Properties

Label 50000000.bg
Order \( 2^{7} \cdot 5^{8} \)
Exponent \( 2^{3} \cdot 5 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{5} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{15} \cdot 5^{8} \)
$\card{\mathrm{Out}(G)}$ \( 2^{8} \)
Perm deg. $40$
Trans deg. $40$
Rank $4$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,32,2,33)(3,34,5,31)(4,35)(6,19,8,17)(7,18)(9,16,10,20)(11,25,12,24)(13,23,15,21)(14,22)(26,37,30,38)(27,36,29,39)(28,40), (1,27,13,16,5,29,14,18)(2,30,12,19,4,26,15,20)(3,28,11,17)(6,31,36,22,9,32,38,21)(7,33,40,25,8,35,39,23)(10,34,37,24), (1,39,13,6,4,36,11,8)(2,38,14,10,3,37,15,9)(5,40,12,7)(16,33,27,23,20,34,28,24)(17,32,26,22,19,35,29,25)(18,31,30,21), (1,24)(2,23)(3,22)(4,21)(5,25)(6,30,8,28,10,26,7,29,9,27)(11,34,13,32,15,35,12,33,14,31)(16,40,19,37,17,39,20,36,18,38) >;
 
Copy content gap:G := Group( (1,32,2,33)(3,34,5,31)(4,35)(6,19,8,17)(7,18)(9,16,10,20)(11,25,12,24)(13,23,15,21)(14,22)(26,37,30,38)(27,36,29,39)(28,40), (1,27,13,16,5,29,14,18)(2,30,12,19,4,26,15,20)(3,28,11,17)(6,31,36,22,9,32,38,21)(7,33,40,25,8,35,39,23)(10,34,37,24), (1,39,13,6,4,36,11,8)(2,38,14,10,3,37,15,9)(5,40,12,7)(16,33,27,23,20,34,28,24)(17,32,26,22,19,35,29,25)(18,31,30,21), (1,24)(2,23)(3,22)(4,21)(5,25)(6,30,8,28,10,26,7,29,9,27)(11,34,13,32,15,35,12,33,14,31)(16,40,19,37,17,39,20,36,18,38) );
 
Copy content sage:G = PermutationGroup(['(1,32,2,33)(3,34,5,31)(4,35)(6,19,8,17)(7,18)(9,16,10,20)(11,25,12,24)(13,23,15,21)(14,22)(26,37,30,38)(27,36,29,39)(28,40)', '(1,27,13,16,5,29,14,18)(2,30,12,19,4,26,15,20)(3,28,11,17)(6,31,36,22,9,32,38,21)(7,33,40,25,8,35,39,23)(10,34,37,24)', '(1,39,13,6,4,36,11,8)(2,38,14,10,3,37,15,9)(5,40,12,7)(16,33,27,23,20,34,28,24)(17,32,26,22,19,35,29,25)(18,31,30,21)', '(1,24)(2,23)(3,22)(4,21)(5,25)(6,30,8,28,10,26,7,29,9,27)(11,34,13,32,15,35,12,33,14,31)(16,40,19,37,17,39,20,36,18,38)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(95014015293832388862833412049703024893820927659622075742073168564538239893124577556224131974600805926963947908989640338423905561940856092038886899086343900708254436563758907545416087026730331644289977104778058462415126241512624149590028899761700577704919935895895927593356170463511014081397371243357545313764057911791223661886497433700655958070616097341555410334616920959369629467402770235443978217371500068474039003127955727680186620325884005656110334953049305342217331808858258622937702704548467880241131364817538173701361509683464345889159394138905837594416498491377619111390469325650113917866030713414434718868926075522939456440454926335,50000000)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.12; h = G.13; i = G.14; j = G.15;
 

Group information

Description:$C_5^8.\OD_{16}.C_2^3$
Order: \(50000000\)\(\medspace = 2^{7} \cdot 5^{8} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(12800000000\)\(\medspace = 2^{15} \cdot 5^{8} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 7, $C_5$ x 8
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 4 5 8 10
Elements 1 409375 12500000 390624 25000000 11700000 50000000
Conjugacy classes   1 13 14 3198 16 378 3620
Divisions 1 13 12 3198 8 378 3610

Minimal presentations

Permutation degree:$40$
Transitive degree:$40$
Rank: $4$
Inequivalent generating quadruples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j \mid b^{4}=c^{10}=d^{10}=e^{10}=f^{5}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([15, 2, 2, 2, 2, 2, 5, 2, 5, 2, 5, 5, 5, 5, 5, 5, 30, 729600136, 1881458102, 540368927, 122, 2280791523, 1174206018, 1277139604, 1521616219, 701286934, 294343399, 214, 1541960645, 587234900, 225866195, 1490, 3898450086, 1509562761, 1226496636, 385494951, 80376516, 98501106, 306, 2545923847, 1225536022, 28837, 19252, 206529667, 3973744448, 3297156323, 1400598038, 609633053, 410359568, 142904333, 9178748, 11617538, 398, 3244800009, 3530400024, 240039, 240054, 357960069, 12099, 3840682570, 2763103225, 1137180040, 1320055, 439890070, 43989100, 6730, 5979703691, 3581372186, 700560041, 7200056, 380160071, 32238101, 36131, 1988694252, 2959738107, 907140042, 39000057, 253734072, 33072102, 4847832, 2175472333, 458011708, 1193640043, 210000058, 305844073, 59157103, 1883833, 8382247214, 1283194829, 2239200044, 1125000059, 298935074, 24660104, 4799384]); a,b,c,d,e,f,g,h,i,j := Explode([G.1, G.3, G.5, G.7, G.9, G.11, G.12, G.13, G.14, G.15]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "d", "d2", "e", "e2", "f", "g", "h", "i", "j"]);
 
Copy content gap:G := PcGroupCode(95014015293832388862833412049703024893820927659622075742073168564538239893124577556224131974600805926963947908989640338423905561940856092038886899086343900708254436563758907545416087026730331644289977104778058462415126241512624149590028899761700577704919935895895927593356170463511014081397371243357545313764057911791223661886497433700655958070616097341555410334616920959369629467402770235443978217371500068474039003127955727680186620325884005656110334953049305342217331808858258622937702704548467880241131364817538173701361509683464345889159394138905837594416498491377619111390469325650113917866030713414434718868926075522939456440454926335,50000000); a := G.1; b := G.3; c := G.5; d := G.7; e := G.9; f := G.11; g := G.12; h := G.13; i := G.14; j := G.15;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(95014015293832388862833412049703024893820927659622075742073168564538239893124577556224131974600805926963947908989640338423905561940856092038886899086343900708254436563758907545416087026730331644289977104778058462415126241512624149590028899761700577704919935895895927593356170463511014081397371243357545313764057911791223661886497433700655958070616097341555410334616920959369629467402770235443978217371500068474039003127955727680186620325884005656110334953049305342217331808858258622937702704548467880241131364817538173701361509683464345889159394138905837594416498491377619111390469325650113917866030713414434718868926075522939456440454926335,50000000)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.12; h = G.13; i = G.14; j = G.15;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(95014015293832388862833412049703024893820927659622075742073168564538239893124577556224131974600805926963947908989640338423905561940856092038886899086343900708254436563758907545416087026730331644289977104778058462415126241512624149590028899761700577704919935895895927593356170463511014081397371243357545313764057911791223661886497433700655958070616097341555410334616920959369629467402770235443978217371500068474039003127955727680186620325884005656110334953049305342217331808858258622937702704548467880241131364817538173701361509683464345889159394138905837594416498491377619111390469325650113917866030713414434718868926075522939456440454926335,50000000)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.12; h = G.13; i = G.14; j = G.15;
 
Permutation group:Degree $40$ $\langle(1,32,2,33)(3,34,5,31)(4,35)(6,19,8,17)(7,18)(9,16,10,20)(11,25,12,24)(13,23,15,21) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,32,2,33)(3,34,5,31)(4,35)(6,19,8,17)(7,18)(9,16,10,20)(11,25,12,24)(13,23,15,21)(14,22)(26,37,30,38)(27,36,29,39)(28,40), (1,27,13,16,5,29,14,18)(2,30,12,19,4,26,15,20)(3,28,11,17)(6,31,36,22,9,32,38,21)(7,33,40,25,8,35,39,23)(10,34,37,24), (1,39,13,6,4,36,11,8)(2,38,14,10,3,37,15,9)(5,40,12,7)(16,33,27,23,20,34,28,24)(17,32,26,22,19,35,29,25)(18,31,30,21), (1,24)(2,23)(3,22)(4,21)(5,25)(6,30,8,28,10,26,7,29,9,27)(11,34,13,32,15,35,12,33,14,31)(16,40,19,37,17,39,20,36,18,38) >;
 
Copy content gap:G := Group( (1,32,2,33)(3,34,5,31)(4,35)(6,19,8,17)(7,18)(9,16,10,20)(11,25,12,24)(13,23,15,21)(14,22)(26,37,30,38)(27,36,29,39)(28,40), (1,27,13,16,5,29,14,18)(2,30,12,19,4,26,15,20)(3,28,11,17)(6,31,36,22,9,32,38,21)(7,33,40,25,8,35,39,23)(10,34,37,24), (1,39,13,6,4,36,11,8)(2,38,14,10,3,37,15,9)(5,40,12,7)(16,33,27,23,20,34,28,24)(17,32,26,22,19,35,29,25)(18,31,30,21), (1,24)(2,23)(3,22)(4,21)(5,25)(6,30,8,28,10,26,7,29,9,27)(11,34,13,32,15,35,12,33,14,31)(16,40,19,37,17,39,20,36,18,38) );
 
Copy content sage:G = PermutationGroup(['(1,32,2,33)(3,34,5,31)(4,35)(6,19,8,17)(7,18)(9,16,10,20)(11,25,12,24)(13,23,15,21)(14,22)(26,37,30,38)(27,36,29,39)(28,40)', '(1,27,13,16,5,29,14,18)(2,30,12,19,4,26,15,20)(3,28,11,17)(6,31,36,22,9,32,38,21)(7,33,40,25,8,35,39,23)(10,34,37,24)', '(1,39,13,6,4,36,11,8)(2,38,14,10,3,37,15,9)(5,40,12,7)(16,33,27,23,20,34,28,24)(17,32,26,22,19,35,29,25)(18,31,30,21)', '(1,24)(2,23)(3,22)(4,21)(5,25)(6,30,8,28,10,26,7,29,9,27)(11,34,13,32,15,35,12,33,14,31)(16,40,19,37,17,39,20,36,18,38)'])
 
Transitive group: 40T185201 40T185241 40T185367 40T185583 all 5
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_5^8.\OD_{16})$ . $C_2^3$ (8) $(C_5^4.D_5^4.C_4)$ . $C_2$ (2) $(C_5^8.C_2.C_2^3)$ . $D_4$ (4) $(C_5^6.D_5:F_5)$ . $C_2^4$ all 42

Elements of the group are displayed as permutations of degree 40.

Homology

Abelianization: $C_{2}^{3} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{6}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 177 normal subgroups (33 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^8$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 77 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $3620 \times 3620$ character table is not available for this group.

Rational character table

The $3610 \times 3610$ rational character table is not available for this group.