*E(119)^-23, -1*E(119)^38, -1*E(119)^-52, -1*E(119)^-6, -1*E(119)^-1, -1*E(119)^-31, -1*E(119)^36, -1*E(119)^13, -1*E(119)^32, -1*E(119)^53, -1*E(119)^-4, -1*E(119)^-9, -1*E(119)^-27, -1*E(119)^-43, -1*E(119)^-48, -1*E(119)^-10, -1*E(119)^54, -1*E(119)^-54, -1*E(119)^-47, -1*E(119)^-44, -1*E(119)^16, -1*E(119)^30, -1*E(119)^33, -1*E(119)^-25, -1*E(119)^11, -1*E(119)^50, -1*E(119)^-11, -1*E(119)^55, -1*E(119)^57, -1*E(119)^24, -1*E(119)^25, -1*E(119)^26, -1*E(119)^41, -1*E(119)^8, -1*E(119)^-3, -1*E(119)^-29, -1*E(119)^-22, -1*E(119)^-19, -1*E(119)^10, -1*E(119)^-50, -1*E(119)^-5, -1*E(119)^23, -1*E(119)^40, -1*E(119)^-18, -1*E(119)^-57, -1*E(119)^19, -1*E(119)^52, -1*E(119)^-26, -1*E(119)^-30, -1*E(119)^31, -1*E(119)^-45, -1*E(119)^-13, -1*E(119)^-8, -1*E(119)^-24, -1*E(119)^29, -1*E(119)^20, -1*E(119)^15, -1*E(119)^46, -1*E(119)^59, -1*E(119)^-2, -1*E(119)^-32, -1*E(119)^-39, -1*E(119)^22, -1*E(119)^39, -1*E(119)^-53, -1*E(119)^5, -1*E(119)^58, -1*E(119)^-12, -1*E(119)^-16, -1*E(119)^45, -1*E(119)^37, -1*E(119)^-37, -1*E(119)^18, -1*E(119)^-38, -1*E(119)^-20, -1*E(119)^-15, -1*E(119)^-55, -1*E(119)^-59, -1*E(119)^27, 1], [1, -1, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^34, E(119)^51, -1*E(119)^51, -1*E(119)^-51, -1*E(119)^34, -1*E(119)^-34, -1*E(119)^17, -1*E(119)^-17, E(119)^-28, E(119)^-14, E(119)^35, E(119)^-35, E(119)^56, E(119)^21, E(119)^-56, E(119)^-42, E(119)^49, E(119)^42, E(119)^-21, E(119)^28, E(119)^-7, E(119)^-49, E(119)^7, E(119)^14, -1*E(119)^28, -1*E(119)^21, -1*E(119)^-56, -1*E(119)^49, -1*E(119)^-35, -1*E(119)^7, -1*E(119)^-49, -1*E(119)^-21, -1*E(119)^14, -1*E(119)^-28, -1*E(119)^-42, -1*E(119)^-14, -1*E(119)^-7, -1*E(119)^56, -1*E(119)^42, -1*E(119)^35, E(119)^44, E(119)^-53, E(119)^-13, E(119)^26, E(119)^-15, E(119)^22, E(119)^-33, E(119)^59, E(119)^29, E(119)^-16, E(119)^-57, E(119)^12, E(119)^-2, E(119)^-43, E(119)^-26, E(119)^15, E(119)^38, E(119)^-19, E(119)^53, E(119)^-59, E(119)^-50, E(119)^46, E(119)^-3, E(119)^20, E(119)^-10, E(119)^4, E(119)^30, E(119)^-32, E(119)^-18, E(119)^23, E(119)^6, E(119)^52, E(119)^-58, E(119)^13, E(119)^54, E(119)^-41, E(119)^2, E(119)^37, E(119)^-48, E(119)^55, E(119)^-23, E(119)^36, E(119)^24, E(119)^-40, E(119)^-45, E(119)^39, E(119)^-29, E(119)^-52, E(119)^32, E(119)^-12, E(119)^45, E(119)^8, E(119)^5, E(119)^-36, E(119)^-9, E(119)^19, E(119)^27, E(119)^47, E(119)^-37, E(119)^-8, E(119)^-38, E(119)^-20, E(119)^-25, E(119)^16, E(119)^-27, E(119)^-39, E(119)^-1, E(119)^11, E(119)^31, E(119)^3, E(119)^-11, E(119)^-55, E(119)^-47, E(119)^10, E(119)^43, E(119)^-54, E(119)^48, E(119)^50, E(119)^-5, E(119)^41, E(119)^33, E(119), E(119)^-22, E(119)^-30, E(119)^40, E(119)^-46, E(119)^-44, E(119)^57, E(119)^-4, E(119)^58, E(119)^-6, E(119)^18, E(119)^-24, E(119)^-31, E(119)^25, E(119)^9, -1*E(119)^48, -1*E(119), -1*E(119)^-57, -1*E(119)^10, -1*E(119)^29, -1*E(119)^-43, -1*E(119)^15, -1*E(119)^-52, -1*E(119)^-26, -1*E(119)^5, -1*E(119)^-9, -1*E(119)^58, -1*E(119)^-37, -1*E(119)^4, -1*E(119)^30, -1*E(119)^19, -1*E(119)^-23, -1*E(119)^2, -1*E(119)^-24, -1*E(119)^-11, -1*E(119)^-15, -1*E(119)^57, -1*E(119)^-18, -1*E(119)^-29, -1*E(119)^-27, -1*E(119)^-39, -1*E(119)^-46, -1*E(119)^-10, -1*E(119)^37, -1*E(119)^-8, -1*E(119)^-48, -1*E(119)^-1, -1*E(119)^-25, -1*E(119)^16, -1*E(119)^-16, -1*E(119)^-58, -1*E(119)^9, -1*E(119)^40, -1*E(119)^-44, -1*E(119)^23, -1*E(119)^-3, -1*E(119)^-32, -1*E(119)^6, -1*E(119)^32, -1*E(119)^-41, -1*E(119)^-36, -1*E(119)^-59, -1*E(119)^3, -1*E(119)^-54, -1*E(119)^43, -1*E(119)^20, -1*E(119)^52, -1*E(119)^-13, -1*E(119)^-55, -1*E(119)^12, -1*E(119)^25, -1*E(119)^-6, -1*E(119)^47, -1*E(119)^-2, -1*E(119)^-19, -1*E(119)^-45, -1*E(119)^36, -1*E(119)^-12, -1*E(119)^11, -1*E(119)^54, -1*E(119)^44, -1*E(119)^18, -1*E(119)^-53, -1*E(119)^27, -1*E(119)^-20, -1*E(119)^59, -1*E(119)^13, -1*E(119)^50, -1*E(119)^-22, -1*E(119)^-4, -1*E(119)^-31, -1*E(119)^-5, -1*E(119)^39, -1*E(119)^-38, -1*E(119)^55, -1*E(119)^38, -1*E(119)^46, -1*E(119)^-47, -1*E(119)^26, -1*E(119)^-30, -1*E(119)^-40, -1*E(119)^53, -1*E(119)^33, -1*E(119)^-33, -1*E(119)^45, -1*E(119)^24, -1*E(119)^-50, -1*E(119)^22, -1*E(119)^41, -1*E(119)^31, -1*E(119)^8, 1], [1, -1, E(119)^34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-34, E(119)^-51, -1*E(119)^-51, -1*E(119)^51, -1*E(119)^-34, -1*E(119)^34, -1*E(119)^-17, -1*E(119)^17, E(119)^28, E(119)^14, E(119)^-35, E(119)^35, E(119)^-56, E(119)^-21, E(119)^56, E(119)^42, E(119)^-49, E(119)^-42, E(119)^21, E(119)^-28, E(119)^7, E(119)^49, E(119)^-7, E(119)^-14, -1*E(119)^-28, -1*E(119)^-21, -1*E(119)^56, -1*E(119)^-49, -1*E(119)^35, -1*E(119)^-7, -1*E(119)^49, -1*E(119)^21, -1*E(119)^-14, -1*E(119)^28, -1*E(119)^42, -1*E(119)^14, -1*E(119)^7, -1*E(119)^-56, -1*E(119)^-42, -1*E(119)^-35, E(119)^-44, E(119)^53, E(119)^13, E(119)^-26, E(119)^15, E(119)^-22, E(119)^33, E(119)^-59, E(119)^-29, E(119)^16, E(119)^57, E(119)^-12, E(119)^2, E(119)^43, E(119)^26, E(119)^-15, E(119)^-38, E(119)^19, E(119)^-53, E(119)^59, E(119)^50, E(119)^-46, E(119)^3, E(119)^-20, E(119)^10, E(119)^-4, E(119)^-30, E(119)^32, E(119)^18, E(119)^-23, E(119)^-6, E(119)^-52, E(119)^58, E(119)^-13, E(119)^-54, E(119)^41, E(119)^-2, E(119)^-37, E(119)^48, E(119)^-55, E(119)^23, E(119)^-36, E(119)^-24, E(119)^40, E(119)^45, E(119)^-39, E(119)^29, E(119)^52, E(119)^-32, E(119)^12, E(119)^-45, E(119)^-8, E(119)^-5, E(119)^36, E(119)^9, E(119)^-19, E(119)^-27, E(119)^-47, E(119)^37, E(119)^8, E(119)^38, E(119)^20, E(119)^25, E(119)^-16, E(119)^27, E(119)^39, E(119), E(119)^-11, E(119)^-31, E(119)^-3, E(119)^11, E(119)^55, E(119)^47, E(119)^-10, E(119)^-43, E(119)^54, E(119)^-48, E(119)^-50, E(119)^5, E(119)^-41, E(119)^-33, E(119)^-1, E(119)^22, E(119)^30, E(119)^-40, E(119)^46, E(119)^44, E(119)^-57, E(119)^4, E(119)^-58, E(119)^6, E(119)^-18, E(119)^24, E(119)^31, E(119)^-25, E(119)^-9, -1*E(119)^-48, -1*E(119)^-1, -1*E(119)^57, -1*E(119)^-10, -1*E(119)^-29, -1*E(119)^43, -1*E(119)^-15, -1*E(119)^52, -1*E(119)^26, -1*E(119)^-5, -1*E(119)^9, -1*E(119)^-58, -1*E(119)^37, -1*E(119)^-4, -1*E(119)^-30, -1*E(119)^-19, -1*E(119)^23, -1*E(119)^-2, -1*E(119)^24, -1*E(119)^11, -1*E(119)^15, -1*E(119)^-57, -1*E(119)^18, -1*E(119)^29, -1*E(119)^27, -1*E(119)^39, -1*E(119)^46, -1*E(119)^10, -1*E(119)^-37, -1*E(119)^8, -1*E(119)^48, -1*E(119), -1*E(119)^25, -1*E(119)^-16, -1*E(119)^16, -1*E(119)^58, -1*E(119)^-9, -1*E(119)^-40, -1*E(119)^44, -1*E(119)^-23, -1*E(119)^3, -1*E(119)^32, -1*E(119)^-6, -1*E(119)^-32, -1*E(119)^41, -1*E(119)^36, -1*E(119)^59, -1*E(119)^-3, -1*E(119)^54, -1*E(119)^-43, -1*E(119)^-20, -1*E(119)^-52, -1*E(119)^13, -1*E(119)^55, -1*E(119)^-12, -1*E(119)^-25, -1*E(119)^6, -1*E(119)^-47, -1*E(119)^2, -1*E(119)^19, -1*E(119)^45, -1*E(119)^-36, -1*E(119)^12, -1*E(119)^-11, -1*E(119)^-54, -1*E(119)^-44, -1*E(119)^-18, -1*E(119)^53, -1*E(119)^-27, -1*E(119)^20, -1*E(119)^-59, -1*E(119)^-13, -1*E(119)^-50, -1*E(119)^22, -1*E(119)^4, -1*E(119)^31, -1*E(119)^5, -1*E(119)^-39, -1*E(119)^38, -1*E(119)^-55, -1*E(119)^-38, -1*E(119)^-46, -1*E(119)^47, -1*E(119)^-26, -1*E(119)^30, -1*E(119)^40, -1*E(119)^-53, -1*E(119)^-33, -1*E(119)^33, -1*E(119)^-45, -1*E(119)^-24, -1*E(119)^50, -1*E(119)^-22, -1*E(119)^-41, -1*E(119)^-31, -1*E(119)^-8, 1], [1, -1, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^34, E(119)^51, -1*E(119)^51, -1*E(119)^-51, -1*E(119)^34, -1*E(119)^-34, -1*E(119)^17, -1*E(119)^-17, E(119)^28, E(119)^14, E(119)^-35, E(119)^35, E(119)^-56, E(119)^-21, E(119)^56, E(119)^42, E(119)^-49, E(119)^-42, E(119)^21, E(119)^-28, E(119)^7, E(119)^49, E(119)^-7, E(119)^-14, -1*E(119)^-28, -1*E(119)^-21, -1*E(119)^56, -1*E(119)^-49, -1*E(119)^35, -1*E(119)^-7, -1*E(119)^49, -1*E(119)^21, -1*E(119)^-14, -1*E(119)^28, -1*E(119)^42, -1*E(119)^14, -1*E(119)^7, -1*E(119)^-56, -1*E(119)^-42, -1*E(119)^-35, E(119)^58, E(119)^-32, E(119)^-55, E(119)^-9, E(119)^-36, E(119)^29, E(119)^16, E(119)^-25, E(119)^22, E(119)^33, E(119)^6, E(119)^5, E(119)^19, E(119)^-8, E(119)^9, E(119)^36, E(119)^-4, E(119)^2, E(119)^32, E(119)^25, E(119)^-1, E(119)^39, E(119)^-31, E(119)^48, E(119)^-24, E(119)^-38, E(119)^-47, E(119)^-53, E(119)^52, E(119)^-40, E(119)^-57, E(119)^-18, E(119)^-44, E(119)^55, E(119)^-37, E(119)^-27, E(119)^-19, E(119)^-54, E(119)^-20, E(119)^13, E(119)^40, E(119)^15, E(119)^10, E(119)^23, E(119)^11, E(119)^46, E(119)^-22, E(119)^18, E(119)^53, E(119)^-5, E(119)^-11, E(119)^43, E(119)^12, E(119)^-15, E(119)^26, E(119)^-2, E(119)^41, E(119)^-30, E(119)^54, E(119)^-43, E(119)^4, E(119)^-48, E(119)^59, E(119)^-33, E(119)^-41, E(119)^-46, E(119)^-50, E(119)^-45, E(119)^3, E(119)^31, E(119)^45, E(119)^-13, E(119)^30, E(119)^24, E(119)^8, E(119)^37, E(119)^20, E(119), E(119)^-12, E(119)^27, E(119)^-16, E(119)^50, E(119)^-29, E(119)^47, E(119)^-23, E(119)^-39, E(119)^-58, E(119)^-6, E(119)^38, E(119)^44, E(119)^57, E(119)^-52, E(119)^-10, E(119)^-3, E(119)^-59, E(119)^-26, -1*E(119)^20, -1*E(119)^50, -1*E(119)^6, -1*E(119)^24, -1*E(119)^22, -1*E(119)^-8, -1*E(119)^36, -1*E(119)^18, -1*E(119)^9, -1*E(119)^12, -1*E(119)^26, -1*E(119)^44, -1*E(119)^54, -1*E(119)^-38, -1*E(119)^-47, -1*E(119)^-2, -1*E(119)^40, -1*E(119)^-19, -1*E(119)^-10, -1*E(119)^45, -1*E(119)^-36, -1*E(119)^-6, -1*E(119)^52, -1*E(119)^-22, -1*E(119)^-41, -1*E(119)^-46, -1*E(119)^-39, -1*E(119)^-24, -1*E(119)^-54, -1*E(119)^-43, -1*E(119)^-20, -1*E(119)^-50, -1*E(119)^59, -1*E(119)^-33, -1*E(119)^33, -1*E(119)^-44, -1*E(119)^-26, -1*E(119)^-23, -1*E(119)^-58, -1*E(119)^-40, -1*E(119)^-31, -1*E(119)^-53, -1*E(119)^-57, -1*E(119)^53, -1*E(119)^-27, -1*E(119)^-15, -1*E(119)^25, -1*E(119)^31, -1*E(119)^37, -1*E(119)^8, -1*E(119)^48, -1*E(119)^-18, -1*E(119)^-55, -1*E(119)^-13, -1*E(119)^5, -1*E(119)^-59, -1*E(119)^57, -1*E(119)^-30, -1*E(119)^19, -1*E(119)^2, -1*E(119)^11, -1*E(119)^15, -1*E(119)^-5, -1*E(119)^-45, -1*E(119)^-37, -1*E(119)^58, -1*E(119)^-52, -1*E(119)^-32, -1*E(119)^41, -1*E(119)^-48, -1*E(119)^-25, -1*E(119)^55, -1*E(119), -1*E(119)^-29, -1*E(119)^38, -1*E(119)^-3, -1*E(119)^-12, -1*E(119)^46, -1*E(119)^4, -1*E(119)^13, -1*E(119)^-4, -1*E(119)^39, -1*E(119)^30, -1*E(119)^-9, -1*E(119)^47, -1*E(119)^23, -1*E(119)^32, -1*E(119)^-16, -1*E(119)^16, -1*E(119)^-11, -1*E(119)^10, -1*E(119)^-1, -1*E(119)^29, -1*E(119)^27, -1*E(119)^3, -1*E(119)^43, 1], [1, -1, E(119)^34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-34, E(119)^-51, -1*E(119)^-51, -1*E(119)^51, -1*E(119)^-34, -1*E(119)^34, -1*E(119)^-17, -1*E(119)^17, E(119)^-28, E(119)^-14, E(119)^35, E(119)^-35, E(119)^56, E(119)^21, E(119)^-56, E(119)^-42, E(119)^49, E(119)^42, E(119)^-21, E(119)^28, E(119)^-7, E(119)^-49, E(119)^7, E(119)^14, -1*E(119)^28, -1*E(119)^21, -1*E(119)^-56, -1*E(119)^49, -1*E(119)^-35, -1*E(119)^7, -1*E(119)^-49, -1*E(119)^-21, -1*E(119)^14, -1*E(119)^-28, -1*E(119)^-42, -1*E(119)^-14, -1*E(119)^-7, -1*E(119)^56, -1*E(119)^42, -1*E(119)^35, E(119)^-58, E(119)^32, E(119)^55, E(119)^9, E(119)^36, E(119)^-29, E(119)^-16, E(119)^25, E(119)^-22, E(119)^-33, E(119)^-6, E(119)^-5, E(119)^-19, E(119)^8, E(119)^-9, E(119)^-36, E(119)^4, E(119)^-2, E(119)^-32, E(119)^-25, E(119), E(119)^-39, E(119)^31, E(119)^-48, E(119)^24, E(119)^38, E(119)^47, E(119)^53, E(119)^-52, E(119)^40, E(119)^57, E(119)^18, E(119)^44, E(119)^-55, E(119)^37, E(119)^27, E(119)^19, E(119)^54, E(119)^20, E(119)^-13, E(119)^-40, E(119)^-15, E(119)^-10, E(119)^-23, E(119)^-11, E(119)^-46, E(119)^22, E(119)^-18, E(119)^-53, E(119)^5, E(119)^11, E(119)^-43, E(119)^-12, E(119)^15, E(119)^-26, E(119)^2, E(119)^-41, E(119)^30, E(119)^-54, E(119)^43, E(119)^-4, E(119)^48, E(119)^-59, E(119)^33, E(119)^41, E(119)^46, E(119)^50, E(119)^45, E(119)^-3, E(119)^-31, E(119)^-45, E(119)^13, E(119)^-30, E(119)^-24, E(119)^-8, E(119)^-37, E(119)^-20, E(119)^-1, E(119)^12, E(119)^-27, E(119)^16, E(119)^-50, E(119)^29, E(119)^-47, E(119)^23, E(119)^39, E(119)^58, E(119)^6, E(119)^-38, E(119)^-44, E(119)^-57, E(119)^52, E(119)^10, E(119)^3, E(119)^59, E(119)^26, -1*E(119)^-20, -1*E(119)^-50, -1*E(119)^-6, -1*E(119)^-24, -1*E(119)^-22, -1*E(119)^8, -1*E(119)^-36, -1*E(119)^-18, -1*E(119)^-9, -1*E(119)^-12, -1*E(119)^-26, -1*E(119)^-44, -1*E(119)^-54, -1*E(119)^38, -1*E(119)^47, -1*E(119)^2, -1*E(119)^-40, -1*E(119)^19, -1*E(119)^10, -1*E(119)^-45, -1*E(119)^36, -1*E(119)^6, -1*E(119)^-52, -1*E(119)^22, -1*E(119)^41, -1*E(119)^46, -1*E(119)^39, -1*E(119)^24, -1*E(119)^54, -1*E(119)^43, -1*E(119)^20, -1*E(119)^50, -1*E(119)^-59, -1*E(119)^33, -1*E(119)^-33, -1*E(119)^44, -1*E(119)^26, -1*E(119)^23, -1*E(119)^58, -1*E(119)^40, -1*E(119)^31, -1*E(119)^53, -1*E(119)^57, -1*E(119)^-53, -1*E(119)^27, -1*E(119)^15, -1*E(119)^-25, -1*E(119)^-31, -1*E(119)^-37, -1*E(119)^-8, -1*E(119)^-48, -1*E(119)^18, -1*E(119)^55, -1*E(119)^13, -1*E(119)^-5, -1*E(119)^59, -1*E(119)^-57, -1*E(119)^30, -1*E(119)^-19, -1*E(119)^-2, -1*E(119)^-11, -1*E(119)^-15, -1*E(119)^5, -1*E(119)^45, -1*E(119)^37, -1*E(119)^-58, -1*E(119)^52, -1*E(119)^32, -1*E(119)^-41, -1*E(119)^48, -1*E(119)^25, -1*E(119)^-55, -1*E(119)^-1, -1*E(119)^29, -1*E(119)^-38, -1*E(119)^3, -1*E(119)^12, -1*E(119)^-46, -1*E(119)^-4, -1*E(119)^-13, -1*E(119)^4, -1*E(119)^-39, -1*E(119)^-30, -1*E(119)^9, -1*E(119)^-47, -1*E(119)^-23, -1*E(119)^-32, -1*E(119)^16, -1*E(119)^-16, -1*E(119)^11, -1*E(119)^-10, -1*E(119), -1*E(119)^-29, -1*E(119)^-27, -1*E(119)^-3, -1*E(119)^-43, 1], [1, -1, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^34, E(119)^51, -1*E(119)^51, -1*E(119)^-51, -1*E(119)^34, -1*E(119)^-34, -1*E(119)^17, -1*E(119)^-17, E(119)^-21, E(119)^49, E(119)^56, E(119)^-56, E(119)^42, E(119)^-14, E(119)^-42, E(119)^28, E(119)^7, E(119)^-28, E(119)^14, E(119)^21, E(119)^-35, E(119)^-7, E(119)^35, E(119)^-49, -1*E(119)^21, -1*E(119)^-14, -1*E(119)^-42, -1*E(119)^7, -1*E(119)^-56, -1*E(119)^35, -1*E(119)^-7, -1*E(119)^14, -1*E(119)^-49, -1*E(119)^-21, -1*E(119)^28, -1*E(119)^49, -1*E(119)^-35, -1*E(119)^42, -1*E(119)^-28, -1*E(119)^56, E(119)^16, E(119)^24, E(119)^-48, E(119)^-23, E(119)^27, E(119)^8, E(119)^-12, E(119)^-11, E(119)^43, E(119)^5, E(119)^55, E(119)^26, E(119)^-44, E(119)^6, E(119)^23, E(119)^-27, E(119)^3, E(119)^58, E(119)^-24, E(119)^11, E(119)^-29, E(119)^-59, E(119)^53, E(119)^-36, E(119)^18, E(119)^-31, E(119)^-54, E(119)^10, E(119)^-39, E(119)^30, E(119)^13, E(119)^-46, E(119)^33, E(119)^48, E(119)^-2, E(119)^50, E(119)^44, E(119)^-19, E(119)^15, E(119)^20, E(119)^-30, E(119)^-41, E(119)^52, E(119)^-47, E(119)^-38, E(119)^25, E(119)^-43, E(119)^46, E(119)^-10, E(119)^-26, E(119)^38, E(119)^57, E(119)^-9, E(119)^41, E(119)^40, E(119)^-58, E(119)^-1, E(119)^-37, E(119)^19, E(119)^-57, E(119)^-3, E(119)^36, E(119)^45, E(119)^-5, E(119), E(119)^-25, E(119)^-22, E(119)^4, E(119)^-32, E(119)^-53, E(119)^-4, E(119)^-20, E(119)^37, E(119)^-18, E(119)^-6, E(119)^2, E(119)^-15, E(119)^29, E(119)^9, E(119)^-50, E(119)^12, E(119)^22, E(119)^-8, E(119)^54, E(119)^47, E(119)^59, E(119)^-16, E(119)^-55, E(119)^31, E(119)^-33, E(119)^-13, E(119)^39, E(119)^-52, E(119)^32, E(119)^-45, E(119)^-40, -1*E(119)^-15, -1*E(119)^22, -1*E(119)^55, -1*E(119)^-18, -1*E(119)^43, -1*E(119)^6, -1*E(119)^-27, -1*E(119)^46, -1*E(119)^23, -1*E(119)^-9, -1*E(119)^40, -1*E(119)^-33, -1*E(119)^19, -1*E(119)^-31, -1*E(119)^-54, -1*E(119)^-58, -1*E(119)^-30, -1*E(119)^44, -1*E(119)^-52, -1*E(119)^-4, -1*E(119)^27, -1*E(119)^-55, -1*E(119)^-39, -1*E(119)^-43, -1*E(119), -1*E(119)^-25, -1*E(119)^59, -1*E(119)^18, -1*E(119)^-19, -1*E(119)^-57, -1*E(119)^15, -1*E(119)^-22, -1*E(119)^45, -1*E(119)^-5, -1*E(119)^5, -1*E(119)^33, -1*E(119)^-40, -1*E(119)^47, -1*E(119)^-16, -1*E(119)^30, -1*E(119)^53, -1*E(119)^10, -1*E(119)^13, -1*E(119)^-10, -1*E(119)^50, -1*E(119)^41, -1*E(119)^11, -1*E(119)^-53, -1*E(119)^2, -1*E(119)^-6, -1*E(119)^-36, -1*E(119)^-46, -1*E(119)^-48, -1*E(119)^-20, -1*E(119)^26, -1*E(119)^-45, -1*E(119)^-13, -1*E(119)^-37, -1*E(119)^-44, -1*E(119)^58, -1*E(119)^-38, -1*E(119)^-41, -1*E(119)^-26, -1*E(119)^4, -1*E(119)^-2, -1*E(119)^16, -1*E(119)^39, -1*E(119)^24, -1*E(119)^-1, -1*E(119)^36, -1*E(119)^-11, -1*E(119)^48, -1*E(119)^29, -1*E(119)^-8, -1*E(119)^31, -1*E(119)^32, -1*E(119)^9, -1*E(119)^25, -1*E(119)^-3, -1*E(119)^20, -1*E(119)^3, -1*E(119)^-59, -1*E(119)^37, -1*E(119)^-23, -1*E(119)^54, -1*E(119)^-47, -1*E(119)^-24, -1*E(119)^12, -1*E(119)^-12, -1*E(119)^38, -1*E(119)^52, -1*E(119)^-29, -1*E(119)^8, -1*E(119)^-50, -1*E(119)^-32, -1*E(119)^57, 1], [1, -1, E(119)^34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-34, E(119)^-51, -1*E(119)^-51, -1*E(119)^51, -1*E(119)^-34, -1*E(119)^34, -1*E(119)^-17, -1*E(119)^17, E(119)^21, E(119)^-49, E(119)^-56, E(119)^56, E(119)^-42, E(119)^14, E(119)^42, E(119)^-28, E(119)^-7, E(119)^28, E(119)^-14, E(119)^-21, E(119)^35, E(119)^7, E(119)^-35, E(119)^49, -1*E(119)^-21, -1*E(119)^14, -1*E(119)^42, -1*E(119)^-7, -1*E(119)^56, -1*E(119)^-35, -1*E(119)^7, -1*E(119)^-14, -1*E(119)^49, -1*E(119)^21, -1*E(119)^-28, -1*E(119)^-49, -1*E(119)^35, -1*E(119)^-42, -1*E(119)^28, -1*E(119)^-56, E(119)^-16, E(119)^-24, E(119)^48, E(119)^23, E(119)^-27, E(119)^-8, E(119)^12, E(119)^11, E(119)^-43, E(119)^-5, E(119)^-55, E(119)^-26, E(119)^44, E(119)^-6, E(119)^-23, E(119)^27, E(119)^-3, E(119)^-58, E(119)^24, E(119)^-11, E(119)^29, E(119)^59, E(119)^-53, E(119)^36, E(119)^-18, E(119)^31, E(119)^54, E(119)^-10, E(119)^39, E(119)^-30, E(119)^-13, E(119)^46, E(119)^-33, E(119)^-48, E(119)^2, E(119)^-50, E(119)^-44, E(119)^19, E(119)^-15, E(119)^-20, E(119)^30, E(119)^41, E(119)^-52, E(119)^47, E(119)^38, E(119)^-25, E(119)^43, E(119)^-46, E(119)^10, E(119)^26, E(119)^-38, E(119)^-57, E(119)^9, E(119)^-41, E(119)^-40, E(119)^58, E(119), E(119)^37, E(119)^-19, E(119)^57, E(119)^3, E(119)^-36, E(119)^-45, E(119)^5, E(119)^-1, E(119)^25, E(119)^22, E(119)^-4, E(119)^32, E(119)^53, E(119)^4, E(119)^20, E(119)^-37, E(119)^18, E(119)^6, E(119)^-2, E(119)^15, E(119)^-29, E(119)^-9, E(119)^50, E(119)^-12, E(119)^-22, E(119)^8, E(119)^-54, E(119)^-47, E(119)^-59, E(119)^16, E(119)^55, E(119)^-31, E(119)^33, E(119)^13, E(119)^-39, E(119)^52, E(119)^-32, E(119)^45, E(119)^40, -1*E(119)^15, -1*E(119)^-22, -1*E(119)^-55, -1*E(119)^18, -1*E(119)^-43, -1*E(119)^-6, -1*E(119)^27, -1*E(119)^-46, -1*E(119)^-23, -1*E(119)^9, -1*E(119)^-40, -1*E(119)^33, -1*E(119)^-19, -1*E(119)^31, -1*E(119)^54, -1*E(119)^58, -1*E(119)^30, -1*E(119)^-44, -1*E(119)^52, -1*E(119)^4, -1*E(119)^-27, -1*E(119)^55, -1*E(119)^39, -1*E(119)^43, -1*E(119)^-1, -1*E(119)^25, -1*E(119)^-59, -1*E(119)^-18, -1*E(119)^19, -1*E(119)^57, -1*E(119)^-15, -1*E(119)^22, -1*E(119)^-45, -1*E(119)^5, -1*E(119)^-5, -1*E(119)^-33, -1*E(119)^40, -1*E(119)^-47, -1*E(119)^16, -1*E(119)^-30, -1*E(119)^-53, -1*E(119)^-10, -1*E(119)^-13, -1*E(119)^10, -1*E(119)^-50, -1*E(119)^-41, -1*E(119)^-11, -1*E(119)^53, -1*E(119)^-2, -1*E(119)^6, -1*E(119)^36, -1*E(119)^46, -1*E(119)^48, -1*E(119)^20, -1*E(119)^-26, -1*E(119)^45, -1*E(119)^13, -1*E(119)^37, -1*E(119)^44, -1*E(119)^-58, -1*E(119)^38, -1*E(119)^41, -1*E(119)^26, -1*E(119)^-4, -1*E(119)^2, -1*E(119)^-16, -1*E(119)^-39, -1*E(119)^-24, -1*E(119), -1*E(119)^-36, -1*E(119)^11, -1*E(119)^-48, -1*E(119)^-29, -1*E(119)^8, -1*E(119)^-31, -1*E(119)^-32, -1*E(119)^-9, -1*E(119)^-25, -1*E(119)^3, -1*E(119)^-20, -1*E(119)^-3, -1*E(119)^59, -1*E(119)^-37, -1*E(119)^23, -1*E(119)^-54, -1*E(119)^47, -1*E(119)^24, -1*E(119)^-12, -1*E(119)^12, -1*E(119)^-38, -1*E(119)^-52, -1*E(119)^29, -1*E(119)^-8, -1*E(119)^50, -1*E(119)^32, -1*E(119)^-57, 1], [1, -1, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^34, E(119)^51, -1*E(119)^51, -1*E(119)^-51, -1*E(119)^34, -1*E(119)^-34, -1*E(119)^17, -1*E(119)^-17, E(119)^21, E(119)^-49, E(119)^-56, E(119)^56, E(119)^-42, E(119)^14, E(119)^42, E(119)^-28, E(119)^-7, E(119)^28, E(119)^-14, E(119)^-21, E(119)^35, E(119)^7, E(119)^-35, E(119)^49, -1*E(119)^-21, -1*E(119)^14, -1*E(119)^42, -1*E(119)^-7, -1*E(119)^56, -1*E(119)^-35, -1*E(119)^7, -1*E(119)^-14, -1*E(119)^49, -1*E(119)^21, -1*E(119)^-28, -1*E(119)^-49, -1*E(119)^35, -1*E(119)^-42, -1*E(119)^28, -1*E(119)^-56, E(119)^-33, E(119)^10, E(119)^-20, E(119)^40, E(119)^41, E(119)^43, E(119)^-5, E(119)^45, E(119)^8, E(119)^12, E(119)^13, E(119)^-9, E(119)^-58, E(119)^-57, E(119)^-40, E(119)^-41, E(119)^31, E(119)^44, E(119)^-10, E(119)^-45, E(119)^-22, E(119)^25, E(119)^32, E(119)^-15, E(119)^-52, E(119)^-3, E(119)^37, E(119)^24, E(119)^-46, E(119)^-47, E(119)^55, E(119)^-39, E(119)^-16, E(119)^20, E(119)^19, E(119), E(119)^58, E(119)^2, E(119)^36, E(119)^48, E(119)^47, E(119)^-27, E(119)^-18, E(119)^30, E(119)^4, E(119)^-59, E(119)^-8, E(119)^39, E(119)^-24, E(119)^9, E(119)^-4, E(119)^-6, E(119)^26, E(119)^27, E(119)^-23, E(119)^-44, E(119)^-50, E(119)^54, E(119)^-2, E(119)^6, E(119)^-31, E(119)^15, E(119)^-11, E(119)^-12, E(119)^50, E(119)^59, E(119)^-29, E(119)^-38, E(119)^-53, E(119)^-32, E(119)^38, E(119)^-48, E(119)^-54, E(119)^52, E(119)^57, E(119)^-19, E(119)^-36, E(119)^22, E(119)^-26, E(119)^-1, E(119)^5, E(119)^29, E(119)^-43, E(119)^-37, E(119)^-30, E(119)^-25, E(119)^33, E(119)^-13, E(119)^3, E(119)^16, E(119)^-55, E(119)^46, E(119)^18, E(119)^53, E(119)^11, E(119)^23, -1*E(119)^-36, -1*E(119)^29, -1*E(119)^13, -1*E(119)^52, -1*E(119)^8, -1*E(119)^-57, -1*E(119)^-41, -1*E(119)^39, -1*E(119)^-40, -1*E(119)^26, -1*E(119)^-23, -1*E(119)^16, -1*E(119)^-2, -1*E(119)^-3, -1*E(119)^37, -1*E(119)^-44, -1*E(119)^47, -1*E(119)^58, -1*E(119)^18, -1*E(119)^38, -1*E(119)^41, -1*E(119)^-13, -1*E(119)^-46, -1*E(119)^-8, -1*E(119)^50, -1*E(119)^59, -1*E(119)^-25, -1*E(119)^-52, -1*E(119)^2, -1*E(119)^6, -1*E(119)^36, -1*E(119)^-29, -1*E(119)^-11, -1*E(119)^-12, -1*E(119)^12, -1*E(119)^-16, -1*E(119)^23, -1*E(119)^-30, -1*E(119)^33, -1*E(119)^-47, -1*E(119)^32, -1*E(119)^24, -1*E(119)^55, -1*E(119)^-24, -1*E(119), -1*E(119)^27, -1*E(119)^-45, -1*E(119)^-32, -1*E(119)^-19, -1*E(119)^57, -1*E(119)^-15, -1*E(119)^-39, -1*E(119)^-20, -1*E(119)^-48, -1*E(119)^-9, -1*E(119)^11, -1*E(119)^-55, -1*E(119)^54, -1*E(119)^-58, -1*E(119)^44, -1*E(119)^4, -1*E(119)^-27, -1*E(119)^9, -1*E(119)^-38, -1*E(119)^19, -1*E(119)^-33, -1*E(119)^46, -1*E(119)^10, -1*E(119)^-50, -1*E(119)^15, -1*E(119)^45, -1*E(119)^20, -1*E(119)^22, -1*E(119)^-43, -1*E(119)^3, -1*E(119)^53, -1*E(119)^-26, -1*E(119)^-59, -1*E(119)^-31, -1*E(119)^48, -1*E(119)^31, -1*E(119)^25, -1*E(119)^-54, -1*E(119)^40, -1*E(119)^-37, -1*E(119)^30, -1*E(119)^-10, -1*E(119)^5, -1*E(119)^-5, -1*E(119)^-4, -1*E(119)^-18, -1*E(119)^-22, -1*E(119)^43, -1*E(119)^-1, -1*E(119)^-53, -1*E(119)^-6, 1], [1, -1, E(119)^34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-34, E(119)^-51, -1*E(119)^-51, -1*E(119)^51, -1*E(119)^-34, -1*E(119)^34, -1*E(119)^-17, -1*E(119)^17, E(119)^-21, E(119)^49, E(119)^56, E(119)^-56, E(119)^42, E(119)^-14, E(119)^-42, E(119)^28, E(119)^7, E(119)^-28, E(119)^14, E(119)^21, E(119)^-35, E(119)^-7, E(119)^35, E(119)^-49, -1*E(119)^21, -1*E(119)^-14, -1*E(119)^-42, -1*E(119)^7, -1*E(119)^-56, -1*E(119)^35, -1*E(119)^-7, -1*E(119)^14, -1*E(119)^-49, -1*E(119)^-21, -1*E(119)^28, -1*E(119)^49, -1*E(119)^-35, -1*E(119)^42, -1*E(119)^-28, -1*E(119)^56, E(119)^33, E(119)^-10, E(119)^20, E(119)^-40, E(119)^-41, E(119)^-43, E(119)^5, E(119)^-45, E(119)^-8, E(119)^-12, E(119)^-13, E(119)^9, E(119)^58, E(119)^57, E(119)^40, E(119)^41, E(119)^-31, E(119)^-44, E(119)^10, E(119)^45, E(119)^22, E(119)^-25, E(119)^-32, E(119)^15, E(119)^52, E(119)^3, E(119)^-37, E(119)^-24, E(119)^46, E(119)^47, E(119)^-55, E(119)^39, E(119)^16, E(119)^-20, E(119)^-19, E(119)^-1, E(119)^-58, E(119)^-2, E(119)^-36, E(119)^-48, E(119)^-47, E(119)^27, E(119)^18, E(119)^-30, E(119)^-4, E(119)^59, E(119)^8, E(119)^-39, E(119)^24, E(119)^-9, E(119)^4, E(119)^6, E(119)^-26, E(119)^-27, E(119)^23, E(119)^44, E(119)^50, E(119)^-54, E(119)^2, E(119)^-6, E(119)^31, E(119)^-15, E(119)^11, E(119)^12, E(119)^-50, E(119)^-59, E(119)^29, E(119)^38, E(119)^53, E(119)^32, E(119)^-38, E(119)^48, E(119)^54, E(119)^-52, E(119)^-57, E(119)^19, E(119)^36, E(119)^-22, E(119)^26, E(119), E(119)^-5, E(119)^-29, E(119)^43, E(119)^37, E(119)^30, E(119)^25, E(119)^-33, E(119)^13, E(119)^-3, E(119)^-16, E(119)^55, E(119)^-46, E(119)^-18, E(119)^-53, E(119)^-11, E(119)^-23, -1*E(119)^36, -1*E(119)^-29, -1*E(119)^-13, -1*E(119)^-52, -1*E(119)^-8, -1*E(119)^57, -1*E(119)^41, -1*E(119)^-39, -1*E(119)^40, -1*E(119)^-26, -1*E(119)^23, -1*E(119)^-16, -1*E(119)^2, -1*E(119)^3, -1*E(119)^-37, -1*E(119)^44, -1*E(119)^-47, -1*E(119)^-58, -1*E(119)^-18, -1*E(119)^-38, -1*E(119)^-41, -1*E(119)^13, -1*E(119)^46, -1*E(119)^8, -1*E(119)^-50, -1*E(119)^-59, -1*E(119)^25, -1*E(119)^52, -1*E(119)^-2, -1*E(119)^-6, -1*E(119)^-36, -1*E(119)^29, -1*E(119)^11, -1*E(119)^12, -1*E(119)^-12, -1*E(119)^16, -1*E(119)^-23, -1*E(119)^30, -1*E(119)^-33, -1*E(119)^47, -1*E(119)^-32, -1*E(119)^-24, -1*E(119)^-55, -1*E(119)^24, -1*E(119)^-1, -1*E(119)^-27, -1*E(119)^45, -1*E(119)^32, -1*E(119)^19, -1*E(119)^-57, -1*E(119)^15, -1*E(119)^39, -1*E(119)^20, -1*E(119)^48, -1*E(119)^9, -1*E(119)^-11, -1*E(119)^55, -1*E(119)^-54, -1*E(119)^58, -1*E(119)^-44, -1*E(119)^-4, -1*E(119)^27, -1*E(119)^-9, -1*E(119)^38, -1*E(119)^-19, -1*E(119)^33, -1*E(119)^-46, -1*E(119)^-10, -1*E(119)^50, -1*E(119)^-15, -1*E(119)^-45, -1*E(119)^-20, -1*E(119)^-22, -1*E(119)^43, -1*E(119)^-3, -1*E(119)^-53, -1*E(119)^26, -1*E(119)^59, -1*E(119)^31, -1*E(119)^-48, -1*E(119)^-31, -1*E(119)^-25, -1*E(119)^54, -1*E(119)^-40, -1*E(119)^37, -1*E(119)^-30, -1*E(119)^10, -1*E(119)^-5, -1*E(119)^5, -1*E(119)^4, -1*E(119)^18, -1*E(119)^22, -1*E(119)^-43, -1*E(119), -1*E(119)^53, -1*E(119)^6, 1], [1, -1, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^34, E(119)^51, -1*E(119)^51, -1*E(119)^-51, -1*E(119)^34, -1*E(119)^-34, -1*E(119)^17, -1*E(119)^-17, E(119)^-14, E(119)^-7, E(119)^-42, E(119)^42, E(119)^28, E(119)^-49, E(119)^-28, E(119)^-21, E(119)^-35, E(119)^21, E(119)^49, E(119)^14, E(119)^56, E(119)^35, E(119)^-56, E(119)^7, -1*E(119)^14, -1*E(119)^-49, -1*E(119)^-28, -1*E(119)^-35, -1*E(119)^42, -1*E(119)^-56, -1*E(119)^35, -1*E(119)^49, -1*E(119)^7, -1*E(119)^-14, -1*E(119)^-21, -1*E(119)^-7, -1*E(119)^56, -1*E(119)^28, -1*E(119)^21, -1*E(119)^-42, E(119)^-12, E(119)^-18, E(119)^36, E(119)^47, E(119)^-50, E(119)^-6, E(119)^9, E(119)^38, E(119)^57, E(119)^26, E(119)^48, E(119)^40, E(119)^33, E(119)^55, E(119)^-47, E(119)^50, E(119)^-32, E(119)^16, E(119)^18, E(119)^-38, E(119)^-8, E(119)^-45, E(119)^-10, E(119)^27, E(119)^46, E(119)^53, E(119)^-19, E(119)^52, E(119)^59, E(119)^37, E(119)^20, E(119)^-25, E(119)^5, E(119)^-36, E(119)^-58, E(119)^22, E(119)^-33, E(119)^44, E(119)^-41, E(119)^-15, E(119)^-37, E(119), E(119)^-39, E(119)^-54, E(119)^-31, E(119)^11, E(119)^-57, E(119)^25, E(119)^-52, E(119)^-40, E(119)^31, E(119)^-13, E(119)^-23, E(119)^-1, E(119)^-30, E(119)^-16, E(119)^-29, E(119)^-2, E(119)^-44, E(119)^13, E(119)^32, E(119)^-27, E(119)^-4, E(119)^-26, E(119)^29, E(119)^-11, E(119)^-43, E(119)^-3, E(119)^24, E(119)^10, E(119)^3, E(119)^15, E(119)^2, E(119)^-46, E(119)^-55, E(119)^58, E(119)^41, E(119)^8, E(119)^23, E(119)^-22, E(119)^-9, E(119)^43, E(119)^6, E(119)^19, E(119)^54, E(119)^45, E(119)^12, E(119)^-48, E(119)^-53, E(119)^-5, E(119)^-20, E(119)^-59, E(119)^39, E(119)^-24, E(119)^4, E(119)^30, -1*E(119)^41, -1*E(119)^43, -1*E(119)^48, -1*E(119)^-46, -1*E(119)^57, -1*E(119)^55, -1*E(119)^50, -1*E(119)^25, -1*E(119)^-47, -1*E(119)^-23, -1*E(119)^-30, -1*E(119)^-5, -1*E(119)^-44, -1*E(119)^53, -1*E(119)^-19, -1*E(119)^-16, -1*E(119)^-37, -1*E(119)^-33, -1*E(119)^39, -1*E(119)^3, -1*E(119)^-50, -1*E(119)^-48, -1*E(119)^59, -1*E(119)^-57, -1*E(119)^29, -1*E(119)^-11, -1*E(119)^45, -1*E(119)^46, -1*E(119)^44, -1*E(119)^13, -1*E(119)^-41, -1*E(119)^-43, -1*E(119)^-4, -1*E(119)^-26, -1*E(119)^26, -1*E(119)^5, -1*E(119)^30, -1*E(119)^54, -1*E(119)^12, -1*E(119)^37, -1*E(119)^-10, -1*E(119)^52, -1*E(119)^20, -1*E(119)^-52, -1*E(119)^22, -1*E(119)^-1, -1*E(119)^-38, -1*E(119)^10, -1*E(119)^58, -1*E(119)^-55, -1*E(119)^27, -1*E(119)^-25, -1*E(119)^36, -1*E(119)^15, -1*E(119)^40, -1*E(119)^4, -1*E(119)^-20, -1*E(119)^-2, -1*E(119)^33, -1*E(119)^16, -1*E(119)^-31, -1*E(119), -1*E(119)^-40, -1*E(119)^-3, -1*E(119)^-58, -1*E(119)^-12, -1*E(119)^-59, -1*E(119)^-18, -1*E(119)^-29, -1*E(119)^-27, -1*E(119)^38, -1*E(119)^-36, -1*E(119)^8, -1*E(119)^6, -1*E(119)^-53, -1*E(119)^-24, -1*E(119)^23, -1*E(119)^11, -1*E(119)^32, -1*E(119)^-15, -1*E(119)^-32, -1*E(119)^-45, -1*E(119)^2, -1*E(119)^47, -1*E(119)^19, -1*E(119)^-54, -1*E(119)^18, -1*E(119)^-9, -1*E(119)^9, -1*E(119)^31, -1*E(119)^-39, -1*E(119)^-8, -1*E(119)^-6, -1*E(119)^-22, -1*E(119)^24, -1*E(119)^-13, 1], [1, -1, E(119)^34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-34, E(119)^-51, -1*E(119)^-51, -1*E(119)^51, -1*E(119)^-34, -1*E(119)^34, -1*E(119)^-17, -1*E(119)^17, E(119)^14, E(119)^7, E(119)^42, E(119)^-42, E(119)^-28, E(119)^49, E(119)^28, E(119)^21, E(119)^35, E(119)^-21, E(119)^-49, E(119)^-14, E(119)^-56, E(119)^-35, E(119)^56, E(119)^-7, -1*E(119)^-14, -1*E(119)^49, -1*E(119)^28, -1*E(119)^35, -1*E(119)^-42, -1*E(119)^56, -1*E(119)^-35, -1*E(119)^-49, -1*E(119)^-7, -1*E(119)^14, -1*E(119)^21, -1*E(119)^7, -1*E(119)^-56, -1*E(119)^-28, -1*E(119)^-21, -1*E(119)^42, E(119)^12, E(119)^18, E(119)^-36, E(119)^-47, E(119)^50, E(119)^6, E(119)^-9, E(119)^-38, E(119)^-57, E(119)^-26, E(119)^-48, E(119)^-40, E(119)^-33, E(119)^-55, E(119)^47, E(119)^-50, E(119)^32, E(119)^-16, E(119)^-18, E(119)^38, E(119)^8, E(119)^45, E(119)^10, E(119)^-27, E(119)^-46, E(119)^-53, E(119)^19, E(119)^-52, E(119)^-59, E(119)^-37, E(119)^-20, E(119)^25, E(119)^-5, E(119)^36, E(119)^58, E(119)^-22, E(119)^33, E(119)^-44, E(119)^41, E(119)^15, E(119)^37, E(119)^-1, E(119)^39, E(119)^54, E(119)^31, E(119)^-11, E(119)^57, E(119)^-25, E(119)^52, E(119)^40, E(119)^-31, E(119)^13, E(119)^23, E(119), E(119)^30, E(119)^16, E(119)^29, E(119)^2, E(119)^44, E(119)^-13, E(119)^-32, E(119)^27, E(119)^4, E(119)^26, E(119)^-29, E(119)^11, E(119)^43, E(119)^3, E(119)^-24, E(119)^-10, E(119)^-3, E(119)^-15, E(119)^-2, E(119)^46, E(119)^55, E(119)^-58, E(119)^-41, E(119)^-8, E(119)^-23, E(119)^22, E(119)^9, E(119)^-43, E(119)^-6, E(119)^-19, E(119)^-54, E(119)^-45, E(119)^-12, E(119)^48, E(119)^53, E(119)^5, E(119)^20, E(119)^59, E(119)^-39, E(119)^24, E(119)^-4, E(119)^-30, -1*E(119)^-41, -1*E(119)^-43, -1*E(119)^-48, -1*E(119)^46, -1*E(119)^-57, -1*E(119)^-55, -1*E(119)^-50, -1*E(119)^-25, -1*E(119)^47, -1*E(119)^23, -1*E(119)^30, -1*E(119)^5, -1*E(119)^44, -1*E(119)^-53, -1*E(119)^19, -1*E(119)^16, -1*E(119)^37, -1*E(119)^33, -1*E(119)^-39, -1*E(119)^-3, -1*E(119)^50, -1*E(119)^48, -1*E(119)^-59, -1*E(119)^57, -1*E(119)^-29, -1*E(119)^11, -1*E(119)^-45, -1*E(119)^-46, -1*E(119)^-44, -1*E(119)^-13, -1*E(119)^41, -1*E(119)^43, -1*E(119)^4, -1*E(119)^26, -1*E(119)^-26, -1*E(119)^-5, -1*E(119)^-30, -1*E(119)^-54, -1*E(119)^-12, -1*E(119)^-37, -1*E(119)^10, -1*E(119)^-52, -1*E(119)^-20, -1*E(119)^52, -1*E(119)^-22, -1*E(119), -1*E(119)^38, -1*E(119)^-10, -1*E(119)^-58, -1*E(119)^55, -1*E(119)^-27, -1*E(119)^25, -1*E(119)^-36, -1*E(119)^-15, -1*E(119)^-40, -1*E(119)^-4, -1*E(119)^20, -1*E(119)^2, -1*E(119)^-33, -1*E(119)^-16, -1*E(119)^31, -1*E(119)^-1, -1*E(119)^40, -1*E(119)^3, -1*E(119)^58, -1*E(119)^12, -1*E(119)^59, -1*E(119)^18, -1*E(119)^29, -1*E(119)^27, -1*E(119)^-38, -1*E(119)^36, -1*E(119)^-8, -1*E(119)^-6, -1*E(119)^53, -1*E(119)^24, -1*E(119)^-23, -1*E(119)^-11, -1*E(119)^-32, -1*E(119)^15, -1*E(119)^32, -1*E(119)^45, -1*E(119)^-2, -1*E(119)^-47, -1*E(119)^-19, -1*E(119)^54, -1*E(119)^-18, -1*E(119)^9, -1*E(119)^-9, -1*E(119)^-31, -1*E(119)^39, -1*E(119)^8, -1*E(119)^6, -1*E(119)^22, -1*E(119)^-24, -1*E(119)^13, 1], [1, -1, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^34, E(119)^51, -1*E(119)^51, -1*E(119)^-51, -1*E(119)^34, -1*E(119)^-34, -1*E(119)^17, -1*E(119)^-17, E(119)^14, E(119)^7, E(119)^42, E(119)^-42, E(119)^-28, E(119)^49, E(119)^28, E(119)^21, E(119)^35, E(119)^-21, E(119)^-49, E(119)^-14, E(119)^-56, E(119)^-35, E(119)^56, E(119)^-7, -1*E(119)^-14, -1*E(119)^49, -1*E(119)^28, -1*E(119)^35, -1*E(119)^-42, -1*E(119)^56, -1*E(119)^-35, -1*E(119)^-49, -1*E(119)^-7, -1*E(119)^14, -1*E(119)^21, -1*E(119)^7, -1*E(119)^-56, -1*E(119)^-28, -1*E(119)^-21, -1*E(119)^42, E(119)^-5, E(119)^52, E(119)^15, E(119)^-30, E(119)^-1, E(119)^57, E(119)^-26, E(119)^-4, E(119)^-6, E(119)^-9, E(119)^20, E(119)^-23, E(119)^-16, E(119)^13, E(119)^30, E(119), E(119)^-53, E(119)^-33, E(119)^-52, E(119)^4, E(119)^-43, E(119)^11, E(119)^-24, E(119)^41, E(119)^39, E(119)^32, E(119)^2, E(119)^-18, E(119)^-25, E(119)^-54, E(119)^48, E(119)^59, E(119)^12, E(119)^-15, E(119)^-44, E(119)^29, E(119)^16, E(119)^58, E(119)^-27, E(119)^-36, E(119)^54, E(119)^50, E(119)^-46, E(119)^37, E(119)^-3, E(119)^-45, E(119)^6, E(119)^-59, E(119)^18, E(119)^23, E(119)^3, E(119)^-55, E(119)^40, E(119)^-50, E(119)^47, E(119)^33, E(119)^-22, E(119)^19, E(119)^-58, E(119)^55, E(119)^53, E(119)^-41, E(119)^38, E(119)^9, E(119)^22, E(119)^45, E(119)^-8, E(119)^-31, E(119)^10, E(119)^24, E(119)^31, E(119)^36, E(119)^-19, E(119)^-39, E(119)^-13, E(119)^44, E(119)^27, E(119)^43, E(119)^-40, E(119)^-29, E(119)^26, E(119)^8, E(119)^-57, E(119)^-2, E(119)^-37, E(119)^-11, E(119)^5, E(119)^-20, E(119)^-32, E(119)^-12, E(119)^-48, E(119)^25, E(119)^46, E(119)^-10, E(119)^-38, E(119)^-47, -1*E(119)^27, -1*E(119)^8, -1*E(119)^20, -1*E(119)^-39, -1*E(119)^-6, -1*E(119)^13, -1*E(119), -1*E(119)^-59, -1*E(119)^30, -1*E(119)^40, -1*E(119)^47, -1*E(119)^-12, -1*E(119)^-58, -1*E(119)^32, -1*E(119)^2, -1*E(119)^33, -1*E(119)^54, -1*E(119)^16, -1*E(119)^46, -1*E(119)^31, -1*E(119)^-1, -1*E(119)^-20, -1*E(119)^-25, -1*E(119)^6, -1*E(119)^22, -1*E(119)^45, -1*E(119)^-11, -1*E(119)^39, -1*E(119)^58, -1*E(119)^55, -1*E(119)^-27, -1*E(119)^-8, -1*E(119)^38, -1*E(119)^9, -1*E(119)^-9, -1*E(119)^12, -1*E(119)^-47, -1*E(119)^-37, -1*E(119)^5, -1*E(119)^-54, -1*E(119)^-24, -1*E(119)^-18, -1*E(119)^48, -1*E(119)^18, -1*E(119)^29, -1*E(119)^-50, -1*E(119)^4, -1*E(119)^24, -1*E(119)^44, -1*E(119)^-13, -1*E(119)^41, -1*E(119)^59, -1*E(119)^15, -1*E(119)^36, -1*E(119)^-23, -1*E(119)^-38, -1*E(119)^-48, -1*E(119)^19, -1*E(119)^-16, -1*E(119)^-33, -1*E(119)^-3, -1*E(119)^50, -1*E(119)^23, -1*E(119)^-31, -1*E(119)^-44, -1*E(119)^-5, -1*E(119)^25, -1*E(119)^52, -1*E(119)^-22, -1*E(119)^-41, -1*E(119)^-4, -1*E(119)^-15, -1*E(119)^43, -1*E(119)^-57, -1*E(119)^-32, -1*E(119)^-10, -1*E(119)^-40, -1*E(119)^-45, -1*E(119)^53, -1*E(119)^-36, -1*E(119)^-53, -1*E(119)^11, -1*E(119)^-19, -1*E(119)^-30, -1*E(119)^-2, -1*E(119)^37, -1*E(119)^-52, -1*E(119)^26, -1*E(119)^-26, -1*E(119)^3, -1*E(119)^-46, -1*E(119)^-43, -1*E(119)^57, -1*E(119)^-29, -1*E(119)^10, -1*E(119)^-55, 1], [1, -1, E(119)^34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-34, E(119)^-51, -1*E(119)^-51, -1*E(119)^51, -1*E(119)^-34, -1*E(119)^34, -1*E(119)^-17, -1*E(119)^17, E(119)^-14, E(119)^-7, E(119)^-42, E(119)^42, E(119)^28, E(119)^-49, E(119)^-28, E(119)^-21, E(119)^-35, E(119)^21, E(119)^49, E(119)^14, E(119)^56, E(119)^35, E(119)^-56, E(119)^7, -1*E(119)^14, -1*E(119)^-49, -1*E(119)^-28, -1*E(119)^-35, -1*E(119)^42, -1*E(119)^-56, -1*E(119)^35, -1*E(119)^49, -1*E(119)^7, -1*E(119)^-14, -1*E(119)^-21, -1*E(119)^-7, -1*E(119)^56, -1*E(119)^28, -1*E(119)^21, -1*E(119)^-42, E(119)^5, E(119)^-52, E(119)^-15, E(119)^30, E(119), E(119)^-57, E(119)^26, E(119)^4, E(119)^6, E(119)^9, E(119)^-20, E(119)^23, E(119)^16, E(119)^-13, E(119)^-30, E(119)^-1, E(119)^53, E(119)^33, E(119)^52, E(119)^-4, E(119)^43, E(119)^-11, E(119)^24, E(119)^-41, E(119)^-39, E(119)^-32, E(119)^-2, E(119)^18, E(119)^25, E(119)^54, E(119)^-48, E(119)^-59, E(119)^-12, E(119)^15, E(119)^44, E(119)^-29, E(119)^-16, E(119)^-58, E(119)^27, E(119)^36, E(119)^-54, E(119)^-50, E(119)^46, E(119)^-37, E(119)^3, E(119)^45, E(119)^-6, E(119)^59, E(119)^-18, E(119)^-23, E(119)^-3, E(119)^55, E(119)^-40, E(119)^50, E(119)^-47, E(119)^-33, E(119)^22, E(119)^-19, E(119)^58, E(119)^-55, E(119)^-53, E(119)^41, E(119)^-38, E(119)^-9, E(119)^-22, E(119)^-45, E(119)^8, E(119)^31, E(119)^-10, E(119)^-24, E(119)^-31, E(119)^-36, E(119)^19, E(119)^39, E(119)^13, E(119)^-44, E(119)^-27, E(119)^-43, E(119)^40, E(119)^29, E(119)^-26, E(119)^-8, E(119)^57, E(119)^2, E(119)^37, E(119)^11, E(119)^-5, E(119)^20, E(119)^32, E(119)^12, E(119)^48, E(119)^-25, E(119)^-46, E(119)^10, E(119)^38, E(119)^47, -1*E(119)^-27, -1*E(119)^-8, -1*E(119)^-20, -1*E(119)^39, -1*E(119)^6, -1*E(119)^-13, -1*E(119)^-1, -1*E(119)^59, -1*E(119)^-30, -1*E(119)^-40, -1*E(119)^-47, -1*E(119)^12, -1*E(119)^58, -1*E(119)^-32, -1*E(119)^-2, -1*E(119)^-33, -1*E(119)^-54, -1*E(119)^-16, -1*E(119)^-46, -1*E(119)^-31, -1*E(119), -1*E(119)^20, -1*E(119)^25, -1*E(119)^-6, -1*E(119)^-22, -1*E(119)^-45, -1*E(119)^11, -1*E(119)^-39, -1*E(119)^-58, -1*E(119)^-55, -1*E(119)^27, -1*E(119)^8, -1*E(119)^-38, -1*E(119)^-9, -1*E(119)^9, -1*E(119)^-12, -1*E(119)^47, -1*E(119)^37, -1*E(119)^-5, -1*E(119)^54, -1*E(119)^24, -1*E(119)^18, -1*E(119)^-48, -1*E(119)^-18, -1*E(119)^-29, -1*E(119)^50, -1*E(119)^-4, -1*E(119)^-24, -1*E(119)^-44, -1*E(119)^13, -1*E(119)^-41, -1*E(119)^-59, -1*E(119)^-15, -1*E(119)^-36, -1*E(119)^23, -1*E(119)^38, -1*E(119)^48, -1*E(119)^-19, -1*E(119)^16, -1*E(119)^33, -1*E(119)^3, -1*E(119)^-50, -1*E(119)^-23, -1*E(119)^31, -1*E(119)^44, -1*E(119)^5, -1*E(119)^-25, -1*E(119)^-52, -1*E(119)^22, -1*E(119)^41, -1*E(119)^4, -1*E(119)^15, -1*E(119)^-43, -1*E(119)^57, -1*E(119)^32, -1*E(119)^10, -1*E(119)^40, -1*E(119)^45, -1*E(119)^-53, -1*E(119)^36, -1*E(119)^53, -1*E(119)^-11, -1*E(119)^19, -1*E(119)^30, -1*E(119)^2, -1*E(119)^-37, -1*E(119)^52, -1*E(119)^-26, -1*E(119)^26, -1*E(119)^-3, -1*E(119)^46, -1*E(119)^43, -1*E(119)^-57, -1*E(119)^29, -1*E(119)^-10, -1*E(119)^55, 1], [1, -1, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^34, E(119)^51, -1*E(119)^51, -1*E(119)^-51, -1*E(119)^34, -1*E(119)^-34, -1*E(119)^17, -1*E(119)^-17, E(119)^-7, E(119)^56, E(119)^-21, E(119)^21, E(119)^14, E(119)^35, E(119)^-14, E(119)^49, E(119)^42, E(119)^-49, E(119)^-35, E(119)^7, E(119)^28, E(119)^-42, E(119)^-28, E(119)^-56, -1*E(119)^7, -1*E(119)^35, -1*E(119)^-14, -1*E(119)^42, -1*E(119)^21, -1*E(119)^-28, -1*E(119)^-42, -1*E(119)^-35, -1*E(119)^-56, -1*E(119)^-7, -1*E(119)^49, -1*E(119)^56, -1*E(119)^28, -1*E(119)^14, -1*E(119)^-49, -1*E(119)^-21, E(119)^-40, E(119)^59, E(119), E(119)^-2, E(119)^-8, E(119)^-20, E(119)^30, E(119)^-32, E(119)^-48, E(119)^47, E(119)^41, E(119)^54, E(119)^-9, E(119)^-15, E(119)^2, E(119)^8, E(119)^52, E(119)^-26, E(119)^-59, E(119)^32, E(119)^13, E(119)^-31, E(119)^46, E(119)^-29, E(119)^-45, E(119)^18, E(119)^16, E(119)^-25, E(119)^38, E(119)^44, E(119)^27, E(119)^-4, E(119)^-23, E(119)^-1, E(119)^5, E(119)^-6, E(119)^9, E(119)^-12, E(119)^22, E(119)^-50, E(119)^-44, E(119)^43, E(119)^-11, E(119)^58, E(119)^-24, E(119)^-3, E(119)^48, E(119)^4, E(119)^25, E(119)^-54, E(119)^24, E(119)^36, E(119)^-37, E(119)^-43, E(119)^19, E(119)^26, E(119)^-57, E(119)^33, E(119)^12, E(119)^-36, E(119)^-52, E(119)^29, E(119)^-53, E(119)^-47, E(119)^57, E(119)^3, E(119)^55, E(119)^-10, E(119)^-39, E(119)^-46, E(119)^10, E(119)^50, E(119)^-33, E(119)^45, E(119)^15, E(119)^-5, E(119)^-22, E(119)^-13, E(119)^37, E(119)^6, E(119)^-30, E(119)^-55, E(119)^20, E(119)^-16, E(119)^-58, E(119)^31, E(119)^40, E(119)^-41, E(119)^-18, E(119)^23, E(119)^-27, E(119)^-38, E(119)^11, E(119)^39, E(119)^53, E(119)^-19, -1*E(119)^-22, -1*E(119)^-55, -1*E(119)^41, -1*E(119)^45, -1*E(119)^-48, -1*E(119)^-15, -1*E(119)^8, -1*E(119)^4, -1*E(119)^2, -1*E(119)^-37, -1*E(119)^19, -1*E(119)^23, -1*E(119)^12, -1*E(119)^18, -1*E(119)^16, -1*E(119)^26, -1*E(119)^-44, -1*E(119)^9, -1*E(119)^11, -1*E(119)^10, -1*E(119)^-8, -1*E(119)^-41, -1*E(119)^38, -1*E(119)^48, -1*E(119)^57, -1*E(119)^3, -1*E(119)^31, -1*E(119)^-45, -1*E(119)^-12, -1*E(119)^-36, -1*E(119)^22, -1*E(119)^55, -1*E(119)^-53, -1*E(119)^-47, -1*E(119)^47, -1*E(119)^-23, -1*E(119)^-19, -1*E(119)^-58, -1*E(119)^40, -1*E(119)^44, -1*E(119)^46, -1*E(119)^-25, -1*E(119)^27, -1*E(119)^25, -1*E(119)^-6, -1*E(119)^-43, -1*E(119)^32, -1*E(119)^-46, -1*E(119)^-5, -1*E(119)^15, -1*E(119)^-29, -1*E(119)^-4, -1*E(119), -1*E(119)^50, -1*E(119)^54, -1*E(119)^53, -1*E(119)^-27, -1*E(119)^33, -1*E(119)^-9, -1*E(119)^-26, -1*E(119)^-24, -1*E(119)^43, -1*E(119)^-54, -1*E(119)^-10, -1*E(119)^5, -1*E(119)^-40, -1*E(119)^-38, -1*E(119)^59, -1*E(119)^-57, -1*E(119)^29, -1*E(119)^-32, -1*E(119)^-1, -1*E(119)^-13, -1*E(119)^20, -1*E(119)^-18, -1*E(119)^39, -1*E(119)^37, -1*E(119)^-3, -1*E(119)^-52, -1*E(119)^-50, -1*E(119)^52, -1*E(119)^-31, -1*E(119)^-33, -1*E(119)^-2, -1*E(119)^-16, -1*E(119)^58, -1*E(119)^-59, -1*E(119)^-30, -1*E(119)^30, -1*E(119)^24, -1*E(119)^-11, -1*E(119)^13, -1*E(119)^-20, -1*E(119)^6, -1*E(119)^-39, -1*E(119)^36, 1], [1, -1, E(119)^34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-34, E(119)^-51, -1*E(119)^-51, -1*E(119)^51, -1*E(119)^-34, -1*E(119)^34, -1*E(119)^-17, -1*E(119)^17, E(119)^7, E(119)^-56, E(119)^21, E(119)^-21, E(119)^-14, E(119)^-35, E(119)^14, E(119)^-49, E(119)^-42, E(119)^49, E(119)^35, E(119)^-7, E(119)^-28, E(119)^42, E(119)^28, E(119)^56, -1*E(119)^-7, -1*E(119)^-35, -1*E(119)^14, -1*E(119)^-42, -1*E(119)^-21, -1*E(119)^28, -1*E(119)^42, -1*E(119)^35, -1*E(119)^56, -1*E(119)^7, -1*E(119)^-49, -1*E(119)^-56, -1*E(119)^-28, -1*E(119)^-14, -1*E(119)^49, -1*E(119)^21, E(119)^40, E(119)^-59, E(119)^-1, E(119)^2, E(119)^8, E(119)^20, E(119)^-30, E(119)^32, E(119)^48, E(119)^-47, E(119)^-41, E(119)^-54, E(119)^9, E(119)^15, E(119)^-2, E(119)^-8, E(119)^-52, E(119)^26, E(119)^59, E(119)^-32, E(119)^-13, E(119)^31, E(119)^-46, E(119)^29, E(119)^45, E(119)^-18, E(119)^-16, E(119)^25, E(119)^-38, E(119)^-44, E(119)^-27, E(119)^4, E(119)^23, E(119), E(119)^-5, E(119)^6, E(119)^-9, E(119)^12, E(119)^-22, E(119)^50, E(119)^44, E(119)^-43, E(119)^11, E(119)^-58, E(119)^24, E(119)^3, E(119)^-48, E(119)^-4, E(119)^-25, E(119)^54, E(119)^-24, E(119)^-36, E(119)^37, E(119)^43, E(119)^-19, E(119)^-26, E(119)^57, E(119)^-33, E(119)^-12, E(119)^36, E(119)^52, E(119)^-29, E(119)^53, E(119)^47, E(119)^-57, E(119)^-3, E(119)^-55, E(119)^10, E(119)^39, E(119)^46, E(119)^-10, E(119)^-50, E(119)^33, E(119)^-45, E(119)^-15, E(119)^5, E(119)^22, E(119)^13, E(119)^-37, E(119)^-6, E(119)^30, E(119)^55, E(119)^-20, E(119)^16, E(119)^58, E(119)^-31, E(119)^-40, E(119)^41, E(119)^18, E(119)^-23, E(119)^27, E(119)^38, E(119)^-11, E(119)^-39, E(119)^-53, E(119)^19, -1*E(119)^22, -1*E(119)^55, -1*E(119)^-41, -1*E(119)^-45, -1*E(119)^48, -1*E(119)^15, -1*E(119)^-8, -1*E(119)^-4, -1*E(119)^-2, -1*E(119)^37, -1*E(119)^-19, -1*E(119)^-23, -1*E(119)^-12, -1*E(119)^-18, -1*E(119)^-16, -1*E(119)^-26, -1*E(119)^44, -1*E(119)^-9, -1*E(119)^-11, -1*E(119)^-10, -1*E(119)^8, -1*E(119)^41, -1*E(119)^-38, -1*E(119)^-48, -1*E(119)^-57, -1*E(119)^-3, -1*E(119)^-31, -1*E(119)^45, -1*E(119)^12, -1*E(119)^36, -1*E(119)^-22, -1*E(119)^-55, -1*E(119)^53, -1*E(119)^47, -1*E(119)^-47, -1*E(119)^23, -1*E(119)^19, -1*E(119)^58, -1*E(119)^-40, -1*E(119)^-44, -1*E(119)^-46, -1*E(119)^25, -1*E(119)^-27, -1*E(119)^-25, -1*E(119)^6, -1*E(119)^43, -1*E(119)^-32, -1*E(119)^46, -1*E(119)^5, -1*E(119)^-15, -1*E(119)^29, -1*E(119)^4, -1*E(119)^-1, -1*E(119)^-50, -1*E(119)^-54, -1*E(119)^-53, -1*E(119)^27, -1*E(119)^-33, -1*E(119)^9, -1*E(119)^26, -1*E(119)^24, -1*E(119)^-43, -1*E(119)^54, -1*E(119)^10, -1*E(119)^-5, -1*E(119)^40, -1*E(119)^38, -1*E(119)^-59, -1*E(119)^57, -1*E(119)^-29, -1*E(119)^32, -1*E(119), -1*E(119)^13, -1*E(119)^-20, -1*E(119)^18, -1*E(119)^-39, -1*E(119)^-37, -1*E(119)^3, -1*E(119)^52, -1*E(119)^50, -1*E(119)^-52, -1*E(119)^31, -1*E(119)^33, -1*E(119)^2, -1*E(119)^16, -1*E(119)^-58, -1*E(119)^59, -1*E(119)^30, -1*E(119)^-30, -1*E(119)^-24, -1*E(119)^11, -1*E(119)^-13, -1*E(119)^20, -1*E(119)^-6, -1*E(119)^39, -1*E(119)^-36, 1], [1, -1, E(119)^-34, E(119)^17, E(119)^-17, E(119)^-51, E(119)^34, E(119)^51, -1*E(119)^51, -1*E(119)^-51, -1*E(119)^34, -1*E(119)^-34, -1*E(119)^17, -1*E(119)^-17, E(119)^7, E(119)^-56, E(119)^21, E(119)^-21, E(119)^-14, E(119)^-35, E(119)^14, E(119)^-49, E(119)^-42, E(119)^49, E(119)^35, E(119)^-7, E(119)^-28, E(119)^42, E(119)^28, E(119)^56, -1*E(119)^-7, -1*E(119)^-35, -1*E(119)^14, -1*E(119)^-42, -1*E(119)^-21, -1*E(119)^28, -1*E(119)^42, -1*E(119)^35, -1*E(119)^56, -1*E(119)^7, -1*E(119)^-49, -1*E(119)^-56, -1*E(119)^-28, -1*E(119)^-14, -1*E(119)^49, -1*E(119)^21, E(119)^23, E(119)^-25, E(119)^50, E(119)^19, E(119)^-43, E(119)^-48, E(119)^-47, E(119)^-53, E(119)^-20, E(119)^-30, E(119)^27, E(119)^-37, E(119)^26, E(119)^-36, E(119)^-19, E(119)^43, E(119)^-18, E(119)^9, E(119)^25, E(119)^53, E(119)^55, E(119)^-3, E(119)^39, E(119)^-22, E(119)^11, E(119)^-52, E(119)^-33, E(119)^59, E(119)^-4, E(119)^58, E(119)^41, E(119)^38, E(119)^40, E(119)^-50, E(119)^12, E(119)^57, E(119)^-26, E(119)^-5, E(119)^29, E(119)^-1, E(119)^-58, E(119)^8, E(119)^45, E(119)^44, E(119)^-10, E(119)^-31, E(119)^20, E(119)^-38, E(119)^-59, E(119)^37, E(119)^10, E(119)^15, E(119)^54, E(119)^-8, E(119)^-2, E(119)^-9, E(119)^6, E(119)^-16, E(119)^5, E(119)^-15, E(119)^18, E(119)^22, E(119)^-32, E(119)^30, E(119)^-6, E(119)^31, E(119)^13, E(119)^-24, E(119)^-46, E(119)^-39, E(119)^24, E(119), E(119)^16, E(119)^-11, E(119)^36, E(119)^-12, E(119)^-29, E(119)^-55, E(119)^-54, E(119)^-57, E(119)^47, E(119)^-13, E(119)^48, E(119)^33, E(119)^-44, E(119)^3, E(119)^-23, E(119)^-27, E(119)^52, E(119)^-40, E(119)^-41, E(119)^4, E(119)^-45, E(119)^46, E(119)^32, E(119)^2, -1*E(119)^-29, -1*E(119)^-13, -1*E(119)^27, -1*E(119)^-11, -1*E(119)^-20, -1*E(119)^-36, -1*E(119)^43, -1*E(119)^-38, -1*E(119)^-19, -1*E(119)^54, -1*E(119)^-2, -1*E(119)^-40, -1*E(119)^5, -1*E(119)^-52, -1*E(119)^-33, -1*E(119)^-9, -1*E(119)^-58, -1*E(119)^-26, -1*E(119)^-45, -1*E(119)^24, -1*E(119)^-43, -1*E(119)^-27, -1*E(119)^-4, -1*E(119)^20, -1*E(119)^-6, -1*E(119)^31, -1*E(119)^3, -1*E(119)^11, -1*E(119)^-5, -1*E(119)^-15, -1*E(119)^29, -1*E(119)^13, -1*E(119)^-32, -1*E(119)^30, -1*E(119)^-30, -1*E(119)^40, -1*E(119)^2, -1*E(119)^-44, -1*E(119)^-23, -1*E(119)^58, -1*E(119)^39, -1*E(119)^59, -1*E(119)^41, -1*E(119)^-59, -1*E(119)^57, -1*E(119)^-8, -1*E(119)^53, -1*E(119)^-39, -1*E(119)^-12, -1*E(119)^36, -1*E(119)^-22, -1*E(119)^38, -1*E(119)^50, -1*E(119), -1*E(119)^-37, -1*E(119)^32, -1*E(119)^-41, -1*E(119)^-16, -1*E(119)^26, -1*E(119)^9, -1*E(119)^-10, -1*E(119)^8, -1*E(119)^37, -1*E(119)^-24, -1*E(119)^12, -1*E(119)^23, -1*E(119)^4, -1*E(119)^-25, -1*E(119)^6, -1*E(119)^22, -1*E(119)^-53, -1*E(119)^-50, -1*E(119)^-55, -1*E(119)^48, -1*E(119)^52, -1*E(119)^46, -1*E(119)^-54, -1*E(119)^-31, -1*E(119)^18, -1*E(119)^-1, -1*E(119)^-18, -1*E(119)^-3, -1*E(119)^16, -1*E(119)^19, -1*E(119)^33, -1*E(119)^44, -1*E(119)^25, -1*E(119)^47, -1*E(119)^-47, -1*E(119)^10, -1*E(119)^45, -1*E(119)^55, -1*E(119)^-48, -1*E(119)^-57, -1*E(119)^-46, -1*E(119)^15, 1], [1, -1, E(119)^34, E(119)^-17, E(119)^17, E(119)^51, E(119)^-34, E(119)^-51, -1*E(119)^-51, -1*E(119)^51, -1*E(119)^-34, -1*E(119)^34, -1*E(119)^-17, -1*E(119)^17, E(119)^-7, E(119)^56, E(119)^-21, E(119)^21, E(119)^14, E(119)^35, E(119)^-14, E(119)^49, E(119)^42, E(119)^-49, E(119)^-35, E(119)^7, E(119)^28, E(119)^-42, E(119)^-28, E(119)^-56, -1*E(119)^7, -1*E(119)^35, -1*E(119)^-14, -1*E(119)^42, -1*E(119)^21, -1*E(119)^-28, -1*E(119)^-42, -1*E(119)^-35, -1*E(119)^-56, -1*E(119)^-7, -1*E(119)^49, -1*E(119)^56, -1*E(119)^28, -1*E(119)^14, -1*E(119)^-49, -1*E(119)^-21, E(119)^-23, E(119)^25, E(119)^-50, E(119)^-19, E(119)^43, E(119)^48, E(119)^47, E(119)^53, E(119)^20, E(119)^30, E(119)^-27, E(119)^37, E(119)^-26, E(119)^36, E(119)^19, E(119)^-43, E(119)^18, E(119)^-9, E(119)^-25, E(119)^-53, E(119)^-55, E(119)^3, E(119)^-39, E(119)^22, E(119)^-11, E(119)^52, E(119)^33, E(119)^-59, E(119)^4, E(119)^-58, E(119)^-41, E(119)^-38, E(119)^-40, E(119)^50, E(119)^-12, E(119)^-57, E(119)^26, E(119)^5, E(119)^-29, E(119), E(119)^58, E(119)^-8, E(119)^-45, E(119)^-44, E(119)^10, E(119)^31, E(119)^-20, E(119)^38, E(119)^59, E(119)^-37, E(119)^-10, E(119)^-15, E(119)^-54, E(119)^8, E(119)^2, E(119)^9, E(119)^-6, E(119)^16, E(119)^-5, E(119)^15, E(119)^-18, E(119)^-22, E(119)^32, E(119)^-30, E(119)^6, E(119)^-31, E(119)^-13, E(119)^24, E(119)^46, E(119)^39, E(119)^-24, E(119)^-1, E(119)^-16, E(119)^11, E(119)^-36, E(119)^12, E(119)^29, E(119)^55, E(119)^54, E(119)^57, E(119)^-47, E(119)^13, E(119)^-48, E(119)^-33, E(119)^44, E(119)^-3, E(119)^23, E(119)^27, E(119)^-52, E(119)^40, E(119)^41, E(119)^-4, E(119)^45, E(119)^-46, E(119)^-32, E(119)^-2, -1*E(119)^29, -1*E(119)^13, -1*E(119)^-27, -1*E(119)^11, -1*E(119)^20, -1*E(119)^36, -1*E(119)^-43, -1*E(119)^38, -1*E(119)^19, -1*E(119)^-54, -1*E(119)^2, -1*E(119)^40, -1*E(119)^-5, -1*E(119)^52, -1*E(119)^33, -1*E(119)^9, -1*E(119)^58, -1*E(119)^26, -1*E(119)^45, -1*E(119)^-24, -1*E(119)^43, -1*E(119)^27, -1*E(119)^4, -1*E(119)^-20, -1*E(119)^6, -1*E(119)^-31, -1*E(119)^-3, -1*E(119)^-11, -1*E(119)^5, -1*E(119)^15, -1*E(119)^-29, -1*E(119)^-13, -1*E(119)^32, -1*E(119)^-30, -1*E(119)^30, -1*E(119)^-40, -1*E(119)^-2, -1*E(119)^44, -1*E(119)^23, -1*E(119)^-58, -1*E(119)^-39, -1*E(119)^-59, -1*E(119)^-41, -1*E(119)^59, -1*E(119)^-57, -1*E(119)^8, -1*E(119)^-53, -1*E(119)^39, -1*E(119)^12, -1*E(119)^-36, -1*E(119)^22, -1*E(119)^-38, -1*E(119)^-50, -1*E(119)^-1, -1*E(119)^37, -1*E(119)^-32, -1*E(119)^41, -1*E(119)^16, -1*E(119)^-26, -1*E(119)^-9, -1*E(119)^10, -1*E(119)^-8, -1*E(119)^-37, -1*E(119)^24, -1*E(119)^-12, -1*E(119)^-23, -1*E(119)^-4, -1*E(119)^25, -1*E(119)^-6, -1*E(119)^-22, -1*E(119)^53, -1*E(119)^50, -1*E(119)^55, -1*E(119)^-48, -1*E(119)^-52, -1*E(119)^-46, -1*E(119)^54, -1*E(119)^31, -1*E(119)^-18, -1*E(119), -1*E(119)^18, -1*E(119)^3, -1*E(119)^-16, -1*E(119)^-19, -1*E(119)^-33, -1*E(119)^-44, -1*E(119)^-25, -1*E(119)^-47, -1*E(119)^47, -1*E(119)^-10, -1*E(119)^-45, -1*E(119)^-55, -1*E(119)^48, -1*E(119)^57, -1*E(119)^46, -1*E(119)^-15, 1], [1, -1, E(119)^-17, E(119)^-51, E(119)^51, E(119)^34, E(119)^17, E(119)^-34, -1*E(119)^-34, -1*E(119)^34, -1*E(119)^17, -1*E(119)^-17, -1*E(119)^-51, -1*E(119)^51, E(119)^-56, E(119)^-28, E(119)^-49, E(119)^49, E(119)^-7, E(119)^42, E(119)^7, E(119)^35, E(119)^-21, E(119)^-35, E(119)^-42, E(119)^56, E(119)^-14, E(119)^21, E(119)^14, E(119)^28, -1*E(119)^56, -1*E(119)^42, -1*E(119)^7, -1*E(119)^-21, -1*E(119)^49, -1*E(119)^14, -1*E(119)^21, -1*E(119)^-42, -1*E(119)^28, -1*E(119)^-56, -1*E(119)^35, -1*E(119)^-28, -1*E(119)^-14, -1*E(119)^-7, -1*E(119)^-35, -1*E(119)^-49, E(119)^-48, E(119)^47, E(119)^25, E(119)^-50, E(119)^38, E(119)^-24, E(119)^36, E(119)^33, E(119)^-10, E(119)^-15, E(119)^-46, E(119)^41, E(119)^13, E(119)^-18, E(119)^50, E(119)^-38, E(119)^-9, E(119)^-55, E(119)^-47, E(119)^-33, E(119)^-32, E(119)^58, E(119)^-40, E(119)^-11, E(119)^-54, E(119)^-26, E(119)^43, E(119)^-30, E(119)^-2, E(119)^29, E(119)^-39, E(119)^19, E(119)^20, E(119)^-25, E(119)^6, E(119)^-31, E(119)^-13, E(119)^57, E(119)^-45, E(119)^59, E(119)^-29, E(119)^4, E(119)^-37, E(119)^22, E(119)^-5, E(119)^44, E(119)^10, E(119)^-19, E(119)^30, E(119)^-41, E(119)^5, E(119)^-52, E(119)^27, E(119)^-4, E(119)^-1, E(119)^55, E(119)^3, E(119)^-8, E(119)^-57, E(119)^52, E(119)^9, E(119)^11, E(119)^-16, E(119)^15, E(119)^-3, E(119)^-44, E(119)^-53, E(119)^-12, E(119)^-23, E(119)^40, E(119)^12, E(119)^-59, E(119)^8, E(119)^54, E(119)^18, E(119)^-6, E(119)^45, E(119)^32, E(119)^-27, E(119)^31, E(119)^-36, E(119)^53, E(119)^24, E(119)^-43, E(119)^-22, E(119)^-58, E(119)^48, E(119)^46, E(119)^26, E(119)^-20, E(119)^39, E(119)^2, E(119)^37, E(119)^23, E(119)^16, E(119), -1*E(119)^45, -1*E(119)^53, -1*E(119)^-46, -1*E(119)^54, -1*E(119)^-10, -1*E(119)^-18, -1*E(119)^-38, -1*E(119)^-19, -1*E(119)^50, -1*E(119)^27, -1*E(119)^-1, -1*E(119)^-20, -1*E(119)^-57, -1*E(119)^-26, -1*E(119)^43, -1*E(119)^55, -1*E(119)^-29, -1*E(119)^-13, -1*E(119)^37, -1*E(119)^12, -1*E(119)^38, -1*E(119)^46, -1*E(119)^-2, -1*E(119)^10, -1*E(119)^-3, -1*E(119)^-44, -1*E(119)^-58, -1*E(119)^-54, -1*E(119)^57, -1*E(119)^52, -1*E(119)^-45, -1*E(119)^-53, -1*E(119)^-16, -1*E(119)^15, -1*E(119)^-15, -1*E(119)^20, -1*E(119), -1*E(119)^-22, -1*E(119)^48, -1*E(119)^29, -1*E(119)^-40, -1*E(119)^-30, -1*E(119)^-39, -1*E(119)^30, -1*E(119)^-31, -1*E(119)^-4, -1*E(119)^-33, -1*E(119)^40, -1*E(119)^-6, -1*E(119)^18, -1*E(119)^-11, -1*E(119)^19, -1*E(119)^25, -1*E(119)^-59, -1*E(119)^41, -1*E(119)^16, -1*E(119)^39, -1*E(119)^-8, -1*E(119)^13, -1*E(119)^-55, -1*E(119)^-5, -1*E(119)^4, -1*E(119)^-41, -1*E(119)^-12, -1*E(119)^6, -1*E(119)^-48, -1*E(119)^2, -1*E(119)^47, -1*E(119)^3, -1*E(119)^11, -1*E(119)^33, -1*E(119)^-25, -1*E(119)^32, -1*E(119)^24, -1*E(119)^26, -1*E(119)^23, -1*E(119)^-27, -1*E(119)^44, -1*E(119)^9, -1*E(119)^59, -1*E(119)^-9, -1*E(119)^58, -1*E(119)^8, -1*E(119)^-50, -1*E(119)^-43, -1*E(119)^22, -1*E(119)^-47, -1*E(119)^-36, -1*E(119)^36, -1*E(119)^5, -1*E(119)^-37, -1*E(119)^-32, -1*E(119)^-24, -1*E(119)^31, -1*E(119)^-23, -1*E(119)^-52, 1], [1, -1, E(119)^17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^-17, E(119)^34, -1*E(119)^34, -1*E(119)^-34, -1*E(119)^-17, -1*E(119)^17, -1*E(119)^51, -1*E(119)^-51, E(119)^56, E(119)^28, E(119)^49, E(119)^-49, E(119)^7, E(119)^-42, E(119)^-7, E(119)^-35, E(119)^21, E(119)^35, E(119)^42, E(119)^-56, E(119)^14, E(119)^-21, E(119)^-14, E(119)^-28, -1*E(119)^-56, -1*E(119)^-42, -1*E(119)^-7, -1*E(119)^21, -1*E(119)^-49, -1*E(119)^-14, -1*E(119)^-21, -1*E(119)^42, -1*E(119)^-28, -1*E(119)^56, -1*E(119)^-35, -1*E(119)^28, -1*E(119)^14, -1*E(119)^7, -1*E(119)^35, -1*E(119)^49, E(119)^48, E(119)^-47, E(119)^-25, E(119)^50, E(119)^-38, E(119)^24, E(119)^-36, E(119)^-33, E(119)^10, E(119)^15, E(119)^46, E(119)^-41, E(119)^-13, E(119)^18, E(119)^-50, E(119)^38, E(119)^9, E(119)^55, E(119)^47, E(119)^33, E(119)^32, E(119)^-58, E(119)^40, E(119)^11, E(119)^54, E(119)^26, E(119)^-43, E(119)^30, E(119)^2, E(119)^-29, E(119)^39, E(119)^-19, E(119)^-20, E(119)^25, E(119)^-6, E(119)^31, E(119)^13, E(119)^-57, E(119)^45, E(119)^-59, E(119)^29, E(119)^-4, E(119)^37, E(119)^-22, E(119)^5, E(119)^-44, E(119)^-10, E(119)^19, E(119)^-30, E(119)^41, E(119)^-5, E(119)^52, E(119)^-27, E(119)^4, E(119), E(119)^-55, E(119)^-3, E(119)^8, E(119)^57, E(119)^-52, E(119)^-9, E(119)^-11, E(119)^16, E(119)^-15, E(119)^3, E(119)^44, E(119)^53, E(119)^12, E(119)^23, E(119)^-40, E(119)^-12, E(119)^59, E(119)^-8, E(119)^-54, E(119)^-18, E(119)^6, E(119)^-45, E(119)^-32, E(119)^27, E(119)^-31, E(119)^36, E(119)^-53, E(119)^-24, E(119)^43, E(119)^22, E(119)^58, E(119)^-48, E(119)^-46, E(119)^-26, E(119)^20, E(119)^-39, E(119)^-2, E(119)^-37, E(119)^-23, E(119)^-16, E(119)^-1, -1*E(119)^-45, -1*E(119)^-53, -1*E(119)^46, -1*E(119)^-54, -1*E(119)^10, -1*E(119)^18, -1*E(119)^38, -1*E(119)^19, -1*E(119)^-50, -1*E(119)^-27, -1*E(119), -1*E(119)^20, -1*E(119)^57, -1*E(119)^26, -1*E(119)^-43, -1*E(119)^-55, -1*E(119)^29, -1*E(119)^13, -1*E(119)^-37, -1*E(119)^-12, -1*E(119)^-38, -1*E(119)^-46, -1*E(119)^2, -1*E(119)^-10, -1*E(119)^3, -1*E(119)^44, -1*E(119)^58, -1*E(119)^54, -1*E(119)^-57, -1*E(119)^-52, -1*E(119)^45, -1*E(119)^53, -1*E(119)^16, -1*E(119)^-15, -1*E(119)^15, -1*E(119)^-20, -1*E(119)^-1, -1*E(119)^22, -1*E(119)^-48, -1*E(119)^-29, -1*E(119)^40, -1*E(119)^30, -1*E(119)^39, -1*E(119)^-30, -1*E(119)^31, -1*E(119)^4, -1*E(119)^33, -1*E(119)^-40, -1*E(119)^6, -1*E(119)^-18, -1*E(119)^11, -1*E(119)^-19, -1*E(119)^-25, -1*E(119)^59, -1*E(119)^-41, -1*E(119)^-16, -1*E(119)^-39, -1*E(119)^8, -1*E(119)^-13, -1*E(119)^55, -1*E(119)^5, -1*E(119)^-4, -1*E(119)^41, -1*E(119)^12, -1*E(119)^-6, -1*E(119)^48, -1*E(119)^-2, -1*E(119)^-47, -1*E(119)^-3, -1*E(119)^-11, -1*E(119)^-33, -1*E(119)^25, -1*E(119)^-32, -1*E(119)^-24, -1*E(119)^-26, -1*E(119)^-23, -1*E(119)^27, -1*E(119)^-44, -1*E(119)^-9, -1*E(119)^-59, -1*E(119)^9, -1*E(119)^-58, -1*E(119)^-8, -1*E(119)^50, -1*E(119)^43, -1*E(119)^-22, -1*E(119)^47, -1*E(119)^36, -1*E(119)^-36, -1*E(119)^-5, -1*E(119)^37, -1*E(119)^32, -1*E(119)^24, -1*E(119)^-31, -1*E(119)^23, -1*E(119)^52, 1], [1, -1, E(119)^-17, E(119)^-51, E(119)^51, E(119)^34, E(119)^17, E(119)^-34, -1*E(119)^-34, -1*E(119)^34, -1*E(119)^17, -1*E(119)^-17, -1*E(119)^-51, -1*E(119)^51, E(119)^56, E(119)^28, E(119)^49, E(119)^-49, E(119)^7, E(119)^-42, E(119)^-7, E(119)^-35, E(119)^21, E(119)^35, E(119)^42, E(119)^-56, E(119)^14, E(119)^-21, E(119)^-14, E(119)^-28, -1*E(119)^-56, -1*E(119)^-42, -1*E(119)^-7, -1*E(119)^21, -1*E(119)^-49, -1*E(119)^-14, -1*E(119)^-21, -1*E(119)^42, -1*E(119)^-28, -1*E(119)^56, -1*E(119)^-35, -1*E(119)^28, -1*E(119)^14, -1*E(119)^7, -1*E(119)^35, -1*E(119)^49, E(119)^-20, E(119)^-30, E(119)^-59, E(119)^-1, E(119)^-4, E(119)^-10, E(119)^15, E(119)^-16, E(119)^-24, E(119)^-36, E(119)^-39, E(119)^27, E(119)^55, E(119)^52, E(119), E(119)^4, E(119)^26, E(119)^-13, E(119)^30, E(119)^16, E(119)^-53, E(119)^44, E(119)^23, E(119)^45, E(119)^37, E(119)^9, E(119)^8, E(119)^47, E(119)^19, E(119)^22, E(119)^-46, E(119)^-2, E(119)^48, E(119)^59, E(119)^-57, E(119)^-3, E(119)^-55, E(119)^-6, E(119)^11, E(119)^-25, E(119)^-22, E(119)^-38, E(119)^54, E(119)^29, E(119)^-12, E(119)^58, E(119)^24, E(119)^2, E(119)^-47, E(119)^-27, E(119)^12, E(119)^18, E(119)^41, E(119)^38, E(119)^-50, E(119)^13, E(119)^31, E(119)^-43, E(119)^6, E(119)^-18, E(119)^-26, E(119)^-45, E(119)^33, E(119)^36, E(119)^-31, E(119)^-58, E(119)^-32, E(119)^-5, E(119)^40, E(119)^-23, E(119)^5, E(119)^25, E(119)^43, E(119)^-37, E(119)^-52, E(119)^57, E(119)^-11, E(119)^53, E(119)^-41, E(119)^3, E(119)^-15, E(119)^32, E(119)^10, E(119)^-8, E(119)^-29, E(119)^-44, E(119)^20, E(119)^39, E(119)^-9, E(119)^-48, E(119)^46, E(119)^-19, E(119)^-54, E(119)^-40, E(119)^-33, E(119)^50, -1*E(119)^-11, -1*E(119)^32, -1*E(119)^-39, -1*E(119)^-37, -1*E(119)^-24, -1*E(119)^52, -1*E(119)^4, -1*E(119)^2, -1*E(119), -1*E(119)^41, -1*E(119)^-50, -1*E(119)^-48, -1*E(119)^6, -1*E(119)^9, -1*E(119)^8, -1*E(119)^13, -1*E(119)^-22, -1*E(119)^-55, -1*E(119)^-54, -1*E(119)^5, -1*E(119)^-4, -1*E(119)^39, -1*E(119)^19, -1*E(119)^24, -1*E(119)^-31, -1*E(119)^-58, -1*E(119)^-44, -1*E(119)^37, -1*E(119)^-6, -1*E(119)^-18, -1*E(119)^11, -1*E(119)^-32, -1*E(119)^33, -1*E(119)^36, -1*E(119)^-36, -1*E(119)^48, -1*E(119)^50, -1*E(119)^-29, -1*E(119)^20, -1*E(119)^22, -1*E(119)^23, -1*E(119)^47, -1*E(119)^-46, -1*E(119)^-47, -1*E(119)^-3, -1*E(119)^38, -1*E(119)^16, -1*E(119)^-23, -1*E(119)^57, -1*E(119)^-52, -1*E(119)^45, -1*E(119)^-2, -1*E(119)^-59, -1*E(119)^25, -1*E(119)^27, -1*E(119)^-33, -1*E(119)^46, -1*E(119)^-43, -1*E(119)^55, -1*E(119)^-13, -1*E(119)^-12, -1*E(119)^-38, -1*E(119)^-27, -1*E(119)^-5, -1*E(119)^-57, -1*E(119)^-20, -1*E(119)^-19, -1*E(119)^-30, -1*E(119)^31, -1*E(119)^-45, -1*E(119)^-16, -1*E(119)^59, -1*E(119)^53, -1*E(119)^10, -1*E(119)^-9, -1*E(119)^-40, -1*E(119)^-41, -1*E(119)^58, -1*E(119)^-26, -1*E(119)^-25, -1*E(119)^26, -1*E(119)^44, -1*E(119)^43, -1*E(119)^-1, -1*E(119)^-8, -1*E(119)^29, -1*E(119)^30, -1*E(119)^-15, -1*E(119)^15, -1*E(119)^12, -1*E(119)^54, -1*E(119)^-53, -1*E(119)^-10, -1*E(119)^3, -1*E(119)^40, -1*E(119)^18, 1], [1, -1, E(119)^17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^-17, E(119)^34, -1*E(119)^34, -1*E(119)^-34, -1*E(119)^-17, -1*E(119)^17, -1*E(119)^51, -1*E(119)^-51, E(119)^-56, E(119)^-28, E(119)^-49, E(119)^49, E(119)^-7, E(119)^42, E(119)^7, E(119)^35, E(119)^-21, E(119)^-35, E(119)^-42, E(119)^56, E(119)^-14, E(119)^21, E(119)^14, E(119)^28, -1*E(119)^56, -1*E(119)^42, -1*E(119)^7, -1*E(119)^-21, -1*E(119)^49, -1*E(119)^14, -1*E(119)^21, -1*E(119)^-42, -1*E(119)^28, -1*E(119)^-56, -1*E(119)^35, -1*E(119)^-28, -1*E(119)^-14, -1*E(119)^-7, -1*E(119)^-35, -1*E(119)^-49, E(119)^20, E(119)^30, E(119)^59, E(119), E(119)^4, E(119)^10, E(119)^-15, E(119)^16, E(119)^24, E(119)^36, E(119)^39, E(119)^-27, E(119)^-55, E(119)^-52, E(119)^-1, E(119)^-4, E(119)^-26, E(119)^13, E(119)^-30, E(119)^-16, E(119)^53, E(119)^-44, E(119)^-23, E(119)^-45, E(119)^-37, E(119)^-9, E(119)^-8, E(119)^-47, E(119)^-19, E(119)^-22, E(119)^46, E(119)^2, E(119)^-48, E(119)^-59, E(119)^57, E(119)^3, E(119)^55, E(119)^6, E(119)^-11, E(119)^25, E(119)^22, E(119)^38, E(119)^-54, E(119)^-29, E(119)^12, E(119)^-58, E(119)^-24, E(119)^-2, E(119)^47, E(119)^27, E(119)^-12, E(119)^-18, E(119)^-41, E(119)^-38, E(119)^50, E(119)^-13, E(119)^-31, E(119)^43, E(119)^-6, E(119)^18, E(119)^26, E(119)^45, E(119)^-33, E(119)^-36, E(119)^31, E(119)^58, E(119)^32, E(119)^5, E(119)^-40, E(119)^23, E(119)^-5, E(119)^-25, E(119)^-43, E(119)^37, E(119)^52, E(119)^-57, E(119)^11, E(119)^-53, E(119)^41, E(119)^-3, E(119)^15, E(119)^-32, E(119)^-10, E(119)^8, E(119)^29, E(119)^44, E(119)^-20, E(119)^-39, E(119)^9, E(119)^48, E(119)^-46, E(119)^19, E(119)^54, E(119)^40, E(119)^33, E(119)^-50, -1*E(119)^11, -1*E(119)^-32, -1*E(119)^39, -1*E(119)^37, -1*E(119)^24, -1*E(119)^-52, -1*E(119)^-4, -1*E(119)^-2, -1*E(119)^-1, -1*E(119)^-41, -1*E(119)^50, -1*E(119)^48, -1*E(119)^-6, -1*E(119)^-9, -1*E(119)^-8, -1*E(119)^-13, -1*E(119)^22, -1*E(119)^55, -1*E(119)^54, -1*E(119)^-5, -1*E(119)^4, -1*E(119)^-39, -1*E(119)^-19, -1*E(119)^-24, -1*E(119)^31, -1*E(119)^58, -1*E(119)^44, -1*E(119)^-37, -1*E(119)^6, -1*E(119)^18, -1*E(119)^-11, -1*E(119)^32, -1*E(119)^-33, -1*E(119)^-36, -1*E(119)^36, -1*E(119)^-48, -1*E(119)^-50, -1*E(119)^29, -1*E(119)^-20, -1*E(119)^-22, -1*E(119)^-23, -1*E(119)^-47, -1*E(119)^46, -1*E(119)^47, -1*E(119)^3, -1*E(119)^-38, -1*E(119)^-16, -1*E(119)^23, -1*E(119)^-57, -1*E(119)^52, -1*E(119)^-45, -1*E(119)^2, -1*E(119)^59, -1*E(119)^-25, -1*E(119)^-27, -1*E(119)^33, -1*E(119)^-46, -1*E(119)^43, -1*E(119)^-55, -1*E(119)^13, -1*E(119)^12, -1*E(119)^38, -1*E(119)^27, -1*E(119)^5, -1*E(119)^57, -1*E(119)^20, -1*E(119)^19, -1*E(119)^30, -1*E(119)^-31, -1*E(119)^45, -1*E(119)^16, -1*E(119)^-59, -1*E(119)^-53, -1*E(119)^-10, -1*E(119)^9, -1*E(119)^40, -1*E(119)^41, -1*E(119)^-58, -1*E(119)^26, -1*E(119)^25, -1*E(119)^-26, -1*E(119)^-44, -1*E(119)^-43, -1*E(119), -1*E(119)^8, -1*E(119)^-29, -1*E(119)^-30, -1*E(119)^15, -1*E(119)^-15, -1*E(119)^-12, -1*E(119)^-54, -1*E(119)^53, -1*E(119)^10, -1*E(119)^-3, -1*E(119)^-40, -1*E(119)^-18, 1], [1, -1, E(119)^-17, E(119)^-51, E(119)^51, E(119)^34, E(119)^17, E(119)^-34, -1*E(119)^-34, -1*E(119)^34, -1*E(119)^17, -1*E(119)^-17, -1*E(119)^-51, -1*E(119)^51, E(119)^-49, E(119)^35, E(119)^-28, E(119)^28, E(119)^-21, E(119)^7, E(119)^21, E(119)^-14, E(119)^56, E(119)^14, E(119)^-7, E(119)^49, E(119)^-42, E(119)^-56, E(119)^42, E(119)^-35, -1*E(119)^49, -1*E(119)^7, -1*E(119)^21, -1*E(119)^56, -1*E(119)^28, -1*E(119)^42, -1*E(119)^-56, -1*E(119)^-7, -1*E(119)^-35, -1*E(119)^-49, -1*E(119)^-14, -1*E(119)^35, -1*E(119)^-42, -1*E(119)^-21, -1*E(119)^14, -1*E(119)^-28, E(119)^43, E(119)^5, E(119)^-10, E(119)^20, E(119)^-39, E(119)^-38, E(119)^57, E(119)^-37, E(119)^4, E(119)^6, E(119)^-53, E(119)^55, E(119)^-29, E(119)^31, E(119)^-20, E(119)^39, E(119)^-44, E(119)^22, E(119)^-5, E(119)^37, E(119)^-11, E(119)^-47, E(119)^16, E(119)^52, E(119)^-26, E(119)^58, E(119)^-41, E(119)^12, E(119)^-23, E(119)^36, E(119)^-32, E(119)^40, E(119)^-8, E(119)^10, E(119)^-50, E(119)^-59, E(119)^29, E(119), E(119)^18, E(119)^24, E(119)^-36, E(119)^46, E(119)^-9, E(119)^15, E(119)^2, E(119)^30, E(119)^-4, E(119)^-40, E(119)^-12, E(119)^-55, E(119)^-2, E(119)^-3, E(119)^13, E(119)^-46, E(119)^48, E(119)^-22, E(119)^-25, E(119)^27, E(119)^-1, E(119)^3, E(119)^44, E(119)^-52, E(119)^54, E(119)^-6, E(119)^25, E(119)^-30, E(119)^45, E(119)^-19, E(119)^33, E(119)^-16, E(119)^19, E(119)^-24, E(119)^-27, E(119)^26, E(119)^-31, E(119)^50, E(119)^-18, E(119)^11, E(119)^-13, E(119)^59, E(119)^-57, E(119)^-45, E(119)^38, E(119)^41, E(119)^-15, E(119)^47, E(119)^-43, E(119)^53, E(119)^-58, E(119)^8, E(119)^32, E(119)^23, E(119)^9, E(119)^-33, E(119)^-54, E(119)^-48, -1*E(119)^-18, -1*E(119)^-45, -1*E(119)^-53, -1*E(119)^26, -1*E(119)^4, -1*E(119)^31, -1*E(119)^39, -1*E(119)^-40, -1*E(119)^-20, -1*E(119)^13, -1*E(119)^48, -1*E(119)^8, -1*E(119)^-1, -1*E(119)^58, -1*E(119)^-41, -1*E(119)^-22, -1*E(119)^-36, -1*E(119)^29, -1*E(119)^9, -1*E(119)^19, -1*E(119)^-39, -1*E(119)^53, -1*E(119)^-23, -1*E(119)^-4, -1*E(119)^25, -1*E(119)^-30, -1*E(119)^47, -1*E(119)^-26, -1*E(119), -1*E(119)^3, -1*E(119)^18, -1*E(119)^45, -1*E(119)^54, -1*E(119)^-6, -1*E(119)^6, -1*E(119)^-8, -1*E(119)^-48, -1*E(119)^-15, -1*E(119)^-43, -1*E(119)^36, -1*E(119)^16, -1*E(119)^12, -1*E(119)^-32, -1*E(119)^-12, -1*E(119)^-59, -1*E(119)^-46, -1*E(119)^37, -1*E(119)^-16, -1*E(119)^50, -1*E(119)^-31, -1*E(119)^52, -1*E(119)^40, -1*E(119)^-10, -1*E(119)^-24, -1*E(119)^55, -1*E(119)^-54, -1*E(119)^32, -1*E(119)^27, -1*E(119)^-29, -1*E(119)^22, -1*E(119)^2, -1*E(119)^46, -1*E(119)^-55, -1*E(119)^-19, -1*E(119)^-50, -1*E(119)^43, -1*E(119)^23, -1*E(119)^5, -1*E(119)^-25, -1*E(119)^-52, -1*E(119)^-37, -1*E(119)^10, -1*E(119)^11, -1*E(119)^38, -1*E(119)^-58, -1*E(119)^-33, -1*E(119)^-13, -1*E(119)^30, -1*E(119)^44, -1*E(119)^24, -1*E(119)^-44, -1*E(119)^-47, -1*E(119)^-27, -1*E(119)^20, -1*E(119)^41, -1*E(119)^15, -1*E(119)^-5, -1*E(119)^-57, -1*E(119)^57, -1*E(119)^-2, -1*E(119)^-9, -1*E(119)^-11, -1*E(119)^-38, -1*E(119)^59, -1*E(119)^33, -1*E(119)^-3, 1], [1, -1, E(119)^17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^-17, E(119)^34, -1*E(119)^34, -1*E(119)^-34, -1*E(119)^-17, -1*E(119)^17, -1*E(119)^51, -1*E(119)^-51, E(119)^49, E(119)^-35, E(119)^28, E(119)^-28, E(119)^21, E(119)^-7, E(119)^-21, E(119)^14, E(119)^-56, E(119)^-14, E(119)^7, E(119)^-49, E(119)^42, E(119)^56, E(119)^-42, E(119)^35, -1*E(119)^-49, -1*E(119)^-7, -1*E(119)^-21, -1*E(119)^-56, -1*E(119)^-28, -1*E(119)^-42, -1*E(119)^56, -1*E(119)^7, -1*E(119)^35, -1*E(119)^49, -1*E(119)^14, -1*E(119)^-35, -1*E(119)^42, -1*E(119)^21, -1*E(119)^-14, -1*E(119)^28, E(119)^-43, E(119)^-5, E(119)^10, E(119)^-20, E(119)^39, E(119)^38, E(119)^-57, E(119)^37, E(119)^-4, E(119)^-6, E(119)^53, E(119)^-55, E(119)^29, E(119)^-31, E(119)^20, E(119)^-39, E(119)^44, E(119)^-22, E(119)^5, E(119)^-37, E(119)^11, E(119)^47, E(119)^-16, E(119)^-52, E(119)^26, E(119)^-58, E(119)^41, E(119)^-12, E(119)^23, E(119)^-36, E(119)^32, E(119)^-40, E(119)^8, E(119)^-10, E(119)^50, E(119)^59, E(119)^-29, E(119)^-1, E(119)^-18, E(119)^-24, E(119)^36, E(119)^-46, E(119)^9, E(119)^-15, E(119)^-2, E(119)^-30, E(119)^4, E(119)^40, E(119)^12, E(119)^55, E(119)^2, E(119)^3, E(119)^-13, E(119)^46, E(119)^-48, E(119)^22, E(119)^25, E(119)^-27, E(119), E(119)^-3, E(119)^-44, E(119)^52, E(119)^-54, E(119)^6, E(119)^-25, E(119)^30, E(119)^-45, E(119)^19, E(119)^-33, E(119)^16, E(119)^-19, E(119)^24, E(119)^27, E(119)^-26, E(119)^31, E(119)^-50, E(119)^18, E(119)^-11, E(119)^13, E(119)^-59, E(119)^57, E(119)^45, E(119)^-38, E(119)^-41, E(119)^15, E(119)^-47, E(119)^43, E(119)^-53, E(119)^58, E(119)^-8, E(119)^-32, E(119)^-23, E(119)^-9, E(119)^33, E(119)^54, E(119)^48, -1*E(119)^18, -1*E(119)^45, -1*E(119)^53, -1*E(119)^-26, -1*E(119)^-4, -1*E(119)^-31, -1*E(119)^-39, -1*E(119)^40, -1*E(119)^20, -1*E(119)^-13, -1*E(119)^-48, -1*E(119)^-8, -1*E(119), -1*E(119)^-58, -1*E(119)^41, -1*E(119)^22, -1*E(119)^36, -1*E(119)^-29, -1*E(119)^-9, -1*E(119)^-19, -1*E(119)^39, -1*E(119)^-53, -1*E(119)^23, -1*E(119)^4, -1*E(119)^-25, -1*E(119)^30, -1*E(119)^-47, -1*E(119)^26, -1*E(119)^-1, -1*E(119)^-3, -1*E(119)^-18, -1*E(119)^-45, -1*E(119)^-54, -1*E(119)^6, -1*E(119)^-6, -1*E(119)^8, -1*E(119)^48, -1*E(119)^15, -1*E(119)^43, -1*E(119)^-36, -1*E(119)^-16, -1*E(119)^-12, -1*E(119)^32, -1*E(119)^12, -1*E(119)^59, -1*E(119)^46, -1*E(119)^-37, -1*E(119)^16, -1*E(119)^-50, -1*E(119)^31, -1*E(119)^-52, -1*E(119)^-40, -1*E(119)^10, -1*E(119)^24, -1*E(119)^-55, -1*E(119)^54, -1*E(119)^-32, -1*E(119)^-27, -1*E(119)^29, -1*E(119)^-22, -1*E(119)^-2, -1*E(119)^-46, -1*E(119)^55, -1*E(119)^19, -1*E(119)^50, -1*E(119)^-43, -1*E(119)^-23, -1*E(119)^-5, -1*E(119)^25, -1*E(119)^52, -1*E(119)^37, -1*E(119)^-10, -1*E(119)^-11, -1*E(119)^-38, -1*E(119)^58, -1*E(119)^33, -1*E(119)^13, -1*E(119)^-30, -1*E(119)^-44, -1*E(119)^-24, -1*E(119)^44, -1*E(119)^47, -1*E(119)^27, -1*E(119)^-20, -1*E(119)^-41, -1*E(119)^-15, -1*E(119)^5, -1*E(119)^57, -1*E(119)^-57, -1*E(119)^2, -1*E(119)^9, -1*E(119)^11, -1*E(119)^38, -1*E(119)^-59, -1*E(119)^-33, -1*E(119)^3, 1], [1, -1, E(119)^-17, E(119)^-51, E(119)^51, E(119)^34, E(119)^17, E(119)^-34, -1*E(119)^-34, -1*E(119)^34, -1*E(119)^17, -1*E(119)^-17, -1*E(119)^-51, -1*E(119)^51, E(119)^49, E(119)^-35, E(119)^28, E(119)^-28, E(119)^21, E(119)^-7, E(119)^-21, E(119)^14, E(119)^-56, E(119)^-14, E(119)^7, E(119)^-49, E(119)^42, E(119)^56, E(119)^-42, E(119)^35, -1*E(119)^-49, -1*E(119)^-7, -1*E(119)^-21, -1*E(119)^-56, -1*E(119)^-28, -1*E(119)^-42, -1*E(119)^56, -1*E(119)^7, -1*E(119)^35, -1*E(119)^49, -1*E(119)^14, -1*E(119)^-35, -1*E(119)^42, -1*E(119)^21, -1*E(119)^-14, -1*E(119)^28, E(119)^8, E(119)^12, E(119)^-24, E(119)^48, E(119)^-46, E(119)^4, E(119)^-6, E(119)^54, E(119)^-38, E(119)^-57, E(119)^-32, E(119)^13, E(119)^-22, E(119)^3, E(119)^-48, E(119)^46, E(119)^-58, E(119)^29, E(119)^-12, E(119)^-54, E(119)^45, E(119)^30, E(119)^-33, E(119)^-18, E(119)^9, E(119)^44, E(119)^-27, E(119)^5, E(119)^40, E(119)^15, E(119)^-53, E(119)^-23, E(119)^-43, E(119)^24, E(119)^-1, E(119)^25, E(119)^22, E(119)^50, E(119)^-52, E(119)^10, E(119)^-15, E(119)^39, E(119)^26, E(119)^36, E(119)^-19, E(119)^-47, E(119)^38, E(119)^23, E(119)^-5, E(119)^-13, E(119)^19, E(119)^-31, E(119)^55, E(119)^-39, E(119)^20, E(119)^-29, E(119)^59, E(119)^41, E(119)^-50, E(119)^31, E(119)^58, E(119)^18, E(119)^-37, E(119)^57, E(119)^-59, E(119)^47, E(119)^-11, E(119)^2, E(119)^-16, E(119)^33, E(119)^-2, E(119)^-10, E(119)^-41, E(119)^-9, E(119)^-3, E(119), E(119)^52, E(119)^-45, E(119)^-55, E(119)^-25, E(119)^6, E(119)^11, E(119)^-4, E(119)^27, E(119)^-36, E(119)^-30, E(119)^-8, E(119)^32, E(119)^-44, E(119)^43, E(119)^53, E(119)^-40, E(119)^-26, E(119)^16, E(119)^37, E(119)^-20, -1*E(119)^52, -1*E(119)^11, -1*E(119)^-32, -1*E(119)^-9, -1*E(119)^-38, -1*E(119)^3, -1*E(119)^46, -1*E(119)^23, -1*E(119)^-48, -1*E(119)^55, -1*E(119)^20, -1*E(119)^43, -1*E(119)^-50, -1*E(119)^44, -1*E(119)^-27, -1*E(119)^-29, -1*E(119)^-15, -1*E(119)^22, -1*E(119)^-26, -1*E(119)^-2, -1*E(119)^-46, -1*E(119)^32, -1*E(119)^40, -1*E(119)^38, -1*E(119)^-59, -1*E(119)^47, -1*E(119)^-30, -1*E(119)^9, -1*E(119)^50, -1*E(119)^31, -1*E(119)^-52, -1*E(119)^-11, -1*E(119)^-37, -1*E(119)^57, -1*E(119)^-57, -1*E(119)^-43, -1*E(119)^-20, -1*E(119)^-36, -1*E(119)^-8, -1*E(119)^15, -1*E(119)^-33, -1*E(119)^5, -1*E(119)^-53, -1*E(119)^-5, -1*E(119)^25, -1*E(119)^-39, -1*E(119)^-54, -1*E(119)^33, -1*E(119), -1*E(119)^-3, -1*E(119)^-18, -1*E(119)^-23, -1*E(119)^-24, -1*E(119)^-10, -1*E(119)^13, -1*E(119)^37, -1*E(119)^53, -1*E(119)^41, -1*E(119)^-22, -1*E(119)^29, -1*E(119)^-19, -1*E(119)^39, -1*E(119)^-13, -1*E(119)^2, -1*E(119)^-1, -1*E(119)^8, -1*E(119)^-40, -1*E(119)^12, -1*E(119)^59, -1*E(119)^18, -1*E(119)^54, -1*E(119)^24, -1*E(119)^-45, -1*E(119)^-4, -1*E(119)^-44, -1*E(119)^16, -1*E(119)^-55, -1*E(119)^-47, -1*E(119)^58, -1*E(119)^10, -1*E(119)^-58, -1*E(119)^30, -1*E(119)^-41, -1*E(119)^48, -1*E(119)^27, -1*E(119)^36, -1*E(119)^-12, -1*E(119)^6, -1*E(119)^-6, -1*E(119)^19, -1*E(119)^26, -1*E(119)^45, -1*E(119)^4, -1*E(119)^-25, -1*E(119)^-16, -1*E(119)^-31, 1], [1, -1, E(119)^17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^-17, E(119)^34, -1*E(119)^34, -1*E(119)^-34, -1*E(119)^-17, -1*E(119)^17, -1*E(119)^51, -1*E(119)^-51, E(119)^-49, E(119)^35, E(119)^-28, E(119)^28, E(119)^-21, E(119)^7, E(119)^21, E(119)^-14, E(119)^56, E(119)^14, E(119)^-7, E(119)^49, E(119)^-42, E(119)^-56, E(119)^42, E(119)^-35, -1*E(119)^49, -1*E(119)^7, -1*E(119)^21, -1*E(119)^56, -1*E(119)^28, -1*E(119)^42, -1*E(119)^-56, -1*E(119)^-7, -1*E(119)^-35, -1*E(119)^-49, -1*E(119)^-14, -1*E(119)^35, -1*E(119)^-42, -1*E(119)^-21, -1*E(119)^14, -1*E(119)^-28, E(119)^-8, E(119)^-12, E(119)^24, E(119)^-48, E(119)^46, E(119)^-4, E(119)^6, E(119)^-54, E(119)^38, E(119)^57, E(119)^32, E(119)^-13, E(119)^22, E(119)^-3, E(119)^48, E(119)^-46, E(119)^58, E(119)^-29, E(119)^12, E(119)^54, E(119)^-45, E(119)^-30, E(119)^33, E(119)^18, E(119)^-9, E(119)^-44, E(119)^27, E(119)^-5, E(119)^-40, E(119)^-15, E(119)^53, E(119)^23, E(119)^43, E(119)^-24, E(119), E(119)^-25, E(119)^-22, E(119)^-50, E(119)^52, E(119)^-10, E(119)^15, E(119)^-39, E(119)^-26, E(119)^-36, E(119)^19, E(119)^47, E(119)^-38, E(119)^-23, E(119)^5, E(119)^13, E(119)^-19, E(119)^31, E(119)^-55, E(119)^39, E(119)^-20, E(119)^29, E(119)^-59, E(119)^-41, E(119)^50, E(119)^-31, E(119)^-58, E(119)^-18, E(119)^37, E(119)^-57, E(119)^59, E(119)^-47, E(119)^11, E(119)^-2, E(119)^16, E(119)^-33, E(119)^2, E(119)^10, E(119)^41, E(119)^9, E(119)^3, E(119)^-1, E(119)^-52, E(119)^45, E(119)^55, E(119)^25, E(119)^-6, E(119)^-11, E(119)^4, E(119)^-27, E(119)^36, E(119)^30, E(119)^8, E(119)^-32, E(119)^44, E(119)^-43, E(119)^-53, E(119)^40, E(119)^26, E(119)^-16, E(119)^-37, E(119)^20, -1*E(119)^-52, -1*E(119)^-11, -1*E(119)^32, -1*E(119)^9, -1*E(119)^38, -1*E(119)^-3, -1*E(119)^-46, -1*E(119)^-23, -1*E(119)^48, -1*E(119)^-55, -1*E(119)^-20, -1*E(119)^-43, -1*E(119)^50, -1*E(119)^-44, -1*E(119)^27, -1*E(119)^29, -1*E(119)^15, -1*E(119)^-22, -1*E(119)^26, -1*E(119)^2, -1*E(119)^46, -1*E(119)^-32, -1*E(119)^-40, -1*E(119)^-38, -1*E(119)^59, -1*E(119)^-47, -1*E(119)^30, -1*E(119)^-9, -1*E(119)^-50, -1*E(119)^-31, -1*E(119)^52, -1*E(119)^11, -1*E(119)^37, -1*E(119)^-57, -1*E(119)^57, -1*E(119)^43, -1*E(119)^20, -1*E(119)^36, -1*E(119)^8, -1*E(119)^-15, -1*E(119)^33, -1*E(119)^-5, -1*E(119)^53, -1*E(119)^5, -1*E(119)^-25, -1*E(119)^39, -1*E(119)^54, -1*E(119)^-33, -1*E(119)^-1, -1*E(119)^3, -1*E(119)^18, -1*E(119)^23, -1*E(119)^24, -1*E(119)^10, -1*E(119)^-13, -1*E(119)^-37, -1*E(119)^-53, -1*E(119)^-41, -1*E(119)^22, -1*E(119)^-29, -1*E(119)^19, -1*E(119)^-39, -1*E(119)^13, -1*E(119)^-2, -1*E(119), -1*E(119)^-8, -1*E(119)^40, -1*E(119)^-12, -1*E(119)^-59, -1*E(119)^-18, -1*E(119)^-54, -1*E(119)^-24, -1*E(119)^45, -1*E(119)^4, -1*E(119)^44, -1*E(119)^-16, -1*E(119)^55, -1*E(119)^47, -1*E(119)^-58, -1*E(119)^-10, -1*E(119)^58, -1*E(119)^-30, -1*E(119)^41, -1*E(119)^-48, -1*E(119)^-27, -1*E(119)^-36, -1*E(119)^12, -1*E(119)^-6, -1*E(119)^6, -1*E(119)^-19, -1*E(119)^-26, -1*E(119)^-45, -1*E(119)^-4, -1*E(119)^25, -1*E(119)^16, -1*E(119)^31, 1], [1, -1, E(119)^-17, E(119)^-51, E(119)^51, E(119)^34, E(119)^17, E(119)^-34, -1*E(119)^-34, -1*E(119)^34, -1*E(119)^17, -1*E(119)^-17, -1*E(119)^-51, -1*E(119)^51, E(119)^-42, E(119)^-21, E(119)^-7, E(119)^7, E(119)^-35, E(119)^-28, E(119)^35, E(119)^56, E(119)^14, E(119)^-56, E(119)^28, E(119)^42, E(119)^49, E(119)^-14, E(119)^-49, E(119)^21, -1*E(119)^42, -1*E(119)^-28, -1*E(119)^35, -1*E(119)^14, -1*E(119)^7, -1*E(119)^-49, -1*E(119)^-14, -1*E(119)^28, -1*E(119)^21, -1*E(119)^-42, -1*E(119)^56, -1*E(119)^-21, -1*E(119)^49, -1*E(119)^-35, -1*E(119)^-56, -1*E(119)^-7, E(119)^15, E(119)^-37, E(119)^-45, E(119)^-29, E(119)^3, E(119)^-52, E(119)^-41, E(119)^12, E(119)^18, E(119)^27, E(119)^59, E(119)^-50, E(119)^48, E(119)^-39, E(119)^29, E(119)^-3, E(119)^40, E(119)^-20, E(119)^37, E(119)^-12, E(119)^10, E(119)^-33, E(119)^-47, E(119)^-4, E(119)^2, E(119)^23, E(119)^-6, E(119)^54, E(119)^-44, E(119)^43, E(119)^-25, E(119)^-58, E(119)^-36, E(119)^45, E(119)^13, E(119)^32, E(119)^-48, E(119)^-55, E(119)^-38, E(119)^-11, E(119)^-43, E(119)^-31, E(119)^19, E(119)^8, E(119)^9, E(119)^16, E(119)^-18, E(119)^58, E(119)^-54, E(119)^50, E(119)^-9, E(119)^46, E(119)^-1, E(119)^31, E(119)^-22, E(119)^20, E(119)^-53, E(119)^-57, E(119)^55, E(119)^-46, E(119)^-40, E(119)^4, E(119)^5, E(119)^-27, E(119)^53, E(119)^-16, E(119)^24, E(119)^-26, E(119)^-30, E(119)^47, E(119)^26, E(119)^11, E(119)^57, E(119)^-2, E(119)^39, E(119)^-13, E(119)^38, E(119)^-10, E(119), E(119)^-32, E(119)^41, E(119)^-24, E(119)^52, E(119)^6, E(119)^-8, E(119)^33, E(119)^-15, E(119)^-59, E(119)^-23, E(119)^36, E(119)^25, E(119)^44, E(119)^-19, E(119)^30, E(119)^-5, E(119)^22, -1*E(119)^38, -1*E(119)^-24, -1*E(119)^59, -1*E(119)^-2, -1*E(119)^18, -1*E(119)^-39, -1*E(119)^-3, -1*E(119)^58, -1*E(119)^29, -1*E(119)^-1, -1*E(119)^-22, -1*E(119)^36, -1*E(119)^55, -1*E(119)^23, -1*E(119)^-6, -1*E(119)^20, -1*E(119)^-43, -1*E(119)^-48, -1*E(119)^-19, -1*E(119)^26, -1*E(119)^3, -1*E(119)^-59, -1*E(119)^-44, -1*E(119)^-18, -1*E(119)^53, -1*E(119)^-16, -1*E(119)^33, -1*E(119)^2, -1*E(119)^-55, -1*E(119)^-46, -1*E(119)^-38, -1*E(119)^24, -1*E(119)^5, -1*E(119)^-27, -1*E(119)^27, -1*E(119)^-36, -1*E(119)^22, -1*E(119)^-8, -1*E(119)^-15, -1*E(119)^43, -1*E(119)^-47, -1*E(119)^54, -1*E(119)^-25, -1*E(119)^-54, -1*E(119)^32, -1*E(119)^31, -1*E(119)^-12, -1*E(119)^47, -1*E(119)^-13, -1*E(119)^39, -1*E(119)^-4, -1*E(119)^-58, -1*E(119)^-45, -1*E(119)^11, -1*E(119)^-50, -1*E(119)^-5, -1*E(119)^25, -1*E(119)^-57, -1*E(119)^48, -1*E(119)^-20, -1*E(119)^9, -1*E(119)^-31, -1*E(119)^50, -1*E(119)^-26, -1*E(119)^13, -1*E(119)^15, -1*E(119)^44, -1*E(119)^-37, -1*E(119)^-53, -1*E(119)^4, -1*E(119)^12, -1*E(119)^45, -1*E(119)^-10, -1*E(119)^52, -1*E(119)^-23, -1*E(119)^30, -1*E(119), -1*E(119)^16, -1*E(119)^-40, -1*E(119)^-11, -1*E(119)^40, -1*E(119)^-33, -1*E(119)^57, -1*E(119)^-29, -1*E(119)^6, -1*E(119)^8, -1*E(119)^37, -1*E(119)^41, -1*E(119)^-41, -1*E(119)^-9, -1*E(119)^19, -1*E(119)^10, -1*E(119)^-52, -1*E(119)^-32, -1*E(119)^-30, -1*E(119)^46, 1], [1, -1, E(119)^17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^-17, E(119)^34, -1*E(119)^34, -1*E(119)^-34, -1*E(119)^-17, -1*E(119)^17, -1*E(119)^51, -1*E(119)^-51, E(119)^42, E(119)^21, E(119)^7, E(119)^-7, E(119)^35, E(119)^28, E(119)^-35, E(119)^-56, E(119)^-14, E(119)^56, E(119)^-28, E(119)^-42, E(119)^-49, E(119)^14, E(119)^49, E(119)^-21, -1*E(119)^-42, -1*E(119)^28, -1*E(119)^-35, -1*E(119)^-14, -1*E(119)^-7, -1*E(119)^49, -1*E(119)^14, -1*E(119)^-28, -1*E(119)^-21, -1*E(119)^42, -1*E(119)^-56, -1*E(119)^21, -1*E(119)^-49, -1*E(119)^35, -1*E(119)^56, -1*E(119)^7, E(119)^-15, E(119)^37, E(119)^45, E(119)^29, E(119)^-3, E(119)^52, E(119)^41, E(119)^-12, E(119)^-18, E(119)^-27, E(119)^-59, E(119)^50, E(119)^-48, E(119)^39, E(119)^-29, E(119)^3, E(119)^-40, E(119)^20, E(119)^-37, E(119)^12, E(119)^-10, E(119)^33, E(119)^47, E(119)^4, E(119)^-2, E(119)^-23, E(119)^6, E(119)^-54, E(119)^44, E(119)^-43, E(119)^25, E(119)^58, E(119)^36, E(119)^-45, E(119)^-13, E(119)^-32, E(119)^48, E(119)^55, E(119)^38, E(119)^11, E(119)^43, E(119)^31, E(119)^-19, E(119)^-8, E(119)^-9, E(119)^-16, E(119)^18, E(119)^-58, E(119)^54, E(119)^-50, E(119)^9, E(119)^-46, E(119), E(119)^-31, E(119)^22, E(119)^-20, E(119)^53, E(119)^57, E(119)^-55, E(119)^46, E(119)^40, E(119)^-4, E(119)^-5, E(119)^27, E(119)^-53, E(119)^16, E(119)^-24, E(119)^26, E(119)^30, E(119)^-47, E(119)^-26, E(119)^-11, E(119)^-57, E(119)^2, E(119)^-39, E(119)^13, E(119)^-38, E(119)^10, E(119)^-1, E(119)^32, E(119)^-41, E(119)^24, E(119)^-52, E(119)^-6, E(119)^8, E(119)^-33, E(119)^15, E(119)^59, E(119)^23, E(119)^-36, E(119)^-25, E(119)^-44, E(119)^19, E(119)^-30, E(119)^5, E(119)^-22, -1*E(119)^-38, -1*E(119)^24, -1*E(119)^-59, -1*E(119)^2, -1*E(119)^-18, -1*E(119)^39, -1*E(119)^3, -1*E(119)^-58, -1*E(119)^-29, -1*E(119), -1*E(119)^22, -1*E(119)^-36, -1*E(119)^-55, -1*E(119)^-23, -1*E(119)^6, -1*E(119)^-20, -1*E(119)^43, -1*E(119)^48, -1*E(119)^19, -1*E(119)^-26, -1*E(119)^-3, -1*E(119)^59, -1*E(119)^44, -1*E(119)^18, -1*E(119)^-53, -1*E(119)^16, -1*E(119)^-33, -1*E(119)^-2, -1*E(119)^55, -1*E(119)^46, -1*E(119)^38, -1*E(119)^-24, -1*E(119)^-5, -1*E(119)^27, -1*E(119)^-27, -1*E(119)^36, -1*E(119)^-22, -1*E(119)^8, -1*E(119)^15, -1*E(119)^-43, -1*E(119)^47, -1*E(119)^-54, -1*E(119)^25, -1*E(119)^54, -1*E(119)^-32, -1*E(119)^-31, -1*E(119)^12, -1*E(119)^-47, -1*E(119)^13, -1*E(119)^-39, -1*E(119)^4, -1*E(119)^58, -1*E(119)^45, -1*E(119)^-11, -1*E(119)^50, -1*E(119)^5, -1*E(119)^-25, -1*E(119)^57, -1*E(119)^-48, -1*E(119)^20, -1*E(119)^-9, -1*E(119)^31, -1*E(119)^-50, -1*E(119)^26, -1*E(119)^-13, -1*E(119)^-15, -1*E(119)^-44, -1*E(119)^37, -1*E(119)^53, -1*E(119)^-4, -1*E(119)^-12, -1*E(119)^-45, -1*E(119)^10, -1*E(119)^-52, -1*E(119)^23, -1*E(119)^-30, -1*E(119)^-1, -1*E(119)^-16, -1*E(119)^40, -1*E(119)^11, -1*E(119)^-40, -1*E(119)^33, -1*E(119)^-57, -1*E(119)^29, -1*E(119)^-6, -1*E(119)^-8, -1*E(119)^-37, -1*E(119)^-41, -1*E(119)^41, -1*E(119)^9, -1*E(119)^-19, -1*E(119)^-10, -1*E(119)^52, -1*E(119)^32, -1*E(119)^30, -1*E(119)^-46, 1], [1, -1, E(119)^-17, E(119)^-51, E(119)^51, E(119)^34, E(119)^17, E(119)^-34, -1*E(119)^-34, -1*E(119)^34, -1*E(119)^17, -1*E(119)^-17, -1*E(119)^-51, -1*E(119)^51, E(119)^42, E(119)^21, E(119)^7, E(119)^-7, E(119)^35, E(119)^28, E(119)^-35, E(119)^-56, E(119)^-14, E(119)^56, E(119)^-28, E(119)^-42, E(119)^-49, E(119)^14, E(119)^49, E(119)^-21, -1*E(119)^-42, -1*E(119)^28, -1*E(119)^-35, -1*E(119)^-14, -1*E(119)^-7, -1*E(119)^49, -1*E(119)^14, -1*E(119)^-28, -1*E(119)^-21, -1*E(119)^42, -1*E(119)^-56, -1*E(119)^21, -1*E(119)^-49, -1*E(119)^35, -1*E(119)^56, -1*E(119)^7, E(119)^36, E(119)^54, E(119)^11, E(119)^-22, E(119)^31, E(119)^18, E(119)^-27, E(119)^5, E(119)^-52, E(119)^41, E(119)^-25, E(119)^-1, E(119)^20, E(119)^-46, E(119)^22, E(119)^-31, E(119)^-23, E(119)^-48, E(119)^-54, E(119)^-5, E(119)^24, E(119)^16, E(119)^30, E(119)^38, E(119)^-19, E(119)^-40, E(119)^57, E(119)^-37, E(119)^-58, E(119)^8, E(119)^59, E(119)^-44, E(119)^-15, E(119)^-11, E(119)^55, E(119)^53, E(119)^-20, E(119)^-13, E(119)^4, E(119)^45, E(119)^-8, E(119)^-3, E(119)^-2, E(119)^43, E(119)^-26, E(119)^-33, E(119)^52, E(119)^44, E(119)^37, E(119), E(119)^26, E(119)^39, E(119)^-50, E(119)^3, E(119)^-29, E(119)^48, E(119)^-32, E(119)^6, E(119)^13, E(119)^-39, E(119)^23, E(119)^-38, E(119)^12, E(119)^-41, E(119)^32, E(119)^33, E(119)^10, E(119)^9, E(119)^47, E(119)^-30, E(119)^-9, E(119)^-45, E(119)^-6, E(119)^19, E(119)^46, E(119)^-55, E(119)^-4, E(119)^-24, E(119)^50, E(119)^-53, E(119)^27, E(119)^-10, E(119)^-18, E(119)^-57, E(119)^-43, E(119)^-16, E(119)^-36, E(119)^25, E(119)^40, E(119)^15, E(119)^-59, E(119)^58, E(119)^2, E(119)^-47, E(119)^-12, E(119)^29, -1*E(119)^-4, -1*E(119)^-10, -1*E(119)^-25, -1*E(119)^19, -1*E(119)^-52, -1*E(119)^-46, -1*E(119)^-31, -1*E(119)^44, -1*E(119)^22, -1*E(119)^-50, -1*E(119)^-29, -1*E(119)^15, -1*E(119)^13, -1*E(119)^-40, -1*E(119)^57, -1*E(119)^48, -1*E(119)^-8, -1*E(119)^-20, -1*E(119)^2, -1*E(119)^-9, -1*E(119)^31, -1*E(119)^25, -1*E(119)^-58, -1*E(119)^52, -1*E(119)^32, -1*E(119)^33, -1*E(119)^-16, -1*E(119)^-19, -1*E(119)^-13, -1*E(119)^-39, -1*E(119)^4, -1*E(119)^10, -1*E(119)^12, -1*E(119)^-41, -1*E(119)^41, -1*E(119)^-15, -1*E(119)^29, -1*E(119)^-43, -1*E(119)^-36, -1*E(119)^8, -1*E(119)^30, -1*E(119)^-37, -1*E(119)^59, -1*E(119)^37, -1*E(119)^53, -1*E(119)^3, -1*E(119)^-5, -1*E(119)^-30, -1*E(119)^-55, -1*E(119)^46, -1*E(119)^38, -1*E(119)^-44, -1*E(119)^11, -1*E(119)^-45, -1*E(119)^-1, -1*E(119)^-12, -1*E(119)^-59, -1*E(119)^6, -1*E(119)^20, -1*E(119)^-48, -1*E(119)^-26, -1*E(119)^-3, -1*E(119), -1*E(119)^9, -1*E(119)^55, -1*E(119)^36, -1*E(119)^58, -1*E(119)^54, -1*E(119)^-32, -1*E(119)^-38, -1*E(119)^5, -1*E(119)^-11, -1*E(119)^-24, -1*E(119)^-18, -1*E(119)^40, -1*E(119)^-47, -1*E(119)^50, -1*E(119)^-33, -1*E(119)^23, -1*E(119)^45, -1*E(119)^-23, -1*E(119)^16, -1*E(119)^-6, -1*E(119)^-22, -1*E(119)^-57, -1*E(119)^43, -1*E(119)^-54, -1*E(119)^27, -1*E(119)^-27, -1*E(119)^26, -1*E(119)^-2, -1*E(119)^24, -1*E(119)^18, -1*E(119)^-53, -1*E(119)^47, -1*E(119)^39, 1], [1, -1, E(119)^17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^-17, E(119)^34, -1*E(119)^34, -1*E(119)^-34, -1*E(119)^-17, -1*E(119)^17, -1*E(119)^51, -1*E(119)^-51, E(119)^-42, E(119)^-21, E(119)^-7, E(119)^7, E(119)^-35, E(119)^-28, E(119)^35, E(119)^56, E(119)^14, E(119)^-56, E(119)^28, E(119)^42, E(119)^49, E(119)^-14, E(119)^-49, E(119)^21, -1*E(119)^42, -1*E(119)^-28, -1*E(119)^35, -1*E(119)^14, -1*E(119)^7, -1*E(119)^-49, -1*E(119)^-14, -1*E(119)^28, -1*E(119)^21, -1*E(119)^-42, -1*E(119)^56, -1*E(119)^-21, -1*E(119)^49, -1*E(119)^-35, -1*E(119)^-56, -1*E(119)^-7, E(119)^-36, E(119)^-54, E(119)^-11, E(119)^22, E(119)^-31, E(119)^-18, E(119)^27, E(119)^-5, E(119)^52, E(119)^-41, E(119)^25, E(119), E(119)^-20, E(119)^46, E(119)^-22, E(119)^31, E(119)^23, E(119)^48, E(119)^54, E(119)^5, E(119)^-24, E(119)^-16, E(119)^-30, E(119)^-38, E(119)^19, E(119)^40, E(119)^-57, E(119)^37, E(119)^58, E(119)^-8, E(119)^-59, E(119)^44, E(119)^15, E(119)^11, E(119)^-55, E(119)^-53, E(119)^20, E(119)^13, E(119)^-4, E(119)^-45, E(119)^8, E(119)^3, E(119)^2, E(119)^-43, E(119)^26, E(119)^33, E(119)^-52, E(119)^-44, E(119)^-37, E(119)^-1, E(119)^-26, E(119)^-39, E(119)^50, E(119)^-3, E(119)^29, E(119)^-48, E(119)^32, E(119)^-6, E(119)^-13, E(119)^39, E(119)^-23, E(119)^38, E(119)^-12, E(119)^41, E(119)^-32, E(119)^-33, E(119)^-10, E(119)^-9, E(119)^-47, E(119)^30, E(119)^9, E(119)^45, E(119)^6, E(119)^-19, E(119)^-46, E(119)^55, E(119)^4, E(119)^24, E(119)^-50, E(119)^53, E(119)^-27, E(119)^10, E(119)^18, E(119)^57, E(119)^43, E(119)^16, E(119)^36, E(119)^-25, E(119)^-40, E(119)^-15, E(119)^59, E(119)^-58, E(119)^-2, E(119)^47, E(119)^12, E(119)^-29, -1*E(119)^4, -1*E(119)^10, -1*E(119)^25, -1*E(119)^-19, -1*E(119)^52, -1*E(119)^46, -1*E(119)^31, -1*E(119)^-44, -1*E(119)^-22, -1*E(119)^50, -1*E(119)^29, -1*E(119)^-15, -1*E(119)^-13, -1*E(119)^40, -1*E(119)^-57, -1*E(119)^-48, -1*E(119)^8, -1*E(119)^20, -1*E(119)^-2, -1*E(119)^9, -1*E(119)^-31, -1*E(119)^-25, -1*E(119)^58, -1*E(119)^-52, -1*E(119)^-32, -1*E(119)^-33, -1*E(119)^16, -1*E(119)^19, -1*E(119)^13, -1*E(119)^39, -1*E(119)^-4, -1*E(119)^-10, -1*E(119)^-12, -1*E(119)^41, -1*E(119)^-41, -1*E(119)^15, -1*E(119)^-29, -1*E(119)^43, -1*E(119)^36, -1*E(119)^-8, -1*E(119)^-30, -1*E(119)^37, -1*E(119)^-59, -1*E(119)^-37, -1*E(119)^-53, -1*E(119)^-3, -1*E(119)^5, -1*E(119)^30, -1*E(119)^55, -1*E(119)^-46, -1*E(119)^-38, -1*E(119)^44, -1*E(119)^-11, -1*E(119)^45, -1*E(119), -1*E(119)^12, -1*E(119)^59, -1*E(119)^-6, -1*E(119)^-20, -1*E(119)^48, -1*E(119)^26, -1*E(119)^3, -1*E(119)^-1, -1*E(119)^-9, -1*E(119)^-55, -1*E(119)^-36, -1*E(119)^-58, -1*E(119)^-54, -1*E(119)^32, -1*E(119)^38, -1*E(119)^-5, -1*E(119)^11, -1*E(119)^24, -1*E(119)^18, -1*E(119)^-40, -1*E(119)^47, -1*E(119)^-50, -1*E(119)^33, -1*E(119)^-23, -1*E(119)^-45, -1*E(119)^23, -1*E(119)^-16, -1*E(119)^6, -1*E(119)^22, -1*E(119)^57, -1*E(119)^-43, -1*E(119)^54, -1*E(119)^-27, -1*E(119)^27, -1*E(119)^-26, -1*E(119)^2, -1*E(119)^-24, -1*E(119)^-18, -1*E(119)^53, -1*E(119)^-47, -1*E(119)^-39, 1], [1, -1, E(119)^-17, E(119)^-51, E(119)^51, E(119)^34, E(119)^17, E(119)^-34, -1*E(119)^-34, -1*E(119)^34, -1*E(119)^17, -1*E(119)^-17, -1*E(119)^-51, -1*E(119)^51, E(119)^-35, E(119)^42, E(119)^14, E(119)^-14, E(119)^-49, E(119)^56, E(119)^49, E(119)^7, E(119)^-28, E(119)^-7, E(119)^-56, E(119)^35, E(119)^21, E(119)^28, E(119)^-21, E(119)^-42, -1*E(119)^35, -1*E(119)^56, -1*E(119)^49, -1*E(119)^-28, -1*E(119)^-14, -1*E(119)^-21, -1*E(119)^28, -1*E(119)^-56, -1*E(119)^-42, -1*E(119)^-35, -1*E(119)^7, -1*E(119)^42, -1*E(119)^21, -1*E(119)^-49, -1*E(119)^-7, -1*E(119)^14, E(119)^-13, E(119)^40, E(119)^39, E(119)^41, E(119)^45, E(119)^53, E(119)^-20, E(119)^-58, E(119)^32, E(119)^48, E(119)^52, E(119)^-36, E(119)^6, E(119)^10, E(119)^-41, E(119)^-45, E(119)^5, E(119)^57, E(119)^-40, E(119)^58, E(119)^31, E(119)^-19, E(119)^9, E(119)^59, E(119)^30, E(119)^-12, E(119)^29, E(119)^-23, E(119)^54, E(119)^50, E(119)^-18, E(119)^-37, E(119)^55, E(119)^-39, E(119)^-43, E(119)^4, E(119)^-6, E(119)^8, E(119)^25, E(119)^-46, E(119)^-50, E(119)^11, E(119)^47, E(119), E(119)^16, E(119)^2, E(119)^-32, E(119)^37, E(119)^23, E(119)^36, E(119)^-16, E(119)^-24, E(119)^-15, E(119)^-11, E(119)^27, E(119)^-57, E(119)^38, E(119)^-22, E(119)^-8, E(119)^24, E(119)^-5, E(119)^-59, E(119)^-44, E(119)^-48, E(119)^-38, E(119)^-2, E(119)^3, E(119)^-33, E(119)^26, E(119)^-9, E(119)^33, E(119)^46, E(119)^22, E(119)^-30, E(119)^-10, E(119)^43, E(119)^-25, E(119)^-31, E(119)^15, E(119)^-4, E(119)^20, E(119)^-3, E(119)^-53, E(119)^-29, E(119)^-1, E(119)^19, E(119)^13, E(119)^-52, E(119)^12, E(119)^-55, E(119)^18, E(119)^-54, E(119)^-47, E(119)^-26, E(119)^44, E(119)^-27, -1*E(119)^-25, -1*E(119)^-3, -1*E(119)^52, -1*E(119)^-30, -1*E(119)^32, -1*E(119)^10, -1*E(119)^-45, -1*E(119)^37, -1*E(119)^-41, -1*E(119)^-15, -1*E(119)^27, -1*E(119)^-55, -1*E(119)^-8, -1*E(119)^-12, -1*E(119)^29, -1*E(119)^-57, -1*E(119)^-50, -1*E(119)^-6, -1*E(119)^-47, -1*E(119)^33, -1*E(119)^45, -1*E(119)^-52, -1*E(119)^54, -1*E(119)^-32, -1*E(119)^-38, -1*E(119)^-2, -1*E(119)^19, -1*E(119)^30, -1*E(119)^8, -1*E(119)^24, -1*E(119)^25, -1*E(119)^3, -1*E(119)^-44, -1*E(119)^-48, -1*E(119)^48, -1*E(119)^55, -1*E(119)^-27, -1*E(119)^-1, -1*E(119)^13, -1*E(119)^50, -1*E(119)^9, -1*E(119)^-23, -1*E(119)^-18, -1*E(119)^23, -1*E(119)^4, -1*E(119)^-11, -1*E(119)^58, -1*E(119)^-9, -1*E(119)^43, -1*E(119)^-10, -1*E(119)^59, -1*E(119)^-37, -1*E(119)^39, -1*E(119)^46, -1*E(119)^-36, -1*E(119)^44, -1*E(119)^18, -1*E(119)^-22, -1*E(119)^6, -1*E(119)^57, -1*E(119)^16, -1*E(119)^11, -1*E(119)^36, -1*E(119)^-33, -1*E(119)^-43, -1*E(119)^-13, -1*E(119)^-54, -1*E(119)^40, -1*E(119)^38, -1*E(119)^-59, -1*E(119)^-58, -1*E(119)^-39, -1*E(119)^-31, -1*E(119)^-53, -1*E(119)^12, -1*E(119)^-26, -1*E(119)^15, -1*E(119)^2, -1*E(119)^-5, -1*E(119)^-46, -1*E(119)^5, -1*E(119)^-19, -1*E(119)^22, -1*E(119)^41, -1*E(119)^-29, -1*E(119), -1*E(119)^-40, -1*E(119)^20, -1*E(119)^-20, -1*E(119)^-16, -1*E(119)^47, -1*E(119)^31, -1*E(119)^53, -1*E(119)^-4, -1*E(119)^26, -1*E(119)^-24, 1], [1, -1, E(119)^17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^-17, E(119)^34, -1*E(119)^34, -1*E(119)^-34, -1*E(119)^-17, -1*E(119)^17, -1*E(119)^51, -1*E(119)^-51, E(119)^35, E(119)^-42, E(119)^-14, E(119)^14, E(119)^49, E(119)^-56, E(119)^-49, E(119)^-7, E(119)^28, E(119)^7, E(119)^56, E(119)^-35, E(119)^-21, E(119)^-28, E(119)^21, E(119)^42, -1*E(119)^-35, -1*E(119)^-56, -1*E(119)^-49, -1*E(119)^28, -1*E(119)^14, -1*E(119)^21, -1*E(119)^-28, -1*E(119)^56, -1*E(119)^42, -1*E(119)^35, -1*E(119)^-7, -1*E(119)^-42, -1*E(119)^-21, -1*E(119)^49, -1*E(119)^7, -1*E(119)^-14, E(119)^13, E(119)^-40, E(119)^-39, E(119)^-41, E(119)^-45, E(119)^-53, E(119)^20, E(119)^58, E(119)^-32, E(119)^-48, E(119)^-52, E(119)^36, E(119)^-6, E(119)^-10, E(119)^41, E(119)^45, E(119)^-5, E(119)^-57, E(119)^40, E(119)^-58, E(119)^-31, E(119)^19, E(119)^-9, E(119)^-59, E(119)^-30, E(119)^12, E(119)^-29, E(119)^23, E(119)^-54, E(119)^-50, E(119)^18, E(119)^37, E(119)^-55, E(119)^39, E(119)^43, E(119)^-4, E(119)^6, E(119)^-8, E(119)^-25, E(119)^46, E(119)^50, E(119)^-11, E(119)^-47, E(119)^-1, E(119)^-16, E(119)^-2, E(119)^32, E(119)^-37, E(119)^-23, E(119)^-36, E(119)^16, E(119)^24, E(119)^15, E(119)^11, E(119)^-27, E(119)^57, E(119)^-38, E(119)^22, E(119)^8, E(119)^-24, E(119)^5, E(119)^59, E(119)^44, E(119)^48, E(119)^38, E(119)^2, E(119)^-3, E(119)^33, E(119)^-26, E(119)^9, E(119)^-33, E(119)^-46, E(119)^-22, E(119)^30, E(119)^10, E(119)^-43, E(119)^25, E(119)^31, E(119)^-15, E(119)^4, E(119)^-20, E(119)^3, E(119)^53, E(119)^29, E(119), E(119)^-19, E(119)^-13, E(119)^52, E(119)^-12, E(119)^55, E(119)^-18, E(119)^54, E(119)^47, E(119)^26, E(119)^-44, E(119)^27, -1*E(119)^25, -1*E(119)^3, -1*E(119)^-52, -1*E(119)^30, -1*E(119)^-32, -1*E(119)^-10, -1*E(119)^45, -1*E(119)^-37, -1*E(119)^41, -1*E(119)^15, -1*E(119)^-27, -1*E(119)^55, -1*E(119)^8, -1*E(119)^12, -1*E(119)^-29, -1*E(119)^57, -1*E(119)^50, -1*E(119)^6, -1*E(119)^47, -1*E(119)^-33, -1*E(119)^-45, -1*E(119)^52, -1*E(119)^-54, -1*E(119)^32, -1*E(119)^38, -1*E(119)^2, -1*E(119)^-19, -1*E(119)^-30, -1*E(119)^-8, -1*E(119)^-24, -1*E(119)^-25, -1*E(119)^-3, -1*E(119)^44, -1*E(119)^48, -1*E(119)^-48, -1*E(119)^-55, -1*E(119)^27, -1*E(119), -1*E(119)^-13, -1*E(119)^-50, -1*E(119)^-9, -1*E(119)^23, -1*E(119)^18, -1*E(119)^-23, -1*E(119)^-4, -1*E(119)^11, -1*E(119)^-58, -1*E(119)^9, -1*E(119)^-43, -1*E(119)^10, -1*E(119)^-59, -1*E(119)^37, -1*E(119)^-39, -1*E(119)^-46, -1*E(119)^36, -1*E(119)^-44, -1*E(119)^-18, -1*E(119)^22, -1*E(119)^-6, -1*E(119)^-57, -1*E(119)^-16, -1*E(119)^-11, -1*E(119)^-36, -1*E(119)^33, -1*E(119)^43, -1*E(119)^13, -1*E(119)^54, -1*E(119)^-40, -1*E(119)^-38, -1*E(119)^59, -1*E(119)^58, -1*E(119)^39, -1*E(119)^31, -1*E(119)^53, -1*E(119)^-12, -1*E(119)^26, -1*E(119)^-15, -1*E(119)^-2, -1*E(119)^5, -1*E(119)^46, -1*E(119)^-5, -1*E(119)^19, -1*E(119)^-22, -1*E(119)^-41, -1*E(119)^29, -1*E(119)^-1, -1*E(119)^40, -1*E(119)^-20, -1*E(119)^20, -1*E(119)^16, -1*E(119)^-47, -1*E(119)^-31, -1*E(119)^-53, -1*E(119)^4, -1*E(119)^-26, -1*E(119)^24, 1], [1, -1, E(119)^-17, E(119)^-51, E(119)^51, E(119)^34, E(119)^17, E(119)^-34, -1*E(119)^-34, -1*E(119)^34, -1*E(119)^17, -1*E(119)^-17, -1*E(119)^-51, -1*E(119)^51, E(119)^35, E(119)^-42, E(119)^-14, E(119)^14, E(119)^49, E(119)^-56, E(119)^-49, E(119)^-7, E(119)^28, E(119)^7, E(119)^56, E(119)^-35, E(119)^-21, E(119)^-28, E(119)^21, E(119)^42, -1*E(119)^-35, -1*E(119)^-56, -1*E(119)^-49, -1*E(119)^28, -1*E(119)^14, -1*E(119)^21, -1*E(119)^-28, -1*E(119)^56, -1*E(119)^42, -1*E(119)^35, -1*E(119)^-7, -1*E(119)^-42, -1*E(119)^-21, -1*E(119)^49, -1*E(119)^7, -1*E(119)^-14, E(119)^-55, E(119)^-23, E(119)^46, E(119)^27, E(119)^-11, E(119)^32, E(119)^-48, E(119)^-44, E(119)^53, E(119)^20, E(119)^-18, E(119)^-15, E(119)^-57, E(119)^24, E(119)^-27, E(119)^11, E(119)^12, E(119)^-6, E(119)^23, E(119)^44, E(119)^3, E(119)^2, E(119)^-26, E(119)^-25, E(119)^-47, E(119)^-5, E(119)^22, E(119)^40, E(119)^-37, E(119), E(119)^52, E(119)^54, E(119)^13, E(119)^-46, E(119)^-8, E(119)^-38, E(119)^57, E(119)^43, E(119)^-59, E(119)^-39, E(119)^-1, E(119)^-45, E(119)^-30, E(119)^50, E(119)^-33, E(119)^-19, E(119)^-53, E(119)^-54, E(119)^-40, E(119)^15, E(119)^33, E(119)^-10, E(119)^-36, E(119)^45, E(119)^41, E(119)^6, E(119)^-4, E(119)^-29, E(119)^-43, E(119)^10, E(119)^-12, E(119)^25, E(119)^-58, E(119)^-20, E(119)^4, E(119)^19, E(119)^31, E(119)^16, E(119)^-9, E(119)^26, E(119)^-16, E(119)^39, E(119)^29, E(119)^47, E(119)^-24, E(119)^8, E(119)^59, E(119)^-3, E(119)^36, E(119)^38, E(119)^48, E(119)^-31, E(119)^-32, E(119)^-22, E(119)^-50, E(119)^-2, E(119)^55, E(119)^18, E(119)^5, E(119)^-13, E(119)^-52, E(119)^37, E(119)^30, E(119)^9, E(119)^58, E(119)^-41, -1*E(119)^59, -1*E(119)^-31, -1*E(119)^-18, -1*E(119)^47, -1*E(119)^53, -1*E(119)^24, -1*E(119)^11, -1*E(119)^-54, -1*E(119)^-27, -1*E(119)^-36, -1*E(119)^41, -1*E(119)^-13, -1*E(119)^-43, -1*E(119)^-5, -1*E(119)^22, -1*E(119)^6, -1*E(119)^-1, -1*E(119)^57, -1*E(119)^30, -1*E(119)^-16, -1*E(119)^-11, -1*E(119)^18, -1*E(119)^-37, -1*E(119)^-53, -1*E(119)^4, -1*E(119)^19, -1*E(119)^-2, -1*E(119)^-47, -1*E(119)^43, -1*E(119)^10, -1*E(119)^-59, -1*E(119)^31, -1*E(119)^-58, -1*E(119)^-20, -1*E(119)^20, -1*E(119)^13, -1*E(119)^-41, -1*E(119)^-50, -1*E(119)^55, -1*E(119), -1*E(119)^-26, -1*E(119)^40, -1*E(119)^52, -1*E(119)^-40, -1*E(119)^-38, -1*E(119)^45, -1*E(119)^44, -1*E(119)^26, -1*E(119)^8, -1*E(119)^-24, -1*E(119)^-25, -1*E(119)^54, -1*E(119)^46, -1*E(119)^39, -1*E(119)^-15, -1*E(119)^58, -1*E(119)^-52, -1*E(119)^-29, -1*E(119)^-57, -1*E(119)^-6, -1*E(119)^-33, -1*E(119)^-45, -1*E(119)^15, -1*E(119)^16, -1*E(119)^-8, -1*E(119)^-55, -1*E(119)^37, -1*E(119)^-23, -1*E(119)^-4, -1*E(119)^25, -1*E(119)^-44, -1*E(119)^-46, -1*E(119)^-3, -1*E(119)^-32, -1*E(119)^5, -1*E(119)^9, -1*E(119)^36, -1*E(119)^-19, -1*E(119)^-12, -1*E(119)^-39, -1*E(119)^12, -1*E(119)^2, -1*E(119)^29, -1*E(119)^27, -1*E(119)^-22, -1*E(119)^50, -1*E(119)^23, -1*E(119)^48, -1*E(119)^-48, -1*E(119)^33, -1*E(119)^-30, -1*E(119)^3, -1*E(119)^32, -1*E(119)^38, -1*E(119)^-9, -1*E(119)^-10, 1], [1, -1, E(119)^17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^-17, E(119)^34, -1*E(119)^34, -1*E(119)^-34, -1*E(119)^-17, -1*E(119)^17, -1*E(119)^51, -1*E(119)^-51, E(119)^-35, E(119)^42, E(119)^14, E(119)^-14, E(119)^-49, E(119)^56, E(119)^49, E(119)^7, E(119)^-28, E(119)^-7, E(119)^-56, E(119)^35, E(119)^21, E(119)^28, E(119)^-21, E(119)^-42, -1*E(119)^35, -1*E(119)^56, -1*E(119)^49, -1*E(119)^-28, -1*E(119)^-14, -1*E(119)^-21, -1*E(119)^28, -1*E(119)^-56, -1*E(119)^-42, -1*E(119)^-35, -1*E(119)^7, -1*E(119)^42, -1*E(119)^21, -1*E(119)^-49, -1*E(119)^-7, -1*E(119)^14, E(119)^55, E(119)^23, E(119)^-46, E(119)^-27, E(119)^11, E(119)^-32, E(119)^48, E(119)^44, E(119)^-53, E(119)^-20, E(119)^18, E(119)^15, E(119)^57, E(119)^-24, E(119)^27, E(119)^-11, E(119)^-12, E(119)^6, E(119)^-23, E(119)^-44, E(119)^-3, E(119)^-2, E(119)^26, E(119)^25, E(119)^47, E(119)^5, E(119)^-22, E(119)^-40, E(119)^37, E(119)^-1, E(119)^-52, E(119)^-54, E(119)^-13, E(119)^46, E(119)^8, E(119)^38, E(119)^-57, E(119)^-43, E(119)^59, E(119)^39, E(119), E(119)^45, E(119)^30, E(119)^-50, E(119)^33, E(119)^19, E(119)^53, E(119)^54, E(119)^40, E(119)^-15, E(119)^-33, E(119)^10, E(119)^36, E(119)^-45, E(119)^-41, E(119)^-6, E(119)^4, E(119)^29, E(119)^43, E(119)^-10, E(119)^12, E(119)^-25, E(119)^58, E(119)^20, E(119)^-4, E(119)^-19, E(119)^-31, E(119)^-16, E(119)^9, E(119)^-26, E(119)^16, E(119)^-39, E(119)^-29, E(119)^-47, E(119)^24, E(119)^-8, E(119)^-59, E(119)^3, E(119)^-36, E(119)^-38, E(119)^-48, E(119)^31, E(119)^32, E(119)^22, E(119)^50, E(119)^2, E(119)^-55, E(119)^-18, E(119)^-5, E(119)^13, E(119)^52, E(119)^-37, E(119)^-30, E(119)^-9, E(119)^-58, E(119)^41, -1*E(119)^-59, -1*E(119)^31, -1*E(119)^18, -1*E(119)^-47, -1*E(119)^-53, -1*E(119)^-24, -1*E(119)^-11, -1*E(119)^54, -1*E(119)^27, -1*E(119)^36, -1*E(119)^-41, -1*E(119)^13, -1*E(119)^43, -1*E(119)^5, -1*E(119)^-22, -1*E(119)^-6, -1*E(119), -1*E(119)^-57, -1*E(119)^-30, -1*E(119)^16, -1*E(119)^11, -1*E(119)^-18, -1*E(119)^37, -1*E(119)^53, -1*E(119)^-4, -1*E(119)^-19, -1*E(119)^2, -1*E(119)^47, -1*E(119)^-43, -1*E(119)^-10, -1*E(119)^59, -1*E(119)^-31, -1*E(119)^58, -1*E(119)^20, -1*E(119)^-20, -1*E(119)^-13, -1*E(119)^41, -1*E(119)^50, -1*E(119)^-55, -1*E(119)^-1, -1*E(119)^26, -1*E(119)^-40, -1*E(119)^-52, -1*E(119)^40, -1*E(119)^38, -1*E(119)^-45, -1*E(119)^-44, -1*E(119)^-26, -1*E(119)^-8, -1*E(119)^24, -1*E(119)^25, -1*E(119)^-54, -1*E(119)^-46, -1*E(119)^-39, -1*E(119)^15, -1*E(119)^-58, -1*E(119)^52, -1*E(119)^29, -1*E(119)^57, -1*E(119)^6, -1*E(119)^33, -1*E(119)^45, -1*E(119)^-15, -1*E(119)^-16, -1*E(119)^8, -1*E(119)^55, -1*E(119)^-37, -1*E(119)^23, -1*E(119)^4, -1*E(119)^-25, -1*E(119)^44, -1*E(119)^46, -1*E(119)^3, -1*E(119)^32, -1*E(119)^-5, -1*E(119)^-9, -1*E(119)^-36, -1*E(119)^19, -1*E(119)^12, -1*E(119)^39, -1*E(119)^-12, -1*E(119)^-2, -1*E(119)^-29, -1*E(119)^-27, -1*E(119)^22, -1*E(119)^-50, -1*E(119)^-23, -1*E(119)^-48, -1*E(119)^48, -1*E(119)^-33, -1*E(119)^30, -1*E(119)^-3, -1*E(119)^-32, -1*E(119)^-38, -1*E(119)^9, -1*E(119)^10, 1], [1, -1, E(119)^-17, E(119)^-51, E(119)^51, E(119)^34, E(119)^17, E(119)^-34, -1*E(119)^-34, -1*E(119)^34, -1*E(119)^17, -1*E(119)^-17, -1*E(119)^-51, -1*E(119)^51, E(119)^-28, E(119)^-14, E(119)^35, E(119)^-35, E(119)^56, E(119)^21, E(119)^-56, E(119)^-42, E(119)^49, E(119)^42, E(119)^-21, E(119)^28, E(119)^-7, E(119)^-49, E(119)^7, E(119)^14, -1*E(119)^28, -1*E(119)^21, -1*E(119)^-56, -1*E(119)^49, -1*E(119)^-35, -1*E(119)^7, -1*E(119)^-49, -1*E(119)^-21, -1*E(119)^14, -1*E(119)^-28, -1*E(119)^-42, -1*E(119)^-14, -1*E(119)^-7, -1*E(119)^56, -1*E(119)^42, -1*E(119)^35, E(119)^-41, E(119)^-2, E(119)^4, E(119)^-8, E(119)^-32, E(119)^39, E(119), E(119)^-9, E(119)^46, E(119)^-50, E(119)^45, E(119)^-22, E(119)^-36, E(119)^59, E(119)^8, E(119)^32, E(119)^-30, E(119)^15, E(119)^2, E(119)^9, E(119)^52, E(119)^-5, E(119)^-54, E(119)^3, E(119)^58, E(119)^-47, E(119)^-55, E(119)^19, E(119)^33, E(119)^57, E(119)^-11, E(119)^-16, E(119)^27, E(119)^-4, E(119)^20, E(119)^-24, E(119)^36, E(119)^-48, E(119)^-31, E(119)^38, E(119)^-57, E(119)^53, E(119)^-44, E(119)^-6, E(119)^23, E(119)^-12, E(119)^-46, E(119)^16, E(119)^-19, E(119)^22, E(119)^-23, E(119)^25, E(119)^-29, E(119)^-53, E(119)^-43, E(119)^-15, E(119)^10, E(119)^13, E(119)^48, E(119)^-25, E(119)^30, E(119)^-3, E(119)^26, E(119)^50, E(119)^-10, E(119)^12, E(119)^-18, E(119)^-40, E(119)^-37, E(119)^54, E(119)^40, E(119)^-38, E(119)^-13, E(119)^-58, E(119)^-59, E(119)^-20, E(119)^31, E(119)^-52, E(119)^29, E(119)^24, E(119)^-1, E(119)^18, E(119)^-39, E(119)^55, E(119)^6, E(119)^5, E(119)^41, E(119)^-45, E(119)^47, E(119)^-27, E(119)^11, E(119)^-33, E(119)^44, E(119)^37, E(119)^-26, E(119)^43, -1*E(119)^31, -1*E(119)^18, -1*E(119)^45, -1*E(119)^-58, -1*E(119)^46, -1*E(119)^59, -1*E(119)^32, -1*E(119)^16, -1*E(119)^8, -1*E(119)^-29, -1*E(119)^-43, -1*E(119)^-27, -1*E(119)^48, -1*E(119)^-47, -1*E(119)^-55, -1*E(119)^-15, -1*E(119)^-57, -1*E(119)^36, -1*E(119)^44, -1*E(119)^40, -1*E(119)^-32, -1*E(119)^-45, -1*E(119)^33, -1*E(119)^-46, -1*E(119)^-10, -1*E(119)^12, -1*E(119)^5, -1*E(119)^58, -1*E(119)^-48, -1*E(119)^-25, -1*E(119)^-31, -1*E(119)^-18, -1*E(119)^26, -1*E(119)^50, -1*E(119)^-50, -1*E(119)^27, -1*E(119)^43, -1*E(119)^6, -1*E(119)^41, -1*E(119)^57, -1*E(119)^-54, -1*E(119)^19, -1*E(119)^-11, -1*E(119)^-19, -1*E(119)^-24, -1*E(119)^-53, -1*E(119)^9, -1*E(119)^54, -1*E(119)^-20, -1*E(119)^-59, -1*E(119)^3, -1*E(119)^-16, -1*E(119)^4, -1*E(119)^-38, -1*E(119)^-22, -1*E(119)^-26, -1*E(119)^11, -1*E(119)^13, -1*E(119)^-36, -1*E(119)^15, -1*E(119)^23, -1*E(119)^53, -1*E(119)^22, -1*E(119)^-40, -1*E(119)^20, -1*E(119)^-41, -1*E(119)^-33, -1*E(119)^-2, -1*E(119)^10, -1*E(119)^-3, -1*E(119)^-9, -1*E(119)^-4, -1*E(119)^-52, -1*E(119)^-39, -1*E(119)^47, -1*E(119)^37, -1*E(119)^29, -1*E(119)^-12, -1*E(119)^30, -1*E(119)^38, -1*E(119)^-30, -1*E(119)^-5, -1*E(119)^-13, -1*E(119)^-8, -1*E(119)^55, -1*E(119)^-6, -1*E(119)^2, -1*E(119)^-1, -1*E(119), -1*E(119)^-23, -1*E(119)^-44, -1*E(119)^52, -1*E(119)^39, -1*E(119)^24, -1*E(119)^-37, -1*E(119)^25, 1], [1, -1, E(119)^17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^-17, E(119)^34, -1*E(119)^34, -1*E(119)^-34, -1*E(119)^-17, -1*E(119)^17, -1*E(119)^51, -1*E(119)^-51, E(119)^28, E(119)^14, E(119)^-35, E(119)^35, E(119)^-56, E(119)^-21, E(119)^56, E(119)^42, E(119)^-49, E(119)^-42, E(119)^21, E(119)^-28, E(119)^7, E(119)^49, E(119)^-7, E(119)^-14, -1*E(119)^-28, -1*E(119)^-21, -1*E(119)^56, -1*E(119)^-49, -1*E(119)^35, -1*E(119)^-7, -1*E(119)^49, -1*E(119)^21, -1*E(119)^-14, -1*E(119)^28, -1*E(119)^42, -1*E(119)^14, -1*E(119)^7, -1*E(119)^-56, -1*E(119)^-42, -1*E(119)^-35, E(119)^41, E(119)^2, E(119)^-4, E(119)^8, E(119)^32, E(119)^-39, E(119)^-1, E(119)^9, E(119)^-46, E(119)^50, E(119)^-45, E(119)^22, E(119)^36, E(119)^-59, E(119)^-8, E(119)^-32, E(119)^30, E(119)^-15, E(119)^-2, E(119)^-9, E(119)^-52, E(119)^5, E(119)^54, E(119)^-3, E(119)^-58, E(119)^47, E(119)^55, E(119)^-19, E(119)^-33, E(119)^-57, E(119)^11, E(119)^16, E(119)^-27, E(119)^4, E(119)^-20, E(119)^24, E(119)^-36, E(119)^48, E(119)^31, E(119)^-38, E(119)^57, E(119)^-53, E(119)^44, E(119)^6, E(119)^-23, E(119)^12, E(119)^46, E(119)^-16, E(119)^19, E(119)^-22, E(119)^23, E(119)^-25, E(119)^29, E(119)^53, E(119)^43, E(119)^15, E(119)^-10, E(119)^-13, E(119)^-48, E(119)^25, E(119)^-30, E(119)^3, E(119)^-26, E(119)^-50, E(119)^10, E(119)^-12, E(119)^18, E(119)^40, E(119)^37, E(119)^-54, E(119)^-40, E(119)^38, E(119)^13, E(119)^58, E(119)^59, E(119)^20, E(119)^-31, E(119)^52, E(119)^-29, E(119)^-24, E(119), E(119)^-18, E(119)^39, E(119)^-55, E(119)^-6, E(119)^-5, E(119)^-41, E(119)^45, E(119)^-47, E(119)^27, E(119)^-11, E(119)^33, E(119)^-44, E(119)^-37, E(119)^26, E(119)^-43, -1*E(119)^-31, -1*E(119)^-18, -1*E(119)^-45, -1*E(119)^58, -1*E(119)^-46, -1*E(119)^-59, -1*E(119)^-32, -1*E(119)^-16, -1*E(119)^-8, -1*E(119)^29, -1*E(119)^43, -1*E(119)^27, -1*E(119)^-48, -1*E(119)^47, -1*E(119)^55, -1*E(119)^15, -1*E(119)^57, -1*E(119)^-36, -1*E(119)^-44, -1*E(119)^-40, -1*E(119)^32, -1*E(119)^45, -1*E(119)^-33, -1*E(119)^46, -1*E(119)^10, -1*E(119)^-12, -1*E(119)^-5, -1*E(119)^-58, -1*E(119)^48, -1*E(119)^25, -1*E(119)^31, -1*E(119)^18, -1*E(119)^-26, -1*E(119)^-50, -1*E(119)^50, -1*E(119)^-27, -1*E(119)^-43, -1*E(119)^-6, -1*E(119)^-41, -1*E(119)^-57, -1*E(119)^54, -1*E(119)^-19, -1*E(119)^11, -1*E(119)^19, -1*E(119)^24, -1*E(119)^53, -1*E(119)^-9, -1*E(119)^-54, -1*E(119)^20, -1*E(119)^59, -1*E(119)^-3, -1*E(119)^16, -1*E(119)^-4, -1*E(119)^38, -1*E(119)^22, -1*E(119)^26, -1*E(119)^-11, -1*E(119)^-13, -1*E(119)^36, -1*E(119)^-15, -1*E(119)^-23, -1*E(119)^-53, -1*E(119)^-22, -1*E(119)^40, -1*E(119)^-20, -1*E(119)^41, -1*E(119)^33, -1*E(119)^2, -1*E(119)^-10, -1*E(119)^3, -1*E(119)^9, -1*E(119)^4, -1*E(119)^52, -1*E(119)^39, -1*E(119)^-47, -1*E(119)^-37, -1*E(119)^-29, -1*E(119)^12, -1*E(119)^-30, -1*E(119)^-38, -1*E(119)^30, -1*E(119)^5, -1*E(119)^13, -1*E(119)^8, -1*E(119)^-55, -1*E(119)^6, -1*E(119)^-2, -1*E(119), -1*E(119)^-1, -1*E(119)^23, -1*E(119)^44, -1*E(119)^-52, -1*E(119)^-39, -1*E(119)^-24, -1*E(119)^37, -1*E(119)^-25, 1], [1, -1, E(119)^-17, E(119)^-51, E(119)^51, E(119)^34, E(119)^17, E(119)^-34, -1*E(119)^-34, -1*E(119)^34, -1*E(119)^17, -1*E(119)^-17, -1*E(119)^-51, -1*E(119)^51, E(119)^28, E(119)^14, E(119)^-35, E(119)^35, E(119)^-56, E(119)^-21, E(119)^56, E(119)^42, E(119)^-49, E(119)^-42, E(119)^21, E(119)^-28, E(119)^7, E(119)^49, E(119)^-7, E(119)^-14, -1*E(119)^-28, -1*E(119)^-21, -1*E(119)^56, -1*E(119)^-49, -1*E(119)^35, -1*E(119)^-7, -1*E(119)^49, -1*E(119)^21, -1*E(119)^-14, -1*E(119)^28, -1*E(119)^42, -1*E(119)^14, -1*E(119)^7, -1*E(119)^-56, -1*E(119)^-42, -1*E(119)^-35, E(119)^-27, E(119)^19, E(119)^-38, E(119)^-43, E(119)^-53, E(119)^46, E(119)^50, E(119)^26, E(119)^39, E(119)^-1, E(119)^-11, E(119)^-29, E(119)^-15, E(119)^-25, E(119)^43, E(119)^53, E(119)^47, E(119)^36, E(119)^-19, E(119)^-26, E(119)^-18, E(119)^-12, E(119)^37, E(119)^31, E(119)^44, E(119)^30, E(119)^-13, E(119)^-2, E(119)^-16, E(119)^-6, E(119)^45, E(119)^33, E(119)^41, E(119)^38, E(119)^48, E(119)^-10, E(119)^15, E(119)^-20, E(119)^-3, E(119)^-4, E(119)^6, E(119)^32, E(119)^-58, E(119)^57, E(119)^-40, E(119)^-5, E(119)^-39, E(119)^-33, E(119)^2, E(119)^29, E(119)^40, E(119)^-59, E(119)^-22, E(119)^-32, E(119)^-8, E(119)^-36, E(119)^24, E(119)^55, E(119)^20, E(119)^59, E(119)^-47, E(119)^-31, E(119)^-9, E(119), E(119)^-24, E(119)^5, E(119)^52, E(119)^23, E(119)^54, E(119)^-37, E(119)^-23, E(119)^4, E(119)^-55, E(119)^-44, E(119)^25, E(119)^-48, E(119)^3, E(119)^18, E(119)^22, E(119)^10, E(119)^-50, E(119)^-52, E(119)^-46, E(119)^13, E(119)^-57, E(119)^12, E(119)^27, E(119)^11, E(119)^-30, E(119)^-41, E(119)^-45, E(119)^16, E(119)^58, E(119)^-54, E(119)^9, E(119)^8, -1*E(119)^3, -1*E(119)^-52, -1*E(119)^-11, -1*E(119)^-44, -1*E(119)^39, -1*E(119)^-25, -1*E(119)^53, -1*E(119)^-33, -1*E(119)^43, -1*E(119)^-22, -1*E(119)^-8, -1*E(119)^-41, -1*E(119)^20, -1*E(119)^30, -1*E(119)^-13, -1*E(119)^-36, -1*E(119)^6, -1*E(119)^15, -1*E(119)^58, -1*E(119)^-23, -1*E(119)^-53, -1*E(119)^11, -1*E(119)^-16, -1*E(119)^-39, -1*E(119)^-24, -1*E(119)^5, -1*E(119)^12, -1*E(119)^44, -1*E(119)^-20, -1*E(119)^59, -1*E(119)^-3, -1*E(119)^52, -1*E(119)^-9, -1*E(119), -1*E(119)^-1, -1*E(119)^41, -1*E(119)^8, -1*E(119)^-57, -1*E(119)^27, -1*E(119)^-6, -1*E(119)^37, -1*E(119)^-2, -1*E(119)^45, -1*E(119)^2, -1*E(119)^-10, -1*E(119)^-32, -1*E(119)^-26, -1*E(119)^-37, -1*E(119)^-48, -1*E(119)^25, -1*E(119)^31, -1*E(119)^33, -1*E(119)^-38, -1*E(119)^4, -1*E(119)^-29, -1*E(119)^9, -1*E(119)^-45, -1*E(119)^55, -1*E(119)^-15, -1*E(119)^36, -1*E(119)^-40, -1*E(119)^32, -1*E(119)^29, -1*E(119)^23, -1*E(119)^48, -1*E(119)^-27, -1*E(119)^16, -1*E(119)^19, -1*E(119)^24, -1*E(119)^-31, -1*E(119)^26, -1*E(119)^38, -1*E(119)^18, -1*E(119)^-46, -1*E(119)^-30, -1*E(119)^-54, -1*E(119)^22, -1*E(119)^-5, -1*E(119)^-47, -1*E(119)^-4, -1*E(119)^47, -1*E(119)^-12, -1*E(119)^-55, -1*E(119)^-43, -1*E(119)^13, -1*E(119)^57, -1*E(119)^-19, -1*E(119)^-50, -1*E(119)^50, -1*E(119)^40, -1*E(119)^-58, -1*E(119)^-18, -1*E(119)^46, -1*E(119)^10, -1*E(119)^54, -1*E(119)^-59, 1], [1, -1, E(119)^17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^-17, E(119)^34, -1*E(119)^34, -1*E(119)^-34, -1*E(119)^-17, -1*E(119)^17, -1*E(119)^51, -1*E(119)^-51, E(119)^-28, E(119)^-14, E(119)^35, E(119)^-35, E(119)^56, E(119)^21, E(119)^-56, E(119)^-42, E(119)^49, E(119)^42, E(119)^-21, E(119)^28, E(119)^-7, E(119)^-49, E(119)^7, E(119)^14, -1*E(119)^28, -1*E(119)^21, -1*E(119)^-56, -1*E(119)^49, -1*E(119)^-35, -1*E(119)^7, -1*E(119)^-49, -1*E(119)^-21, -1*E(119)^14, -1*E(119)^-28, -1*E(119)^-42, -1*E(119)^-14, -1*E(119)^-7, -1*E(119)^56, -1*E(119)^42, -1*E(119)^35, E(119)^27, E(119)^-19, E(119)^38, E(119)^43, E(119)^53, E(119)^-46, E(119)^-50, E(119)^-26, E(119)^-39, E(119), E(119)^11, E(119)^29, E(119)^15, E(119)^25, E(119)^-43, E(119)^-53, E(119)^-47, E(119)^-36, E(119)^19, E(119)^26, E(119)^18, E(119)^12, E(119)^-37, E(119)^-31, E(119)^-44, E(119)^-30, E(119)^13, E(119)^2, E(119)^16, E(119)^6, E(119)^-45, E(119)^-33, E(119)^-41, E(119)^-38, E(119)^-48, E(119)^10, E(119)^-15, E(119)^20, E(119)^3, E(119)^4, E(119)^-6, E(119)^-32, E(119)^58, E(119)^-57, E(119)^40, E(119)^5, E(119)^39, E(119)^33, E(119)^-2, E(119)^-29, E(119)^-40, E(119)^59, E(119)^22, E(119)^32, E(119)^8, E(119)^36, E(119)^-24, E(119)^-55, E(119)^-20, E(119)^-59, E(119)^47, E(119)^31, E(119)^9, E(119)^-1, E(119)^24, E(119)^-5, E(119)^-52, E(119)^-23, E(119)^-54, E(119)^37, E(119)^23, E(119)^-4, E(119)^55, E(119)^44, E(119)^-25, E(119)^48, E(119)^-3, E(119)^-18, E(119)^-22, E(119)^-10, E(119)^50, E(119)^52, E(119)^46, E(119)^-13, E(119)^57, E(119)^-12, E(119)^-27, E(119)^-11, E(119)^30, E(119)^41, E(119)^45, E(119)^-16, E(119)^-58, E(119)^54, E(119)^-9, E(119)^-8, -1*E(119)^-3, -1*E(119)^52, -1*E(119)^11, -1*E(119)^44, -1*E(119)^-39, -1*E(119)^25, -1*E(119)^-53, -1*E(119)^33, -1*E(119)^-43, -1*E(119)^22, -1*E(119)^8, -1*E(119)^41, -1*E(119)^-20, -1*E(119)^-30, -1*E(119)^13, -1*E(119)^36, -1*E(119)^-6, -1*E(119)^-15, -1*E(119)^-58, -1*E(119)^23, -1*E(119)^53, -1*E(119)^-11, -1*E(119)^16, -1*E(119)^39, -1*E(119)^24, -1*E(119)^-5, -1*E(119)^-12, -1*E(119)^-44, -1*E(119)^20, -1*E(119)^-59, -1*E(119)^3, -1*E(119)^-52, -1*E(119)^9, -1*E(119)^-1, -1*E(119), -1*E(119)^-41, -1*E(119)^-8, -1*E(119)^57, -1*E(119)^-27, -1*E(119)^6, -1*E(119)^-37, -1*E(119)^2, -1*E(119)^-45, -1*E(119)^-2, -1*E(119)^10, -1*E(119)^32, -1*E(119)^26, -1*E(119)^37, -1*E(119)^48, -1*E(119)^-25, -1*E(119)^-31, -1*E(119)^-33, -1*E(119)^38, -1*E(119)^-4, -1*E(119)^29, -1*E(119)^-9, -1*E(119)^45, -1*E(119)^-55, -1*E(119)^15, -1*E(119)^-36, -1*E(119)^40, -1*E(119)^-32, -1*E(119)^-29, -1*E(119)^-23, -1*E(119)^-48, -1*E(119)^27, -1*E(119)^-16, -1*E(119)^-19, -1*E(119)^-24, -1*E(119)^31, -1*E(119)^-26, -1*E(119)^-38, -1*E(119)^-18, -1*E(119)^46, -1*E(119)^30, -1*E(119)^54, -1*E(119)^-22, -1*E(119)^5, -1*E(119)^47, -1*E(119)^4, -1*E(119)^-47, -1*E(119)^12, -1*E(119)^55, -1*E(119)^43, -1*E(119)^-13, -1*E(119)^-57, -1*E(119)^19, -1*E(119)^50, -1*E(119)^-50, -1*E(119)^-40, -1*E(119)^58, -1*E(119)^18, -1*E(119)^-46, -1*E(119)^-10, -1*E(119)^-54, -1*E(119)^59, 1], [1, -1, E(119)^-17, E(119)^-51, E(119)^51, E(119)^34, E(119)^17, E(119)^-34, -1*E(119)^-34, -1*E(119)^34, -1*E(119)^17, -1*E(119)^-17, -1*E(119)^-51, -1*E(119)^51, E(119)^-21, E(119)^49, E(119)^56, E(119)^-56, E(119)^42, E(119)^-14, E(119)^-42, E(119)^28, E(119)^7, E(119)^-28, E(119)^14, E(119)^21, E(119)^-35, E(119)^-7, E(119)^35, E(119)^-49, -1*E(119)^21, -1*E(119)^-14, -1*E(119)^-42, -1*E(119)^7, -1*E(119)^-56, -1*E(119)^35, -1*E(119)^-7, -1*E(119)^14, -1*E(119)^-49, -1*E(119)^-21, -1*E(119)^28, -1*E(119)^49, -1*E(119)^-35, -1*E(119)^42, -1*E(119)^-28, -1*E(119)^56, E(119)^50, E(119)^-44, E(119)^-31, E(119)^-57, E(119)^10, E(119)^25, E(119)^22, E(119)^40, E(119)^-59, E(119)^-29, E(119)^38, E(119)^-8, E(119)^41, E(119)^-11, E(119)^57, E(119)^-10, E(119)^54, E(119)^-27, E(119)^44, E(119)^-40, E(119)^-46, E(119)^9, E(119)^2, E(119)^-53, E(119)^-33, E(119)^37, E(119)^-20, E(119)^-58, E(119)^12, E(119)^-55, E(119)^-4, E(119)^5, E(119)^-1, E(119)^31, E(119)^-36, E(119)^-52, E(119)^-41, E(119)^15, E(119)^32, E(119)^3, E(119)^55, E(119)^-24, E(119)^-16, E(119)^-13, E(119)^30, E(119)^-26, E(119)^59, E(119)^-5, E(119)^58, E(119)^8, E(119)^-30, E(119)^-45, E(119)^-43, E(119)^24, E(119)^6, E(119)^27, E(119)^-18, E(119)^48, E(119)^-15, E(119)^45, E(119)^-54, E(119)^53, E(119)^-23, E(119)^29, E(119)^18, E(119)^26, E(119)^-39, E(119)^-47, E(119)^19, E(119)^-2, E(119)^47, E(119)^-3, E(119)^-48, E(119)^33, E(119)^11, E(119)^36, E(119)^-32, E(119)^46, E(119)^43, E(119)^52, E(119)^-22, E(119)^39, E(119)^-25, E(119)^20, E(119)^13, E(119)^-9, E(119)^-50, E(119)^-38, E(119)^-37, E(119), E(119)^4, E(119)^-12, E(119)^16, E(119)^-19, E(119)^23, E(119)^-6, -1*E(119)^-32, -1*E(119)^39, -1*E(119)^38, -1*E(119)^33, -1*E(119)^-59, -1*E(119)^-11, -1*E(119)^-10, -1*E(119)^-5, -1*E(119)^57, -1*E(119)^-43, -1*E(119)^6, -1*E(119), -1*E(119)^-15, -1*E(119)^37, -1*E(119)^-20, -1*E(119)^27, -1*E(119)^55, -1*E(119)^-41, -1*E(119)^16, -1*E(119)^47, -1*E(119)^10, -1*E(119)^-38, -1*E(119)^12, -1*E(119)^59, -1*E(119)^18, -1*E(119)^26, -1*E(119)^-9, -1*E(119)^-33, -1*E(119)^15, -1*E(119)^45, -1*E(119)^32, -1*E(119)^-39, -1*E(119)^-23, -1*E(119)^29, -1*E(119)^-29, -1*E(119)^-1, -1*E(119)^-6, -1*E(119)^13, -1*E(119)^-50, -1*E(119)^-55, -1*E(119)^2, -1*E(119)^-58, -1*E(119)^-4, -1*E(119)^58, -1*E(119)^-52, -1*E(119)^24, -1*E(119)^-40, -1*E(119)^-2, -1*E(119)^36, -1*E(119)^11, -1*E(119)^-53, -1*E(119)^5, -1*E(119)^-31, -1*E(119)^-3, -1*E(119)^-8, -1*E(119)^23, -1*E(119)^4, -1*E(119)^48, -1*E(119)^41, -1*E(119)^-27, -1*E(119)^30, -1*E(119)^-24, -1*E(119)^8, -1*E(119)^-47, -1*E(119)^-36, -1*E(119)^50, -1*E(119)^-12, -1*E(119)^-44, -1*E(119)^-18, -1*E(119)^53, -1*E(119)^40, -1*E(119)^31, -1*E(119)^46, -1*E(119)^-25, -1*E(119)^-37, -1*E(119)^-19, -1*E(119)^43, -1*E(119)^-26, -1*E(119)^-54, -1*E(119)^3, -1*E(119)^54, -1*E(119)^9, -1*E(119)^-48, -1*E(119)^-57, -1*E(119)^20, -1*E(119)^-13, -1*E(119)^44, -1*E(119)^-22, -1*E(119)^22, -1*E(119)^-30, -1*E(119)^-16, -1*E(119)^-46, -1*E(119)^25, -1*E(119)^52, -1*E(119)^19, -1*E(119)^-45, 1], [1, -1, E(119)^17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^-17, E(119)^34, -1*E(119)^34, -1*E(119)^-34, -1*E(119)^-17, -1*E(119)^17, -1*E(119)^51, -1*E(119)^-51, E(119)^21, E(119)^-49, E(119)^-56, E(119)^56, E(119)^-42, E(119)^14, E(119)^42, E(119)^-28, E(119)^-7, E(119)^28, E(119)^-14, E(119)^-21, E(119)^35, E(119)^7, E(119)^-35, E(119)^49, -1*E(119)^-21, -1*E(119)^14, -1*E(119)^42, -1*E(119)^-7, -1*E(119)^56, -1*E(119)^-35, -1*E(119)^7, -1*E(119)^-14, -1*E(119)^49, -1*E(119)^21, -1*E(119)^-28, -1*E(119)^-49, -1*E(119)^35, -1*E(119)^-42, -1*E(119)^28, -1*E(119)^-56, E(119)^-50, E(119)^44, E(119)^31, E(119)^57, E(119)^-10, E(119)^-25, E(119)^-22, E(119)^-40, E(119)^59, E(119)^29, E(119)^-38, E(119)^8, E(119)^-41, E(119)^11, E(119)^-57, E(119)^10, E(119)^-54, E(119)^27, E(119)^-44, E(119)^40, E(119)^46, E(119)^-9, E(119)^-2, E(119)^53, E(119)^33, E(119)^-37, E(119)^20, E(119)^58, E(119)^-12, E(119)^55, E(119)^4, E(119)^-5, E(119), E(119)^-31, E(119)^36, E(119)^52, E(119)^41, E(119)^-15, E(119)^-32, E(119)^-3, E(119)^-55, E(119)^24, E(119)^16, E(119)^13, E(119)^-30, E(119)^26, E(119)^-59, E(119)^5, E(119)^-58, E(119)^-8, E(119)^30, E(119)^45, E(119)^43, E(119)^-24, E(119)^-6, E(119)^-27, E(119)^18, E(119)^-48, E(119)^15, E(119)^-45, E(119)^54, E(119)^-53, E(119)^23, E(119)^-29, E(119)^-18, E(119)^-26, E(119)^39, E(119)^47, E(119)^-19, E(119)^2, E(119)^-47, E(119)^3, E(119)^48, E(119)^-33, E(119)^-11, E(119)^-36, E(119)^32, E(119)^-46, E(119)^-43, E(119)^-52, E(119)^22, E(119)^-39, E(119)^25, E(119)^-20, E(119)^-13, E(119)^9, E(119)^50, E(119)^38, E(119)^37, E(119)^-1, E(119)^-4, E(119)^12, E(119)^-16, E(119)^19, E(119)^-23, E(119)^6, -1*E(119)^32, -1*E(119)^-39, -1*E(119)^-38, -1*E(119)^-33, -1*E(119)^59, -1*E(119)^11, -1*E(119)^10, -1*E(119)^5, -1*E(119)^-57, -1*E(119)^43, -1*E(119)^-6, -1*E(119)^-1, -1*E(119)^15, -1*E(119)^-37, -1*E(119)^20, -1*E(119)^-27, -1*E(119)^-55, -1*E(119)^41, -1*E(119)^-16, -1*E(119)^-47, -1*E(119)^-10, -1*E(119)^38, -1*E(119)^-12, -1*E(119)^-59, -1*E(119)^-18, -1*E(119)^-26, -1*E(119)^9, -1*E(119)^33, -1*E(119)^-15, -1*E(119)^-45, -1*E(119)^-32, -1*E(119)^39, -1*E(119)^23, -1*E(119)^-29, -1*E(119)^29, -1*E(119), -1*E(119)^6, -1*E(119)^-13, -1*E(119)^50, -1*E(119)^55, -1*E(119)^-2, -1*E(119)^58, -1*E(119)^4, -1*E(119)^-58, -1*E(119)^52, -1*E(119)^-24, -1*E(119)^40, -1*E(119)^2, -1*E(119)^-36, -1*E(119)^-11, -1*E(119)^53, -1*E(119)^-5, -1*E(119)^31, -1*E(119)^3, -1*E(119)^8, -1*E(119)^-23, -1*E(119)^-4, -1*E(119)^-48, -1*E(119)^-41, -1*E(119)^27, -1*E(119)^-30, -1*E(119)^24, -1*E(119)^-8, -1*E(119)^47, -1*E(119)^36, -1*E(119)^-50, -1*E(119)^12, -1*E(119)^44, -1*E(119)^18, -1*E(119)^-53, -1*E(119)^-40, -1*E(119)^-31, -1*E(119)^-46, -1*E(119)^25, -1*E(119)^37, -1*E(119)^19, -1*E(119)^-43, -1*E(119)^26, -1*E(119)^54, -1*E(119)^-3, -1*E(119)^-54, -1*E(119)^-9, -1*E(119)^48, -1*E(119)^57, -1*E(119)^-20, -1*E(119)^13, -1*E(119)^-44, -1*E(119)^22, -1*E(119)^-22, -1*E(119)^30, -1*E(119)^16, -1*E(119)^46, -1*E(119)^-25, -1*E(119)^-52, -1*E(119)^-19, -1*E(119)^45, 1], [1, -1, E(119)^-17, E(119)^-51, E(119)^51, E(119)^34, E(119)^17, E(119)^-34, -1*E(119)^-34, -1*E(119)^34, -1*E(119)^17, -1*E(119)^-17, -1*E(119)^-51, -1*E(119)^51, E(119)^21, E(119)^-49, E(119)^-56, E(119)^56, E(119)^-42, E(119)^14, E(119)^42, E(119)^-28, E(119)^-7, E(119)^28, E(119)^-14, E(119)^-21, E(119)^35, E(119)^7, E(119)^-35, E(119)^49, -1*E(119)^-21, -1*E(119)^14, -1*E(119)^42, -1*E(119)^-7, -1*E(119)^56, -1*E(119)^-35, -1*E(119)^7, -1*E(119)^-14, -1*E(119)^49, -1*E(119)^21, -1*E(119)^-28, -1*E(119)^-49, -1*E(119)^35, -1*E(119)^-42, -1*E(119)^28, -1*E(119)^-56, E(119), E(119)^-58, E(119)^-3, E(119)^6, E(119)^24, E(119)^-59, E(119)^29, E(119)^-23, E(119)^25, E(119)^-22, E(119)^-4, E(119)^-43, E(119)^27, E(119)^45, E(119)^-6, E(119)^-24, E(119)^-37, E(119)^-41, E(119)^58, E(119)^23, E(119)^-39, E(119)^-26, E(119)^-19, E(119)^-32, E(119)^16, E(119)^-54, E(119)^-48, E(119)^-44, E(119)^5, E(119)^-13, E(119)^38, E(119)^12, E(119)^-50, E(119)^3, E(119)^-15, E(119)^18, E(119)^-27, E(119)^36, E(119)^53, E(119)^31, E(119)^13, E(119)^-10, E(119)^33, E(119)^-55, E(119)^-47, E(119)^9, E(119)^-25, E(119)^-12, E(119)^44, E(119)^43, E(119)^47, E(119)^11, E(119)^-8, E(119)^10, E(119)^-57, E(119)^41, E(119)^52, E(119)^20, E(119)^-36, E(119)^-11, E(119)^37, E(119)^32, E(119)^40, E(119)^22, E(119)^-52, E(119)^-9, E(119)^-46, E(119)^30, E(119)^-2, E(119)^19, E(119)^-30, E(119)^-31, E(119)^-20, E(119)^-16, E(119)^-45, E(119)^15, E(119)^-53, E(119)^39, E(119)^8, E(119)^-18, E(119)^-29, E(119)^46, E(119)^59, E(119)^48, E(119)^55, E(119)^26, E(119)^-1, E(119)^4, E(119)^54, E(119)^50, E(119)^-38, E(119)^-5, E(119)^-33, E(119)^2, E(119)^-40, E(119)^57, -1*E(119)^-53, -1*E(119)^46, -1*E(119)^-4, -1*E(119)^-16, -1*E(119)^25, -1*E(119)^45, -1*E(119)^-24, -1*E(119)^-12, -1*E(119)^-6, -1*E(119)^-8, -1*E(119)^-57, -1*E(119)^50, -1*E(119)^-36, -1*E(119)^-54, -1*E(119)^-48, -1*E(119)^41, -1*E(119)^13, -1*E(119)^-27, -1*E(119)^-33, -1*E(119)^-30, -1*E(119)^24, -1*E(119)^4, -1*E(119)^5, -1*E(119)^-25, -1*E(119)^-52, -1*E(119)^-9, -1*E(119)^26, -1*E(119)^16, -1*E(119)^36, -1*E(119)^-11, -1*E(119)^53, -1*E(119)^-46, -1*E(119)^40, -1*E(119)^22, -1*E(119)^-22, -1*E(119)^-50, -1*E(119)^57, -1*E(119)^55, -1*E(119)^-1, -1*E(119)^-13, -1*E(119)^-19, -1*E(119)^-44, -1*E(119)^38, -1*E(119)^44, -1*E(119)^18, -1*E(119)^10, -1*E(119)^23, -1*E(119)^19, -1*E(119)^15, -1*E(119)^-45, -1*E(119)^-32, -1*E(119)^12, -1*E(119)^-3, -1*E(119)^-31, -1*E(119)^-43, -1*E(119)^-40, -1*E(119)^-38, -1*E(119)^20, -1*E(119)^27, -1*E(119)^-41, -1*E(119)^-47, -1*E(119)^-10, -1*E(119)^43, -1*E(119)^30, -1*E(119)^-15, -1*E(119), -1*E(119)^-5, -1*E(119)^-58, -1*E(119)^52, -1*E(119)^32, -1*E(119)^-23, -1*E(119)^3, -1*E(119)^39, -1*E(119)^59, -1*E(119)^54, -1*E(119)^2, -1*E(119)^8, -1*E(119)^9, -1*E(119)^37, -1*E(119)^31, -1*E(119)^-37, -1*E(119)^-26, -1*E(119)^-20, -1*E(119)^6, -1*E(119)^48, -1*E(119)^-55, -1*E(119)^58, -1*E(119)^-29, -1*E(119)^29, -1*E(119)^47, -1*E(119)^33, -1*E(119)^-39, -1*E(119)^-59, -1*E(119)^-18, -1*E(119)^-2, -1*E(119)^11, 1], [1, -1, E(119)^17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^-17, E(119)^34, -1*E(119)^34, -1*E(119)^-34, -1*E(119)^-17, -1*E(119)^17, -1*E(119)^51, -1*E(119)^-51, E(119)^-21, E(119)^49, E(119)^56, E(119)^-56, E(119)^42, E(119)^-14, E(119)^-42, E(119)^28, E(119)^7, E(119)^-28, E(119)^14, E(119)^21, E(119)^-35, E(119)^-7, E(119)^35, E(119)^-49, -1*E(119)^21, -1*E(119)^-14, -1*E(119)^-42, -1*E(119)^7, -1*E(119)^-56, -1*E(119)^35, -1*E(119)^-7, -1*E(119)^14, -1*E(119)^-49, -1*E(119)^-21, -1*E(119)^28, -1*E(119)^49, -1*E(119)^-35, -1*E(119)^42, -1*E(119)^-28, -1*E(119)^56, E(119)^-1, E(119)^58, E(119)^3, E(119)^-6, E(119)^-24, E(119)^59, E(119)^-29, E(119)^23, E(119)^-25, E(119)^22, E(119)^4, E(119)^43, E(119)^-27, E(119)^-45, E(119)^6, E(119)^24, E(119)^37, E(119)^41, E(119)^-58, E(119)^-23, E(119)^39, E(119)^26, E(119)^19, E(119)^32, E(119)^-16, E(119)^54, E(119)^48, E(119)^44, E(119)^-5, E(119)^13, E(119)^-38, E(119)^-12, E(119)^50, E(119)^-3, E(119)^15, E(119)^-18, E(119)^27, E(119)^-36, E(119)^-53, E(119)^-31, E(119)^-13, E(119)^10, E(119)^-33, E(119)^55, E(119)^47, E(119)^-9, E(119)^25, E(119)^12, E(119)^-44, E(119)^-43, E(119)^-47, E(119)^-11, E(119)^8, E(119)^-10, E(119)^57, E(119)^-41, E(119)^-52, E(119)^-20, E(119)^36, E(119)^11, E(119)^-37, E(119)^-32, E(119)^-40, E(119)^-22, E(119)^52, E(119)^9, E(119)^46, E(119)^-30, E(119)^2, E(119)^-19, E(119)^30, E(119)^31, E(119)^20, E(119)^16, E(119)^45, E(119)^-15, E(119)^53, E(119)^-39, E(119)^-8, E(119)^18, E(119)^29, E(119)^-46, E(119)^-59, E(119)^-48, E(119)^-55, E(119)^-26, E(119), E(119)^-4, E(119)^-54, E(119)^-50, E(119)^38, E(119)^5, E(119)^33, E(119)^-2, E(119)^40, E(119)^-57, -1*E(119)^53, -1*E(119)^-46, -1*E(119)^4, -1*E(119)^16, -1*E(119)^-25, -1*E(119)^-45, -1*E(119)^24, -1*E(119)^12, -1*E(119)^6, -1*E(119)^8, -1*E(119)^57, -1*E(119)^-50, -1*E(119)^36, -1*E(119)^54, -1*E(119)^48, -1*E(119)^-41, -1*E(119)^-13, -1*E(119)^27, -1*E(119)^33, -1*E(119)^30, -1*E(119)^-24, -1*E(119)^-4, -1*E(119)^-5, -1*E(119)^25, -1*E(119)^52, -1*E(119)^9, -1*E(119)^-26, -1*E(119)^-16, -1*E(119)^-36, -1*E(119)^11, -1*E(119)^-53, -1*E(119)^46, -1*E(119)^-40, -1*E(119)^-22, -1*E(119)^22, -1*E(119)^50, -1*E(119)^-57, -1*E(119)^-55, -1*E(119), -1*E(119)^13, -1*E(119)^19, -1*E(119)^44, -1*E(119)^-38, -1*E(119)^-44, -1*E(119)^-18, -1*E(119)^-10, -1*E(119)^-23, -1*E(119)^-19, -1*E(119)^-15, -1*E(119)^45, -1*E(119)^32, -1*E(119)^-12, -1*E(119)^3, -1*E(119)^31, -1*E(119)^43, -1*E(119)^40, -1*E(119)^38, -1*E(119)^-20, -1*E(119)^-27, -1*E(119)^41, -1*E(119)^47, -1*E(119)^10, -1*E(119)^-43, -1*E(119)^-30, -1*E(119)^15, -1*E(119)^-1, -1*E(119)^5, -1*E(119)^58, -1*E(119)^-52, -1*E(119)^-32, -1*E(119)^23, -1*E(119)^-3, -1*E(119)^-39, -1*E(119)^-59, -1*E(119)^-54, -1*E(119)^-2, -1*E(119)^-8, -1*E(119)^-9, -1*E(119)^-37, -1*E(119)^-31, -1*E(119)^37, -1*E(119)^26, -1*E(119)^20, -1*E(119)^-6, -1*E(119)^-48, -1*E(119)^55, -1*E(119)^-58, -1*E(119)^29, -1*E(119)^-29, -1*E(119)^-47, -1*E(119)^-33, -1*E(119)^39, -1*E(119)^59, -1*E(119)^18, -1*E(119)^2, -1*E(119)^-11, 1], [1, -1, E(119)^-17, E(119)^-51, E(119)^51, E(119)^34, E(119)^17, E(119)^-34, -1*E(119)^-34, -1*E(119)^34, -1*E(119)^17, -1*E(119)^-17, -1*E(119)^-51, -1*E(119)^51, E(119)^-14, E(119)^-7, E(119)^-42, E(119)^42, E(119)^28, E(119)^-49, E(119)^-28, E(119)^-21, E(119)^-35, E(119)^21, E(119)^49, E(119)^14, E(119)^56, E(119)^35, E(119)^-56, E(119)^7, -1*E(119)^14, -1*E(119)^-49, -1*E(119)^-28, -1*E(119)^-35, -1*E(119)^42, -1*E(119)^-56, -1*E(119)^35, -1*E(119)^49, -1*E(119)^7, -1*E(119)^-14, -1*E(119)^-21, -1*E(119)^-7, -1*E(119)^56, -1*E(119)^28, -1*E(119)^21, -1*E(119)^-42, E(119)^22, E(119)^33, E(119)^53, E(119)^13, E(119)^52, E(119)^11, E(119)^43, E(119)^-30, E(119)^-45, E(119)^-8, E(119)^31, E(119)^6, E(119)^-1, E(119)^38, E(119)^-13, E(119)^-52, E(119)^19, E(119)^50, E(119)^-33, E(119)^30, E(119)^-25, E(119)^23, E(119)^58, E(119)^10, E(119)^-5, E(119)^2, E(119)^15, E(119)^-16, E(119)^-9, E(119)^-48, E(119)^3, E(119)^26, E(119)^-29, E(119)^-53, E(119)^27, E(119)^39, E(119), E(119)^-41, E(119)^-24, E(119)^-32, E(119)^48, E(119)^18, E(119)^12, E(119)^-20, E(119)^37, E(119)^-40, E(119)^45, E(119)^-26, E(119)^16, E(119)^-6, E(119)^-37, E(119)^4, E(119)^-57, E(119)^-18, E(119)^55, E(119)^-50, E(119)^-46, E(119)^-36, E(119)^41, E(119)^-4, E(119)^-19, E(119)^-10, E(119)^47, E(119)^8, E(119)^46, E(119)^40, E(119)^59, E(119)^-54, E(119)^-44, E(119)^-58, E(119)^54, E(119)^32, E(119)^36, E(119)^5, E(119)^-38, E(119)^-27, E(119)^24, E(119)^25, E(119)^57, E(119)^-39, E(119)^-43, E(119)^-59, E(119)^-11, E(119)^-15, E(119)^20, E(119)^-23, E(119)^-22, E(119)^-31, E(119)^-2, E(119)^29, E(119)^-3, E(119)^9, E(119)^-12, E(119)^44, E(119)^-47, E(119)^-55, -1*E(119)^24, -1*E(119)^-59, -1*E(119)^31, -1*E(119)^5, -1*E(119)^-45, -1*E(119)^38, -1*E(119)^-52, -1*E(119)^-26, -1*E(119)^-13, -1*E(119)^-57, -1*E(119)^55, -1*E(119)^29, -1*E(119)^41, -1*E(119)^2, -1*E(119)^15, -1*E(119)^-50, -1*E(119)^48, -1*E(119), -1*E(119)^-12, -1*E(119)^54, -1*E(119)^52, -1*E(119)^-31, -1*E(119)^-9, -1*E(119)^45, -1*E(119)^46, -1*E(119)^40, -1*E(119)^-23, -1*E(119)^-5, -1*E(119)^-41, -1*E(119)^-4, -1*E(119)^-24, -1*E(119)^59, -1*E(119)^47, -1*E(119)^8, -1*E(119)^-8, -1*E(119)^-29, -1*E(119)^-55, -1*E(119)^20, -1*E(119)^-22, -1*E(119)^-48, -1*E(119)^58, -1*E(119)^-16, -1*E(119)^3, -1*E(119)^16, -1*E(119)^39, -1*E(119)^-18, -1*E(119)^30, -1*E(119)^-58, -1*E(119)^-27, -1*E(119)^-38, -1*E(119)^10, -1*E(119)^26, -1*E(119)^53, -1*E(119)^32, -1*E(119)^6, -1*E(119)^-47, -1*E(119)^-3, -1*E(119)^-36, -1*E(119)^-1, -1*E(119)^50, -1*E(119)^37, -1*E(119)^18, -1*E(119)^-6, -1*E(119)^-54, -1*E(119)^27, -1*E(119)^22, -1*E(119)^9, -1*E(119)^33, -1*E(119)^-46, -1*E(119)^-10, -1*E(119)^-30, -1*E(119)^-53, -1*E(119)^25, -1*E(119)^-11, -1*E(119)^-2, -1*E(119)^44, -1*E(119)^57, -1*E(119)^-40, -1*E(119)^-19, -1*E(119)^-32, -1*E(119)^19, -1*E(119)^23, -1*E(119)^36, -1*E(119)^13, -1*E(119)^-15, -1*E(119)^-20, -1*E(119)^-33, -1*E(119)^-43, -1*E(119)^43, -1*E(119)^-37, -1*E(119)^12, -1*E(119)^-25, -1*E(119)^11, -1*E(119)^-39, -1*E(119)^-44, -1*E(119)^4, 1], [1, -1, E(119)^17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^-17, E(119)^34, -1*E(119)^34, -1*E(119)^-34, -1*E(119)^-17, -1*E(119)^17, -1*E(119)^51, -1*E(119)^-51, E(119)^14, E(119)^7, E(119)^42, E(119)^-42, E(119)^-28, E(119)^49, E(119)^28, E(119)^21, E(119)^35, E(119)^-21, E(119)^-49, E(119)^-14, E(119)^-56, E(119)^-35, E(119)^56, E(119)^-7, -1*E(119)^-14, -1*E(119)^49, -1*E(119)^28, -1*E(119)^35, -1*E(119)^-42, -1*E(119)^56, -1*E(119)^-35, -1*E(119)^-49, -1*E(119)^-7, -1*E(119)^14, -1*E(119)^21, -1*E(119)^7, -1*E(119)^-56, -1*E(119)^-28, -1*E(119)^-21, -1*E(119)^42, E(119)^-22, E(119)^-33, E(119)^-53, E(119)^-13, E(119)^-52, E(119)^-11, E(119)^-43, E(119)^30, E(119)^45, E(119)^8, E(119)^-31, E(119)^-6, E(119), E(119)^-38, E(119)^13, E(119)^52, E(119)^-19, E(119)^-50, E(119)^33, E(119)^-30, E(119)^25, E(119)^-23, E(119)^-58, E(119)^-10, E(119)^5, E(119)^-2, E(119)^-15, E(119)^16, E(119)^9, E(119)^48, E(119)^-3, E(119)^-26, E(119)^29, E(119)^53, E(119)^-27, E(119)^-39, E(119)^-1, E(119)^41, E(119)^24, E(119)^32, E(119)^-48, E(119)^-18, E(119)^-12, E(119)^20, E(119)^-37, E(119)^40, E(119)^-45, E(119)^26, E(119)^-16, E(119)^6, E(119)^37, E(119)^-4, E(119)^57, E(119)^18, E(119)^-55, E(119)^50, E(119)^46, E(119)^36, E(119)^-41, E(119)^4, E(119)^19, E(119)^10, E(119)^-47, E(119)^-8, E(119)^-46, E(119)^-40, E(119)^-59, E(119)^54, E(119)^44, E(119)^58, E(119)^-54, E(119)^-32, E(119)^-36, E(119)^-5, E(119)^38, E(119)^27, E(119)^-24, E(119)^-25, E(119)^-57, E(119)^39, E(119)^43, E(119)^59, E(119)^11, E(119)^15, E(119)^-20, E(119)^23, E(119)^22, E(119)^31, E(119)^2, E(119)^-29, E(119)^3, E(119)^-9, E(119)^12, E(119)^-44, E(119)^47, E(119)^55, -1*E(119)^-24, -1*E(119)^59, -1*E(119)^-31, -1*E(119)^-5, -1*E(119)^45, -1*E(119)^-38, -1*E(119)^52, -1*E(119)^26, -1*E(119)^13, -1*E(119)^57, -1*E(119)^-55, -1*E(119)^-29, -1*E(119)^-41, -1*E(119)^-2, -1*E(119)^-15, -1*E(119)^50, -1*E(119)^-48, -1*E(119)^-1, -1*E(119)^12, -1*E(119)^-54, -1*E(119)^-52, -1*E(119)^31, -1*E(119)^9, -1*E(119)^-45, -1*E(119)^-46, -1*E(119)^-40, -1*E(119)^23, -1*E(119)^5, -1*E(119)^41, -1*E(119)^4, -1*E(119)^24, -1*E(119)^-59, -1*E(119)^-47, -1*E(119)^-8, -1*E(119)^8, -1*E(119)^29, -1*E(119)^55, -1*E(119)^-20, -1*E(119)^22, -1*E(119)^48, -1*E(119)^-58, -1*E(119)^16, -1*E(119)^-3, -1*E(119)^-16, -1*E(119)^-39, -1*E(119)^18, -1*E(119)^-30, -1*E(119)^58, -1*E(119)^27, -1*E(119)^38, -1*E(119)^-10, -1*E(119)^-26, -1*E(119)^-53, -1*E(119)^-32, -1*E(119)^-6, -1*E(119)^47, -1*E(119)^3, -1*E(119)^36, -1*E(119), -1*E(119)^-50, -1*E(119)^-37, -1*E(119)^-18, -1*E(119)^6, -1*E(119)^54, -1*E(119)^-27, -1*E(119)^-22, -1*E(119)^-9, -1*E(119)^-33, -1*E(119)^46, -1*E(119)^10, -1*E(119)^30, -1*E(119)^53, -1*E(119)^-25, -1*E(119)^11, -1*E(119)^2, -1*E(119)^-44, -1*E(119)^-57, -1*E(119)^40, -1*E(119)^19, -1*E(119)^32, -1*E(119)^-19, -1*E(119)^-23, -1*E(119)^-36, -1*E(119)^-13, -1*E(119)^15, -1*E(119)^20, -1*E(119)^33, -1*E(119)^43, -1*E(119)^-43, -1*E(119)^37, -1*E(119)^-12, -1*E(119)^25, -1*E(119)^-11, -1*E(119)^39, -1*E(119)^44, -1*E(119)^-4, 1], [1, -1, E(119)^-17, E(119)^-51, E(119)^51, E(119)^34, E(119)^17, E(119)^-34, -1*E(119)^-34, -1*E(119)^34, -1*E(119)^17, -1*E(119)^-17, -1*E(119)^-51, -1*E(119)^51, E(119)^14, E(119)^7, E(119)^42, E(119)^-42, E(119)^-28, E(119)^49, E(119)^28, E(119)^21, E(119)^35, E(119)^-21, E(119)^-49, E(119)^-14, E(119)^-56, E(119)^-35, E(119)^56, E(119)^-7, -1*E(119)^-14, -1*E(119)^49, -1*E(119)^28, -1*E(119)^35, -1*E(119)^-42, -1*E(119)^56, -1*E(119)^-35, -1*E(119)^-49, -1*E(119)^-7, -1*E(119)^14, -1*E(119)^21, -1*E(119)^7, -1*E(119)^-56, -1*E(119)^-28, -1*E(119)^-21, -1*E(119)^42, E(119)^29, E(119)^-16, E(119)^32, E(119)^55, E(119)^-18, E(119)^-45, E(119)^8, E(119)^47, E(119)^11, E(119)^-43, E(119)^3, E(119)^-57, E(119)^-50, E(119)^-4, E(119)^-55, E(119)^18, E(119)^-2, E(119), E(119)^16, E(119)^-47, E(119)^59, E(119)^-40, E(119)^44, E(119)^24, E(119)^-12, E(119)^-19, E(119)^36, E(119)^33, E(119)^26, E(119)^-20, E(119)^31, E(119)^-9, E(119)^-22, E(119)^-32, E(119)^41, E(119)^46, E(119)^50, E(119)^-27, E(119)^-10, E(119)^-53, E(119)^20, E(119)^-52, E(119)^5, E(119)^-48, E(119)^-54, E(119)^23, E(119)^-11, E(119)^9, E(119)^-33, E(119)^57, E(119)^54, E(119)^-38, E(119)^6, E(119)^52, E(119)^13, E(119)^-1, E(119)^-39, E(119)^-15, E(119)^27, E(119)^38, E(119)^2, E(119)^-24, E(119)^-30, E(119)^43, E(119)^39, E(119)^-23, E(119)^-25, E(119)^37, E(119)^-58, E(119)^-44, E(119)^-37, E(119)^53, E(119)^15, E(119)^12, E(119)^4, E(119)^-41, E(119)^10, E(119)^-59, E(119)^-6, E(119)^-46, E(119)^-8, E(119)^25, E(119)^45, E(119)^-36, E(119)^48, E(119)^40, E(119)^-29, E(119)^-3, E(119)^19, E(119)^22, E(119)^-31, E(119)^-26, E(119)^-5, E(119)^58, E(119)^30, E(119)^-13, -1*E(119)^10, -1*E(119)^25, -1*E(119)^3, -1*E(119)^12, -1*E(119)^11, -1*E(119)^-4, -1*E(119)^18, -1*E(119)^9, -1*E(119)^-55, -1*E(119)^6, -1*E(119)^13, -1*E(119)^22, -1*E(119)^27, -1*E(119)^-19, -1*E(119)^36, -1*E(119)^-1, -1*E(119)^20, -1*E(119)^50, -1*E(119)^-5, -1*E(119)^-37, -1*E(119)^-18, -1*E(119)^-3, -1*E(119)^26, -1*E(119)^-11, -1*E(119)^39, -1*E(119)^-23, -1*E(119)^40, -1*E(119)^-12, -1*E(119)^-27, -1*E(119)^38, -1*E(119)^-10, -1*E(119)^-25, -1*E(119)^-30, -1*E(119)^43, -1*E(119)^-43, -1*E(119)^-22, -1*E(119)^-13, -1*E(119)^48, -1*E(119)^-29, -1*E(119)^-20, -1*E(119)^44, -1*E(119)^33, -1*E(119)^31, -1*E(119)^-33, -1*E(119)^46, -1*E(119)^52, -1*E(119)^-47, -1*E(119)^-44, -1*E(119)^-41, -1*E(119)^4, -1*E(119)^24, -1*E(119)^-9, -1*E(119)^32, -1*E(119)^53, -1*E(119)^-57, -1*E(119)^30, -1*E(119)^-31, -1*E(119)^-15, -1*E(119)^-50, -1*E(119), -1*E(119)^-54, -1*E(119)^-52, -1*E(119)^57, -1*E(119)^37, -1*E(119)^41, -1*E(119)^29, -1*E(119)^-26, -1*E(119)^-16, -1*E(119)^-39, -1*E(119)^-24, -1*E(119)^47, -1*E(119)^-32, -1*E(119)^-59, -1*E(119)^45, -1*E(119)^19, -1*E(119)^58, -1*E(119)^-6, -1*E(119)^23, -1*E(119)^2, -1*E(119)^-53, -1*E(119)^-2, -1*E(119)^-40, -1*E(119)^15, -1*E(119)^55, -1*E(119)^-36, -1*E(119)^-48, -1*E(119)^16, -1*E(119)^-8, -1*E(119)^8, -1*E(119)^54, -1*E(119)^5, -1*E(119)^59, -1*E(119)^-45, -1*E(119)^-46, -1*E(119)^-58, -1*E(119)^-38, 1], [1, -1, E(119)^17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^-17, E(119)^34, -1*E(119)^34, -1*E(119)^-34, -1*E(119)^-17, -1*E(119)^17, -1*E(119)^51, -1*E(119)^-51, E(119)^-14, E(119)^-7, E(119)^-42, E(119)^42, E(119)^28, E(119)^-49, E(119)^-28, E(119)^-21, E(119)^-35, E(119)^21, E(119)^49, E(119)^14, E(119)^56, E(119)^35, E(119)^-56, E(119)^7, -1*E(119)^14, -1*E(119)^-49, -1*E(119)^-28, -1*E(119)^-35, -1*E(119)^42, -1*E(119)^-56, -1*E(119)^35, -1*E(119)^49, -1*E(119)^7, -1*E(119)^-14, -1*E(119)^-21, -1*E(119)^-7, -1*E(119)^56, -1*E(119)^28, -1*E(119)^21, -1*E(119)^-42, E(119)^-29, E(119)^16, E(119)^-32, E(119)^-55, E(119)^18, E(119)^45, E(119)^-8, E(119)^-47, E(119)^-11, E(119)^43, E(119)^-3, E(119)^57, E(119)^50, E(119)^4, E(119)^55, E(119)^-18, E(119)^2, E(119)^-1, E(119)^-16, E(119)^47, E(119)^-59, E(119)^40, E(119)^-44, E(119)^-24, E(119)^12, E(119)^19, E(119)^-36, E(119)^-33, E(119)^-26, E(119)^20, E(119)^-31, E(119)^9, E(119)^22, E(119)^32, E(119)^-41, E(119)^-46, E(119)^-50, E(119)^27, E(119)^10, E(119)^53, E(119)^-20, E(119)^52, E(119)^-5, E(119)^48, E(119)^54, E(119)^-23, E(119)^11, E(119)^-9, E(119)^33, E(119)^-57, E(119)^-54, E(119)^38, E(119)^-6, E(119)^-52, E(119)^-13, E(119), E(119)^39, E(119)^15, E(119)^-27, E(119)^-38, E(119)^-2, E(119)^24, E(119)^30, E(119)^-43, E(119)^-39, E(119)^23, E(119)^25, E(119)^-37, E(119)^58, E(119)^44, E(119)^37, E(119)^-53, E(119)^-15, E(119)^-12, E(119)^-4, E(119)^41, E(119)^-10, E(119)^59, E(119)^6, E(119)^46, E(119)^8, E(119)^-25, E(119)^-45, E(119)^36, E(119)^-48, E(119)^-40, E(119)^29, E(119)^3, E(119)^-19, E(119)^-22, E(119)^31, E(119)^26, E(119)^5, E(119)^-58, E(119)^-30, E(119)^13, -1*E(119)^-10, -1*E(119)^-25, -1*E(119)^-3, -1*E(119)^-12, -1*E(119)^-11, -1*E(119)^4, -1*E(119)^-18, -1*E(119)^-9, -1*E(119)^55, -1*E(119)^-6, -1*E(119)^-13, -1*E(119)^-22, -1*E(119)^-27, -1*E(119)^19, -1*E(119)^-36, -1*E(119), -1*E(119)^-20, -1*E(119)^-50, -1*E(119)^5, -1*E(119)^37, -1*E(119)^18, -1*E(119)^3, -1*E(119)^-26, -1*E(119)^11, -1*E(119)^-39, -1*E(119)^23, -1*E(119)^-40, -1*E(119)^12, -1*E(119)^27, -1*E(119)^-38, -1*E(119)^10, -1*E(119)^25, -1*E(119)^30, -1*E(119)^-43, -1*E(119)^43, -1*E(119)^22, -1*E(119)^13, -1*E(119)^-48, -1*E(119)^29, -1*E(119)^20, -1*E(119)^-44, -1*E(119)^-33, -1*E(119)^-31, -1*E(119)^33, -1*E(119)^-46, -1*E(119)^-52, -1*E(119)^47, -1*E(119)^44, -1*E(119)^41, -1*E(119)^-4, -1*E(119)^-24, -1*E(119)^9, -1*E(119)^-32, -1*E(119)^-53, -1*E(119)^57, -1*E(119)^-30, -1*E(119)^31, -1*E(119)^15, -1*E(119)^50, -1*E(119)^-1, -1*E(119)^54, -1*E(119)^52, -1*E(119)^-57, -1*E(119)^-37, -1*E(119)^-41, -1*E(119)^-29, -1*E(119)^26, -1*E(119)^16, -1*E(119)^39, -1*E(119)^24, -1*E(119)^-47, -1*E(119)^32, -1*E(119)^59, -1*E(119)^-45, -1*E(119)^-19, -1*E(119)^-58, -1*E(119)^6, -1*E(119)^-23, -1*E(119)^-2, -1*E(119)^53, -1*E(119)^2, -1*E(119)^40, -1*E(119)^-15, -1*E(119)^-55, -1*E(119)^36, -1*E(119)^48, -1*E(119)^-16, -1*E(119)^8, -1*E(119)^-8, -1*E(119)^-54, -1*E(119)^-5, -1*E(119)^-59, -1*E(119)^45, -1*E(119)^46, -1*E(119)^58, -1*E(119)^38, 1], [1, -1, E(119)^-17, E(119)^-51, E(119)^51, E(119)^34, E(119)^17, E(119)^-34, -1*E(119)^-34, -1*E(119)^34, -1*E(119)^17, -1*E(119)^-17, -1*E(119)^-51, -1*E(119)^51, E(119)^-7, E(119)^56, E(119)^-21, E(119)^21, E(119)^14, E(119)^35, E(119)^-14, E(119)^49, E(119)^42, E(119)^-49, E(119)^-35, E(119)^7, E(119)^28, E(119)^-42, E(119)^-28, E(119)^-56, -1*E(119)^7, -1*E(119)^35, -1*E(119)^-14, -1*E(119)^42, -1*E(119)^21, -1*E(119)^-28, -1*E(119)^-42, -1*E(119)^-35, -1*E(119)^-56, -1*E(119)^-7, -1*E(119)^49, -1*E(119)^56, -1*E(119)^28, -1*E(119)^14, -1*E(119)^-49, -1*E(119)^-21, E(119)^-6, E(119)^-9, E(119)^18, E(119)^-36, E(119)^-25, E(119)^-3, E(119)^-55, E(119)^19, E(119)^-31, E(119)^13, E(119)^24, E(119)^20, E(119)^-43, E(119)^-32, E(119)^36, E(119)^25, E(119)^-16, E(119)^8, E(119)^9, E(119)^-19, E(119)^-4, E(119)^37, E(119)^-5, E(119)^-46, E(119)^23, E(119)^-33, E(119)^50, E(119)^26, E(119)^-30, E(119)^-41, E(119)^10, E(119)^47, E(119)^-57, E(119)^-18, E(119)^-29, E(119)^11, E(119)^43, E(119)^22, E(119)^39, E(119)^52, E(119)^41, E(119)^-59, E(119)^40, E(119)^-27, E(119)^44, E(119)^-54, E(119)^31, E(119)^-47, E(119)^-26, E(119)^-20, E(119)^-44, E(119)^53, E(119)^48, E(119)^59, E(119)^-15, E(119)^-8, E(119)^45, E(119)^-1, E(119)^-22, E(119)^-53, E(119)^16, E(119)^46, E(119)^-2, E(119)^-13, E(119)^-45, E(119)^54, E(119)^38, E(119)^58, E(119)^12, E(119)^5, E(119)^-58, E(119)^-52, E(119), E(119)^-23, E(119)^32, E(119)^29, E(119)^-39, E(119)^4, E(119)^-48, E(119)^-11, E(119)^55, E(119)^-38, E(119)^3, E(119)^-50, E(119)^27, E(119)^-37, E(119)^6, E(119)^-24, E(119)^33, E(119)^57, E(119)^-10, E(119)^30, E(119)^-40, E(119)^-12, E(119)^2, E(119)^15, -1*E(119)^-39, -1*E(119)^-38, -1*E(119)^24, -1*E(119)^-23, -1*E(119)^-31, -1*E(119)^-32, -1*E(119)^25, -1*E(119)^-47, -1*E(119)^36, -1*E(119)^48, -1*E(119)^-15, -1*E(119)^57, -1*E(119)^-22, -1*E(119)^-33, -1*E(119)^50, -1*E(119)^-8, -1*E(119)^41, -1*E(119)^43, -1*E(119)^-40, -1*E(119)^-58, -1*E(119)^-25, -1*E(119)^-24, -1*E(119)^-30, -1*E(119)^31, -1*E(119)^-45, -1*E(119)^54, -1*E(119)^-37, -1*E(119)^23, -1*E(119)^22, -1*E(119)^-53, -1*E(119)^39, -1*E(119)^38, -1*E(119)^-2, -1*E(119)^-13, -1*E(119)^13, -1*E(119)^-57, -1*E(119)^15, -1*E(119)^27, -1*E(119)^6, -1*E(119)^-41, -1*E(119)^-5, -1*E(119)^26, -1*E(119)^10, -1*E(119)^-26, -1*E(119)^11, -1*E(119)^59, -1*E(119)^-19, -1*E(119)^5, -1*E(119)^29, -1*E(119)^32, -1*E(119)^-46, -1*E(119)^47, -1*E(119)^18, -1*E(119)^-52, -1*E(119)^20, -1*E(119)^2, -1*E(119)^-10, -1*E(119)^-1, -1*E(119)^-43, -1*E(119)^8, -1*E(119)^44, -1*E(119)^-59, -1*E(119)^-20, -1*E(119)^58, -1*E(119)^-29, -1*E(119)^-6, -1*E(119)^30, -1*E(119)^-9, -1*E(119)^45, -1*E(119)^46, -1*E(119)^19, -1*E(119)^-18, -1*E(119)^4, -1*E(119)^3, -1*E(119)^33, -1*E(119)^-12, -1*E(119)^-48, -1*E(119)^-54, -1*E(119)^16, -1*E(119)^52, -1*E(119)^-16, -1*E(119)^37, -1*E(119), -1*E(119)^-36, -1*E(119)^-50, -1*E(119)^-27, -1*E(119)^9, -1*E(119)^55, -1*E(119)^-55, -1*E(119)^-44, -1*E(119)^40, -1*E(119)^-4, -1*E(119)^-3, -1*E(119)^-11, -1*E(119)^12, -1*E(119)^53, 1], [1, -1, E(119)^17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^-17, E(119)^34, -1*E(119)^34, -1*E(119)^-34, -1*E(119)^-17, -1*E(119)^17, -1*E(119)^51, -1*E(119)^-51, E(119)^7, E(119)^-56, E(119)^21, E(119)^-21, E(119)^-14, E(119)^-35, E(119)^14, E(119)^-49, E(119)^-42, E(119)^49, E(119)^35, E(119)^-7, E(119)^-28, E(119)^42, E(119)^28, E(119)^56, -1*E(119)^-7, -1*E(119)^-35, -1*E(119)^14, -1*E(119)^-42, -1*E(119)^-21, -1*E(119)^28, -1*E(119)^42, -1*E(119)^35, -1*E(119)^56, -1*E(119)^7, -1*E(119)^-49, -1*E(119)^-56, -1*E(119)^-28, -1*E(119)^-14, -1*E(119)^49, -1*E(119)^21, E(119)^6, E(119)^9, E(119)^-18, E(119)^36, E(119)^25, E(119)^3, E(119)^55, E(119)^-19, E(119)^31, E(119)^-13, E(119)^-24, E(119)^-20, E(119)^43, E(119)^32, E(119)^-36, E(119)^-25, E(119)^16, E(119)^-8, E(119)^-9, E(119)^19, E(119)^4, E(119)^-37, E(119)^5, E(119)^46, E(119)^-23, E(119)^33, E(119)^-50, E(119)^-26, E(119)^30, E(119)^41, E(119)^-10, E(119)^-47, E(119)^57, E(119)^18, E(119)^29, E(119)^-11, E(119)^-43, E(119)^-22, E(119)^-39, E(119)^-52, E(119)^-41, E(119)^59, E(119)^-40, E(119)^27, E(119)^-44, E(119)^54, E(119)^-31, E(119)^47, E(119)^26, E(119)^20, E(119)^44, E(119)^-53, E(119)^-48, E(119)^-59, E(119)^15, E(119)^8, E(119)^-45, E(119), E(119)^22, E(119)^53, E(119)^-16, E(119)^-46, E(119)^2, E(119)^13, E(119)^45, E(119)^-54, E(119)^-38, E(119)^-58, E(119)^-12, E(119)^-5, E(119)^58, E(119)^52, E(119)^-1, E(119)^23, E(119)^-32, E(119)^-29, E(119)^39, E(119)^-4, E(119)^48, E(119)^11, E(119)^-55, E(119)^38, E(119)^-3, E(119)^50, E(119)^-27, E(119)^37, E(119)^-6, E(119)^24, E(119)^-33, E(119)^-57, E(119)^10, E(119)^-30, E(119)^40, E(119)^12, E(119)^-2, E(119)^-15, -1*E(119)^39, -1*E(119)^38, -1*E(119)^-24, -1*E(119)^23, -1*E(119)^31, -1*E(119)^32, -1*E(119)^-25, -1*E(119)^47, -1*E(119)^-36, -1*E(119)^-48, -1*E(119)^15, -1*E(119)^-57, -1*E(119)^22, -1*E(119)^33, -1*E(119)^-50, -1*E(119)^8, -1*E(119)^-41, -1*E(119)^-43, -1*E(119)^40, -1*E(119)^58, -1*E(119)^25, -1*E(119)^24, -1*E(119)^30, -1*E(119)^-31, -1*E(119)^45, -1*E(119)^-54, -1*E(119)^37, -1*E(119)^-23, -1*E(119)^-22, -1*E(119)^53, -1*E(119)^-39, -1*E(119)^-38, -1*E(119)^2, -1*E(119)^13, -1*E(119)^-13, -1*E(119)^57, -1*E(119)^-15, -1*E(119)^-27, -1*E(119)^-6, -1*E(119)^41, -1*E(119)^5, -1*E(119)^-26, -1*E(119)^-10, -1*E(119)^26, -1*E(119)^-11, -1*E(119)^-59, -1*E(119)^19, -1*E(119)^-5, -1*E(119)^-29, -1*E(119)^-32, -1*E(119)^46, -1*E(119)^-47, -1*E(119)^-18, -1*E(119)^52, -1*E(119)^-20, -1*E(119)^-2, -1*E(119)^10, -1*E(119), -1*E(119)^43, -1*E(119)^-8, -1*E(119)^-44, -1*E(119)^59, -1*E(119)^20, -1*E(119)^-58, -1*E(119)^29, -1*E(119)^6, -1*E(119)^-30, -1*E(119)^9, -1*E(119)^-45, -1*E(119)^-46, -1*E(119)^-19, -1*E(119)^18, -1*E(119)^-4, -1*E(119)^-3, -1*E(119)^-33, -1*E(119)^12, -1*E(119)^48, -1*E(119)^54, -1*E(119)^-16, -1*E(119)^-52, -1*E(119)^16, -1*E(119)^-37, -1*E(119)^-1, -1*E(119)^36, -1*E(119)^50, -1*E(119)^27, -1*E(119)^-9, -1*E(119)^-55, -1*E(119)^55, -1*E(119)^44, -1*E(119)^-40, -1*E(119)^4, -1*E(119)^3, -1*E(119)^11, -1*E(119)^-12, -1*E(119)^-53, 1], [1, -1, E(119)^-17, E(119)^-51, E(119)^51, E(119)^34, E(119)^17, E(119)^-34, -1*E(119)^-34, -1*E(119)^34, -1*E(119)^17, -1*E(119)^-17, -1*E(119)^-51, -1*E(119)^51, E(119)^7, E(119)^-56, E(119)^21, E(119)^-21, E(119)^-14, E(119)^-35, E(119)^14, E(119)^-49, E(119)^-42, E(119)^49, E(119)^35, E(119)^-7, E(119)^-28, E(119)^42, E(119)^28, E(119)^56, -1*E(119)^-7, -1*E(119)^-35, -1*E(119)^14, -1*E(119)^-42, -1*E(119)^-21, -1*E(119)^28, -1*E(119)^42, -1*E(119)^35, -1*E(119)^56, -1*E(119)^7, -1*E(119)^-49, -1*E(119)^-56, -1*E(119)^-28, -1*E(119)^-14, -1*E(119)^49, -1*E(119)^21, E(119)^57, E(119)^26, E(119)^-52, E(119)^-15, E(119)^59, E(119)^-31, E(119)^-13, E(119)^-2, E(119)^-3, E(119)^55, E(119)^10, E(119)^48, E(119)^-8, E(119)^-53, E(119)^15, E(119)^-59, E(119)^33, E(119)^43, E(119)^-26, E(119)^2, E(119)^38, E(119)^-54, E(119)^-12, E(119)^-39, E(119)^-40, E(119)^16, E(119), E(119)^-9, E(119)^47, E(119)^-27, E(119)^24, E(119)^-30, E(119)^6, E(119)^52, E(119)^-22, E(119)^-45, E(119)^8, E(119)^29, E(119)^46, E(119)^-18, E(119)^27, E(119)^25, E(119)^-23, E(119)^-41, E(119)^58, E(119)^37, E(119)^3, E(119)^30, E(119)^9, E(119)^-48, E(119)^-58, E(119)^32, E(119)^20, E(119)^-25, E(119)^-36, E(119)^-43, E(119)^-11, E(119)^-50, E(119)^-29, E(119)^-32, E(119)^-33, E(119)^39, E(119)^19, E(119)^-55, E(119)^11, E(119)^-37, E(119)^-4, E(119)^44, E(119)^5, E(119)^12, E(119)^-44, E(119)^18, E(119)^50, E(119)^40, E(119)^53, E(119)^22, E(119)^-46, E(119)^-38, E(119)^-20, E(119)^45, E(119)^13, E(119)^4, E(119)^31, E(119)^-1, E(119)^41, E(119)^54, E(119)^-57, E(119)^-10, E(119)^-16, E(119)^-6, E(119)^-24, E(119)^-47, E(119)^23, E(119)^-5, E(119)^-19, E(119)^36, -1*E(119)^-46, -1*E(119)^4, -1*E(119)^10, -1*E(119)^40, -1*E(119)^-3, -1*E(119)^-53, -1*E(119)^-59, -1*E(119)^30, -1*E(119)^15, -1*E(119)^20, -1*E(119)^-36, -1*E(119)^-6, -1*E(119)^-29, -1*E(119)^16, -1*E(119), -1*E(119)^-43, -1*E(119)^27, -1*E(119)^8, -1*E(119)^23, -1*E(119)^-44, -1*E(119)^59, -1*E(119)^-10, -1*E(119)^47, -1*E(119)^3, -1*E(119)^11, -1*E(119)^-37, -1*E(119)^54, -1*E(119)^-40, -1*E(119)^29, -1*E(119)^-32, -1*E(119)^46, -1*E(119)^-4, -1*E(119)^19, -1*E(119)^-55, -1*E(119)^55, -1*E(119)^6, -1*E(119)^36, -1*E(119)^41, -1*E(119)^-57, -1*E(119)^-27, -1*E(119)^-12, -1*E(119)^-9, -1*E(119)^24, -1*E(119)^9, -1*E(119)^-45, -1*E(119)^-25, -1*E(119)^2, -1*E(119)^12, -1*E(119)^22, -1*E(119)^53, -1*E(119)^-39, -1*E(119)^-30, -1*E(119)^-52, -1*E(119)^18, -1*E(119)^48, -1*E(119)^-19, -1*E(119)^-24, -1*E(119)^-50, -1*E(119)^-8, -1*E(119)^43, -1*E(119)^58, -1*E(119)^25, -1*E(119)^-48, -1*E(119)^44, -1*E(119)^-22, -1*E(119)^57, -1*E(119)^-47, -1*E(119)^26, -1*E(119)^-11, -1*E(119)^39, -1*E(119)^-2, -1*E(119)^52, -1*E(119)^-38, -1*E(119)^31, -1*E(119)^-16, -1*E(119)^-5, -1*E(119)^-20, -1*E(119)^37, -1*E(119)^-33, -1*E(119)^-18, -1*E(119)^33, -1*E(119)^-54, -1*E(119)^50, -1*E(119)^-15, -1*E(119)^-1, -1*E(119)^-41, -1*E(119)^-26, -1*E(119)^13, -1*E(119)^-13, -1*E(119)^-58, -1*E(119)^-23, -1*E(119)^38, -1*E(119)^-31, -1*E(119)^45, -1*E(119)^5, -1*E(119)^32, 1], [1, -1, E(119)^17, E(119)^51, E(119)^-51, E(119)^-34, E(119)^-17, E(119)^34, -1*E(119)^34, -1*E(119)^-34, -1*E(119)^-17, -1*E(119)^17, -1*E(119)^51, -1*E(119)^-51, E(119)^-7, E(119)^56, E(119)^-21, E(119)^21, E(119)^14, E(119)^35, E(119)^-14, E(119)^49, E(119)^42, E(119)^-49, E(119)^-35, E(119)^7, E(119)^28, E(119)^-42, E(119)^-28, E(119)^-56, -1*E(119)^7, -1*E(119)^35, -1*E(119)^-14, -1*E(119)^42, -1*E(119)^21, -1*E(119)^-28, -1*E(119)^-42, -1*E(119)^-35, -1*E(119)^-56, -1*E(119)^-7, -1*E(119)^49, -1*E(119)^56, -1*E(119)^28, -1*E(119)^14, -1*E(119)^-49, -1*E(119)^-21, E(119)^-57, E(119)^-26, E(119)^52, E(119)^15, E(119)^-59, E(119)^31, E(119)^13, E(119)^2, E(119)^3, E(119)^-55, E(119)^-10, E(119)^-48, E(119)^8, E(119)^53, E(119)^-15, E(119)^59, E(119)^-33, E(119)^-43, E(119)^26, E(119)^-2, E(119)^-38, E(119)^54, E(119)^12, E(119)^39, E(119)^40, E(119)^-16, E(119)^-1, E(119)^9, E(119)^-47, E(119)^27, E(119)^-24, E(119)^30, E(119)^-6, E(119)^-52, E(119)^22, E(119)^45, E(119)^-8, E(119)^-29, E(119)^-46, E(119)^18, E(119)^-27, E(119)^-25, E(119)^23, E(119)^41, E(119)^-58, E(119)^-37, E(119)^-3, E(119)^-30, E(119)^-9, E(119)^48, E(119)^58, E(119)^-32, E(119)^-20, E(119)^25, E(119)^36, E(119)^43, E(119)^11, E(119)^50, E(119)^29, E(119)^32, E(119)^33, E(119)^-39, E(119)^-19, E(119)^55, E(119)^-11, E(119)^37, E(119)^4, E(119)^-44, E(119)^-5, E(119)^-12, E(119)^44, E(119)^-18, E(119)^-50, E(119)^-40, E(119)^-53, E(119)^-22, E(119)^46, E(119)^38, E(119)^20, E(119)^-45, E(119)^-13, E(119)^-4, E(119)^-31, E(119), E(119)^-41, E(119)^-54, E(119)^57, E(119)^10, E(119)^16, E(119)^6, E(119)^24, E(119)^47, E(119)^-23, E(119)^5, E(119)^19, E(119)^-36, -1*E(119)^46, -1*E(119)^-4, -1*E(119)^-10, -1*E(119)^-40, -1*E(119)^3, -1*E(119)^53, -1*E(119)^59, -1*E(119)^-30, -1*E(119)^-15, -1*E(119)^-20, -1*E(119)^36, -1*E(119)^6, -1*E(119)^29, -1*E(119)^-16, -1*E(119)^-1, -1*E(119)^43, -1*E(119)^-27, -1*E(119)^-8, -1*E(119)^-23, -1*E(119)^44, -1*E(119)^-59, -1*E(119)^10, -1*E(119)^-47, -1*E(119)^-3, -1*E(119)^-11, -1*E(119)^37, -1*E(119)^-54, -1*E(119)^40, -1*E(119)^-29, -1*E(119)^32, -1*E(119)^-46, -1*E(119)^4, -1*E(119)^-19, -1*E(119)^55, -1*E(119)^-55, -1*E(119)^-6, -1*E(119)^-36, -1*E(119)^-41, -1*E(119)^57, -1*E(119)^27, -1*E(119)^12, -1*E(119)^9, -1*E(119)^-24, -1*E(119)^-9, -1*E(119)^45, -1*E(119)^25, -1*E(119)^-2, -1*E(119)^-12, -1*E(119)^-22, -1*E(119)^-53, -1*E(119)^39, -1*E(119)^30, -1*E(119)^52, -1*E(119)^-18, -1*E(119)^-48, -1*E(119)^19, -1*E(119)^24, -1*E(119)^50, -1*E(119)^8, -1*E(119)^-43, -1*E(119)^-58, -1*E(119)^-25, -1*E(119)^48, -1*E(119)^-44, -1*E(119)^22, -1*E(119)^-57, -1*E(119)^47, -1*E(119)^-26, -1*E(119)^11, -1*E(119)^-39, -1*E(119)^2, -1*E(119)^-52, -1*E(119)^38, -1*E(119)^-31, -1*E(119)^16, -1*E(119)^5, -1*E(119)^20, -1*E(119)^-37, -1*E(119)^33, -1*E(119)^18, -1*E(119)^-33, -1*E(119)^54, -1*E(119)^-50, -1*E(119)^15, -1*E(119), -1*E(119)^41, -1*E(119)^26, -1*E(119)^-13, -1*E(119)^13, -1*E(119)^58, -1*E(119)^23, -1*E(119)^-38, -1*E(119)^31, -1*E(119)^-45, -1*E(119)^-5, -1*E(119)^-32, 1], [238, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1]]; ConvertToLibraryCharacterTableNC(chartbl_56882_18);