# Group 56.2 downloaded from the LMFDB on 22 September 2025. ## Various presentations of this group are stored in this file: # GPC is polycyclic presentation GPerm is permutation group # GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups # Many characteristics of the group are stored as booleans in a record: # Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, # metacyclic, monomial, nilpotent, perfect, quasisimple, rational, # solvable, supersolvable # The character table is stored as a record chartbl_n_i where n is the order # of the group and i is which group of that order it is. The record is # converted to a character table using ConvertToLibraryCharacterTableNC # Constructions GPC := PcGroupCode(2350310261,56); a := GPC.1; GPerm := Group( (1,8,4,6,2,7,3,5), (9,15,14,13,12,11,10), (1,4,2,3)(5,8,6,7), (1,2)(3,4)(5,6)(7,8) ); GLFp := Group([[[ Z(13)^3, Z(13)^6 ], [ Z(13)^5, Z(13)^3 ]]]); # Booleans booleans_56_2 := rec( Agroup := true, Zgroup := true, abelian := true, almost_simple := false, cyclic := true, metabelian := true, metacyclic := true, monomial := true, nilpotent := true, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true); # Character Table chartbl_56_2:=rec(); chartbl_56_2.IsFinite:= true; chartbl_56_2.UnderlyingCharacteristic:= 0; chartbl_56_2.UnderlyingGroup:= GPC; chartbl_56_2.Size:= 56; chartbl_56_2.InfoText:= "Character table for group 56.2 downloaded from the LMFDB."; chartbl_56_2.Identifier:= " C56 "; chartbl_56_2.NrConjugacyClasses:= 56; chartbl_56_2.ConjugacyClasses:= [ of ..., f3*f4^3, f2*f3*f4, f2*f4^5, f4, f4^6, f4^2, f4^5, f4^3, f4^4, f1*f2*f3, f1*f4^6, f1*f3*f4^2, f1*f2*f4^4, f3, f3*f4^6, f3*f4, f3*f4^5, f3*f4^2, f3*f4^4, f2, f2*f3*f4^6, f2*f3, f2*f4^6, f2*f4, f2*f3*f4^5, f2*f4^2, f2*f3*f4^4, f2*f3*f4^2, f2*f4^4, f2*f4^3, f2*f3*f4^3, f1, f1*f2*f3*f4^6, f1*f2, f1*f3*f4^6, f1*f3, f1*f2*f4^6, f1*f4, f1*f2*f3*f4^5, f1*f2*f4, f1*f3*f4^5, f1*f3*f4, f1*f2*f4^5, f1*f2*f3*f4, f1*f4^5, f1*f4^2, f1*f2*f3*f4^4, f1*f2*f4^2, f1*f3*f4^4, f1*f2*f3*f4^2, f1*f4^4, f1*f4^3, f1*f2*f3*f4^3, f1*f2*f4^3, f1*f3*f4^3]; chartbl_56_2.IdentificationOfConjugacyClasses:= [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56]; chartbl_56_2.ComputedPowerMaps:= [ , [1, 1, 2, 2, 7, 8, 10, 9, 6, 5, 3, 4, 4, 3, 5, 6, 9, 10, 8, 7, 15, 16, 17, 18, 19, 20, 20, 19, 18, 17, 16, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21], [1, 2, 4, 3, 9, 10, 6, 5, 7, 8, 13, 14, 11, 12, 17, 18, 20, 19, 15, 16, 23, 24, 27, 28, 32, 31, 22, 21, 25, 26, 29, 30, 35, 36, 39, 40, 45, 46, 55, 56, 52, 51, 48, 47, 42, 41, 38, 37, 33, 34, 43, 44, 49, 50, 53, 54]]; chartbl_56_2.SizesCentralizers:= [56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56]; chartbl_56_2.ClassNames:= ["1A", "2A", "4A1", "4A-1", "7A1", "7A-1", "7A2", "7A-2", "7A3", "7A-3", "8A1", "8A-1", "8A3", "8A-3", "14A1", "14A-1", "14A3", "14A-3", "14A5", "14A-5", "28A1", "28A-1", "28A3", "28A-3", "28A5", "28A-5", "28A9", "28A-9", "28A11", "28A-11", "28A13", "28A-13", "56A1", "56A-1", "56A3", "56A-3", "56A5", "56A-5", "56A9", "56A-9", "56A11", "56A-11", "56A13", "56A-13", "56A15", "56A-15", "56A17", "56A-17", "56A19", "56A-19", "56A23", "56A-23", "56A25", "56A-25", "56A27", "56A-27"]; chartbl_56_2.OrderClassRepresentatives:= [1, 2, 4, 4, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 14, 14, 14, 14, 14, 14, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56]; chartbl_56_2.Irr:= [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1*E(4), -1*E(4), E(4), E(4), 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, E(4), -1*E(4), -1*E(4), E(4), -1*E(4), E(4), E(4), E(4), E(4), E(4), E(4), E(4), -1*E(4), -1*E(4), E(4), -1*E(4), E(4), -1*E(4), -1*E(4), -1*E(4), -1*E(4), -1*E(4), E(4), -1*E(4)], [1, 1, -1, -1, 1, 1, 1, 1, 1, 1, E(4), E(4), -1*E(4), -1*E(4), 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1*E(4), E(4), E(4), -1*E(4), E(4), -1*E(4), -1*E(4), -1*E(4), -1*E(4), -1*E(4), -1*E(4), -1*E(4), E(4), E(4), -1*E(4), E(4), -1*E(4), E(4), E(4), E(4), E(4), E(4), -1*E(4), E(4)], [1, -1, -1*E(8)^2, E(8)^2, 1, 1, 1, 1, 1, 1, E(8)^3, -1*E(8)^3, -1*E(8), E(8), -1, -1, -1, -1, -1, -1, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8), -1*E(8)^3, E(8)^3, E(8), -1*E(8)^3, E(8), -1*E(8), -1*E(8), E(8), E(8), -1*E(8), E(8), -1*E(8)^3, E(8)^3, -1*E(8), -1*E(8)^3, -1*E(8), E(8)^3, -1*E(8)^3, E(8)^3, E(8)^3, -1*E(8)^3, E(8), E(8)^3], [1, -1, E(8)^2, -1*E(8)^2, 1, 1, 1, 1, 1, 1, -1*E(8), E(8), E(8)^3, -1*E(8)^3, -1, -1, -1, -1, -1, -1, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^3, E(8), -1*E(8), -1*E(8)^3, E(8), -1*E(8)^3, E(8)^3, E(8)^3, -1*E(8)^3, -1*E(8)^3, E(8)^3, -1*E(8)^3, E(8), -1*E(8), E(8)^3, E(8), E(8)^3, -1*E(8), E(8), -1*E(8), -1*E(8), E(8), -1*E(8)^3, -1*E(8)], [1, -1, -1*E(8)^2, E(8)^2, 1, 1, 1, 1, 1, 1, -1*E(8)^3, E(8)^3, E(8), -1*E(8), -1, -1, -1, -1, -1, -1, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, E(8), E(8)^3, -1*E(8)^3, -1*E(8), E(8)^3, -1*E(8), E(8), E(8), -1*E(8), -1*E(8), E(8), -1*E(8), E(8)^3, -1*E(8)^3, E(8), E(8)^3, E(8), -1*E(8)^3, E(8)^3, -1*E(8)^3, -1*E(8)^3, E(8)^3, -1*E(8), -1*E(8)^3], [1, -1, E(8)^2, -1*E(8)^2, 1, 1, 1, 1, 1, 1, E(8), -1*E(8), -1*E(8)^3, E(8)^3, -1, -1, -1, -1, -1, -1, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^3, -1*E(8), E(8), E(8)^3, -1*E(8), E(8)^3, -1*E(8)^3, -1*E(8)^3, E(8)^3, E(8)^3, -1*E(8)^3, E(8)^3, -1*E(8), E(8), -1*E(8)^3, -1*E(8), -1*E(8)^3, E(8), -1*E(8), E(8), E(8), -1*E(8), E(8)^3, E(8)], [1, 1, 1, 1, E(7)^-3, E(7)^-1, E(7)^2, E(7)^3, E(7), E(7)^-2, 1, 1, 1, 1, E(7)^2, E(7), E(7)^-1, E(7)^-3, E(7)^-2, E(7)^3, E(7)^2, E(7)^3, E(7)^3, E(7)^-1, E(7)^-1, E(7)^2, E(7)^-3, E(7), E(7)^-3, E(7), E(7)^-2, E(7)^-2, E(7), E(7), E(7), E(7), E(7)^-3, E(7)^-1, E(7)^2, E(7)^3, E(7)^3, E(7)^2, E(7)^-1, E(7)^-3, E(7)^-2, E(7)^2, E(7)^-3, E(7)^3, E(7)^-2, E(7)^-3, E(7)^2, E(7)^-1, E(7)^3, E(7)^-1, E(7)^-2, E(7)^-2], [1, 1, 1, 1, E(7)^3, E(7), E(7)^-2, E(7)^-3, E(7)^-1, E(7)^2, 1, 1, 1, 1, E(7)^-2, E(7)^-1, E(7), E(7)^3, E(7)^2, E(7)^-3, E(7)^-2, E(7)^-3, E(7)^-3, E(7), E(7), E(7)^-2, E(7)^3, E(7)^-1, E(7)^3, E(7)^-1, E(7)^2, E(7)^2, E(7)^-1, E(7)^-1, E(7)^-1, E(7)^-1, E(7)^3, E(7), E(7)^-2, E(7)^-3, E(7)^-3, E(7)^-2, E(7), E(7)^3, E(7)^2, E(7)^-2, E(7)^3, E(7)^-3, E(7)^2, E(7)^3, E(7)^-2, E(7), E(7)^-3, E(7), E(7)^2, E(7)^2], [1, 1, 1, 1, E(7)^-2, E(7)^-3, E(7)^-1, E(7)^2, E(7)^3, E(7), 1, 1, 1, 1, E(7)^-1, E(7)^3, E(7)^-3, E(7)^-2, E(7), E(7)^2, E(7)^-1, E(7)^2, E(7)^2, E(7)^-3, E(7)^-3, E(7)^-1, E(7)^-2, E(7)^3, E(7)^-2, E(7)^3, E(7), E(7), E(7)^3, E(7)^3, E(7)^3, E(7)^3, E(7)^-2, E(7)^-3, E(7)^-1, E(7)^2, E(7)^2, E(7)^-1, E(7)^-3, E(7)^-2, E(7), E(7)^-1, E(7)^-2, E(7)^2, E(7), E(7)^-2, E(7)^-1, E(7)^-3, E(7)^2, E(7)^-3, E(7), E(7)], [1, 1, 1, 1, E(7)^2, E(7)^3, E(7), E(7)^-2, E(7)^-3, E(7)^-1, 1, 1, 1, 1, E(7), E(7)^-3, E(7)^3, E(7)^2, E(7)^-1, E(7)^-2, E(7), E(7)^-2, E(7)^-2, E(7)^3, E(7)^3, E(7), E(7)^2, E(7)^-3, E(7)^2, E(7)^-3, E(7)^-1, E(7)^-1, E(7)^-3, E(7)^-3, E(7)^-3, E(7)^-3, E(7)^2, E(7)^3, E(7), E(7)^-2, E(7)^-2, E(7), E(7)^3, E(7)^2, E(7)^-1, E(7), E(7)^2, E(7)^-2, E(7)^-1, E(7)^2, E(7), E(7)^3, E(7)^-2, E(7)^3, E(7)^-1, E(7)^-1], [1, 1, 1, 1, E(7)^-1, E(7)^2, E(7)^3, E(7), E(7)^-2, E(7)^-3, 1, 1, 1, 1, E(7)^3, E(7)^-2, E(7)^2, E(7)^-1, E(7)^-3, E(7), E(7)^3, E(7), E(7), E(7)^2, E(7)^2, E(7)^3, E(7)^-1, E(7)^-2, E(7)^-1, E(7)^-2, E(7)^-3, E(7)^-3, E(7)^-2, E(7)^-2, E(7)^-2, E(7)^-2, E(7)^-1, E(7)^2, E(7)^3, E(7), E(7), E(7)^3, E(7)^2, E(7)^-1, E(7)^-3, E(7)^3, E(7)^-1, E(7), E(7)^-3, E(7)^-1, E(7)^3, E(7)^2, E(7), E(7)^2, E(7)^-3, E(7)^-3], [1, 1, 1, 1, E(7), E(7)^-2, E(7)^-3, E(7)^-1, E(7)^2, E(7)^3, 1, 1, 1, 1, E(7)^-3, E(7)^2, E(7)^-2, E(7), E(7)^3, E(7)^-1, E(7)^-3, E(7)^-1, E(7)^-1, E(7)^-2, E(7)^-2, E(7)^-3, E(7), E(7)^2, E(7), E(7)^2, E(7)^3, E(7)^3, E(7)^2, E(7)^2, E(7)^2, E(7)^2, E(7), E(7)^-2, E(7)^-3, E(7)^-1, E(7)^-1, E(7)^-3, E(7)^-2, E(7), E(7)^3, E(7)^-3, E(7), E(7)^-1, E(7)^3, E(7), E(7)^-3, E(7)^-2, E(7)^-1, E(7)^-2, E(7)^3, E(7)^3], [1, 1, 1, 1, E(7)^-3, E(7)^-1, E(7)^2, E(7)^3, E(7), E(7)^-2, -1, -1, -1, -1, E(7)^2, E(7), E(7)^-1, E(7)^-3, E(7)^-2, E(7)^3, E(7)^2, E(7)^3, E(7)^3, E(7)^-1, E(7)^-1, E(7)^2, E(7)^-3, E(7), E(7)^-3, E(7), E(7)^-2, E(7)^-2, -1*E(7), -1*E(7), -1*E(7), -1*E(7), -1*E(7)^-3, -1*E(7)^-1, -1*E(7)^2, -1*E(7)^3, -1*E(7)^3, -1*E(7)^2, -1*E(7)^-1, -1*E(7)^-3, -1*E(7)^-2, -1*E(7)^2, -1*E(7)^-3, -1*E(7)^3, -1*E(7)^-2, -1*E(7)^-3, -1*E(7)^2, -1*E(7)^-1, -1*E(7)^3, -1*E(7)^-1, -1*E(7)^-2, -1*E(7)^-2], [1, 1, 1, 1, E(7)^3, E(7), E(7)^-2, E(7)^-3, E(7)^-1, E(7)^2, -1, -1, -1, -1, E(7)^-2, E(7)^-1, E(7), E(7)^3, E(7)^2, E(7)^-3, E(7)^-2, E(7)^-3, E(7)^-3, E(7), E(7), E(7)^-2, E(7)^3, E(7)^-1, E(7)^3, E(7)^-1, E(7)^2, E(7)^2, -1*E(7)^-1, -1*E(7)^-1, -1*E(7)^-1, -1*E(7)^-1, -1*E(7)^3, -1*E(7), -1*E(7)^-2, -1*E(7)^-3, -1*E(7)^-3, -1*E(7)^-2, -1*E(7), -1*E(7)^3, -1*E(7)^2, -1*E(7)^-2, -1*E(7)^3, -1*E(7)^-3, -1*E(7)^2, -1*E(7)^3, -1*E(7)^-2, -1*E(7), -1*E(7)^-3, -1*E(7), -1*E(7)^2, -1*E(7)^2], [1, 1, 1, 1, E(7)^-2, E(7)^-3, E(7)^-1, E(7)^2, E(7)^3, E(7), -1, -1, -1, -1, E(7)^-1, E(7)^3, E(7)^-3, E(7)^-2, E(7), E(7)^2, E(7)^-1, E(7)^2, E(7)^2, E(7)^-3, E(7)^-3, E(7)^-1, E(7)^-2, E(7)^3, E(7)^-2, E(7)^3, E(7), E(7), -1*E(7)^3, -1*E(7)^3, -1*E(7)^3, -1*E(7)^3, -1*E(7)^-2, -1*E(7)^-3, -1*E(7)^-1, -1*E(7)^2, -1*E(7)^2, -1*E(7)^-1, -1*E(7)^-3, -1*E(7)^-2, -1*E(7), -1*E(7)^-1, -1*E(7)^-2, -1*E(7)^2, -1*E(7), -1*E(7)^-2, -1*E(7)^-1, -1*E(7)^-3, -1*E(7)^2, -1*E(7)^-3, -1*E(7), -1*E(7)], [1, 1, 1, 1, E(7)^2, E(7)^3, E(7), E(7)^-2, E(7)^-3, E(7)^-1, -1, -1, -1, -1, E(7), E(7)^-3, E(7)^3, E(7)^2, E(7)^-1, E(7)^-2, E(7), E(7)^-2, E(7)^-2, E(7)^3, E(7)^3, E(7), E(7)^2, E(7)^-3, E(7)^2, E(7)^-3, E(7)^-1, E(7)^-1, -1*E(7)^-3, -1*E(7)^-3, -1*E(7)^-3, -1*E(7)^-3, -1*E(7)^2, -1*E(7)^3, -1*E(7), -1*E(7)^-2, -1*E(7)^-2, -1*E(7), -1*E(7)^3, -1*E(7)^2, -1*E(7)^-1, -1*E(7), -1*E(7)^2, -1*E(7)^-2, -1*E(7)^-1, -1*E(7)^2, -1*E(7), -1*E(7)^3, -1*E(7)^-2, -1*E(7)^3, -1*E(7)^-1, -1*E(7)^-1], [1, 1, 1, 1, E(7)^-1, E(7)^2, E(7)^3, E(7), E(7)^-2, E(7)^-3, -1, -1, -1, -1, E(7)^3, E(7)^-2, E(7)^2, E(7)^-1, E(7)^-3, E(7), E(7)^3, E(7), E(7), E(7)^2, E(7)^2, E(7)^3, E(7)^-1, E(7)^-2, E(7)^-1, E(7)^-2, E(7)^-3, E(7)^-3, -1*E(7)^-2, -1*E(7)^-2, -1*E(7)^-2, -1*E(7)^-2, -1*E(7)^-1, -1*E(7)^2, -1*E(7)^3, -1*E(7), -1*E(7), -1*E(7)^3, -1*E(7)^2, -1*E(7)^-1, -1*E(7)^-3, -1*E(7)^3, -1*E(7)^-1, -1*E(7), -1*E(7)^-3, -1*E(7)^-1, -1*E(7)^3, -1*E(7)^2, -1*E(7), -1*E(7)^2, -1*E(7)^-3, -1*E(7)^-3], [1, 1, 1, 1, E(7), E(7)^-2, E(7)^-3, E(7)^-1, E(7)^2, E(7)^3, -1, -1, -1, -1, E(7)^-3, E(7)^2, E(7)^-2, E(7), E(7)^3, E(7)^-1, E(7)^-3, E(7)^-1, E(7)^-1, E(7)^-2, E(7)^-2, E(7)^-3, E(7), E(7)^2, E(7), E(7)^2, E(7)^3, E(7)^3, -1*E(7)^2, -1*E(7)^2, -1*E(7)^2, -1*E(7)^2, -1*E(7), -1*E(7)^-2, -1*E(7)^-3, -1*E(7)^-1, -1*E(7)^-1, -1*E(7)^-3, -1*E(7)^-2, -1*E(7), -1*E(7)^3, -1*E(7)^-3, -1*E(7), -1*E(7)^-1, -1*E(7)^3, -1*E(7), -1*E(7)^-3, -1*E(7)^-2, -1*E(7)^-1, -1*E(7)^-2, -1*E(7)^3, -1*E(7)^3], [1, 1, -1, -1, -1*E(28)^2, -1*E(28)^10, E(28)^8, E(28)^12, E(28)^4, -1*E(28)^6, -1*E(28)^7, -1*E(28)^7, E(28)^7, E(28)^7, E(28)^8, E(28)^4, -1*E(28)^10, -1*E(28)^2, -1*E(28)^6, E(28)^12, -1*E(28)^8, -1*E(28)^12, -1*E(28)^12, E(28)^10, E(28)^10, -1*E(28)^8, E(28)^2, -1*E(28)^4, E(28)^2, -1*E(28)^4, E(28)^6, E(28)^6, E(28)^11, -1*E(28)^11, -1*E(28)^11, E(28)^11, E(28)^9, E(28)^3, -1*E(28), -1*E(28)^5, -1*E(28)^5, -1*E(28), E(28)^3, -1*E(28)^9, E(28)^13, E(28), -1*E(28)^9, E(28)^5, -1*E(28)^13, E(28)^9, E(28), -1*E(28)^3, E(28)^5, -1*E(28)^3, -1*E(28)^13, E(28)^13], [1, 1, -1, -1, E(28)^12, E(28)^4, -1*E(28)^6, -1*E(28)^2, -1*E(28)^10, E(28)^8, E(28)^7, E(28)^7, -1*E(28)^7, -1*E(28)^7, -1*E(28)^6, -1*E(28)^10, E(28)^4, E(28)^12, E(28)^8, -1*E(28)^2, E(28)^6, E(28)^2, E(28)^2, -1*E(28)^4, -1*E(28)^4, E(28)^6, -1*E(28)^12, E(28)^10, -1*E(28)^12, E(28)^10, -1*E(28)^8, -1*E(28)^8, -1*E(28)^3, E(28)^3, E(28)^3, -1*E(28)^3, -1*E(28)^5, -1*E(28)^11, E(28)^13, E(28)^9, E(28)^9, E(28)^13, -1*E(28)^11, E(28)^5, -1*E(28), -1*E(28)^13, E(28)^5, -1*E(28)^9, E(28), -1*E(28)^5, -1*E(28)^13, E(28)^11, -1*E(28)^9, E(28)^11, E(28), -1*E(28)], [1, 1, -1, -1, -1*E(28)^2, -1*E(28)^10, E(28)^8, E(28)^12, E(28)^4, -1*E(28)^6, E(28)^7, E(28)^7, -1*E(28)^7, -1*E(28)^7, E(28)^8, E(28)^4, -1*E(28)^10, -1*E(28)^2, -1*E(28)^6, E(28)^12, -1*E(28)^8, -1*E(28)^12, -1*E(28)^12, E(28)^10, E(28)^10, -1*E(28)^8, E(28)^2, -1*E(28)^4, E(28)^2, -1*E(28)^4, E(28)^6, E(28)^6, -1*E(28)^11, E(28)^11, E(28)^11, -1*E(28)^11, -1*E(28)^9, -1*E(28)^3, E(28), E(28)^5, E(28)^5, E(28), -1*E(28)^3, E(28)^9, -1*E(28)^13, -1*E(28), E(28)^9, -1*E(28)^5, E(28)^13, -1*E(28)^9, -1*E(28), E(28)^3, -1*E(28)^5, E(28)^3, E(28)^13, -1*E(28)^13], [1, 1, -1, -1, E(28)^12, E(28)^4, -1*E(28)^6, -1*E(28)^2, -1*E(28)^10, E(28)^8, -1*E(28)^7, -1*E(28)^7, E(28)^7, E(28)^7, -1*E(28)^6, -1*E(28)^10, E(28)^4, E(28)^12, E(28)^8, -1*E(28)^2, E(28)^6, E(28)^2, E(28)^2, -1*E(28)^4, -1*E(28)^4, E(28)^6, -1*E(28)^12, E(28)^10, -1*E(28)^12, E(28)^10, -1*E(28)^8, -1*E(28)^8, E(28)^3, -1*E(28)^3, -1*E(28)^3, E(28)^3, E(28)^5, E(28)^11, -1*E(28)^13, -1*E(28)^9, -1*E(28)^9, -1*E(28)^13, E(28)^11, -1*E(28)^5, E(28), E(28)^13, -1*E(28)^5, E(28)^9, -1*E(28), E(28)^5, E(28)^13, -1*E(28)^11, E(28)^9, -1*E(28)^11, -1*E(28), E(28)], [1, 1, -1, -1, -1*E(28)^6, -1*E(28)^2, -1*E(28)^10, E(28)^8, E(28)^12, E(28)^4, -1*E(28)^7, -1*E(28)^7, E(28)^7, E(28)^7, -1*E(28)^10, E(28)^12, -1*E(28)^2, -1*E(28)^6, E(28)^4, E(28)^8, E(28)^10, -1*E(28)^8, -1*E(28)^8, E(28)^2, E(28)^2, E(28)^10, E(28)^6, -1*E(28)^12, E(28)^6, -1*E(28)^12, -1*E(28)^4, -1*E(28)^4, -1*E(28)^5, E(28)^5, E(28)^5, -1*E(28)^5, E(28)^13, -1*E(28)^9, E(28)^3, -1*E(28), -1*E(28), E(28)^3, -1*E(28)^9, -1*E(28)^13, -1*E(28)^11, -1*E(28)^3, -1*E(28)^13, E(28), E(28)^11, E(28)^13, -1*E(28)^3, E(28)^9, E(28), E(28)^9, E(28)^11, -1*E(28)^11], [1, 1, -1, -1, E(28)^8, E(28)^12, E(28)^4, -1*E(28)^6, -1*E(28)^2, -1*E(28)^10, E(28)^7, E(28)^7, -1*E(28)^7, -1*E(28)^7, E(28)^4, -1*E(28)^2, E(28)^12, E(28)^8, -1*E(28)^10, -1*E(28)^6, -1*E(28)^4, E(28)^6, E(28)^6, -1*E(28)^12, -1*E(28)^12, -1*E(28)^4, -1*E(28)^8, E(28)^2, -1*E(28)^8, E(28)^2, E(28)^10, E(28)^10, E(28)^9, -1*E(28)^9, -1*E(28)^9, E(28)^9, -1*E(28), E(28)^5, -1*E(28)^11, E(28)^13, E(28)^13, -1*E(28)^11, E(28)^5, E(28), E(28)^3, E(28)^11, E(28), -1*E(28)^13, -1*E(28)^3, -1*E(28), E(28)^11, -1*E(28)^5, -1*E(28)^13, -1*E(28)^5, -1*E(28)^3, E(28)^3], [1, 1, -1, -1, -1*E(28)^6, -1*E(28)^2, -1*E(28)^10, E(28)^8, E(28)^12, E(28)^4, E(28)^7, E(28)^7, -1*E(28)^7, -1*E(28)^7, -1*E(28)^10, E(28)^12, -1*E(28)^2, -1*E(28)^6, E(28)^4, E(28)^8, E(28)^10, -1*E(28)^8, -1*E(28)^8, E(28)^2, E(28)^2, E(28)^10, E(28)^6, -1*E(28)^12, E(28)^6, -1*E(28)^12, -1*E(28)^4, -1*E(28)^4, E(28)^5, -1*E(28)^5, -1*E(28)^5, E(28)^5, -1*E(28)^13, E(28)^9, -1*E(28)^3, E(28), E(28), -1*E(28)^3, E(28)^9, E(28)^13, E(28)^11, E(28)^3, E(28)^13, -1*E(28), -1*E(28)^11, -1*E(28)^13, E(28)^3, -1*E(28)^9, -1*E(28), -1*E(28)^9, -1*E(28)^11, E(28)^11], [1, 1, -1, -1, E(28)^8, E(28)^12, E(28)^4, -1*E(28)^6, -1*E(28)^2, -1*E(28)^10, -1*E(28)^7, -1*E(28)^7, E(28)^7, E(28)^7, E(28)^4, -1*E(28)^2, E(28)^12, E(28)^8, -1*E(28)^10, -1*E(28)^6, -1*E(28)^4, E(28)^6, E(28)^6, -1*E(28)^12, -1*E(28)^12, -1*E(28)^4, -1*E(28)^8, E(28)^2, -1*E(28)^8, E(28)^2, E(28)^10, E(28)^10, -1*E(28)^9, E(28)^9, E(28)^9, -1*E(28)^9, E(28), -1*E(28)^5, E(28)^11, -1*E(28)^13, -1*E(28)^13, E(28)^11, -1*E(28)^5, -1*E(28), -1*E(28)^3, -1*E(28)^11, -1*E(28), E(28)^13, E(28)^3, E(28), -1*E(28)^11, E(28)^5, E(28)^13, E(28)^5, E(28)^3, -1*E(28)^3], [1, 1, -1, -1, -1*E(28)^10, E(28)^8, E(28)^12, E(28)^4, -1*E(28)^6, -1*E(28)^2, -1*E(28)^7, -1*E(28)^7, E(28)^7, E(28)^7, E(28)^12, -1*E(28)^6, E(28)^8, -1*E(28)^10, -1*E(28)^2, E(28)^4, -1*E(28)^12, -1*E(28)^4, -1*E(28)^4, -1*E(28)^8, -1*E(28)^8, -1*E(28)^12, E(28)^10, E(28)^6, E(28)^10, E(28)^6, E(28)^2, E(28)^2, -1*E(28)^13, E(28)^13, E(28)^13, -1*E(28)^13, -1*E(28)^3, -1*E(28), -1*E(28)^5, E(28)^11, E(28)^11, -1*E(28)^5, -1*E(28), E(28)^3, E(28)^9, E(28)^5, E(28)^3, -1*E(28)^11, -1*E(28)^9, -1*E(28)^3, E(28)^5, E(28), -1*E(28)^11, E(28), -1*E(28)^9, E(28)^9], [1, 1, -1, -1, E(28)^4, -1*E(28)^6, -1*E(28)^2, -1*E(28)^10, E(28)^8, E(28)^12, E(28)^7, E(28)^7, -1*E(28)^7, -1*E(28)^7, -1*E(28)^2, E(28)^8, -1*E(28)^6, E(28)^4, E(28)^12, -1*E(28)^10, E(28)^2, E(28)^10, E(28)^10, E(28)^6, E(28)^6, E(28)^2, -1*E(28)^4, -1*E(28)^8, -1*E(28)^4, -1*E(28)^8, -1*E(28)^12, -1*E(28)^12, E(28), -1*E(28), -1*E(28), E(28), E(28)^11, E(28)^13, E(28)^9, -1*E(28)^3, -1*E(28)^3, E(28)^9, E(28)^13, -1*E(28)^11, -1*E(28)^5, -1*E(28)^9, -1*E(28)^11, E(28)^3, E(28)^5, E(28)^11, -1*E(28)^9, -1*E(28)^13, E(28)^3, -1*E(28)^13, E(28)^5, -1*E(28)^5], [1, 1, -1, -1, -1*E(28)^10, E(28)^8, E(28)^12, E(28)^4, -1*E(28)^6, -1*E(28)^2, E(28)^7, E(28)^7, -1*E(28)^7, -1*E(28)^7, E(28)^12, -1*E(28)^6, E(28)^8, -1*E(28)^10, -1*E(28)^2, E(28)^4, -1*E(28)^12, -1*E(28)^4, -1*E(28)^4, -1*E(28)^8, -1*E(28)^8, -1*E(28)^12, E(28)^10, E(28)^6, E(28)^10, E(28)^6, E(28)^2, E(28)^2, E(28)^13, -1*E(28)^13, -1*E(28)^13, E(28)^13, E(28)^3, E(28), E(28)^5, -1*E(28)^11, -1*E(28)^11, E(28)^5, E(28), -1*E(28)^3, -1*E(28)^9, -1*E(28)^5, -1*E(28)^3, E(28)^11, E(28)^9, E(28)^3, -1*E(28)^5, -1*E(28), E(28)^11, -1*E(28), E(28)^9, -1*E(28)^9], [1, 1, -1, -1, E(28)^4, -1*E(28)^6, -1*E(28)^2, -1*E(28)^10, E(28)^8, E(28)^12, -1*E(28)^7, -1*E(28)^7, E(28)^7, E(28)^7, -1*E(28)^2, E(28)^8, -1*E(28)^6, E(28)^4, E(28)^12, -1*E(28)^10, E(28)^2, E(28)^10, E(28)^10, E(28)^6, E(28)^6, E(28)^2, -1*E(28)^4, -1*E(28)^8, -1*E(28)^4, -1*E(28)^8, -1*E(28)^12, -1*E(28)^12, -1*E(28), E(28), E(28), -1*E(28), -1*E(28)^11, -1*E(28)^13, -1*E(28)^9, E(28)^3, E(28)^3, -1*E(28)^9, -1*E(28)^13, E(28)^11, E(28)^5, E(28)^9, E(28)^11, -1*E(28)^3, -1*E(28)^5, -1*E(28)^11, E(28)^9, E(28)^13, -1*E(28)^3, E(28)^13, -1*E(28)^5, E(28)^5], [1, -1, -1*E(56)^14, E(56)^14, -1*E(56)^4, -1*E(56)^20, E(56)^16, E(56)^24, E(56)^8, -1*E(56)^12, E(56)^21, -1*E(56)^21, -1*E(56)^7, E(56)^7, -1*E(56)^16, -1*E(56)^8, E(56)^20, E(56)^4, E(56)^12, -1*E(56)^24, -1*E(56)^2, -1*E(56)^10, E(56)^10, -1*E(56)^6, E(56)^6, E(56)^2, E(56)^18, -1*E(56)^22, -1*E(56)^18, E(56)^22, E(56)^26, -1*E(56)^26, -1*E(56)^15, E(56), -1*E(56), E(56)^15, E(56)^25, -1*E(56)^27, -1*E(56)^23, E(56)^3, -1*E(56)^3, E(56)^23, E(56)^27, -1*E(56)^11, -1*E(56)^5, -1*E(56)^9, E(56)^11, E(56)^17, E(56)^19, -1*E(56)^25, E(56)^9, E(56)^13, -1*E(56)^17, -1*E(56)^13, -1*E(56)^19, E(56)^5], [1, -1, E(56)^14, -1*E(56)^14, E(56)^24, E(56)^8, -1*E(56)^12, -1*E(56)^4, -1*E(56)^20, E(56)^16, -1*E(56)^7, E(56)^7, E(56)^21, -1*E(56)^21, E(56)^12, E(56)^20, -1*E(56)^8, -1*E(56)^24, -1*E(56)^16, E(56)^4, E(56)^26, E(56)^18, -1*E(56)^18, E(56)^22, -1*E(56)^22, -1*E(56)^26, -1*E(56)^10, E(56)^6, E(56)^10, -1*E(56)^6, -1*E(56)^2, E(56)^2, E(56)^13, -1*E(56)^27, E(56)^27, -1*E(56)^13, -1*E(56)^3, E(56), E(56)^5, -1*E(56)^25, E(56)^25, -1*E(56)^5, -1*E(56), E(56)^17, E(56)^23, E(56)^19, -1*E(56)^17, -1*E(56)^11, -1*E(56)^9, E(56)^3, -1*E(56)^19, -1*E(56)^15, E(56)^11, E(56)^15, E(56)^9, -1*E(56)^23], [1, -1, -1*E(56)^14, E(56)^14, -1*E(56)^4, -1*E(56)^20, E(56)^16, E(56)^24, E(56)^8, -1*E(56)^12, -1*E(56)^21, E(56)^21, E(56)^7, -1*E(56)^7, -1*E(56)^16, -1*E(56)^8, E(56)^20, E(56)^4, E(56)^12, -1*E(56)^24, -1*E(56)^2, -1*E(56)^10, E(56)^10, -1*E(56)^6, E(56)^6, E(56)^2, E(56)^18, -1*E(56)^22, -1*E(56)^18, E(56)^22, E(56)^26, -1*E(56)^26, E(56)^15, -1*E(56), E(56), -1*E(56)^15, -1*E(56)^25, E(56)^27, E(56)^23, -1*E(56)^3, E(56)^3, -1*E(56)^23, -1*E(56)^27, E(56)^11, E(56)^5, E(56)^9, -1*E(56)^11, -1*E(56)^17, -1*E(56)^19, E(56)^25, -1*E(56)^9, -1*E(56)^13, E(56)^17, E(56)^13, E(56)^19, -1*E(56)^5], [1, -1, E(56)^14, -1*E(56)^14, E(56)^24, E(56)^8, -1*E(56)^12, -1*E(56)^4, -1*E(56)^20, E(56)^16, E(56)^7, -1*E(56)^7, -1*E(56)^21, E(56)^21, E(56)^12, E(56)^20, -1*E(56)^8, -1*E(56)^24, -1*E(56)^16, E(56)^4, E(56)^26, E(56)^18, -1*E(56)^18, E(56)^22, -1*E(56)^22, -1*E(56)^26, -1*E(56)^10, E(56)^6, E(56)^10, -1*E(56)^6, -1*E(56)^2, E(56)^2, -1*E(56)^13, E(56)^27, -1*E(56)^27, E(56)^13, E(56)^3, -1*E(56), -1*E(56)^5, E(56)^25, -1*E(56)^25, E(56)^5, E(56), -1*E(56)^17, -1*E(56)^23, -1*E(56)^19, E(56)^17, E(56)^11, E(56)^9, -1*E(56)^3, E(56)^19, E(56)^15, -1*E(56)^11, -1*E(56)^15, -1*E(56)^9, E(56)^23], [1, -1, -1*E(56)^14, E(56)^14, E(56)^24, E(56)^8, -1*E(56)^12, -1*E(56)^4, -1*E(56)^20, E(56)^16, E(56)^21, -1*E(56)^21, -1*E(56)^7, E(56)^7, E(56)^12, E(56)^20, -1*E(56)^8, -1*E(56)^24, -1*E(56)^16, E(56)^4, -1*E(56)^26, -1*E(56)^18, E(56)^18, -1*E(56)^22, E(56)^22, E(56)^26, E(56)^10, -1*E(56)^6, -1*E(56)^10, E(56)^6, E(56)^2, -1*E(56)^2, E(56)^27, -1*E(56)^13, E(56)^13, -1*E(56)^27, E(56)^17, E(56)^15, E(56)^19, E(56)^11, -1*E(56)^11, -1*E(56)^19, -1*E(56)^15, -1*E(56)^3, E(56)^9, E(56)^5, E(56)^3, E(56)^25, -1*E(56)^23, -1*E(56)^17, -1*E(56)^5, -1*E(56), -1*E(56)^25, E(56), E(56)^23, -1*E(56)^9], [1, -1, E(56)^14, -1*E(56)^14, -1*E(56)^4, -1*E(56)^20, E(56)^16, E(56)^24, E(56)^8, -1*E(56)^12, -1*E(56)^7, E(56)^7, E(56)^21, -1*E(56)^21, -1*E(56)^16, -1*E(56)^8, E(56)^20, E(56)^4, E(56)^12, -1*E(56)^24, E(56)^2, E(56)^10, -1*E(56)^10, E(56)^6, -1*E(56)^6, -1*E(56)^2, -1*E(56)^18, E(56)^22, E(56)^18, -1*E(56)^22, -1*E(56)^26, E(56)^26, -1*E(56), E(56)^15, -1*E(56)^15, E(56), -1*E(56)^11, -1*E(56)^13, -1*E(56)^9, -1*E(56)^17, E(56)^17, E(56)^9, E(56)^13, E(56)^25, -1*E(56)^19, -1*E(56)^23, -1*E(56)^25, -1*E(56)^3, E(56)^5, E(56)^11, E(56)^23, E(56)^27, E(56)^3, -1*E(56)^27, -1*E(56)^5, E(56)^19], [1, -1, -1*E(56)^14, E(56)^14, E(56)^24, E(56)^8, -1*E(56)^12, -1*E(56)^4, -1*E(56)^20, E(56)^16, -1*E(56)^21, E(56)^21, E(56)^7, -1*E(56)^7, E(56)^12, E(56)^20, -1*E(56)^8, -1*E(56)^24, -1*E(56)^16, E(56)^4, -1*E(56)^26, -1*E(56)^18, E(56)^18, -1*E(56)^22, E(56)^22, E(56)^26, E(56)^10, -1*E(56)^6, -1*E(56)^10, E(56)^6, E(56)^2, -1*E(56)^2, -1*E(56)^27, E(56)^13, -1*E(56)^13, E(56)^27, -1*E(56)^17, -1*E(56)^15, -1*E(56)^19, -1*E(56)^11, E(56)^11, E(56)^19, E(56)^15, E(56)^3, -1*E(56)^9, -1*E(56)^5, -1*E(56)^3, -1*E(56)^25, E(56)^23, E(56)^17, E(56)^5, E(56), E(56)^25, -1*E(56), -1*E(56)^23, E(56)^9], [1, -1, E(56)^14, -1*E(56)^14, -1*E(56)^4, -1*E(56)^20, E(56)^16, E(56)^24, E(56)^8, -1*E(56)^12, E(56)^7, -1*E(56)^7, -1*E(56)^21, E(56)^21, -1*E(56)^16, -1*E(56)^8, E(56)^20, E(56)^4, E(56)^12, -1*E(56)^24, E(56)^2, E(56)^10, -1*E(56)^10, E(56)^6, -1*E(56)^6, -1*E(56)^2, -1*E(56)^18, E(56)^22, E(56)^18, -1*E(56)^22, -1*E(56)^26, E(56)^26, E(56), -1*E(56)^15, E(56)^15, -1*E(56), E(56)^11, E(56)^13, E(56)^9, E(56)^17, -1*E(56)^17, -1*E(56)^9, -1*E(56)^13, -1*E(56)^25, E(56)^19, E(56)^23, E(56)^25, E(56)^3, -1*E(56)^5, -1*E(56)^11, -1*E(56)^23, -1*E(56)^27, -1*E(56)^3, E(56)^27, E(56)^5, -1*E(56)^19], [1, -1, -1*E(56)^14, E(56)^14, -1*E(56)^12, -1*E(56)^4, -1*E(56)^20, E(56)^16, E(56)^24, E(56)^8, E(56)^21, -1*E(56)^21, -1*E(56)^7, E(56)^7, E(56)^20, -1*E(56)^24, E(56)^4, E(56)^12, -1*E(56)^8, -1*E(56)^16, E(56)^6, -1*E(56)^2, E(56)^2, E(56)^18, -1*E(56)^18, -1*E(56)^6, E(56)^26, E(56)^10, -1*E(56)^26, -1*E(56)^10, -1*E(56)^22, E(56)^22, E(56)^3, E(56)^17, -1*E(56)^17, -1*E(56)^3, -1*E(56)^5, -1*E(56)^11, E(56)^27, -1*E(56)^23, E(56)^23, -1*E(56)^27, E(56)^11, -1*E(56)^19, E(56), E(56)^13, E(56)^19, E(56)^9, -1*E(56)^15, E(56)^5, -1*E(56)^13, -1*E(56)^25, -1*E(56)^9, E(56)^25, E(56)^15, -1*E(56)], [1, -1, E(56)^14, -1*E(56)^14, E(56)^16, E(56)^24, E(56)^8, -1*E(56)^12, -1*E(56)^4, -1*E(56)^20, -1*E(56)^7, E(56)^7, E(56)^21, -1*E(56)^21, -1*E(56)^8, E(56)^4, -1*E(56)^24, -1*E(56)^16, E(56)^20, E(56)^12, -1*E(56)^22, E(56)^26, -1*E(56)^26, -1*E(56)^10, E(56)^10, E(56)^22, -1*E(56)^2, -1*E(56)^18, E(56)^2, E(56)^18, E(56)^6, -1*E(56)^6, -1*E(56)^25, -1*E(56)^11, E(56)^11, E(56)^25, E(56)^23, E(56)^17, -1*E(56), E(56)^5, -1*E(56)^5, E(56), -1*E(56)^17, E(56)^9, -1*E(56)^27, -1*E(56)^15, -1*E(56)^9, -1*E(56)^19, E(56)^13, -1*E(56)^23, E(56)^15, E(56)^3, E(56)^19, -1*E(56)^3, -1*E(56)^13, E(56)^27], [1, -1, -1*E(56)^14, E(56)^14, -1*E(56)^12, -1*E(56)^4, -1*E(56)^20, E(56)^16, E(56)^24, E(56)^8, -1*E(56)^21, E(56)^21, E(56)^7, -1*E(56)^7, E(56)^20, -1*E(56)^24, E(56)^4, E(56)^12, -1*E(56)^8, -1*E(56)^16, E(56)^6, -1*E(56)^2, E(56)^2, E(56)^18, -1*E(56)^18, -1*E(56)^6, E(56)^26, E(56)^10, -1*E(56)^26, -1*E(56)^10, -1*E(56)^22, E(56)^22, -1*E(56)^3, -1*E(56)^17, E(56)^17, E(56)^3, E(56)^5, E(56)^11, -1*E(56)^27, E(56)^23, -1*E(56)^23, E(56)^27, -1*E(56)^11, E(56)^19, -1*E(56), -1*E(56)^13, -1*E(56)^19, -1*E(56)^9, E(56)^15, -1*E(56)^5, E(56)^13, E(56)^25, E(56)^9, -1*E(56)^25, -1*E(56)^15, E(56)], [1, -1, E(56)^14, -1*E(56)^14, E(56)^16, E(56)^24, E(56)^8, -1*E(56)^12, -1*E(56)^4, -1*E(56)^20, E(56)^7, -1*E(56)^7, -1*E(56)^21, E(56)^21, -1*E(56)^8, E(56)^4, -1*E(56)^24, -1*E(56)^16, E(56)^20, E(56)^12, -1*E(56)^22, E(56)^26, -1*E(56)^26, -1*E(56)^10, E(56)^10, E(56)^22, -1*E(56)^2, -1*E(56)^18, E(56)^2, E(56)^18, E(56)^6, -1*E(56)^6, E(56)^25, E(56)^11, -1*E(56)^11, -1*E(56)^25, -1*E(56)^23, -1*E(56)^17, E(56), -1*E(56)^5, E(56)^5, -1*E(56), E(56)^17, -1*E(56)^9, E(56)^27, E(56)^15, E(56)^9, E(56)^19, -1*E(56)^13, E(56)^23, -1*E(56)^15, -1*E(56)^3, -1*E(56)^19, E(56)^3, E(56)^13, -1*E(56)^27], [1, -1, -1*E(56)^14, E(56)^14, E(56)^16, E(56)^24, E(56)^8, -1*E(56)^12, -1*E(56)^4, -1*E(56)^20, E(56)^21, -1*E(56)^21, -1*E(56)^7, E(56)^7, -1*E(56)^8, E(56)^4, -1*E(56)^24, -1*E(56)^16, E(56)^20, E(56)^12, E(56)^22, -1*E(56)^26, E(56)^26, E(56)^10, -1*E(56)^10, -1*E(56)^22, E(56)^2, E(56)^18, -1*E(56)^2, -1*E(56)^18, -1*E(56)^6, E(56)^6, E(56)^11, E(56)^25, -1*E(56)^25, -1*E(56)^11, E(56)^9, -1*E(56)^3, -1*E(56)^15, E(56)^19, -1*E(56)^19, E(56)^15, E(56)^3, E(56)^23, -1*E(56)^13, -1*E(56), -1*E(56)^23, -1*E(56)^5, E(56)^27, -1*E(56)^9, E(56), -1*E(56)^17, E(56)^5, E(56)^17, -1*E(56)^27, E(56)^13], [1, -1, E(56)^14, -1*E(56)^14, -1*E(56)^12, -1*E(56)^4, -1*E(56)^20, E(56)^16, E(56)^24, E(56)^8, -1*E(56)^7, E(56)^7, E(56)^21, -1*E(56)^21, E(56)^20, -1*E(56)^24, E(56)^4, E(56)^12, -1*E(56)^8, -1*E(56)^16, -1*E(56)^6, E(56)^2, -1*E(56)^2, -1*E(56)^18, E(56)^18, E(56)^6, -1*E(56)^26, -1*E(56)^10, E(56)^26, E(56)^10, E(56)^22, -1*E(56)^22, -1*E(56)^17, -1*E(56)^3, E(56)^3, E(56)^17, -1*E(56)^19, E(56)^25, E(56)^13, -1*E(56)^9, E(56)^9, -1*E(56)^13, -1*E(56)^25, -1*E(56)^5, E(56)^15, E(56)^27, E(56)^5, E(56)^23, -1*E(56), E(56)^19, -1*E(56)^27, E(56)^11, -1*E(56)^23, -1*E(56)^11, E(56), -1*E(56)^15], [1, -1, -1*E(56)^14, E(56)^14, E(56)^16, E(56)^24, E(56)^8, -1*E(56)^12, -1*E(56)^4, -1*E(56)^20, -1*E(56)^21, E(56)^21, E(56)^7, -1*E(56)^7, -1*E(56)^8, E(56)^4, -1*E(56)^24, -1*E(56)^16, E(56)^20, E(56)^12, E(56)^22, -1*E(56)^26, E(56)^26, E(56)^10, -1*E(56)^10, -1*E(56)^22, E(56)^2, E(56)^18, -1*E(56)^2, -1*E(56)^18, -1*E(56)^6, E(56)^6, -1*E(56)^11, -1*E(56)^25, E(56)^25, E(56)^11, -1*E(56)^9, E(56)^3, E(56)^15, -1*E(56)^19, E(56)^19, -1*E(56)^15, -1*E(56)^3, -1*E(56)^23, E(56)^13, E(56), E(56)^23, E(56)^5, -1*E(56)^27, E(56)^9, -1*E(56), E(56)^17, -1*E(56)^5, -1*E(56)^17, E(56)^27, -1*E(56)^13], [1, -1, E(56)^14, -1*E(56)^14, -1*E(56)^12, -1*E(56)^4, -1*E(56)^20, E(56)^16, E(56)^24, E(56)^8, E(56)^7, -1*E(56)^7, -1*E(56)^21, E(56)^21, E(56)^20, -1*E(56)^24, E(56)^4, E(56)^12, -1*E(56)^8, -1*E(56)^16, -1*E(56)^6, E(56)^2, -1*E(56)^2, -1*E(56)^18, E(56)^18, E(56)^6, -1*E(56)^26, -1*E(56)^10, E(56)^26, E(56)^10, E(56)^22, -1*E(56)^22, E(56)^17, E(56)^3, -1*E(56)^3, -1*E(56)^17, E(56)^19, -1*E(56)^25, -1*E(56)^13, E(56)^9, -1*E(56)^9, E(56)^13, E(56)^25, E(56)^5, -1*E(56)^15, -1*E(56)^27, -1*E(56)^5, -1*E(56)^23, E(56), -1*E(56)^19, E(56)^27, -1*E(56)^11, E(56)^23, E(56)^11, -1*E(56), E(56)^15], [1, -1, -1*E(56)^14, E(56)^14, -1*E(56)^20, E(56)^16, E(56)^24, E(56)^8, -1*E(56)^12, -1*E(56)^4, E(56)^21, -1*E(56)^21, -1*E(56)^7, E(56)^7, -1*E(56)^24, E(56)^12, -1*E(56)^16, E(56)^20, E(56)^4, -1*E(56)^8, -1*E(56)^10, E(56)^22, -1*E(56)^22, E(56)^2, -1*E(56)^2, E(56)^10, -1*E(56)^6, E(56)^26, E(56)^6, -1*E(56)^26, E(56)^18, -1*E(56)^18, E(56)^19, -1*E(56)^5, E(56)^5, -1*E(56)^19, -1*E(56)^13, E(56)^23, E(56)^3, -1*E(56)^15, E(56)^15, -1*E(56)^3, -1*E(56)^23, -1*E(56)^27, E(56)^25, -1*E(56)^17, E(56)^27, E(56), E(56)^11, E(56)^13, E(56)^17, -1*E(56)^9, -1*E(56), E(56)^9, -1*E(56)^11, -1*E(56)^25], [1, -1, E(56)^14, -1*E(56)^14, E(56)^8, -1*E(56)^12, -1*E(56)^4, -1*E(56)^20, E(56)^16, E(56)^24, -1*E(56)^7, E(56)^7, E(56)^21, -1*E(56)^21, E(56)^4, -1*E(56)^16, E(56)^12, -1*E(56)^8, -1*E(56)^24, E(56)^20, E(56)^18, -1*E(56)^6, E(56)^6, -1*E(56)^26, E(56)^26, -1*E(56)^18, E(56)^22, -1*E(56)^2, -1*E(56)^22, E(56)^2, -1*E(56)^10, E(56)^10, -1*E(56)^9, E(56)^23, -1*E(56)^23, E(56)^9, E(56)^15, -1*E(56)^5, -1*E(56)^25, E(56)^13, -1*E(56)^13, E(56)^25, E(56)^5, E(56), -1*E(56)^3, E(56)^11, -1*E(56), -1*E(56)^27, -1*E(56)^17, -1*E(56)^15, -1*E(56)^11, E(56)^19, E(56)^27, -1*E(56)^19, E(56)^17, E(56)^3], [1, -1, -1*E(56)^14, E(56)^14, -1*E(56)^20, E(56)^16, E(56)^24, E(56)^8, -1*E(56)^12, -1*E(56)^4, -1*E(56)^21, E(56)^21, E(56)^7, -1*E(56)^7, -1*E(56)^24, E(56)^12, -1*E(56)^16, E(56)^20, E(56)^4, -1*E(56)^8, -1*E(56)^10, E(56)^22, -1*E(56)^22, E(56)^2, -1*E(56)^2, E(56)^10, -1*E(56)^6, E(56)^26, E(56)^6, -1*E(56)^26, E(56)^18, -1*E(56)^18, -1*E(56)^19, E(56)^5, -1*E(56)^5, E(56)^19, E(56)^13, -1*E(56)^23, -1*E(56)^3, E(56)^15, -1*E(56)^15, E(56)^3, E(56)^23, E(56)^27, -1*E(56)^25, E(56)^17, -1*E(56)^27, -1*E(56), -1*E(56)^11, -1*E(56)^13, -1*E(56)^17, E(56)^9, E(56), -1*E(56)^9, E(56)^11, E(56)^25], [1, -1, E(56)^14, -1*E(56)^14, E(56)^8, -1*E(56)^12, -1*E(56)^4, -1*E(56)^20, E(56)^16, E(56)^24, E(56)^7, -1*E(56)^7, -1*E(56)^21, E(56)^21, E(56)^4, -1*E(56)^16, E(56)^12, -1*E(56)^8, -1*E(56)^24, E(56)^20, E(56)^18, -1*E(56)^6, E(56)^6, -1*E(56)^26, E(56)^26, -1*E(56)^18, E(56)^22, -1*E(56)^2, -1*E(56)^22, E(56)^2, -1*E(56)^10, E(56)^10, E(56)^9, -1*E(56)^23, E(56)^23, -1*E(56)^9, -1*E(56)^15, E(56)^5, E(56)^25, -1*E(56)^13, E(56)^13, -1*E(56)^25, -1*E(56)^5, -1*E(56), E(56)^3, -1*E(56)^11, E(56), E(56)^27, E(56)^17, E(56)^15, E(56)^11, -1*E(56)^19, -1*E(56)^27, E(56)^19, -1*E(56)^17, -1*E(56)^3], [1, -1, -1*E(56)^14, E(56)^14, E(56)^8, -1*E(56)^12, -1*E(56)^4, -1*E(56)^20, E(56)^16, E(56)^24, E(56)^21, -1*E(56)^21, -1*E(56)^7, E(56)^7, E(56)^4, -1*E(56)^16, E(56)^12, -1*E(56)^8, -1*E(56)^24, E(56)^20, -1*E(56)^18, E(56)^6, -1*E(56)^6, E(56)^26, -1*E(56)^26, E(56)^18, -1*E(56)^22, E(56)^2, E(56)^22, -1*E(56)^2, E(56)^10, -1*E(56)^10, -1*E(56)^23, E(56)^9, -1*E(56)^9, E(56)^23, E(56), -1*E(56)^19, E(56)^11, E(56)^27, -1*E(56)^27, -1*E(56)^11, E(56)^19, E(56)^15, E(56)^17, -1*E(56)^25, -1*E(56)^15, -1*E(56)^13, E(56)^3, -1*E(56), E(56)^25, E(56)^5, E(56)^13, -1*E(56)^5, -1*E(56)^3, -1*E(56)^17], [1, -1, E(56)^14, -1*E(56)^14, -1*E(56)^20, E(56)^16, E(56)^24, E(56)^8, -1*E(56)^12, -1*E(56)^4, -1*E(56)^7, E(56)^7, E(56)^21, -1*E(56)^21, -1*E(56)^24, E(56)^12, -1*E(56)^16, E(56)^20, E(56)^4, -1*E(56)^8, E(56)^10, -1*E(56)^22, E(56)^22, -1*E(56)^2, E(56)^2, -1*E(56)^10, E(56)^6, -1*E(56)^26, -1*E(56)^6, E(56)^26, -1*E(56)^18, E(56)^18, E(56)^5, -1*E(56)^19, E(56)^19, -1*E(56)^5, -1*E(56)^27, E(56)^9, -1*E(56)^17, -1*E(56), E(56), E(56)^17, -1*E(56)^9, -1*E(56)^13, -1*E(56)^11, E(56)^3, E(56)^13, E(56)^15, -1*E(56)^25, E(56)^27, -1*E(56)^3, -1*E(56)^23, -1*E(56)^15, E(56)^23, E(56)^25, E(56)^11], [1, -1, -1*E(56)^14, E(56)^14, E(56)^8, -1*E(56)^12, -1*E(56)^4, -1*E(56)^20, E(56)^16, E(56)^24, -1*E(56)^21, E(56)^21, E(56)^7, -1*E(56)^7, E(56)^4, -1*E(56)^16, E(56)^12, -1*E(56)^8, -1*E(56)^24, E(56)^20, -1*E(56)^18, E(56)^6, -1*E(56)^6, E(56)^26, -1*E(56)^26, E(56)^18, -1*E(56)^22, E(56)^2, E(56)^22, -1*E(56)^2, E(56)^10, -1*E(56)^10, E(56)^23, -1*E(56)^9, E(56)^9, -1*E(56)^23, -1*E(56), E(56)^19, -1*E(56)^11, -1*E(56)^27, E(56)^27, E(56)^11, -1*E(56)^19, -1*E(56)^15, -1*E(56)^17, E(56)^25, E(56)^15, E(56)^13, -1*E(56)^3, E(56), -1*E(56)^25, -1*E(56)^5, -1*E(56)^13, E(56)^5, E(56)^3, E(56)^17], [1, -1, E(56)^14, -1*E(56)^14, -1*E(56)^20, E(56)^16, E(56)^24, E(56)^8, -1*E(56)^12, -1*E(56)^4, E(56)^7, -1*E(56)^7, -1*E(56)^21, E(56)^21, -1*E(56)^24, E(56)^12, -1*E(56)^16, E(56)^20, E(56)^4, -1*E(56)^8, E(56)^10, -1*E(56)^22, E(56)^22, -1*E(56)^2, E(56)^2, -1*E(56)^10, E(56)^6, -1*E(56)^26, -1*E(56)^6, E(56)^26, -1*E(56)^18, E(56)^18, -1*E(56)^5, E(56)^19, -1*E(56)^19, E(56)^5, E(56)^27, -1*E(56)^9, E(56)^17, E(56), -1*E(56), -1*E(56)^17, E(56)^9, E(56)^13, E(56)^11, -1*E(56)^3, -1*E(56)^13, -1*E(56)^15, E(56)^25, -1*E(56)^27, E(56)^3, E(56)^23, E(56)^15, -1*E(56)^23, -1*E(56)^25, -1*E(56)^11]]; ConvertToLibraryCharacterTableNC(chartbl_56_2);