/* Group 48.1 downloaded from the LMFDB on 25 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([5, -2, -2, -2, -2, -3, 10, 26, 42, 804]); a,b := Explode([GPC.1, GPC.5]); AssignNames(~GPC, ["a", "a2", "a4", "a8", "b"]); GPerm := PermutationGroup< 19 | (1,2,3,6,4,7,9,12,5,8,10,13,11,14,15,16)(18,19), (1,3,4,9,5,10,11,15)(2,6,7,12,8,13,14,16), (1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16), (1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16), (17,18,19) >; GLFp := MatrixGroup< 2, GF(17) | [[2, 11, 2, 15], [13, 3, 1, 13]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_48_1 := rec< RF | Agroup := true, Zgroup := true, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := true, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, a^8>,< 3, 2, b^2>,< 4, 1, a^4>,< 4, 1, a^12>,< 6, 2, a^8*b>,< 8, 1, a^2>,< 8, 1, a^14>,< 8, 1, a^6>,< 8, 1, a^10>,< 12, 2, a^4*b^2>,< 12, 2, a^12*b>,< 16, 3, a>,< 16, 3, a^15>,< 16, 3, a^3>,< 16, 3, a^13>,< 16, 3, a^5>,< 16, 3, a^11>,< 16, 3, a^7>,< 16, 3, a^9>,< 24, 2, a^2*b>,< 24, 2, a^14*b>,< 24, 2, a^10*b>,< 24, 2, a^6*b>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,1,1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,1,1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,1,-1,-1,1,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1,-1,K.1^3,K.1^3,K.1,-1*K.1^3,-1*K.1^3,K.1,-1*K.1,-1*K.1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,1,-1,-1,1,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1,-1,-1*K.1,-1*K.1,-1*K.1^3,K.1,K.1,-1*K.1^3,K.1^3,K.1^3,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,1,-1,-1,1,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1,-1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^3,K.1^3,-1*K.1,K.1,K.1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,1,-1,-1,1,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1,-1,K.1,K.1,K.1^3,-1*K.1,-1*K.1,K.1^3,-1*K.1^3,-1*K.1^3,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,-1*K.1^4,K.1^4,-1,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^4,K.1^4,-1*K.1^3,K.1^3,-1*K.1,K.1^7,-1*K.1^7,K.1,K.1^5,-1*K.1^5,K.1^6,-1*K.1^2,-1*K.1^6,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,K.1^4,-1*K.1^4,-1,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,K.1^4,-1*K.1^4,K.1^5,-1*K.1^5,K.1^7,-1*K.1,K.1,-1*K.1^7,-1*K.1^3,K.1^3,-1*K.1^2,K.1^6,K.1^2,-1*K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,-1*K.1^4,K.1^4,-1,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^4,K.1^4,K.1^3,-1*K.1^3,K.1,-1*K.1^7,K.1^7,-1*K.1,-1*K.1^5,K.1^5,K.1^6,-1*K.1^2,-1*K.1^6,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,K.1^4,-1*K.1^4,-1,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,K.1^4,-1*K.1^4,-1*K.1^5,K.1^5,-1*K.1^7,K.1,-1*K.1,K.1^7,K.1^3,-1*K.1^3,-1*K.1^2,K.1^6,K.1^2,-1*K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,-1*K.1^4,K.1^4,-1,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,-1*K.1^4,K.1^4,K.1^7,-1*K.1^7,-1*K.1^5,K.1^3,-1*K.1^3,K.1^5,-1*K.1,K.1,-1*K.1^6,K.1^2,K.1^6,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,K.1^4,-1*K.1^4,-1,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,K.1^4,-1*K.1^4,-1*K.1,K.1,K.1^3,-1*K.1^5,K.1^5,-1*K.1^3,K.1^7,-1*K.1^7,K.1^2,-1*K.1^6,-1*K.1^2,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,-1*K.1^4,K.1^4,-1,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,-1*K.1^4,K.1^4,-1*K.1^7,K.1^7,K.1^5,-1*K.1^3,K.1^3,-1*K.1^5,K.1,-1*K.1,-1*K.1^6,K.1^2,K.1^6,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,K.1^4,-1*K.1^4,-1,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,K.1^4,-1*K.1^4,K.1,-1*K.1,-1*K.1^3,K.1^5,-1*K.1^5,K.1^3,-1*K.1^7,K.1^7,K.1^2,-1*K.1^6,-1*K.1^2,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[2, 2, -1, 2, 2, -1, 2, 2, 2, 2, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -1, 2, 2, -1, -2, -2, -2, -2, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,-1,-2,-2,-1,-2*K.1,2*K.1,2*K.1,-2*K.1,1,1,0,0,0,0,0,0,0,0,K.1,-1*K.1,K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,-1,-2,-2,-1,2*K.1,-2*K.1,-2*K.1,2*K.1,1,1,0,0,0,0,0,0,0,0,-1*K.1,K.1,-1*K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,-1,-2*K.1^2,2*K.1^2,1,2*K.1^3,-2*K.1,2*K.1,-2*K.1^3,K.1^2,-1*K.1^2,0,0,0,0,0,0,0,0,-1*K.1^3,K.1,K.1^3,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,-1,2*K.1^2,-2*K.1^2,1,-2*K.1,2*K.1^3,-2*K.1^3,2*K.1,-1*K.1^2,K.1^2,0,0,0,0,0,0,0,0,K.1,-1*K.1^3,-1*K.1,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,-1,-2*K.1^2,2*K.1^2,1,-2*K.1^3,2*K.1,-2*K.1,2*K.1^3,K.1^2,-1*K.1^2,0,0,0,0,0,0,0,0,K.1^3,-1*K.1,-1*K.1^3,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,-1,2*K.1^2,-2*K.1^2,1,2*K.1,-2*K.1^3,2*K.1^3,-2*K.1,-1*K.1^2,K.1^2,0,0,0,0,0,0,0,0,-1*K.1,K.1^3,K.1,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_48_1:= KnownIrreducibles(CR);