Properties

Label 49152.bbz
Order \( 2^{14} \cdot 3 \)
Exponent \( 2^{3} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{5} \)
$\card{Z(G)}$ \( 2^{2} \)
$\card{\Aut(G)}$ \( 2^{25} \cdot 3 \)
$\card{\mathrm{Out}(G)}$ \( 2^{13} \)
Perm deg. not computed
Trans deg. not computed
Rank $5$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 64 | (9,10)(11,12)(13,14)(15,16)(17,34)(18,36)(19,38)(20,40)(21,42)(22,44)(23,46)(24,48)(25,52)(26,50)(27,56)(28,54)(29,60)(30,58)(31,64)(32,62)(49,51)(53,55)(57,59)(61,63), (1,11,2,12)(3,9,4,10)(5,16,6,15)(7,14,8,13)(17,54,18,56)(19,50,20,52)(21,64,22,62)(23,60,24,58)(25,40,26,38)(27,36,28,34)(29,46,30,48)(31,42,32,44)(41,43)(45,47)(57,59)(61,63), (17,34)(18,36)(19,38)(20,40)(21,42)(22,44)(23,46)(24,48)(25,50)(26,52)(27,54)(28,56)(29,58)(30,60)(31,62)(32,64)(33,41)(35,43)(37,45)(39,47)(49,57)(51,59)(53,61)(55,63), (17,34)(18,36)(19,38)(20,40)(21,42)(22,44)(23,46)(24,48)(25,50)(26,52)(27,54)(28,56)(29,58)(30,60)(31,62)(32,64), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,38)(18,40)(19,34)(20,36)(21,46)(22,48)(23,42)(24,44)(25,54)(26,56)(27,50)(28,52)(29,62)(30,64)(31,58)(32,60)(33,37)(35,39)(41,45)(43,47)(49,53)(51,55)(57,61)(59,63), (1,3)(2,4)(5,7)(6,8)(17,38)(18,40)(19,34)(20,36)(21,46)(22,48)(23,42)(24,44)(25,50)(26,52)(27,54)(28,56)(29,58)(30,60)(31,62)(32,64)(33,37)(35,39)(41,45)(43,47), (3,7)(4,8)(11,15)(12,16)(17,34)(18,36)(19,46)(20,48)(21,42)(22,44)(23,38)(24,40)(25,50)(26,52)(27,62)(28,64)(29,58)(30,60)(31,54)(32,56)(37,45)(39,47)(53,61)(55,63), (1,17,34)(2,18,36)(3,19,38)(4,20,40)(5,21,42)(6,22,44)(7,23,46)(8,24,48)(9,25,50)(10,26,52)(11,27,54)(12,28,56)(13,29,58)(14,30,60)(15,31,62)(16,32,64), (17,34)(18,36)(19,38)(20,40)(21,42)(22,44)(23,46)(24,48)(25,50)(26,52)(27,54)(28,56)(29,58)(30,60)(31,62)(32,64)(33,35)(37,39)(41,43)(45,47)(49,51)(53,55)(57,59)(61,63), (1,11,2,12)(3,9,4,10)(5,16,6,15)(7,14,8,13)(17,54,18,56)(19,50,20,52)(21,64,22,62)(23,60,24,58)(25,40,26,38)(27,36,28,34)(29,46,30,48)(31,42,32,44)(33,53,35,55)(37,49,39,51)(41,63,43,61)(45,59,47,57), (9,13)(10,14)(11,15)(12,16)(17,34)(18,36)(19,38)(20,40)(21,42)(22,44)(23,46)(24,48)(25,58)(26,60)(27,62)(28,64)(29,50)(30,52)(31,54)(32,56)(49,57)(51,59)(53,61)(55,63), (3,4)(7,8)(11,12)(15,16)(17,34)(18,36)(19,40)(20,38)(21,42)(22,44)(23,48)(24,46)(25,50)(26,52)(27,56)(28,54)(29,58)(30,60)(31,64)(32,62)(37,39)(45,47)(53,55)(61,63), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,36)(18,34)(19,40)(20,38)(21,44)(22,42)(23,48)(24,46)(25,52)(26,50)(27,56)(28,54)(29,60)(30,58)(31,64)(32,62), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,42)(18,44)(19,46)(20,48)(21,34)(22,36)(23,38)(24,40)(25,58)(26,60)(27,62)(28,64)(29,50)(30,52)(31,54)(32,56), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,38)(18,40)(19,34)(20,36)(21,46)(22,48)(23,42)(24,44)(25,54)(26,56)(27,50)(28,52)(29,62)(30,64)(31,58)(32,60) >;
 
Copy content gap:G := Group( (9,10)(11,12)(13,14)(15,16)(17,34)(18,36)(19,38)(20,40)(21,42)(22,44)(23,46)(24,48)(25,52)(26,50)(27,56)(28,54)(29,60)(30,58)(31,64)(32,62)(49,51)(53,55)(57,59)(61,63), (1,11,2,12)(3,9,4,10)(5,16,6,15)(7,14,8,13)(17,54,18,56)(19,50,20,52)(21,64,22,62)(23,60,24,58)(25,40,26,38)(27,36,28,34)(29,46,30,48)(31,42,32,44)(41,43)(45,47)(57,59)(61,63), (17,34)(18,36)(19,38)(20,40)(21,42)(22,44)(23,46)(24,48)(25,50)(26,52)(27,54)(28,56)(29,58)(30,60)(31,62)(32,64)(33,41)(35,43)(37,45)(39,47)(49,57)(51,59)(53,61)(55,63), (17,34)(18,36)(19,38)(20,40)(21,42)(22,44)(23,46)(24,48)(25,50)(26,52)(27,54)(28,56)(29,58)(30,60)(31,62)(32,64), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,38)(18,40)(19,34)(20,36)(21,46)(22,48)(23,42)(24,44)(25,54)(26,56)(27,50)(28,52)(29,62)(30,64)(31,58)(32,60)(33,37)(35,39)(41,45)(43,47)(49,53)(51,55)(57,61)(59,63), (1,3)(2,4)(5,7)(6,8)(17,38)(18,40)(19,34)(20,36)(21,46)(22,48)(23,42)(24,44)(25,50)(26,52)(27,54)(28,56)(29,58)(30,60)(31,62)(32,64)(33,37)(35,39)(41,45)(43,47), (3,7)(4,8)(11,15)(12,16)(17,34)(18,36)(19,46)(20,48)(21,42)(22,44)(23,38)(24,40)(25,50)(26,52)(27,62)(28,64)(29,58)(30,60)(31,54)(32,56)(37,45)(39,47)(53,61)(55,63), (1,17,34)(2,18,36)(3,19,38)(4,20,40)(5,21,42)(6,22,44)(7,23,46)(8,24,48)(9,25,50)(10,26,52)(11,27,54)(12,28,56)(13,29,58)(14,30,60)(15,31,62)(16,32,64), (17,34)(18,36)(19,38)(20,40)(21,42)(22,44)(23,46)(24,48)(25,50)(26,52)(27,54)(28,56)(29,58)(30,60)(31,62)(32,64)(33,35)(37,39)(41,43)(45,47)(49,51)(53,55)(57,59)(61,63), (1,11,2,12)(3,9,4,10)(5,16,6,15)(7,14,8,13)(17,54,18,56)(19,50,20,52)(21,64,22,62)(23,60,24,58)(25,40,26,38)(27,36,28,34)(29,46,30,48)(31,42,32,44)(33,53,35,55)(37,49,39,51)(41,63,43,61)(45,59,47,57), (9,13)(10,14)(11,15)(12,16)(17,34)(18,36)(19,38)(20,40)(21,42)(22,44)(23,46)(24,48)(25,58)(26,60)(27,62)(28,64)(29,50)(30,52)(31,54)(32,56)(49,57)(51,59)(53,61)(55,63), (3,4)(7,8)(11,12)(15,16)(17,34)(18,36)(19,40)(20,38)(21,42)(22,44)(23,48)(24,46)(25,50)(26,52)(27,56)(28,54)(29,58)(30,60)(31,64)(32,62)(37,39)(45,47)(53,55)(61,63), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,36)(18,34)(19,40)(20,38)(21,44)(22,42)(23,48)(24,46)(25,52)(26,50)(27,56)(28,54)(29,60)(30,58)(31,64)(32,62), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,42)(18,44)(19,46)(20,48)(21,34)(22,36)(23,38)(24,40)(25,58)(26,60)(27,62)(28,64)(29,50)(30,52)(31,54)(32,56), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,38)(18,40)(19,34)(20,36)(21,46)(22,48)(23,42)(24,44)(25,54)(26,56)(27,50)(28,52)(29,62)(30,64)(31,58)(32,60) );
 
Copy content sage:G = PermutationGroup(['(9,10)(11,12)(13,14)(15,16)(17,34)(18,36)(19,38)(20,40)(21,42)(22,44)(23,46)(24,48)(25,52)(26,50)(27,56)(28,54)(29,60)(30,58)(31,64)(32,62)(49,51)(53,55)(57,59)(61,63)', '(1,11,2,12)(3,9,4,10)(5,16,6,15)(7,14,8,13)(17,54,18,56)(19,50,20,52)(21,64,22,62)(23,60,24,58)(25,40,26,38)(27,36,28,34)(29,46,30,48)(31,42,32,44)(41,43)(45,47)(57,59)(61,63)', '(17,34)(18,36)(19,38)(20,40)(21,42)(22,44)(23,46)(24,48)(25,50)(26,52)(27,54)(28,56)(29,58)(30,60)(31,62)(32,64)(33,41)(35,43)(37,45)(39,47)(49,57)(51,59)(53,61)(55,63)', '(17,34)(18,36)(19,38)(20,40)(21,42)(22,44)(23,46)(24,48)(25,50)(26,52)(27,54)(28,56)(29,58)(30,60)(31,62)(32,64)', '(1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,38)(18,40)(19,34)(20,36)(21,46)(22,48)(23,42)(24,44)(25,54)(26,56)(27,50)(28,52)(29,62)(30,64)(31,58)(32,60)(33,37)(35,39)(41,45)(43,47)(49,53)(51,55)(57,61)(59,63)', '(1,3)(2,4)(5,7)(6,8)(17,38)(18,40)(19,34)(20,36)(21,46)(22,48)(23,42)(24,44)(25,50)(26,52)(27,54)(28,56)(29,58)(30,60)(31,62)(32,64)(33,37)(35,39)(41,45)(43,47)', '(3,7)(4,8)(11,15)(12,16)(17,34)(18,36)(19,46)(20,48)(21,42)(22,44)(23,38)(24,40)(25,50)(26,52)(27,62)(28,64)(29,58)(30,60)(31,54)(32,56)(37,45)(39,47)(53,61)(55,63)', '(1,17,34)(2,18,36)(3,19,38)(4,20,40)(5,21,42)(6,22,44)(7,23,46)(8,24,48)(9,25,50)(10,26,52)(11,27,54)(12,28,56)(13,29,58)(14,30,60)(15,31,62)(16,32,64)', '(17,34)(18,36)(19,38)(20,40)(21,42)(22,44)(23,46)(24,48)(25,50)(26,52)(27,54)(28,56)(29,58)(30,60)(31,62)(32,64)(33,35)(37,39)(41,43)(45,47)(49,51)(53,55)(57,59)(61,63)', '(1,11,2,12)(3,9,4,10)(5,16,6,15)(7,14,8,13)(17,54,18,56)(19,50,20,52)(21,64,22,62)(23,60,24,58)(25,40,26,38)(27,36,28,34)(29,46,30,48)(31,42,32,44)(33,53,35,55)(37,49,39,51)(41,63,43,61)(45,59,47,57)', '(9,13)(10,14)(11,15)(12,16)(17,34)(18,36)(19,38)(20,40)(21,42)(22,44)(23,46)(24,48)(25,58)(26,60)(27,62)(28,64)(29,50)(30,52)(31,54)(32,56)(49,57)(51,59)(53,61)(55,63)', '(3,4)(7,8)(11,12)(15,16)(17,34)(18,36)(19,40)(20,38)(21,42)(22,44)(23,48)(24,46)(25,50)(26,52)(27,56)(28,54)(29,58)(30,60)(31,64)(32,62)(37,39)(45,47)(53,55)(61,63)', '(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,36)(18,34)(19,40)(20,38)(21,44)(22,42)(23,48)(24,46)(25,52)(26,50)(27,56)(28,54)(29,60)(30,58)(31,64)(32,62)', '(1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,42)(18,44)(19,46)(20,48)(21,34)(22,36)(23,38)(24,40)(25,58)(26,60)(27,62)(28,64)(29,50)(30,52)(31,54)(32,56)', '(1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,38)(18,40)(19,34)(20,36)(21,46)(22,48)(23,42)(24,44)(25,54)(26,56)(27,50)(28,52)(29,62)(30,64)(31,58)(32,60)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1571691077796652658362704595805740609977616470435931391008344349888736439017456396062465139449700377331492314892167269574344353183886496622548003551594858587048559956761588683047165773520934883123972446733024010658360058747370035548160,49152)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.11; h = G.12; i = G.13; j = G.14; k = G.15;
 

Group information

Description:$S_3\times C_2^7.D_4^2$
Order: \(49152\)\(\medspace = 2^{14} \cdot 3 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(100663296\)\(\medspace = 2^{25} \cdot 3 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 14, $C_3$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian, supersolvable (hence solvable and monomial), and hyperelementary for $p = 2$.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12 24
Elements 1 3967 2 24704 1982 4096 12352 2048 49152
Conjugacy classes   1 173 1 206 86 8 103 4 582
Divisions 1 173 1 206 86 4 103 2 576
Autjugacy classes 1 63 1 68 35 2 34 1 205

Minimal presentations

Permutation degree:not computed
Transitive degree:not computed
Rank: $5$
Inequivalent generating 5-tuples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible none not computed none
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k \mid a^{2}=b^{6}=c^{4}=d^{4}=e^{4}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([15, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 760621, 76, 362, 1521363, 1098, 168, 244100, 52250, 605, 260, 1335621, 222651, 69127, 1555222, 9652, 2947, 6322, 817, 352, 86424, 14454, 2249305, 37015, 13270, 6685, 2557466, 334136, 216071, 108086, 26756, 1244907, 107697, 255912, 128007, 7137, 3356668, 667018, 329353, 164728, 14398, 2808029, 468059]); a,b,c,d,e,f,g,h,i,j,k := Explode([G.1, G.2, G.4, G.6, G.8, G.10, G.11, G.12, G.13, G.14, G.15]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "d", "d2", "e", "e2", "f", "g", "h", "i", "j", "k"]);
 
Copy content gap:G := PcGroupCode(1571691077796652658362704595805740609977616470435931391008344349888736439017456396062465139449700377331492314892167269574344353183886496622548003551594858587048559956761588683047165773520934883123972446733024010658360058747370035548160,49152); a := G.1; b := G.2; c := G.4; d := G.6; e := G.8; f := G.10; g := G.11; h := G.12; i := G.13; j := G.14; k := G.15;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1571691077796652658362704595805740609977616470435931391008344349888736439017456396062465139449700377331492314892167269574344353183886496622548003551594858587048559956761588683047165773520934883123972446733024010658360058747370035548160,49152)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.11; h = G.12; i = G.13; j = G.14; k = G.15;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1571691077796652658362704595805740609977616470435931391008344349888736439017456396062465139449700377331492314892167269574344353183886496622548003551594858587048559956761588683047165773520934883123972446733024010658360058747370035548160,49152)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.11; h = G.12; i = G.13; j = G.14; k = G.15;
 
Permutation group:Degree $64$ $\langle(9,10)(11,12)(13,14)(15,16)(17,34)(18,36)(19,38)(20,40)(21,42)(22,44)(23,46) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 64 | (9,10)(11,12)(13,14)(15,16)(17,34)(18,36)(19,38)(20,40)(21,42)(22,44)(23,46)(24,48)(25,52)(26,50)(27,56)(28,54)(29,60)(30,58)(31,64)(32,62)(49,51)(53,55)(57,59)(61,63), (1,11,2,12)(3,9,4,10)(5,16,6,15)(7,14,8,13)(17,54,18,56)(19,50,20,52)(21,64,22,62)(23,60,24,58)(25,40,26,38)(27,36,28,34)(29,46,30,48)(31,42,32,44)(41,43)(45,47)(57,59)(61,63), (17,34)(18,36)(19,38)(20,40)(21,42)(22,44)(23,46)(24,48)(25,50)(26,52)(27,54)(28,56)(29,58)(30,60)(31,62)(32,64)(33,41)(35,43)(37,45)(39,47)(49,57)(51,59)(53,61)(55,63), (17,34)(18,36)(19,38)(20,40)(21,42)(22,44)(23,46)(24,48)(25,50)(26,52)(27,54)(28,56)(29,58)(30,60)(31,62)(32,64), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,38)(18,40)(19,34)(20,36)(21,46)(22,48)(23,42)(24,44)(25,54)(26,56)(27,50)(28,52)(29,62)(30,64)(31,58)(32,60)(33,37)(35,39)(41,45)(43,47)(49,53)(51,55)(57,61)(59,63), (1,3)(2,4)(5,7)(6,8)(17,38)(18,40)(19,34)(20,36)(21,46)(22,48)(23,42)(24,44)(25,50)(26,52)(27,54)(28,56)(29,58)(30,60)(31,62)(32,64)(33,37)(35,39)(41,45)(43,47), (3,7)(4,8)(11,15)(12,16)(17,34)(18,36)(19,46)(20,48)(21,42)(22,44)(23,38)(24,40)(25,50)(26,52)(27,62)(28,64)(29,58)(30,60)(31,54)(32,56)(37,45)(39,47)(53,61)(55,63), (1,17,34)(2,18,36)(3,19,38)(4,20,40)(5,21,42)(6,22,44)(7,23,46)(8,24,48)(9,25,50)(10,26,52)(11,27,54)(12,28,56)(13,29,58)(14,30,60)(15,31,62)(16,32,64), (17,34)(18,36)(19,38)(20,40)(21,42)(22,44)(23,46)(24,48)(25,50)(26,52)(27,54)(28,56)(29,58)(30,60)(31,62)(32,64)(33,35)(37,39)(41,43)(45,47)(49,51)(53,55)(57,59)(61,63), (1,11,2,12)(3,9,4,10)(5,16,6,15)(7,14,8,13)(17,54,18,56)(19,50,20,52)(21,64,22,62)(23,60,24,58)(25,40,26,38)(27,36,28,34)(29,46,30,48)(31,42,32,44)(33,53,35,55)(37,49,39,51)(41,63,43,61)(45,59,47,57), (9,13)(10,14)(11,15)(12,16)(17,34)(18,36)(19,38)(20,40)(21,42)(22,44)(23,46)(24,48)(25,58)(26,60)(27,62)(28,64)(29,50)(30,52)(31,54)(32,56)(49,57)(51,59)(53,61)(55,63), (3,4)(7,8)(11,12)(15,16)(17,34)(18,36)(19,40)(20,38)(21,42)(22,44)(23,48)(24,46)(25,50)(26,52)(27,56)(28,54)(29,58)(30,60)(31,64)(32,62)(37,39)(45,47)(53,55)(61,63), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,36)(18,34)(19,40)(20,38)(21,44)(22,42)(23,48)(24,46)(25,52)(26,50)(27,56)(28,54)(29,60)(30,58)(31,64)(32,62), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,42)(18,44)(19,46)(20,48)(21,34)(22,36)(23,38)(24,40)(25,58)(26,60)(27,62)(28,64)(29,50)(30,52)(31,54)(32,56), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,38)(18,40)(19,34)(20,36)(21,46)(22,48)(23,42)(24,44)(25,54)(26,56)(27,50)(28,52)(29,62)(30,64)(31,58)(32,60) >;
 
Copy content gap:G := Group( (9,10)(11,12)(13,14)(15,16)(17,34)(18,36)(19,38)(20,40)(21,42)(22,44)(23,46)(24,48)(25,52)(26,50)(27,56)(28,54)(29,60)(30,58)(31,64)(32,62)(49,51)(53,55)(57,59)(61,63), (1,11,2,12)(3,9,4,10)(5,16,6,15)(7,14,8,13)(17,54,18,56)(19,50,20,52)(21,64,22,62)(23,60,24,58)(25,40,26,38)(27,36,28,34)(29,46,30,48)(31,42,32,44)(41,43)(45,47)(57,59)(61,63), (17,34)(18,36)(19,38)(20,40)(21,42)(22,44)(23,46)(24,48)(25,50)(26,52)(27,54)(28,56)(29,58)(30,60)(31,62)(32,64)(33,41)(35,43)(37,45)(39,47)(49,57)(51,59)(53,61)(55,63), (17,34)(18,36)(19,38)(20,40)(21,42)(22,44)(23,46)(24,48)(25,50)(26,52)(27,54)(28,56)(29,58)(30,60)(31,62)(32,64), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,38)(18,40)(19,34)(20,36)(21,46)(22,48)(23,42)(24,44)(25,54)(26,56)(27,50)(28,52)(29,62)(30,64)(31,58)(32,60)(33,37)(35,39)(41,45)(43,47)(49,53)(51,55)(57,61)(59,63), (1,3)(2,4)(5,7)(6,8)(17,38)(18,40)(19,34)(20,36)(21,46)(22,48)(23,42)(24,44)(25,50)(26,52)(27,54)(28,56)(29,58)(30,60)(31,62)(32,64)(33,37)(35,39)(41,45)(43,47), (3,7)(4,8)(11,15)(12,16)(17,34)(18,36)(19,46)(20,48)(21,42)(22,44)(23,38)(24,40)(25,50)(26,52)(27,62)(28,64)(29,58)(30,60)(31,54)(32,56)(37,45)(39,47)(53,61)(55,63), (1,17,34)(2,18,36)(3,19,38)(4,20,40)(5,21,42)(6,22,44)(7,23,46)(8,24,48)(9,25,50)(10,26,52)(11,27,54)(12,28,56)(13,29,58)(14,30,60)(15,31,62)(16,32,64), (17,34)(18,36)(19,38)(20,40)(21,42)(22,44)(23,46)(24,48)(25,50)(26,52)(27,54)(28,56)(29,58)(30,60)(31,62)(32,64)(33,35)(37,39)(41,43)(45,47)(49,51)(53,55)(57,59)(61,63), (1,11,2,12)(3,9,4,10)(5,16,6,15)(7,14,8,13)(17,54,18,56)(19,50,20,52)(21,64,22,62)(23,60,24,58)(25,40,26,38)(27,36,28,34)(29,46,30,48)(31,42,32,44)(33,53,35,55)(37,49,39,51)(41,63,43,61)(45,59,47,57), (9,13)(10,14)(11,15)(12,16)(17,34)(18,36)(19,38)(20,40)(21,42)(22,44)(23,46)(24,48)(25,58)(26,60)(27,62)(28,64)(29,50)(30,52)(31,54)(32,56)(49,57)(51,59)(53,61)(55,63), (3,4)(7,8)(11,12)(15,16)(17,34)(18,36)(19,40)(20,38)(21,42)(22,44)(23,48)(24,46)(25,50)(26,52)(27,56)(28,54)(29,58)(30,60)(31,64)(32,62)(37,39)(45,47)(53,55)(61,63), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,36)(18,34)(19,40)(20,38)(21,44)(22,42)(23,48)(24,46)(25,52)(26,50)(27,56)(28,54)(29,60)(30,58)(31,64)(32,62), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,42)(18,44)(19,46)(20,48)(21,34)(22,36)(23,38)(24,40)(25,58)(26,60)(27,62)(28,64)(29,50)(30,52)(31,54)(32,56), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,38)(18,40)(19,34)(20,36)(21,46)(22,48)(23,42)(24,44)(25,54)(26,56)(27,50)(28,52)(29,62)(30,64)(31,58)(32,60) );
 
Copy content sage:G = PermutationGroup(['(9,10)(11,12)(13,14)(15,16)(17,34)(18,36)(19,38)(20,40)(21,42)(22,44)(23,46)(24,48)(25,52)(26,50)(27,56)(28,54)(29,60)(30,58)(31,64)(32,62)(49,51)(53,55)(57,59)(61,63)', '(1,11,2,12)(3,9,4,10)(5,16,6,15)(7,14,8,13)(17,54,18,56)(19,50,20,52)(21,64,22,62)(23,60,24,58)(25,40,26,38)(27,36,28,34)(29,46,30,48)(31,42,32,44)(41,43)(45,47)(57,59)(61,63)', '(17,34)(18,36)(19,38)(20,40)(21,42)(22,44)(23,46)(24,48)(25,50)(26,52)(27,54)(28,56)(29,58)(30,60)(31,62)(32,64)(33,41)(35,43)(37,45)(39,47)(49,57)(51,59)(53,61)(55,63)', '(17,34)(18,36)(19,38)(20,40)(21,42)(22,44)(23,46)(24,48)(25,50)(26,52)(27,54)(28,56)(29,58)(30,60)(31,62)(32,64)', '(1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,38)(18,40)(19,34)(20,36)(21,46)(22,48)(23,42)(24,44)(25,54)(26,56)(27,50)(28,52)(29,62)(30,64)(31,58)(32,60)(33,37)(35,39)(41,45)(43,47)(49,53)(51,55)(57,61)(59,63)', '(1,3)(2,4)(5,7)(6,8)(17,38)(18,40)(19,34)(20,36)(21,46)(22,48)(23,42)(24,44)(25,50)(26,52)(27,54)(28,56)(29,58)(30,60)(31,62)(32,64)(33,37)(35,39)(41,45)(43,47)', '(3,7)(4,8)(11,15)(12,16)(17,34)(18,36)(19,46)(20,48)(21,42)(22,44)(23,38)(24,40)(25,50)(26,52)(27,62)(28,64)(29,58)(30,60)(31,54)(32,56)(37,45)(39,47)(53,61)(55,63)', '(1,17,34)(2,18,36)(3,19,38)(4,20,40)(5,21,42)(6,22,44)(7,23,46)(8,24,48)(9,25,50)(10,26,52)(11,27,54)(12,28,56)(13,29,58)(14,30,60)(15,31,62)(16,32,64)', '(17,34)(18,36)(19,38)(20,40)(21,42)(22,44)(23,46)(24,48)(25,50)(26,52)(27,54)(28,56)(29,58)(30,60)(31,62)(32,64)(33,35)(37,39)(41,43)(45,47)(49,51)(53,55)(57,59)(61,63)', '(1,11,2,12)(3,9,4,10)(5,16,6,15)(7,14,8,13)(17,54,18,56)(19,50,20,52)(21,64,22,62)(23,60,24,58)(25,40,26,38)(27,36,28,34)(29,46,30,48)(31,42,32,44)(33,53,35,55)(37,49,39,51)(41,63,43,61)(45,59,47,57)', '(9,13)(10,14)(11,15)(12,16)(17,34)(18,36)(19,38)(20,40)(21,42)(22,44)(23,46)(24,48)(25,58)(26,60)(27,62)(28,64)(29,50)(30,52)(31,54)(32,56)(49,57)(51,59)(53,61)(55,63)', '(3,4)(7,8)(11,12)(15,16)(17,34)(18,36)(19,40)(20,38)(21,42)(22,44)(23,48)(24,46)(25,50)(26,52)(27,56)(28,54)(29,58)(30,60)(31,64)(32,62)(37,39)(45,47)(53,55)(61,63)', '(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,36)(18,34)(19,40)(20,38)(21,44)(22,42)(23,48)(24,46)(25,52)(26,50)(27,56)(28,54)(29,60)(30,58)(31,64)(32,62)', '(1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,42)(18,44)(19,46)(20,48)(21,34)(22,36)(23,38)(24,40)(25,58)(26,60)(27,62)(28,64)(29,50)(30,52)(31,54)(32,56)', '(1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,38)(18,40)(19,34)(20,36)(21,46)(22,48)(23,42)(24,44)(25,54)(26,56)(27,50)(28,52)(29,62)(30,64)(31,58)(32,60)'])
 
Direct product: $S_3$ $\, \times\, $ $(C_2^7.D_4^2)$
Semidirect product: $C_3$ $\,\rtimes\,$ $(C_2^8.D_4^2)$ more information
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_2^9$ . $(D_4\times D_6)$ $(C_2^7.D_4^2)$ . $S_3$ $C_2^7$ . $(S_3\times D_4^2)$ (2) $S_3$ . $(C_2^7.D_4^2)$ all 582
Aut. group: $\Aut(C_4^2:D_6)$ $\Aut(C_2^4.D_6)$ $\Aut(C_2^4.D_6)$ $\Aut(C_2\times C_{12}.D_4)$

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: $C_{2}^{5} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{15}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $2$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 3143 normal subgroups (995 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2^2$ $G/Z \simeq$ $S_3\times C_2^7.C_2^4$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_6\times C_2^4.C_2^4$ $G/G' \simeq$ $C_2^5$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2^6:D_4$ $G/\Phi \simeq$ $C_2^3\times D_6$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_3\times C_2^7.D_4^2$ $G/\operatorname{Fit} \simeq$ $C_2$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $S_3\times C_2^7.D_4^2$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2\times C_6$ $G/\operatorname{soc} \simeq$ $C_2\times C_2^7.C_2^4$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^8.D_4^2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3$

Subgroup diagram and profile

Series

Derived series $S_3\times C_2^7.D_4^2$ $\rhd$ $C_6\times C_2^4.C_2^4$ $\rhd$ $C_2^2$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $S_3\times C_2^7.D_4^2$ $\rhd$ $C_3:(C_2^7.C_2.C_2^5)$ $\rhd$ $C_3:(C_2^6.C_2^6)$ $\rhd$ $C_3:(C_2^8.C_2^3)$ $\rhd$ $C_2^2.(D_6\times C_2^6)$ $\rhd$ $C_6\times C_2^4.C_2^4$ $\rhd$ $C_2^7:C_6$ $\rhd$ $C_{12}:C_2^5$ $\rhd$ $C_2^5\times C_6$ $\rhd$ $C_2^4\times C_6$ $\rhd$ $C_2^3\times C_6$ $\rhd$ $C_2^2\times C_6$ $\rhd$ $C_2\times C_6$ $\rhd$ $C_6$ $\rhd$ $C_3$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $S_3\times C_2^7.D_4^2$ $\rhd$ $C_6\times C_2^4.C_2^4$ $\rhd$ $C_2^4\times C_6$ $\rhd$ $C_2\times C_6$ $\rhd$ $C_3$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2^2$ $\lhd$ $C_2^5$ $\lhd$ $C_2^6:D_4$ $\lhd$ $C_2^7.D_4^2$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $582 \times 582$ character table is not available for this group.

Rational character table

The $576 \times 576$ rational character table is not available for this group.