/* Group 560.172 downloaded from the LMFDB on 29 December 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([6, -2, -7, -2, 2, 2, -5, 12, 5798, 2528, 7395, 513, 2104, 5470, 88]); a,b,c,d := Explode([GPC.1, GPC.3, GPC.4, GPC.5]); AssignNames(~GPC, ["a", "a2", "b", "c", "d", "d2"]); GPerm := PermutationGroup< 15 | (14,15), (9,10,11,12,13), (2,3,4,6,8,5,7), (1,2)(3,5)(4,6)(7,8), (1,3)(2,5)(4,7)(6,8), (1,4)(2,6)(3,7)(5,8) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_560_172 := rec< RF | Agroup := true, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := false>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, a^7>,< 2, 7, d^5>,< 2, 7, a^7*d^5>,< 5, 1, d^2>,< 5, 1, d^8>,< 5, 1, d^4>,< 5, 1, d^6>,< 7, 8, a^10>,< 7, 8, a^4>,< 7, 8, a^6>,< 7, 8, a^8>,< 7, 8, a^2>,< 7, 8, a^12>,< 10, 1, a^7*d^4>,< 10, 1, a^7*d^6>,< 10, 1, a^7*d^2>,< 10, 1, a^7*d^8>,< 10, 7, d>,< 10, 7, c*d^4>,< 10, 7, d^3>,< 10, 7, c*d^2>,< 10, 7, a^7*d>,< 10, 7, a^7*c*d^4>,< 10, 7, a^7*d^3>,< 10, 7, a^7*c*d^2>,< 14, 8, a^5>,< 14, 8, a^9>,< 14, 8, a>,< 14, 8, a^13>,< 14, 8, a^11>,< 14, 8, a^3>,< 35, 8, a^2*d^4>,< 35, 8, a^12*d^6>,< 35, 8, a^4*d^8>,< 35, 8, a^10*d^2>,< 35, 8, a^6*d^2>,< 35, 8, a^8*d^8>,< 35, 8, a^8*d^6>,< 35, 8, a^6*d^4>,< 35, 8, a^12*d^4>,< 35, 8, a^2*d^6>,< 35, 8, a^2*d^2>,< 35, 8, a^12*d^8>,< 35, 8, a^4*d^6>,< 35, 8, a^10*d^4>,< 35, 8, a^8*d^4>,< 35, 8, a^6*d^6>,< 35, 8, a^10*d^8>,< 35, 8, a^4*d^2>,< 35, 8, a^12*d^2>,< 35, 8, a^2*d^8>,< 35, 8, a^4*d^4>,< 35, 8, a^10*d^6>,< 35, 8, a^6*d^8>,< 35, 8, a^8*d^2>,< 70, 8, a*d^2>,< 70, 8, a^13*d^8>,< 70, 8, a^3*d>,< 70, 8, a^11*d^4>,< 70, 8, a^9*d^8>,< 70, 8, a^5*d^2>,< 70, 8, a^11*d^2>,< 70, 8, a^3*d^8>,< 70, 8, a^13*d>,< 70, 8, a*d^4>,< 70, 8, a^3*d^4>,< 70, 8, a^11*d>,< 70, 8, a^5*d^8>,< 70, 8, a^9*d^2>,< 70, 8, a^9*d>,< 70, 8, a^5*d^4>,< 70, 8, a^13*d^4>,< 70, 8, a*d>,< 70, 8, a*d^8>,< 70, 8, a^13*d^2>,< 70, 8, a^3*d^2>,< 70, 8, a^11*d^8>,< 70, 8, a^5*d>,< 70, 8, a^9*d^4>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,K.1^-2,K.1^2,K.1,K.1^-1,1,1,1,1,1,1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1,K.1^-2,K.1,K.1^2,K.1^2,1,1,1,1,1,1,K.1^2,K.1^-2,K.1^-2,K.1,K.1^2,K.1^2,K.1,K.1^-2,K.1,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1^2,K.1^2,K.1,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,K.1^2,K.1^-2,K.1^-1,K.1,1,1,1,1,1,1,K.1^-1,K.1^-2,K.1,K.1^2,K.1,K.1,K.1^2,K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1^-2,1,1,1,1,1,1,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1^-1,K.1,K.1^2,K.1,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1,K.1^-2,K.1,K.1^-1,K.1,K.1,K.1^-2,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,K.1^-1,K.1,K.1^-2,K.1^2,1,1,1,1,1,1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1^-2,K.1,K.1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1^-2,K.1,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1,K.1^2,K.1^-2,K.1^2,K.1^2,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1,K.1^-2,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,K.1,K.1^-1,K.1^2,K.1^-2,1,1,1,1,1,1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^-2,K.1,K.1^2,K.1,K.1^2,K.1^-1,K.1^-1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1,K.1^2,K.1^2,K.1^-2,K.1,K.1^-2,K.1^-1,K.1,K.1^2,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^2,K.1,K.1^-1,K.1^2,K.1,K.1,K.1,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,-1,1,-1,K.1^-2,K.1^2,K.1,K.1^-1,1,1,1,1,1,1,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1^-1,-1*K.1^-2,K.1,K.1^-2,-1*K.1,-1*K.1^2,K.1^2,-1,-1,-1,-1,-1,-1,K.1^2,K.1^-2,K.1^-2,K.1,K.1^2,K.1^2,K.1,K.1^-2,K.1,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,-1,1,-1,K.1^2,K.1^-2,K.1^-1,K.1,1,1,1,1,1,1,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1,K.1,-1*K.1^2,K.1^-1,K.1^2,-1*K.1^-1,-1*K.1^-2,K.1^-2,-1,-1,-1,-1,-1,-1,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1^-1,K.1,K.1^2,K.1,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1,K.1^-2,K.1,K.1^-1,K.1,K.1,K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,-1,1,-1,K.1^-1,K.1,K.1^-2,K.1^2,1,1,1,1,1,1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,K.1^2,-1*K.1^-1,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1,K.1,-1,-1,-1,-1,-1,-1,K.1,K.1^-1,K.1^-1,K.1^-2,K.1,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1,K.1^2,K.1^-2,K.1^2,K.1^2,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,-1,1,-1,K.1,K.1^-1,K.1^2,K.1^-2,1,1,1,1,1,1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-2,K.1^-2,-1*K.1,K.1^2,K.1,-1*K.1^2,-1*K.1^-1,K.1^-1,-1,-1,-1,-1,-1,-1,K.1^-1,K.1,K.1,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1,K.1^2,K.1^2,K.1^-2,K.1,K.1^-2,K.1^-1,K.1,K.1^2,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^-2,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,K.1^-3,K.1^-1,K.1^-2,K.1^2,K.1^3,K.1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-3,K.1^2,K.1^-2,K.1,K.1^-1,K.1^3,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^3,K.1^-2,K.1^3,K.1,K.1,K.1^-3,K.1^-3,K.1^2,K.1^3,K.1^-1,K.1,K.1^2,K.1^-3,K.1^-3,K.1^-2,K.1^3,K.1^-1,K.1^-2,K.1^2,K.1^3,K.1,K.1^-3,K.1^-3,K.1,K.1^-1,K.1^2,K.1^3,K.1^2,K.1^-3,K.1,K.1^3,K.1^-2,K.1,K.1^3,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1^-3,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,K.1^3,K.1,K.1^2,K.1^-2,K.1^-3,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^3,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-3,K.1^-2,K.1^2,K.1^-2,K.1,K.1^2,K.1,K.1^-1,K.1,K.1^-3,K.1^2,K.1^-3,K.1^-1,K.1^-1,K.1^3,K.1^3,K.1^-2,K.1^-3,K.1,K.1^-1,K.1^-2,K.1^3,K.1^3,K.1^2,K.1^-3,K.1,K.1^2,K.1^-2,K.1^-3,K.1^-1,K.1^3,K.1^3,K.1^-1,K.1,K.1^-2,K.1^-3,K.1^-2,K.1^3,K.1^-1,K.1^-3,K.1^2,K.1^-1,K.1^-3,K.1^-2,K.1,K.1^2,K.1,K.1^3,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,K.1^-2,K.1^-3,K.1,K.1^-1,K.1^2,K.1^3,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-2,K.1^-1,K.1,K.1^3,K.1^-3,K.1^2,K.1^-1,K.1,K.1^-1,K.1^-3,K.1,K.1^-3,K.1^3,K.1^-3,K.1^2,K.1,K.1^2,K.1^3,K.1^3,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1^-3,K.1^3,K.1^-1,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-3,K.1,K.1^-1,K.1^2,K.1^3,K.1^-2,K.1^-2,K.1^3,K.1^-3,K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1^3,K.1^2,K.1,K.1^3,K.1^2,K.1^-1,K.1^-3,K.1,K.1^-3,K.1^-2,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,K.1^2,K.1^3,K.1^-1,K.1,K.1^-2,K.1^-3,1,1,1,1,1,1,1,1,1,1,1,1,K.1^2,K.1,K.1^-1,K.1^-3,K.1^3,K.1^-2,K.1,K.1^-1,K.1,K.1^3,K.1^-1,K.1^3,K.1^-3,K.1^3,K.1^-2,K.1^-1,K.1^-2,K.1^-3,K.1^-3,K.1^2,K.1^2,K.1,K.1^-2,K.1^3,K.1^-3,K.1,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1^3,K.1^-1,K.1,K.1^-2,K.1^-3,K.1^2,K.1^2,K.1^-3,K.1^3,K.1,K.1^-2,K.1,K.1^2,K.1^-3,K.1^-2,K.1^-1,K.1^-3,K.1^-2,K.1,K.1^3,K.1^-1,K.1^3,K.1^2,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,K.1^-1,K.1^2,K.1^-3,K.1^3,K.1,K.1^-2,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1^3,K.1^-3,K.1^-2,K.1^2,K.1,K.1^3,K.1^-3,K.1^3,K.1^2,K.1^-3,K.1^2,K.1^-2,K.1^2,K.1,K.1^-3,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^3,K.1,K.1^2,K.1^-2,K.1^3,K.1^-1,K.1^-1,K.1^-3,K.1,K.1^2,K.1^-3,K.1^3,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1^3,K.1,K.1^3,K.1^-1,K.1^-2,K.1,K.1^-3,K.1^-2,K.1,K.1^3,K.1^2,K.1^-3,K.1^2,K.1^-1,K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,K.1,K.1^-2,K.1^3,K.1^-3,K.1^-1,K.1^2,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-3,K.1^3,K.1^2,K.1^-2,K.1^-1,K.1^-3,K.1^3,K.1^-3,K.1^-2,K.1^3,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^3,K.1^-1,K.1^2,K.1^2,K.1,K.1,K.1^-3,K.1^-1,K.1^-2,K.1^2,K.1^-3,K.1,K.1,K.1^3,K.1^-1,K.1^-2,K.1^3,K.1^-3,K.1^-1,K.1^2,K.1,K.1,K.1^2,K.1^-2,K.1^-3,K.1^-1,K.1^-3,K.1,K.1^2,K.1^-1,K.1^3,K.1^2,K.1^-1,K.1^-3,K.1^-2,K.1^3,K.1^-2,K.1,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,-1,1,-1,1,1,1,1,K.1^-3,K.1^-1,K.1^-2,K.1^2,K.1^3,K.1,-1,-1,-1,-1,-1,1,-1,1,1,-1,-1,1,-1*K.1^-3,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^3,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^3,K.1^-2,K.1^3,K.1,K.1,K.1^-3,K.1^-3,K.1^2,K.1^3,K.1^-1,K.1,K.1^2,K.1^-3,K.1^-3,K.1^-2,K.1^3,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^3,-1*K.1,-1*K.1^-3,-1*K.1^-3,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^3,-1*K.1^2,-1*K.1^-3,-1*K.1,-1*K.1^3,-1*K.1^-2,-1*K.1,-1*K.1^3,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-3,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,-1,1,-1,1,1,1,1,K.1^3,K.1,K.1^2,K.1^-2,K.1^-3,K.1^-1,-1,-1,-1,-1,-1,1,-1,1,1,-1,-1,1,-1*K.1^3,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-3,K.1^-2,K.1^2,K.1^-2,K.1,K.1^2,K.1,K.1^-1,K.1,K.1^-3,K.1^2,K.1^-3,K.1^-1,K.1^-1,K.1^3,K.1^3,K.1^-2,K.1^-3,K.1,K.1^-1,K.1^-2,K.1^3,K.1^3,K.1^2,K.1^-3,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-3,-1*K.1^-1,-1*K.1^3,-1*K.1^3,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-3,-1*K.1^-2,-1*K.1^3,-1*K.1^-1,-1*K.1^-3,-1*K.1^2,-1*K.1^-1,-1*K.1^-3,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^3,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,-1,1,-1,1,1,1,1,K.1^-2,K.1^-3,K.1,K.1^-1,K.1^2,K.1^3,-1,-1,-1,-1,-1,1,-1,1,1,-1,-1,1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^3,-1*K.1^-3,-1*K.1^2,K.1^-1,K.1,K.1^-1,K.1^-3,K.1,K.1^-3,K.1^3,K.1^-3,K.1^2,K.1,K.1^2,K.1^3,K.1^3,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1^-3,K.1^3,K.1^-1,K.1^-2,K.1^-2,K.1,K.1^2,-1*K.1^-3,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^3,-1*K.1^-2,-1*K.1^-2,-1*K.1^3,-1*K.1^-3,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^3,-1*K.1^2,-1*K.1,-1*K.1^3,-1*K.1^2,-1*K.1^-1,-1*K.1^-3,-1*K.1,-1*K.1^-3,-1*K.1^-2,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,-1,1,-1,1,1,1,1,K.1^2,K.1^3,K.1^-1,K.1,K.1^-2,K.1^-3,-1,-1,-1,-1,-1,1,-1,1,1,-1,-1,1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-3,-1*K.1^3,-1*K.1^-2,K.1,K.1^-1,K.1,K.1^3,K.1^-1,K.1^3,K.1^-3,K.1^3,K.1^-2,K.1^-1,K.1^-2,K.1^-3,K.1^-3,K.1^2,K.1^2,K.1,K.1^-2,K.1^3,K.1^-3,K.1,K.1^2,K.1^2,K.1^-1,K.1^-2,-1*K.1^3,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-3,-1*K.1^2,-1*K.1^2,-1*K.1^-3,-1*K.1^3,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-3,-1*K.1^-2,-1*K.1^-1,-1*K.1^-3,-1*K.1^-2,-1*K.1,-1*K.1^3,-1*K.1^-1,-1*K.1^3,-1*K.1^2,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,-1,1,-1,1,1,1,1,K.1^-1,K.1^2,K.1^-3,K.1^3,K.1,K.1^-2,-1,-1,-1,-1,-1,1,-1,1,1,-1,-1,1,-1*K.1^-1,-1*K.1^3,-1*K.1^-3,-1*K.1^-2,-1*K.1^2,-1*K.1,K.1^3,K.1^-3,K.1^3,K.1^2,K.1^-3,K.1^2,K.1^-2,K.1^2,K.1,K.1^-3,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^3,K.1,K.1^2,K.1^-2,K.1^3,K.1^-1,K.1^-1,K.1^-3,K.1,-1*K.1^2,-1*K.1^-3,-1*K.1^3,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-3,-1*K.1^-2,-1*K.1,-1*K.1^3,-1*K.1^2,-1*K.1^-3,-1*K.1^2,-1*K.1^-1,-1*K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,-1,1,-1,1,1,1,1,K.1,K.1^-2,K.1^3,K.1^-3,K.1^-1,K.1^2,-1,-1,-1,-1,-1,1,-1,1,1,-1,-1,1,-1*K.1,-1*K.1^-3,-1*K.1^3,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,K.1^-3,K.1^3,K.1^-3,K.1^-2,K.1^3,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^3,K.1^-1,K.1^2,K.1^2,K.1,K.1,K.1^-3,K.1^-1,K.1^-2,K.1^2,K.1^-3,K.1,K.1,K.1^3,K.1^-1,-1*K.1^-2,-1*K.1^3,-1*K.1^-3,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-3,-1*K.1^-1,-1*K.1^-3,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^3,-1*K.1^2,-1*K.1^-1,-1*K.1^-3,-1*K.1^-2,-1*K.1^3,-1*K.1^-2,-1*K.1,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^-14,K.1^14,K.1^7,K.1^-7,K.1^-15,K.1^-5,K.1^-10,K.1^10,K.1^15,K.1^5,K.1^7,K.1^14,K.1^-7,K.1^-14,K.1^-7,K.1^-7,K.1^-14,K.1^7,K.1^-14,K.1^7,K.1^14,K.1^14,K.1^-15,K.1^10,K.1^-10,K.1^5,K.1^-5,K.1^15,K.1^-11,K.1^11,K.1^-4,K.1^2,K.1^4,K.1^9,K.1^12,K.1^16,K.1^-13,K.1^-3,K.1^8,K.1^-9,K.1^-2,K.1^-1,K.1^6,K.1^17,K.1,K.1^-12,K.1^-16,K.1^3,K.1^-8,K.1^13,K.1^-17,K.1^-6,K.1^16,K.1^11,K.1^-11,K.1^-6,K.1^-16,K.1^-1,K.1^-8,K.1^-9,K.1^9,K.1^17,K.1,K.1^-4,K.1^6,K.1^12,K.1^-13,K.1^-17,K.1^-2,K.1^8,K.1^3,K.1^2,K.1^-3,K.1^-12,K.1^13,K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^14,K.1^-14,K.1^-7,K.1^7,K.1^15,K.1^5,K.1^10,K.1^-10,K.1^-15,K.1^-5,K.1^-7,K.1^-14,K.1^7,K.1^14,K.1^7,K.1^7,K.1^14,K.1^-7,K.1^14,K.1^-7,K.1^-14,K.1^-14,K.1^15,K.1^-10,K.1^10,K.1^-5,K.1^5,K.1^-15,K.1^11,K.1^-11,K.1^4,K.1^-2,K.1^-4,K.1^-9,K.1^-12,K.1^-16,K.1^13,K.1^3,K.1^-8,K.1^9,K.1^2,K.1,K.1^-6,K.1^-17,K.1^-1,K.1^12,K.1^16,K.1^-3,K.1^8,K.1^-13,K.1^17,K.1^6,K.1^-16,K.1^-11,K.1^11,K.1^6,K.1^16,K.1,K.1^8,K.1^9,K.1^-9,K.1^-17,K.1^-1,K.1^4,K.1^-6,K.1^-12,K.1^13,K.1^17,K.1^2,K.1^-8,K.1^-3,K.1^-2,K.1^3,K.1^12,K.1^-13,K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^-14,K.1^14,K.1^7,K.1^-7,K.1^15,K.1^5,K.1^10,K.1^-10,K.1^-15,K.1^-5,K.1^7,K.1^14,K.1^-7,K.1^-14,K.1^-7,K.1^-7,K.1^-14,K.1^7,K.1^-14,K.1^7,K.1^14,K.1^14,K.1^15,K.1^-10,K.1^10,K.1^-5,K.1^5,K.1^-15,K.1^4,K.1^-4,K.1^11,K.1^12,K.1^-11,K.1^-16,K.1^2,K.1^-9,K.1^-8,K.1^17,K.1^13,K.1^16,K.1^-12,K.1^-6,K.1,K.1^-3,K.1^6,K.1^-2,K.1^9,K.1^-17,K.1^-13,K.1^8,K.1^3,K.1^-1,K.1^-9,K.1^-4,K.1^4,K.1^-1,K.1^9,K.1^-6,K.1^-13,K.1^16,K.1^-16,K.1^-3,K.1^6,K.1^11,K.1,K.1^2,K.1^-8,K.1^3,K.1^-12,K.1^13,K.1^-17,K.1^12,K.1^17,K.1^-2,K.1^8,K.1^-11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^14,K.1^-14,K.1^-7,K.1^7,K.1^-15,K.1^-5,K.1^-10,K.1^10,K.1^15,K.1^5,K.1^-7,K.1^-14,K.1^7,K.1^14,K.1^7,K.1^7,K.1^14,K.1^-7,K.1^14,K.1^-7,K.1^-14,K.1^-14,K.1^-15,K.1^10,K.1^-10,K.1^5,K.1^-5,K.1^15,K.1^-4,K.1^4,K.1^-11,K.1^-12,K.1^11,K.1^16,K.1^-2,K.1^9,K.1^8,K.1^-17,K.1^-13,K.1^-16,K.1^12,K.1^6,K.1^-1,K.1^3,K.1^-6,K.1^2,K.1^-9,K.1^17,K.1^13,K.1^-8,K.1^-3,K.1,K.1^9,K.1^4,K.1^-4,K.1,K.1^-9,K.1^6,K.1^13,K.1^-16,K.1^16,K.1^3,K.1^-6,K.1^-11,K.1^-1,K.1^-2,K.1^8,K.1^-3,K.1^12,K.1^-13,K.1^17,K.1^-12,K.1^-17,K.1^2,K.1^-8,K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^-14,K.1^14,K.1^7,K.1^-7,K.1^-10,K.1^-15,K.1^5,K.1^-5,K.1^10,K.1^15,K.1^7,K.1^14,K.1^-7,K.1^-14,K.1^-7,K.1^-7,K.1^-14,K.1^7,K.1^-14,K.1^7,K.1^14,K.1^14,K.1^-10,K.1^-5,K.1^5,K.1^15,K.1^-15,K.1^10,K.1^9,K.1^-9,K.1^16,K.1^-8,K.1^-16,K.1^-1,K.1^-13,K.1^6,K.1^17,K.1^12,K.1^3,K.1,K.1^8,K.1^4,K.1^11,K.1^2,K.1^-4,K.1^13,K.1^-6,K.1^-12,K.1^-3,K.1^-17,K.1^-2,K.1^-11,K.1^6,K.1^-9,K.1^9,K.1^-11,K.1^-6,K.1^4,K.1^-3,K.1,K.1^-1,K.1^2,K.1^-4,K.1^16,K.1^11,K.1^-13,K.1^17,K.1^-2,K.1^8,K.1^3,K.1^-12,K.1^-8,K.1^12,K.1^13,K.1^-17,K.1^-16]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^14,K.1^-14,K.1^-7,K.1^7,K.1^10,K.1^15,K.1^-5,K.1^5,K.1^-10,K.1^-15,K.1^-7,K.1^-14,K.1^7,K.1^14,K.1^7,K.1^7,K.1^14,K.1^-7,K.1^14,K.1^-7,K.1^-14,K.1^-14,K.1^10,K.1^5,K.1^-5,K.1^-15,K.1^15,K.1^-10,K.1^-9,K.1^9,K.1^-16,K.1^8,K.1^16,K.1,K.1^13,K.1^-6,K.1^-17,K.1^-12,K.1^-3,K.1^-1,K.1^-8,K.1^-4,K.1^-11,K.1^-2,K.1^4,K.1^-13,K.1^6,K.1^12,K.1^3,K.1^17,K.1^2,K.1^11,K.1^-6,K.1^9,K.1^-9,K.1^11,K.1^6,K.1^-4,K.1^3,K.1^-1,K.1,K.1^-2,K.1^4,K.1^-16,K.1^-11,K.1^13,K.1^-17,K.1^2,K.1^-8,K.1^-3,K.1^12,K.1^8,K.1^-12,K.1^-13,K.1^17,K.1^16]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^-14,K.1^14,K.1^7,K.1^-7,K.1^10,K.1^15,K.1^-5,K.1^5,K.1^-10,K.1^-15,K.1^7,K.1^14,K.1^-7,K.1^-14,K.1^-7,K.1^-7,K.1^-14,K.1^7,K.1^-14,K.1^7,K.1^14,K.1^14,K.1^10,K.1^5,K.1^-5,K.1^-15,K.1^15,K.1^-10,K.1^-16,K.1^16,K.1^-9,K.1^-13,K.1^9,K.1^-6,K.1^-8,K.1,K.1^-3,K.1^2,K.1^-17,K.1^6,K.1^13,K.1^-11,K.1^-4,K.1^12,K.1^11,K.1^8,K.1^-1,K.1^-2,K.1^17,K.1^3,K.1^-12,K.1^4,K.1,K.1^16,K.1^-16,K.1^4,K.1^-1,K.1^-11,K.1^17,K.1^6,K.1^-6,K.1^12,K.1^11,K.1^-9,K.1^-4,K.1^-8,K.1^-3,K.1^-12,K.1^13,K.1^-17,K.1^-2,K.1^-13,K.1^2,K.1^8,K.1^3,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^14,K.1^-14,K.1^-7,K.1^7,K.1^-10,K.1^-15,K.1^5,K.1^-5,K.1^10,K.1^15,K.1^-7,K.1^-14,K.1^7,K.1^14,K.1^7,K.1^7,K.1^14,K.1^-7,K.1^14,K.1^-7,K.1^-14,K.1^-14,K.1^-10,K.1^-5,K.1^5,K.1^15,K.1^-15,K.1^10,K.1^16,K.1^-16,K.1^9,K.1^13,K.1^-9,K.1^6,K.1^8,K.1^-1,K.1^3,K.1^-2,K.1^17,K.1^-6,K.1^-13,K.1^11,K.1^4,K.1^-12,K.1^-11,K.1^-8,K.1,K.1^2,K.1^-17,K.1^-3,K.1^12,K.1^-4,K.1^-1,K.1^-16,K.1^16,K.1^-4,K.1,K.1^11,K.1^-17,K.1^-6,K.1^6,K.1^-12,K.1^-11,K.1^9,K.1^4,K.1^8,K.1^3,K.1^12,K.1^-13,K.1^17,K.1^2,K.1^13,K.1^-2,K.1^-8,K.1^-3,K.1^-9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^-14,K.1^14,K.1^7,K.1^-7,K.1^-5,K.1^10,K.1^-15,K.1^15,K.1^5,K.1^-10,K.1^7,K.1^14,K.1^-7,K.1^-14,K.1^-7,K.1^-7,K.1^-14,K.1^7,K.1^-14,K.1^7,K.1^14,K.1^14,K.1^-5,K.1^15,K.1^-15,K.1^-10,K.1^10,K.1^5,K.1^-6,K.1^6,K.1,K.1^17,K.1^-1,K.1^-11,K.1^-3,K.1^-4,K.1^12,K.1^-8,K.1^-2,K.1^11,K.1^-17,K.1^9,K.1^16,K.1^-13,K.1^-9,K.1^3,K.1^4,K.1^8,K.1^2,K.1^-12,K.1^13,K.1^-16,K.1^-4,K.1^6,K.1^-6,K.1^-16,K.1^4,K.1^9,K.1^2,K.1^11,K.1^-11,K.1^-13,K.1^-9,K.1,K.1^16,K.1^-3,K.1^12,K.1^13,K.1^-17,K.1^-2,K.1^8,K.1^17,K.1^-8,K.1^3,K.1^-12,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^14,K.1^-14,K.1^-7,K.1^7,K.1^5,K.1^-10,K.1^15,K.1^-15,K.1^-5,K.1^10,K.1^-7,K.1^-14,K.1^7,K.1^14,K.1^7,K.1^7,K.1^14,K.1^-7,K.1^14,K.1^-7,K.1^-14,K.1^-14,K.1^5,K.1^-15,K.1^15,K.1^10,K.1^-10,K.1^-5,K.1^6,K.1^-6,K.1^-1,K.1^-17,K.1,K.1^11,K.1^3,K.1^4,K.1^-12,K.1^8,K.1^2,K.1^-11,K.1^17,K.1^-9,K.1^-16,K.1^13,K.1^9,K.1^-3,K.1^-4,K.1^-8,K.1^-2,K.1^12,K.1^-13,K.1^16,K.1^4,K.1^-6,K.1^6,K.1^16,K.1^-4,K.1^-9,K.1^-2,K.1^-11,K.1^11,K.1^13,K.1^9,K.1^-1,K.1^-16,K.1^3,K.1^-12,K.1^-13,K.1^17,K.1^2,K.1^-8,K.1^-17,K.1^8,K.1^-3,K.1^12,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^-14,K.1^14,K.1^7,K.1^-7,K.1^5,K.1^-10,K.1^15,K.1^-15,K.1^-5,K.1^10,K.1^7,K.1^14,K.1^-7,K.1^-14,K.1^-7,K.1^-7,K.1^-14,K.1^7,K.1^-14,K.1^7,K.1^14,K.1^14,K.1^5,K.1^-15,K.1^15,K.1^10,K.1^-10,K.1^-5,K.1^-1,K.1,K.1^6,K.1^-3,K.1^-6,K.1^4,K.1^17,K.1^11,K.1^2,K.1^-13,K.1^-12,K.1^-4,K.1^3,K.1^-16,K.1^-9,K.1^-8,K.1^16,K.1^-17,K.1^-11,K.1^13,K.1^12,K.1^-2,K.1^8,K.1^9,K.1^11,K.1,K.1^-1,K.1^9,K.1^-11,K.1^-16,K.1^12,K.1^-4,K.1^4,K.1^-8,K.1^16,K.1^6,K.1^-9,K.1^17,K.1^2,K.1^8,K.1^3,K.1^-12,K.1^13,K.1^-3,K.1^-13,K.1^-17,K.1^-2,K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^14,K.1^-14,K.1^-7,K.1^7,K.1^-5,K.1^10,K.1^-15,K.1^15,K.1^5,K.1^-10,K.1^-7,K.1^-14,K.1^7,K.1^14,K.1^7,K.1^7,K.1^14,K.1^-7,K.1^14,K.1^-7,K.1^-14,K.1^-14,K.1^-5,K.1^15,K.1^-15,K.1^-10,K.1^10,K.1^5,K.1,K.1^-1,K.1^-6,K.1^3,K.1^6,K.1^-4,K.1^-17,K.1^-11,K.1^-2,K.1^13,K.1^12,K.1^4,K.1^-3,K.1^16,K.1^9,K.1^8,K.1^-16,K.1^17,K.1^11,K.1^-13,K.1^-12,K.1^2,K.1^-8,K.1^-9,K.1^-11,K.1^-1,K.1,K.1^-9,K.1^11,K.1^16,K.1^-12,K.1^4,K.1^-4,K.1^8,K.1^-16,K.1^-6,K.1^9,K.1^-17,K.1^-2,K.1^-8,K.1^-3,K.1^12,K.1^-13,K.1^3,K.1^13,K.1^17,K.1^2,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^-7,K.1^7,K.1^-14,K.1^14,K.1^-15,K.1^-5,K.1^-10,K.1^10,K.1^15,K.1^5,K.1^-14,K.1^7,K.1^14,K.1^-7,K.1^14,K.1^14,K.1^-7,K.1^-14,K.1^-7,K.1^-14,K.1^7,K.1^7,K.1^-15,K.1^10,K.1^-10,K.1^5,K.1^-5,K.1^15,K.1^17,K.1^-17,K.1^3,K.1^16,K.1^-3,K.1^2,K.1^-9,K.1^-12,K.1,K.1^11,K.1^-6,K.1^-2,K.1^-16,K.1^-8,K.1^13,K.1^-4,K.1^8,K.1^9,K.1^12,K.1^-11,K.1^6,K.1^-1,K.1^4,K.1^-13,K.1^-12,K.1^-17,K.1^17,K.1^-13,K.1^12,K.1^-8,K.1^6,K.1^-2,K.1^2,K.1^-4,K.1^8,K.1^3,K.1^13,K.1^-9,K.1,K.1^4,K.1^-16,K.1^-6,K.1^-11,K.1^16,K.1^11,K.1^9,K.1^-1,K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^7,K.1^-7,K.1^14,K.1^-14,K.1^15,K.1^5,K.1^10,K.1^-10,K.1^-15,K.1^-5,K.1^14,K.1^-7,K.1^-14,K.1^7,K.1^-14,K.1^-14,K.1^7,K.1^14,K.1^7,K.1^14,K.1^-7,K.1^-7,K.1^15,K.1^-10,K.1^10,K.1^-5,K.1^5,K.1^-15,K.1^-17,K.1^17,K.1^-3,K.1^-16,K.1^3,K.1^-2,K.1^9,K.1^12,K.1^-1,K.1^-11,K.1^6,K.1^2,K.1^16,K.1^8,K.1^-13,K.1^4,K.1^-8,K.1^-9,K.1^-12,K.1^11,K.1^-6,K.1,K.1^-4,K.1^13,K.1^12,K.1^17,K.1^-17,K.1^13,K.1^-12,K.1^8,K.1^-6,K.1^2,K.1^-2,K.1^4,K.1^-8,K.1^-3,K.1^-13,K.1^9,K.1^-1,K.1^-4,K.1^16,K.1^6,K.1^11,K.1^-16,K.1^-11,K.1^-9,K.1,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^-7,K.1^7,K.1^-14,K.1^14,K.1^15,K.1^5,K.1^10,K.1^-10,K.1^-15,K.1^-5,K.1^-14,K.1^7,K.1^14,K.1^-7,K.1^14,K.1^14,K.1^-7,K.1^-14,K.1^-7,K.1^-14,K.1^7,K.1^7,K.1^15,K.1^-10,K.1^10,K.1^-5,K.1^5,K.1^-15,K.1^-3,K.1^3,K.1^-17,K.1^-9,K.1^17,K.1^12,K.1^16,K.1^-2,K.1^6,K.1^-4,K.1^-1,K.1^-12,K.1^9,K.1^-13,K.1^8,K.1^11,K.1^13,K.1^-16,K.1^2,K.1^4,K.1,K.1^-6,K.1^-11,K.1^-8,K.1^-2,K.1^3,K.1^-3,K.1^-8,K.1^2,K.1^-13,K.1,K.1^-12,K.1^12,K.1^11,K.1^13,K.1^-17,K.1^8,K.1^16,K.1^6,K.1^-11,K.1^9,K.1^-1,K.1^4,K.1^-9,K.1^-4,K.1^-16,K.1^-6,K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^7,K.1^-7,K.1^14,K.1^-14,K.1^-15,K.1^-5,K.1^-10,K.1^10,K.1^15,K.1^5,K.1^14,K.1^-7,K.1^-14,K.1^7,K.1^-14,K.1^-14,K.1^7,K.1^14,K.1^7,K.1^14,K.1^-7,K.1^-7,K.1^-15,K.1^10,K.1^-10,K.1^5,K.1^-5,K.1^15,K.1^3,K.1^-3,K.1^17,K.1^9,K.1^-17,K.1^-12,K.1^-16,K.1^2,K.1^-6,K.1^4,K.1,K.1^12,K.1^-9,K.1^13,K.1^-8,K.1^-11,K.1^-13,K.1^16,K.1^-2,K.1^-4,K.1^-1,K.1^6,K.1^11,K.1^8,K.1^2,K.1^-3,K.1^3,K.1^8,K.1^-2,K.1^13,K.1^-1,K.1^12,K.1^-12,K.1^-11,K.1^-13,K.1^17,K.1^-8,K.1^-16,K.1^-6,K.1^11,K.1^-9,K.1,K.1^-4,K.1^9,K.1^4,K.1^16,K.1^6,K.1^-17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^-7,K.1^7,K.1^-14,K.1^14,K.1^-10,K.1^-15,K.1^5,K.1^-5,K.1^10,K.1^15,K.1^-14,K.1^7,K.1^14,K.1^-7,K.1^14,K.1^14,K.1^-7,K.1^-14,K.1^-7,K.1^-14,K.1^7,K.1^7,K.1^-10,K.1^-5,K.1^5,K.1^15,K.1^-15,K.1^10,K.1^2,K.1^-2,K.1^-12,K.1^6,K.1^12,K.1^-8,K.1,K.1^13,K.1^-4,K.1^-9,K.1^-11,K.1^8,K.1^-6,K.1^-3,K.1^-17,K.1^16,K.1^3,K.1^-1,K.1^-13,K.1^9,K.1^11,K.1^4,K.1^-16,K.1^17,K.1^13,K.1^-2,K.1^2,K.1^17,K.1^-13,K.1^-3,K.1^11,K.1^8,K.1^-8,K.1^16,K.1^3,K.1^-12,K.1^-17,K.1,K.1^-4,K.1^-16,K.1^-6,K.1^-11,K.1^9,K.1^6,K.1^-9,K.1^-1,K.1^4,K.1^12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^7,K.1^-7,K.1^14,K.1^-14,K.1^10,K.1^15,K.1^-5,K.1^5,K.1^-10,K.1^-15,K.1^14,K.1^-7,K.1^-14,K.1^7,K.1^-14,K.1^-14,K.1^7,K.1^14,K.1^7,K.1^14,K.1^-7,K.1^-7,K.1^10,K.1^5,K.1^-5,K.1^-15,K.1^15,K.1^-10,K.1^-2,K.1^2,K.1^12,K.1^-6,K.1^-12,K.1^8,K.1^-1,K.1^-13,K.1^4,K.1^9,K.1^11,K.1^-8,K.1^6,K.1^3,K.1^17,K.1^-16,K.1^-3,K.1,K.1^13,K.1^-9,K.1^-11,K.1^-4,K.1^16,K.1^-17,K.1^-13,K.1^2,K.1^-2,K.1^-17,K.1^13,K.1^3,K.1^-11,K.1^-8,K.1^8,K.1^-16,K.1^-3,K.1^12,K.1^17,K.1^-1,K.1^4,K.1^16,K.1^6,K.1^11,K.1^-9,K.1^-6,K.1^9,K.1,K.1^-4,K.1^-12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^-7,K.1^7,K.1^-14,K.1^14,K.1^10,K.1^15,K.1^-5,K.1^5,K.1^-10,K.1^-15,K.1^-14,K.1^7,K.1^14,K.1^-7,K.1^14,K.1^14,K.1^-7,K.1^-14,K.1^-7,K.1^-14,K.1^7,K.1^7,K.1^10,K.1^5,K.1^-5,K.1^-15,K.1^15,K.1^-10,K.1^12,K.1^-12,K.1^-2,K.1,K.1^2,K.1^-13,K.1^6,K.1^8,K.1^11,K.1^16,K.1^4,K.1^13,K.1^-1,K.1^17,K.1^3,K.1^-9,K.1^-17,K.1^-6,K.1^-8,K.1^-16,K.1^-4,K.1^-11,K.1^9,K.1^-3,K.1^8,K.1^-12,K.1^12,K.1^-3,K.1^-8,K.1^17,K.1^-4,K.1^13,K.1^-13,K.1^-9,K.1^-17,K.1^-2,K.1^3,K.1^6,K.1^11,K.1^9,K.1^-1,K.1^4,K.1^-16,K.1,K.1^16,K.1^-6,K.1^-11,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^7,K.1^-7,K.1^14,K.1^-14,K.1^-10,K.1^-15,K.1^5,K.1^-5,K.1^10,K.1^15,K.1^14,K.1^-7,K.1^-14,K.1^7,K.1^-14,K.1^-14,K.1^7,K.1^14,K.1^7,K.1^14,K.1^-7,K.1^-7,K.1^-10,K.1^-5,K.1^5,K.1^15,K.1^-15,K.1^10,K.1^-12,K.1^12,K.1^2,K.1^-1,K.1^-2,K.1^13,K.1^-6,K.1^-8,K.1^-11,K.1^-16,K.1^-4,K.1^-13,K.1,K.1^-17,K.1^-3,K.1^9,K.1^17,K.1^6,K.1^8,K.1^16,K.1^4,K.1^11,K.1^-9,K.1^3,K.1^-8,K.1^12,K.1^-12,K.1^3,K.1^8,K.1^-17,K.1^4,K.1^-13,K.1^13,K.1^9,K.1^17,K.1^2,K.1^-3,K.1^-6,K.1^-11,K.1^-9,K.1,K.1^-4,K.1^16,K.1^-1,K.1^-16,K.1^6,K.1^11,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^-7,K.1^7,K.1^-14,K.1^14,K.1^-5,K.1^10,K.1^-15,K.1^15,K.1^5,K.1^-10,K.1^-14,K.1^7,K.1^14,K.1^-7,K.1^14,K.1^14,K.1^-7,K.1^-14,K.1^-7,K.1^-14,K.1^7,K.1^7,K.1^-5,K.1^15,K.1^-15,K.1^-10,K.1^10,K.1^5,K.1^-13,K.1^13,K.1^8,K.1^-4,K.1^-8,K.1^17,K.1^11,K.1^3,K.1^-9,K.1^6,K.1^-16,K.1^-17,K.1^4,K.1^2,K.1^-12,K.1,K.1^-2,K.1^-11,K.1^-3,K.1^-6,K.1^16,K.1^9,K.1^-1,K.1^12,K.1^3,K.1^13,K.1^-13,K.1^12,K.1^-3,K.1^2,K.1^16,K.1^-17,K.1^17,K.1,K.1^-2,K.1^8,K.1^-12,K.1^11,K.1^-9,K.1^-1,K.1^4,K.1^-16,K.1^-6,K.1^-4,K.1^6,K.1^-11,K.1^9,K.1^-8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^7,K.1^-7,K.1^14,K.1^-14,K.1^5,K.1^-10,K.1^15,K.1^-15,K.1^-5,K.1^10,K.1^14,K.1^-7,K.1^-14,K.1^7,K.1^-14,K.1^-14,K.1^7,K.1^14,K.1^7,K.1^14,K.1^-7,K.1^-7,K.1^5,K.1^-15,K.1^15,K.1^10,K.1^-10,K.1^-5,K.1^13,K.1^-13,K.1^-8,K.1^4,K.1^8,K.1^-17,K.1^-11,K.1^-3,K.1^9,K.1^-6,K.1^16,K.1^17,K.1^-4,K.1^-2,K.1^12,K.1^-1,K.1^2,K.1^11,K.1^3,K.1^6,K.1^-16,K.1^-9,K.1,K.1^-12,K.1^-3,K.1^-13,K.1^13,K.1^-12,K.1^3,K.1^-2,K.1^-16,K.1^17,K.1^-17,K.1^-1,K.1^2,K.1^-8,K.1^12,K.1^-11,K.1^9,K.1,K.1^-4,K.1^16,K.1^6,K.1^4,K.1^-6,K.1^11,K.1^-9,K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^-7,K.1^7,K.1^-14,K.1^14,K.1^5,K.1^-10,K.1^15,K.1^-15,K.1^-5,K.1^10,K.1^-14,K.1^7,K.1^14,K.1^-7,K.1^14,K.1^14,K.1^-7,K.1^-14,K.1^-7,K.1^-14,K.1^7,K.1^7,K.1^5,K.1^-15,K.1^15,K.1^10,K.1^-10,K.1^-5,K.1^-8,K.1^8,K.1^13,K.1^11,K.1^-13,K.1^-3,K.1^-4,K.1^-17,K.1^16,K.1,K.1^9,K.1^3,K.1^-11,K.1^12,K.1^-2,K.1^6,K.1^-12,K.1^4,K.1^17,K.1^-1,K.1^-9,K.1^-16,K.1^-6,K.1^2,K.1^-17,K.1^8,K.1^-8,K.1^2,K.1^17,K.1^12,K.1^-9,K.1^3,K.1^-3,K.1^6,K.1^-12,K.1^13,K.1^-2,K.1^-4,K.1^16,K.1^-6,K.1^-11,K.1^9,K.1^-1,K.1^11,K.1,K.1^4,K.1^-16,K.1^-13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^7,K.1^-7,K.1^14,K.1^-14,K.1^-5,K.1^10,K.1^-15,K.1^15,K.1^5,K.1^-10,K.1^14,K.1^-7,K.1^-14,K.1^7,K.1^-14,K.1^-14,K.1^7,K.1^14,K.1^7,K.1^14,K.1^-7,K.1^-7,K.1^-5,K.1^15,K.1^-15,K.1^-10,K.1^10,K.1^5,K.1^8,K.1^-8,K.1^-13,K.1^-11,K.1^13,K.1^3,K.1^4,K.1^17,K.1^-16,K.1^-1,K.1^-9,K.1^-3,K.1^11,K.1^-12,K.1^2,K.1^-6,K.1^12,K.1^-4,K.1^-17,K.1,K.1^9,K.1^16,K.1^6,K.1^-2,K.1^17,K.1^-8,K.1^8,K.1^-2,K.1^-17,K.1^-12,K.1^9,K.1^-3,K.1^3,K.1^-6,K.1^12,K.1^-13,K.1^2,K.1^4,K.1^-16,K.1^6,K.1^11,K.1^-9,K.1,K.1^-11,K.1^-1,K.1^-4,K.1^16,K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,-1,1,-1,K.1^-14,K.1^14,K.1^7,K.1^-7,K.1^-15,K.1^-5,K.1^-10,K.1^10,K.1^15,K.1^5,-1*K.1^7,-1*K.1^14,-1*K.1^-7,-1*K.1^-14,-1*K.1^-7,K.1^-7,-1*K.1^-14,K.1^7,K.1^-14,-1*K.1^7,-1*K.1^14,K.1^14,-1*K.1^-15,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^15,K.1^-11,K.1^11,K.1^-4,K.1^2,K.1^4,K.1^9,K.1^12,K.1^16,K.1^-13,K.1^-3,K.1^8,K.1^-9,K.1^-2,K.1^-1,K.1^6,K.1^17,K.1,K.1^-12,K.1^-16,K.1^3,K.1^-8,K.1^13,K.1^-17,K.1^-6,-1*K.1^16,-1*K.1^11,-1*K.1^-11,-1*K.1^-6,-1*K.1^-16,-1*K.1^-1,-1*K.1^-8,-1*K.1^-9,-1*K.1^9,-1*K.1^17,-1*K.1,-1*K.1^-4,-1*K.1^6,-1*K.1^12,-1*K.1^-13,-1*K.1^-17,-1*K.1^-2,-1*K.1^8,-1*K.1^3,-1*K.1^2,-1*K.1^-3,-1*K.1^-12,-1*K.1^13,-1*K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,-1,1,-1,K.1^14,K.1^-14,K.1^-7,K.1^7,K.1^15,K.1^5,K.1^10,K.1^-10,K.1^-15,K.1^-5,-1*K.1^-7,-1*K.1^-14,-1*K.1^7,-1*K.1^14,-1*K.1^7,K.1^7,-1*K.1^14,K.1^-7,K.1^14,-1*K.1^-7,-1*K.1^-14,K.1^-14,-1*K.1^15,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^-15,K.1^11,K.1^-11,K.1^4,K.1^-2,K.1^-4,K.1^-9,K.1^-12,K.1^-16,K.1^13,K.1^3,K.1^-8,K.1^9,K.1^2,K.1,K.1^-6,K.1^-17,K.1^-1,K.1^12,K.1^16,K.1^-3,K.1^8,K.1^-13,K.1^17,K.1^6,-1*K.1^-16,-1*K.1^-11,-1*K.1^11,-1*K.1^6,-1*K.1^16,-1*K.1,-1*K.1^8,-1*K.1^9,-1*K.1^-9,-1*K.1^-17,-1*K.1^-1,-1*K.1^4,-1*K.1^-6,-1*K.1^-12,-1*K.1^13,-1*K.1^17,-1*K.1^2,-1*K.1^-8,-1*K.1^-3,-1*K.1^-2,-1*K.1^3,-1*K.1^12,-1*K.1^-13,-1*K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,-1,1,-1,K.1^-14,K.1^14,K.1^7,K.1^-7,K.1^15,K.1^5,K.1^10,K.1^-10,K.1^-15,K.1^-5,-1*K.1^7,-1*K.1^14,-1*K.1^-7,-1*K.1^-14,-1*K.1^-7,K.1^-7,-1*K.1^-14,K.1^7,K.1^-14,-1*K.1^7,-1*K.1^14,K.1^14,-1*K.1^15,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^-15,K.1^4,K.1^-4,K.1^11,K.1^12,K.1^-11,K.1^-16,K.1^2,K.1^-9,K.1^-8,K.1^17,K.1^13,K.1^16,K.1^-12,K.1^-6,K.1,K.1^-3,K.1^6,K.1^-2,K.1^9,K.1^-17,K.1^-13,K.1^8,K.1^3,K.1^-1,-1*K.1^-9,-1*K.1^-4,-1*K.1^4,-1*K.1^-1,-1*K.1^9,-1*K.1^-6,-1*K.1^-13,-1*K.1^16,-1*K.1^-16,-1*K.1^-3,-1*K.1^6,-1*K.1^11,-1*K.1,-1*K.1^2,-1*K.1^-8,-1*K.1^3,-1*K.1^-12,-1*K.1^13,-1*K.1^-17,-1*K.1^12,-1*K.1^17,-1*K.1^-2,-1*K.1^8,-1*K.1^-11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,-1,1,-1,K.1^14,K.1^-14,K.1^-7,K.1^7,K.1^-15,K.1^-5,K.1^-10,K.1^10,K.1^15,K.1^5,-1*K.1^-7,-1*K.1^-14,-1*K.1^7,-1*K.1^14,-1*K.1^7,K.1^7,-1*K.1^14,K.1^-7,K.1^14,-1*K.1^-7,-1*K.1^-14,K.1^-14,-1*K.1^-15,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^15,K.1^-4,K.1^4,K.1^-11,K.1^-12,K.1^11,K.1^16,K.1^-2,K.1^9,K.1^8,K.1^-17,K.1^-13,K.1^-16,K.1^12,K.1^6,K.1^-1,K.1^3,K.1^-6,K.1^2,K.1^-9,K.1^17,K.1^13,K.1^-8,K.1^-3,K.1,-1*K.1^9,-1*K.1^4,-1*K.1^-4,-1*K.1,-1*K.1^-9,-1*K.1^6,-1*K.1^13,-1*K.1^-16,-1*K.1^16,-1*K.1^3,-1*K.1^-6,-1*K.1^-11,-1*K.1^-1,-1*K.1^-2,-1*K.1^8,-1*K.1^-3,-1*K.1^12,-1*K.1^-13,-1*K.1^17,-1*K.1^-12,-1*K.1^-17,-1*K.1^2,-1*K.1^-8,-1*K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,-1,1,-1,K.1^-14,K.1^14,K.1^7,K.1^-7,K.1^-10,K.1^-15,K.1^5,K.1^-5,K.1^10,K.1^15,-1*K.1^7,-1*K.1^14,-1*K.1^-7,-1*K.1^-14,-1*K.1^-7,K.1^-7,-1*K.1^-14,K.1^7,K.1^-14,-1*K.1^7,-1*K.1^14,K.1^14,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,-1*K.1^15,-1*K.1^-15,-1*K.1^10,K.1^9,K.1^-9,K.1^16,K.1^-8,K.1^-16,K.1^-1,K.1^-13,K.1^6,K.1^17,K.1^12,K.1^3,K.1,K.1^8,K.1^4,K.1^11,K.1^2,K.1^-4,K.1^13,K.1^-6,K.1^-12,K.1^-3,K.1^-17,K.1^-2,K.1^-11,-1*K.1^6,-1*K.1^-9,-1*K.1^9,-1*K.1^-11,-1*K.1^-6,-1*K.1^4,-1*K.1^-3,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-4,-1*K.1^16,-1*K.1^11,-1*K.1^-13,-1*K.1^17,-1*K.1^-2,-1*K.1^8,-1*K.1^3,-1*K.1^-12,-1*K.1^-8,-1*K.1^12,-1*K.1^13,-1*K.1^-17,-1*K.1^-16]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,-1,1,-1,K.1^14,K.1^-14,K.1^-7,K.1^7,K.1^10,K.1^15,K.1^-5,K.1^5,K.1^-10,K.1^-15,-1*K.1^-7,-1*K.1^-14,-1*K.1^7,-1*K.1^14,-1*K.1^7,K.1^7,-1*K.1^14,K.1^-7,K.1^14,-1*K.1^-7,-1*K.1^-14,K.1^-14,-1*K.1^10,-1*K.1^5,-1*K.1^-5,-1*K.1^-15,-1*K.1^15,-1*K.1^-10,K.1^-9,K.1^9,K.1^-16,K.1^8,K.1^16,K.1,K.1^13,K.1^-6,K.1^-17,K.1^-12,K.1^-3,K.1^-1,K.1^-8,K.1^-4,K.1^-11,K.1^-2,K.1^4,K.1^-13,K.1^6,K.1^12,K.1^3,K.1^17,K.1^2,K.1^11,-1*K.1^-6,-1*K.1^9,-1*K.1^-9,-1*K.1^11,-1*K.1^6,-1*K.1^-4,-1*K.1^3,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^4,-1*K.1^-16,-1*K.1^-11,-1*K.1^13,-1*K.1^-17,-1*K.1^2,-1*K.1^-8,-1*K.1^-3,-1*K.1^12,-1*K.1^8,-1*K.1^-12,-1*K.1^-13,-1*K.1^17,-1*K.1^16]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,-1,1,-1,K.1^-14,K.1^14,K.1^7,K.1^-7,K.1^10,K.1^15,K.1^-5,K.1^5,K.1^-10,K.1^-15,-1*K.1^7,-1*K.1^14,-1*K.1^-7,-1*K.1^-14,-1*K.1^-7,K.1^-7,-1*K.1^-14,K.1^7,K.1^-14,-1*K.1^7,-1*K.1^14,K.1^14,-1*K.1^10,-1*K.1^5,-1*K.1^-5,-1*K.1^-15,-1*K.1^15,-1*K.1^-10,K.1^-16,K.1^16,K.1^-9,K.1^-13,K.1^9,K.1^-6,K.1^-8,K.1,K.1^-3,K.1^2,K.1^-17,K.1^6,K.1^13,K.1^-11,K.1^-4,K.1^12,K.1^11,K.1^8,K.1^-1,K.1^-2,K.1^17,K.1^3,K.1^-12,K.1^4,-1*K.1,-1*K.1^16,-1*K.1^-16,-1*K.1^4,-1*K.1^-1,-1*K.1^-11,-1*K.1^17,-1*K.1^6,-1*K.1^-6,-1*K.1^12,-1*K.1^11,-1*K.1^-9,-1*K.1^-4,-1*K.1^-8,-1*K.1^-3,-1*K.1^-12,-1*K.1^13,-1*K.1^-17,-1*K.1^-2,-1*K.1^-13,-1*K.1^2,-1*K.1^8,-1*K.1^3,-1*K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,-1,1,-1,K.1^14,K.1^-14,K.1^-7,K.1^7,K.1^-10,K.1^-15,K.1^5,K.1^-5,K.1^10,K.1^15,-1*K.1^-7,-1*K.1^-14,-1*K.1^7,-1*K.1^14,-1*K.1^7,K.1^7,-1*K.1^14,K.1^-7,K.1^14,-1*K.1^-7,-1*K.1^-14,K.1^-14,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,-1*K.1^15,-1*K.1^-15,-1*K.1^10,K.1^16,K.1^-16,K.1^9,K.1^13,K.1^-9,K.1^6,K.1^8,K.1^-1,K.1^3,K.1^-2,K.1^17,K.1^-6,K.1^-13,K.1^11,K.1^4,K.1^-12,K.1^-11,K.1^-8,K.1,K.1^2,K.1^-17,K.1^-3,K.1^12,K.1^-4,-1*K.1^-1,-1*K.1^-16,-1*K.1^16,-1*K.1^-4,-1*K.1,-1*K.1^11,-1*K.1^-17,-1*K.1^-6,-1*K.1^6,-1*K.1^-12,-1*K.1^-11,-1*K.1^9,-1*K.1^4,-1*K.1^8,-1*K.1^3,-1*K.1^12,-1*K.1^-13,-1*K.1^17,-1*K.1^2,-1*K.1^13,-1*K.1^-2,-1*K.1^-8,-1*K.1^-3,-1*K.1^-9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,-1,1,-1,K.1^-14,K.1^14,K.1^7,K.1^-7,K.1^-5,K.1^10,K.1^-15,K.1^15,K.1^5,K.1^-10,-1*K.1^7,-1*K.1^14,-1*K.1^-7,-1*K.1^-14,-1*K.1^-7,K.1^-7,-1*K.1^-14,K.1^7,K.1^-14,-1*K.1^7,-1*K.1^14,K.1^14,-1*K.1^-5,-1*K.1^15,-1*K.1^-15,-1*K.1^-10,-1*K.1^10,-1*K.1^5,K.1^-6,K.1^6,K.1,K.1^17,K.1^-1,K.1^-11,K.1^-3,K.1^-4,K.1^12,K.1^-8,K.1^-2,K.1^11,K.1^-17,K.1^9,K.1^16,K.1^-13,K.1^-9,K.1^3,K.1^4,K.1^8,K.1^2,K.1^-12,K.1^13,K.1^-16,-1*K.1^-4,-1*K.1^6,-1*K.1^-6,-1*K.1^-16,-1*K.1^4,-1*K.1^9,-1*K.1^2,-1*K.1^11,-1*K.1^-11,-1*K.1^-13,-1*K.1^-9,-1*K.1,-1*K.1^16,-1*K.1^-3,-1*K.1^12,-1*K.1^13,-1*K.1^-17,-1*K.1^-2,-1*K.1^8,-1*K.1^17,-1*K.1^-8,-1*K.1^3,-1*K.1^-12,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,-1,1,-1,K.1^14,K.1^-14,K.1^-7,K.1^7,K.1^5,K.1^-10,K.1^15,K.1^-15,K.1^-5,K.1^10,-1*K.1^-7,-1*K.1^-14,-1*K.1^7,-1*K.1^14,-1*K.1^7,K.1^7,-1*K.1^14,K.1^-7,K.1^14,-1*K.1^-7,-1*K.1^-14,K.1^-14,-1*K.1^5,-1*K.1^-15,-1*K.1^15,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,K.1^6,K.1^-6,K.1^-1,K.1^-17,K.1,K.1^11,K.1^3,K.1^4,K.1^-12,K.1^8,K.1^2,K.1^-11,K.1^17,K.1^-9,K.1^-16,K.1^13,K.1^9,K.1^-3,K.1^-4,K.1^-8,K.1^-2,K.1^12,K.1^-13,K.1^16,-1*K.1^4,-1*K.1^-6,-1*K.1^6,-1*K.1^16,-1*K.1^-4,-1*K.1^-9,-1*K.1^-2,-1*K.1^-11,-1*K.1^11,-1*K.1^13,-1*K.1^9,-1*K.1^-1,-1*K.1^-16,-1*K.1^3,-1*K.1^-12,-1*K.1^-13,-1*K.1^17,-1*K.1^2,-1*K.1^-8,-1*K.1^-17,-1*K.1^8,-1*K.1^-3,-1*K.1^12,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,-1,1,-1,K.1^-14,K.1^14,K.1^7,K.1^-7,K.1^5,K.1^-10,K.1^15,K.1^-15,K.1^-5,K.1^10,-1*K.1^7,-1*K.1^14,-1*K.1^-7,-1*K.1^-14,-1*K.1^-7,K.1^-7,-1*K.1^-14,K.1^7,K.1^-14,-1*K.1^7,-1*K.1^14,K.1^14,-1*K.1^5,-1*K.1^-15,-1*K.1^15,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,K.1^-1,K.1,K.1^6,K.1^-3,K.1^-6,K.1^4,K.1^17,K.1^11,K.1^2,K.1^-13,K.1^-12,K.1^-4,K.1^3,K.1^-16,K.1^-9,K.1^-8,K.1^16,K.1^-17,K.1^-11,K.1^13,K.1^12,K.1^-2,K.1^8,K.1^9,-1*K.1^11,-1*K.1,-1*K.1^-1,-1*K.1^9,-1*K.1^-11,-1*K.1^-16,-1*K.1^12,-1*K.1^-4,-1*K.1^4,-1*K.1^-8,-1*K.1^16,-1*K.1^6,-1*K.1^-9,-1*K.1^17,-1*K.1^2,-1*K.1^8,-1*K.1^3,-1*K.1^-12,-1*K.1^13,-1*K.1^-3,-1*K.1^-13,-1*K.1^-17,-1*K.1^-2,-1*K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,-1,1,-1,K.1^14,K.1^-14,K.1^-7,K.1^7,K.1^-5,K.1^10,K.1^-15,K.1^15,K.1^5,K.1^-10,-1*K.1^-7,-1*K.1^-14,-1*K.1^7,-1*K.1^14,-1*K.1^7,K.1^7,-1*K.1^14,K.1^-7,K.1^14,-1*K.1^-7,-1*K.1^-14,K.1^-14,-1*K.1^-5,-1*K.1^15,-1*K.1^-15,-1*K.1^-10,-1*K.1^10,-1*K.1^5,K.1,K.1^-1,K.1^-6,K.1^3,K.1^6,K.1^-4,K.1^-17,K.1^-11,K.1^-2,K.1^13,K.1^12,K.1^4,K.1^-3,K.1^16,K.1^9,K.1^8,K.1^-16,K.1^17,K.1^11,K.1^-13,K.1^-12,K.1^2,K.1^-8,K.1^-9,-1*K.1^-11,-1*K.1^-1,-1*K.1,-1*K.1^-9,-1*K.1^11,-1*K.1^16,-1*K.1^-12,-1*K.1^4,-1*K.1^-4,-1*K.1^8,-1*K.1^-16,-1*K.1^-6,-1*K.1^9,-1*K.1^-17,-1*K.1^-2,-1*K.1^-8,-1*K.1^-3,-1*K.1^12,-1*K.1^-13,-1*K.1^3,-1*K.1^13,-1*K.1^17,-1*K.1^2,-1*K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,-1,1,-1,K.1^-7,K.1^7,K.1^-14,K.1^14,K.1^-15,K.1^-5,K.1^-10,K.1^10,K.1^15,K.1^5,-1*K.1^-14,-1*K.1^7,-1*K.1^14,-1*K.1^-7,-1*K.1^14,K.1^14,-1*K.1^-7,K.1^-14,K.1^-7,-1*K.1^-14,-1*K.1^7,K.1^7,-1*K.1^-15,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^15,K.1^17,K.1^-17,K.1^3,K.1^16,K.1^-3,K.1^2,K.1^-9,K.1^-12,K.1,K.1^11,K.1^-6,K.1^-2,K.1^-16,K.1^-8,K.1^13,K.1^-4,K.1^8,K.1^9,K.1^12,K.1^-11,K.1^6,K.1^-1,K.1^4,K.1^-13,-1*K.1^-12,-1*K.1^-17,-1*K.1^17,-1*K.1^-13,-1*K.1^12,-1*K.1^-8,-1*K.1^6,-1*K.1^-2,-1*K.1^2,-1*K.1^-4,-1*K.1^8,-1*K.1^3,-1*K.1^13,-1*K.1^-9,-1*K.1,-1*K.1^4,-1*K.1^-16,-1*K.1^-6,-1*K.1^-11,-1*K.1^16,-1*K.1^11,-1*K.1^9,-1*K.1^-1,-1*K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,-1,1,-1,K.1^7,K.1^-7,K.1^14,K.1^-14,K.1^15,K.1^5,K.1^10,K.1^-10,K.1^-15,K.1^-5,-1*K.1^14,-1*K.1^-7,-1*K.1^-14,-1*K.1^7,-1*K.1^-14,K.1^-14,-1*K.1^7,K.1^14,K.1^7,-1*K.1^14,-1*K.1^-7,K.1^-7,-1*K.1^15,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^-15,K.1^-17,K.1^17,K.1^-3,K.1^-16,K.1^3,K.1^-2,K.1^9,K.1^12,K.1^-1,K.1^-11,K.1^6,K.1^2,K.1^16,K.1^8,K.1^-13,K.1^4,K.1^-8,K.1^-9,K.1^-12,K.1^11,K.1^-6,K.1,K.1^-4,K.1^13,-1*K.1^12,-1*K.1^17,-1*K.1^-17,-1*K.1^13,-1*K.1^-12,-1*K.1^8,-1*K.1^-6,-1*K.1^2,-1*K.1^-2,-1*K.1^4,-1*K.1^-8,-1*K.1^-3,-1*K.1^-13,-1*K.1^9,-1*K.1^-1,-1*K.1^-4,-1*K.1^16,-1*K.1^6,-1*K.1^11,-1*K.1^-16,-1*K.1^-11,-1*K.1^-9,-1*K.1,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,-1,1,-1,K.1^-7,K.1^7,K.1^-14,K.1^14,K.1^15,K.1^5,K.1^10,K.1^-10,K.1^-15,K.1^-5,-1*K.1^-14,-1*K.1^7,-1*K.1^14,-1*K.1^-7,-1*K.1^14,K.1^14,-1*K.1^-7,K.1^-14,K.1^-7,-1*K.1^-14,-1*K.1^7,K.1^7,-1*K.1^15,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^-15,K.1^-3,K.1^3,K.1^-17,K.1^-9,K.1^17,K.1^12,K.1^16,K.1^-2,K.1^6,K.1^-4,K.1^-1,K.1^-12,K.1^9,K.1^-13,K.1^8,K.1^11,K.1^13,K.1^-16,K.1^2,K.1^4,K.1,K.1^-6,K.1^-11,K.1^-8,-1*K.1^-2,-1*K.1^3,-1*K.1^-3,-1*K.1^-8,-1*K.1^2,-1*K.1^-13,-1*K.1,-1*K.1^-12,-1*K.1^12,-1*K.1^11,-1*K.1^13,-1*K.1^-17,-1*K.1^8,-1*K.1^16,-1*K.1^6,-1*K.1^-11,-1*K.1^9,-1*K.1^-1,-1*K.1^4,-1*K.1^-9,-1*K.1^-4,-1*K.1^-16,-1*K.1^-6,-1*K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,-1,1,-1,K.1^7,K.1^-7,K.1^14,K.1^-14,K.1^-15,K.1^-5,K.1^-10,K.1^10,K.1^15,K.1^5,-1*K.1^14,-1*K.1^-7,-1*K.1^-14,-1*K.1^7,-1*K.1^-14,K.1^-14,-1*K.1^7,K.1^14,K.1^7,-1*K.1^14,-1*K.1^-7,K.1^-7,-1*K.1^-15,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^15,K.1^3,K.1^-3,K.1^17,K.1^9,K.1^-17,K.1^-12,K.1^-16,K.1^2,K.1^-6,K.1^4,K.1,K.1^12,K.1^-9,K.1^13,K.1^-8,K.1^-11,K.1^-13,K.1^16,K.1^-2,K.1^-4,K.1^-1,K.1^6,K.1^11,K.1^8,-1*K.1^2,-1*K.1^-3,-1*K.1^3,-1*K.1^8,-1*K.1^-2,-1*K.1^13,-1*K.1^-1,-1*K.1^12,-1*K.1^-12,-1*K.1^-11,-1*K.1^-13,-1*K.1^17,-1*K.1^-8,-1*K.1^-16,-1*K.1^-6,-1*K.1^11,-1*K.1^-9,-1*K.1,-1*K.1^-4,-1*K.1^9,-1*K.1^4,-1*K.1^16,-1*K.1^6,-1*K.1^-17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,-1,1,-1,K.1^-7,K.1^7,K.1^-14,K.1^14,K.1^-10,K.1^-15,K.1^5,K.1^-5,K.1^10,K.1^15,-1*K.1^-14,-1*K.1^7,-1*K.1^14,-1*K.1^-7,-1*K.1^14,K.1^14,-1*K.1^-7,K.1^-14,K.1^-7,-1*K.1^-14,-1*K.1^7,K.1^7,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,-1*K.1^15,-1*K.1^-15,-1*K.1^10,K.1^2,K.1^-2,K.1^-12,K.1^6,K.1^12,K.1^-8,K.1,K.1^13,K.1^-4,K.1^-9,K.1^-11,K.1^8,K.1^-6,K.1^-3,K.1^-17,K.1^16,K.1^3,K.1^-1,K.1^-13,K.1^9,K.1^11,K.1^4,K.1^-16,K.1^17,-1*K.1^13,-1*K.1^-2,-1*K.1^2,-1*K.1^17,-1*K.1^-13,-1*K.1^-3,-1*K.1^11,-1*K.1^8,-1*K.1^-8,-1*K.1^16,-1*K.1^3,-1*K.1^-12,-1*K.1^-17,-1*K.1,-1*K.1^-4,-1*K.1^-16,-1*K.1^-6,-1*K.1^-11,-1*K.1^9,-1*K.1^6,-1*K.1^-9,-1*K.1^-1,-1*K.1^4,-1*K.1^12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,-1,1,-1,K.1^7,K.1^-7,K.1^14,K.1^-14,K.1^10,K.1^15,K.1^-5,K.1^5,K.1^-10,K.1^-15,-1*K.1^14,-1*K.1^-7,-1*K.1^-14,-1*K.1^7,-1*K.1^-14,K.1^-14,-1*K.1^7,K.1^14,K.1^7,-1*K.1^14,-1*K.1^-7,K.1^-7,-1*K.1^10,-1*K.1^5,-1*K.1^-5,-1*K.1^-15,-1*K.1^15,-1*K.1^-10,K.1^-2,K.1^2,K.1^12,K.1^-6,K.1^-12,K.1^8,K.1^-1,K.1^-13,K.1^4,K.1^9,K.1^11,K.1^-8,K.1^6,K.1^3,K.1^17,K.1^-16,K.1^-3,K.1,K.1^13,K.1^-9,K.1^-11,K.1^-4,K.1^16,K.1^-17,-1*K.1^-13,-1*K.1^2,-1*K.1^-2,-1*K.1^-17,-1*K.1^13,-1*K.1^3,-1*K.1^-11,-1*K.1^-8,-1*K.1^8,-1*K.1^-16,-1*K.1^-3,-1*K.1^12,-1*K.1^17,-1*K.1^-1,-1*K.1^4,-1*K.1^16,-1*K.1^6,-1*K.1^11,-1*K.1^-9,-1*K.1^-6,-1*K.1^9,-1*K.1,-1*K.1^-4,-1*K.1^-12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,-1,1,-1,K.1^-7,K.1^7,K.1^-14,K.1^14,K.1^10,K.1^15,K.1^-5,K.1^5,K.1^-10,K.1^-15,-1*K.1^-14,-1*K.1^7,-1*K.1^14,-1*K.1^-7,-1*K.1^14,K.1^14,-1*K.1^-7,K.1^-14,K.1^-7,-1*K.1^-14,-1*K.1^7,K.1^7,-1*K.1^10,-1*K.1^5,-1*K.1^-5,-1*K.1^-15,-1*K.1^15,-1*K.1^-10,K.1^12,K.1^-12,K.1^-2,K.1,K.1^2,K.1^-13,K.1^6,K.1^8,K.1^11,K.1^16,K.1^4,K.1^13,K.1^-1,K.1^17,K.1^3,K.1^-9,K.1^-17,K.1^-6,K.1^-8,K.1^-16,K.1^-4,K.1^-11,K.1^9,K.1^-3,-1*K.1^8,-1*K.1^-12,-1*K.1^12,-1*K.1^-3,-1*K.1^-8,-1*K.1^17,-1*K.1^-4,-1*K.1^13,-1*K.1^-13,-1*K.1^-9,-1*K.1^-17,-1*K.1^-2,-1*K.1^3,-1*K.1^6,-1*K.1^11,-1*K.1^9,-1*K.1^-1,-1*K.1^4,-1*K.1^-16,-1*K.1,-1*K.1^16,-1*K.1^-6,-1*K.1^-11,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,-1,1,-1,K.1^7,K.1^-7,K.1^14,K.1^-14,K.1^-10,K.1^-15,K.1^5,K.1^-5,K.1^10,K.1^15,-1*K.1^14,-1*K.1^-7,-1*K.1^-14,-1*K.1^7,-1*K.1^-14,K.1^-14,-1*K.1^7,K.1^14,K.1^7,-1*K.1^14,-1*K.1^-7,K.1^-7,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,-1*K.1^15,-1*K.1^-15,-1*K.1^10,K.1^-12,K.1^12,K.1^2,K.1^-1,K.1^-2,K.1^13,K.1^-6,K.1^-8,K.1^-11,K.1^-16,K.1^-4,K.1^-13,K.1,K.1^-17,K.1^-3,K.1^9,K.1^17,K.1^6,K.1^8,K.1^16,K.1^4,K.1^11,K.1^-9,K.1^3,-1*K.1^-8,-1*K.1^12,-1*K.1^-12,-1*K.1^3,-1*K.1^8,-1*K.1^-17,-1*K.1^4,-1*K.1^-13,-1*K.1^13,-1*K.1^9,-1*K.1^17,-1*K.1^2,-1*K.1^-3,-1*K.1^-6,-1*K.1^-11,-1*K.1^-9,-1*K.1,-1*K.1^-4,-1*K.1^16,-1*K.1^-1,-1*K.1^-16,-1*K.1^6,-1*K.1^11,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,-1,1,-1,K.1^-7,K.1^7,K.1^-14,K.1^14,K.1^-5,K.1^10,K.1^-15,K.1^15,K.1^5,K.1^-10,-1*K.1^-14,-1*K.1^7,-1*K.1^14,-1*K.1^-7,-1*K.1^14,K.1^14,-1*K.1^-7,K.1^-14,K.1^-7,-1*K.1^-14,-1*K.1^7,K.1^7,-1*K.1^-5,-1*K.1^15,-1*K.1^-15,-1*K.1^-10,-1*K.1^10,-1*K.1^5,K.1^-13,K.1^13,K.1^8,K.1^-4,K.1^-8,K.1^17,K.1^11,K.1^3,K.1^-9,K.1^6,K.1^-16,K.1^-17,K.1^4,K.1^2,K.1^-12,K.1,K.1^-2,K.1^-11,K.1^-3,K.1^-6,K.1^16,K.1^9,K.1^-1,K.1^12,-1*K.1^3,-1*K.1^13,-1*K.1^-13,-1*K.1^12,-1*K.1^-3,-1*K.1^2,-1*K.1^16,-1*K.1^-17,-1*K.1^17,-1*K.1,-1*K.1^-2,-1*K.1^8,-1*K.1^-12,-1*K.1^11,-1*K.1^-9,-1*K.1^-1,-1*K.1^4,-1*K.1^-16,-1*K.1^-6,-1*K.1^-4,-1*K.1^6,-1*K.1^-11,-1*K.1^9,-1*K.1^-8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,-1,1,-1,K.1^7,K.1^-7,K.1^14,K.1^-14,K.1^5,K.1^-10,K.1^15,K.1^-15,K.1^-5,K.1^10,-1*K.1^14,-1*K.1^-7,-1*K.1^-14,-1*K.1^7,-1*K.1^-14,K.1^-14,-1*K.1^7,K.1^14,K.1^7,-1*K.1^14,-1*K.1^-7,K.1^-7,-1*K.1^5,-1*K.1^-15,-1*K.1^15,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,K.1^13,K.1^-13,K.1^-8,K.1^4,K.1^8,K.1^-17,K.1^-11,K.1^-3,K.1^9,K.1^-6,K.1^16,K.1^17,K.1^-4,K.1^-2,K.1^12,K.1^-1,K.1^2,K.1^11,K.1^3,K.1^6,K.1^-16,K.1^-9,K.1,K.1^-12,-1*K.1^-3,-1*K.1^-13,-1*K.1^13,-1*K.1^-12,-1*K.1^3,-1*K.1^-2,-1*K.1^-16,-1*K.1^17,-1*K.1^-17,-1*K.1^-1,-1*K.1^2,-1*K.1^-8,-1*K.1^12,-1*K.1^-11,-1*K.1^9,-1*K.1,-1*K.1^-4,-1*K.1^16,-1*K.1^6,-1*K.1^4,-1*K.1^-6,-1*K.1^11,-1*K.1^-9,-1*K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,-1,1,-1,K.1^-7,K.1^7,K.1^-14,K.1^14,K.1^5,K.1^-10,K.1^15,K.1^-15,K.1^-5,K.1^10,-1*K.1^-14,-1*K.1^7,-1*K.1^14,-1*K.1^-7,-1*K.1^14,K.1^14,-1*K.1^-7,K.1^-14,K.1^-7,-1*K.1^-14,-1*K.1^7,K.1^7,-1*K.1^5,-1*K.1^-15,-1*K.1^15,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,K.1^-8,K.1^8,K.1^13,K.1^11,K.1^-13,K.1^-3,K.1^-4,K.1^-17,K.1^16,K.1,K.1^9,K.1^3,K.1^-11,K.1^12,K.1^-2,K.1^6,K.1^-12,K.1^4,K.1^17,K.1^-1,K.1^-9,K.1^-16,K.1^-6,K.1^2,-1*K.1^-17,-1*K.1^8,-1*K.1^-8,-1*K.1^2,-1*K.1^17,-1*K.1^12,-1*K.1^-9,-1*K.1^3,-1*K.1^-3,-1*K.1^6,-1*K.1^-12,-1*K.1^13,-1*K.1^-2,-1*K.1^-4,-1*K.1^16,-1*K.1^-6,-1*K.1^-11,-1*K.1^9,-1*K.1^-1,-1*K.1^11,-1*K.1,-1*K.1^4,-1*K.1^-16,-1*K.1^-13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,-1,1,-1,K.1^7,K.1^-7,K.1^14,K.1^-14,K.1^-5,K.1^10,K.1^-15,K.1^15,K.1^5,K.1^-10,-1*K.1^14,-1*K.1^-7,-1*K.1^-14,-1*K.1^7,-1*K.1^-14,K.1^-14,-1*K.1^7,K.1^14,K.1^7,-1*K.1^14,-1*K.1^-7,K.1^-7,-1*K.1^-5,-1*K.1^15,-1*K.1^-15,-1*K.1^-10,-1*K.1^10,-1*K.1^5,K.1^8,K.1^-8,K.1^-13,K.1^-11,K.1^13,K.1^3,K.1^4,K.1^17,K.1^-16,K.1^-1,K.1^-9,K.1^-3,K.1^11,K.1^-12,K.1^2,K.1^-6,K.1^12,K.1^-4,K.1^-17,K.1,K.1^9,K.1^16,K.1^6,K.1^-2,-1*K.1^17,-1*K.1^-8,-1*K.1^8,-1*K.1^-2,-1*K.1^-17,-1*K.1^-12,-1*K.1^9,-1*K.1^-3,-1*K.1^3,-1*K.1^-6,-1*K.1^12,-1*K.1^-13,-1*K.1^2,-1*K.1^4,-1*K.1^-16,-1*K.1^6,-1*K.1^11,-1*K.1^-9,-1*K.1,-1*K.1^-11,-1*K.1^-1,-1*K.1^-4,-1*K.1^16,-1*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[7, 7, -1, -1, 7, 7, 7, 7, 0, 0, 0, 0, 0, 0, 7, 7, 7, 7, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[7, -7, -1, 1, 7, 7, 7, 7, 0, 0, 0, 0, 0, 0, -7, -7, -7, -7, 1, -1, 1, -1, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |7,7,-1,-1,7*K.1^-2,7*K.1^2,7*K.1,7*K.1^-1,0,0,0,0,0,0,7*K.1,7*K.1^2,7*K.1^-1,7*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |7,7,-1,-1,7*K.1^2,7*K.1^-2,7*K.1^-1,7*K.1,0,0,0,0,0,0,7*K.1^-1,7*K.1^-2,7*K.1,7*K.1^2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |7,7,-1,-1,7*K.1^-1,7*K.1,7*K.1^-2,7*K.1^2,0,0,0,0,0,0,7*K.1^-2,7*K.1,7*K.1^2,7*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |7,7,-1,-1,7*K.1,7*K.1^-1,7*K.1^2,7*K.1^-2,0,0,0,0,0,0,7*K.1^2,7*K.1^-1,7*K.1^-2,7*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |7,-7,-1,1,7*K.1^-2,7*K.1^2,7*K.1,7*K.1^-1,0,0,0,0,0,0,-7*K.1,-7*K.1^2,-7*K.1^-1,-7*K.1^-2,K.1^-1,-1*K.1^-1,K.1^-2,-1*K.1,-1*K.1^-2,K.1,K.1^2,-1*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |7,-7,-1,1,7*K.1^2,7*K.1^-2,7*K.1^-1,7*K.1,0,0,0,0,0,0,-7*K.1^-1,-7*K.1^-2,-7*K.1,-7*K.1^2,K.1,-1*K.1,K.1^2,-1*K.1^-1,-1*K.1^2,K.1^-1,K.1^-2,-1*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |7,-7,-1,1,7*K.1^-1,7*K.1,7*K.1^-2,7*K.1^2,0,0,0,0,0,0,-7*K.1^-2,-7*K.1,-7*K.1^2,-7*K.1^-1,K.1^2,-1*K.1^2,K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1^-2,K.1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |7,-7,-1,1,7*K.1,7*K.1^-1,7*K.1^2,7*K.1^-2,0,0,0,0,0,0,-7*K.1^2,-7*K.1^-1,-7*K.1^-2,-7*K.1,K.1^-2,-1*K.1^-2,K.1,-1*K.1^2,-1*K.1,K.1^2,K.1^-1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_560_172:= KnownIrreducibles(CR);