# Group 448.43 downloaded from the LMFDB on 26 September 2025. ## Various presentations of this group are stored in this file: # GPC is polycyclic presentation GPerm is permutation group # GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups # Many characteristics of the group are stored as booleans in a record: # Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, # metacyclic, monomial, nilpotent, perfect, quasisimple, rational, # solvable, supersolvable # The character table is stored as a record chartbl_n_i where n is the order # of the group and i is which group of that order it is. The record is # converted to a character table using ConvertToLibraryCharacterTableNC # Constructions GPC := PcGroupCode(136933004624620476664895434182050647685,448); a := GPC.1; b := GPC.2; c := GPC.5; GPerm := Group( (1,2,4,7)(3,5,8,6)(10,14)(11,12)(15,16)(18,19)(20,21)(22,23), (2,5)(3,8)(6,7)(9,10,11,15,13,16,12,14), (9,11,13,12)(10,15,16,14), (1,3,4,8)(2,6,7,5)(9,12,13,11)(10,14,16,15), (1,4)(2,7)(3,8)(5,6), (1,4)(2,7)(3,8)(5,6)(9,13)(10,16)(11,12)(14,15), (17,18,20,22,23,21,19) ); # Booleans booleans_448_43 := rec( Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true); # Character Table chartbl_448_43:=rec(); chartbl_448_43.IsFinite:= true; chartbl_448_43.UnderlyingCharacteristic:= 0; chartbl_448_43.UnderlyingGroup:= GPC; chartbl_448_43.Size:= 448; chartbl_448_43.InfoText:= "Character table for group 448.43 downloaded from the LMFDB."; chartbl_448_43.Identifier:= " C4.D56 "; chartbl_448_43.NrConjugacyClasses:= 79; chartbl_448_43.ConjugacyClasses:= [ of ..., f6*f7^3, f4, f4*f6*f7^3, f5*f6*f7, f3*f4, f3*f4*f6*f7^3, f4*f5*f6*f7, f3*f4*f5*f6*f7, f1*f2*f5*f6, f1*f2*f3*f4*f5*f6*f7^5, f7, f7^2, f7^3, f1*f4*f5*f6*f7, f1, f1*f6*f7^3, f1*f4*f5*f7^5, f2*f4*f5*f6*f7^3, f2*f3*f5*f6*f7^3, f2*f3*f4*f5*f6*f7^3, f2*f5*f6*f7^3, f6, f6*f7, f6*f7^2, f4*f7^2, f4*f7^6, f4*f7^3, f4*f6, f4*f6*f7, f4*f6*f7^2, f5, f5*f6, f5*f7, f5*f7^2, f5*f7^4, f5*f7^3, f4*f5, f4*f5*f6, f4*f5*f7, f4*f5*f7^2, f4*f5*f6*f7^2, f4*f5*f7^3, f3*f7, f3*f7^3, f3*f7^2, f3*f6, f3*f6*f7, f3*f6*f7^2, f3*f5, f3*f5*f6, f3*f5*f7, f3*f5*f7^2, f3*f5*f7^4, f3*f5*f7^3, f1*f7, f1*f5*f6, f1*f5*f7, f1*f6, f1*f6*f7, f1*f5, f1*f7^2, f1*f3*f7^2, f1*f5*f7^2, f1*f6*f7^6, f1*f6*f7^2, f1*f5*f7^6, f1*f3*f7^6, f1*f7^6, f1*f7^3, f1*f3*f7^3, f1*f5*f7^3, f1*f6*f7^5, f1*f3*f7^5, f1*f7^5, f1*f7^4, f1*f3*f7^4, f1*f5*f7^4, f1*f6*f7^4]; chartbl_448_43.IdentificationOfConjugacyClasses:= [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79]; chartbl_448_43.ComputedPowerMaps:= [ , [1, 1, 1, 1, 2, 3, 3, 2, 4, 3, 3, 13, 14, 12, 8, 8, 8, 8, 6, 6, 6, 6, 12, 14, 13, 14, 13, 12, 12, 14, 13, 23, 24, 25, 25, 24, 23, 23, 24, 25, 25, 24, 23, 26, 27, 28, 27, 28, 26, 29, 30, 31, 31, 30, 29, 38, 38, 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 43, 43, 42, 42, 41, 41, 40, 40, 39, 39, 38, 38], [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 12, 13, 17, 18, 15, 16, 21, 22, 19, 20, 24, 25, 23, 27, 28, 26, 30, 31, 29, 33, 35, 37, 32, 34, 36, 39, 41, 43, 38, 40, 42, 45, 46, 44, 48, 49, 47, 51, 53, 55, 50, 52, 54, 58, 59, 62, 63, 68, 69, 78, 79, 75, 74, 71, 70, 65, 64, 61, 60, 56, 57, 66, 67, 72, 73, 76, 77]]; chartbl_448_43.SizesCentralizers:= [448, 448, 448, 448, 224, 224, 224, 224, 112, 8, 8, 224, 224, 224, 112, 112, 112, 112, 16, 16, 16, 16, 224, 224, 224, 224, 224, 224, 224, 224, 224, 224, 224, 224, 224, 224, 224, 224, 224, 224, 224, 224, 224, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112]; chartbl_448_43.ClassNames:= ["1A", "2A", "2B", "2C", "4A", "4B", "4C", "4D", "4E", "4F", "4G", "7A1", "7A2", "7A3", "8A1", "8A-1", "8A3", "8A-3", "8B1", "8B-1", "8B3", "8B-3", "14A1", "14A3", "14A5", "14B1", "14B3", "14B5", "14C1", "14C3", "14C5", "28A1", "28A3", "28A5", "28A9", "28A11", "28A13", "28B1", "28B3", "28B5", "28B9", "28B11", "28B13", "28C1", "28C3", "28C5", "28D1", "28D3", "28D5", "28E1", "28E3", "28E5", "28E9", "28E11", "28E13", "56A1", "56A-1", "56A3", "56A-3", "56A5", "56A-5", "56A9", "56A-9", "56A11", "56A-11", "56A13", "56A-13", "56A15", "56A-15", "56A17", "56A-17", "56A19", "56A-19", "56A23", "56A-23", "56A25", "56A-25", "56A27", "56A-27"]; chartbl_448_43.OrderClassRepresentatives:= [1, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 14, 14, 14, 14, 14, 14, 14, 14, 14, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56]; chartbl_448_43.Irr:= [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1*E(4), E(4), E(4), -1*E(4), E(4), E(4), -1*E(4), -1*E(4), 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, E(4), E(4), E(4), -1*E(4), E(4), E(4), -1*E(4), -1*E(4), E(4), E(4), -1*E(4), E(4), E(4), E(4), -1*E(4), E(4), -1*E(4), -1*E(4), -1*E(4), -1*E(4), -1*E(4), E(4), -1*E(4), -1*E(4)], [1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, E(4), -1*E(4), -1*E(4), E(4), -1*E(4), -1*E(4), E(4), E(4), 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1*E(4), -1*E(4), -1*E(4), E(4), -1*E(4), -1*E(4), E(4), E(4), -1*E(4), -1*E(4), E(4), -1*E(4), -1*E(4), -1*E(4), E(4), -1*E(4), E(4), E(4), E(4), E(4), E(4), -1*E(4), E(4), E(4)], [1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1*E(4), E(4), E(4), -1*E(4), -1*E(4), -1*E(4), E(4), E(4), 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, E(4), E(4), E(4), -1*E(4), E(4), E(4), -1*E(4), -1*E(4), E(4), E(4), -1*E(4), E(4), E(4), E(4), -1*E(4), E(4), -1*E(4), -1*E(4), -1*E(4), -1*E(4), -1*E(4), E(4), -1*E(4), -1*E(4)], [1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, E(4), -1*E(4), -1*E(4), E(4), E(4), E(4), -1*E(4), -1*E(4), 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1*E(4), -1*E(4), -1*E(4), E(4), -1*E(4), -1*E(4), E(4), E(4), -1*E(4), -1*E(4), E(4), -1*E(4), -1*E(4), -1*E(4), E(4), -1*E(4), E(4), E(4), E(4), E(4), E(4), -1*E(4), E(4), E(4)], [2, 2, 2, 2, -2, 2, -2, 2, -2, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, -2, -2, 2, 2, 2, 2, 2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, 2, 2, 2, -2, 2, -2, -2, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, 2, -2, 0, -2, 0, 2, 0, 0, 0, 2, 2, 2, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1, 0, 0, 0, 0, 2, -2, -2, -2, 2, -2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, -2, -2, -2, 2, 2, 0, 0, 0, 0, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1], [2, -2, 2, -2, 0, -2, 0, 2, 0, 0, 0, 2, 2, 2, E(8)+E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, 0, 0, 0, 0, 2, -2, -2, -2, 2, -2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, -2, -2, -2, 2, 2, 0, 0, 0, 0, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1], [2, -2, 2, -2, 0, 2, 0, -2, 0, 0, 0, 2, 2, 2, -1*E(8)-E(8)^3, E(8)+E(8)^3, -1*E(8)-E(8)^3, E(8)+E(8)^3, 0, 0, 0, 0, 2, -2, -2, -2, 2, -2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 2, 2, 2, -2, -2, 0, 0, 0, 0, E(8)+E(8)^3, -1*E(8)-E(8)^3, E(8)+E(8)^3, E(8)+E(8)^3, E(8)+E(8)^3, E(8)+E(8)^3, -1*E(8)-E(8)^3, E(8)+E(8)^3, -1*E(8)-E(8)^3, -1*E(8)-E(8)^3, E(8)+E(8)^3, E(8)+E(8)^3, E(8)+E(8)^3, -1*E(8)-E(8)^3, E(8)+E(8)^3, -1*E(8)-E(8)^3, E(8)+E(8)^3, E(8)+E(8)^3, -1*E(8)-E(8)^3, -1*E(8)-E(8)^3, -1*E(8)-E(8)^3, -1*E(8)-E(8)^3, -1*E(8)-E(8)^3, -1*E(8)-E(8)^3], [2, -2, 2, -2, 0, 2, 0, -2, 0, 0, 0, 2, 2, 2, E(8)+E(8)^3, -1*E(8)-E(8)^3, E(8)+E(8)^3, -1*E(8)-E(8)^3, 0, 0, 0, 0, 2, -2, -2, -2, 2, -2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 2, 2, 2, -2, -2, 0, 0, 0, 0, -1*E(8)-E(8)^3, E(8)+E(8)^3, -1*E(8)-E(8)^3, -1*E(8)-E(8)^3, -1*E(8)-E(8)^3, -1*E(8)-E(8)^3, E(8)+E(8)^3, -1*E(8)-E(8)^3, E(8)+E(8)^3, E(8)+E(8)^3, -1*E(8)-E(8)^3, -1*E(8)-E(8)^3, -1*E(8)-E(8)^3, E(8)+E(8)^3, -1*E(8)-E(8)^3, E(8)+E(8)^3, -1*E(8)-E(8)^3, -1*E(8)-E(8)^3, E(8)+E(8)^3, E(8)+E(8)^3, E(8)+E(8)^3, E(8)+E(8)^3, E(8)+E(8)^3, E(8)+E(8)^3], [2, 2, -2, -2, -2, 0, 2, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, -1*E(8)-E(8)^3, E(8)+E(8)^3, E(8)+E(8)^3, -1*E(8)-E(8)^3, -2, 2, -2, -2, -2, -2, 2, 2, -2, 2, -2, -2, 2, -2, -2, 2, 2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, -2, -2, -2, 0, 2, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, E(8)+E(8)^3, -1*E(8)-E(8)^3, -1*E(8)-E(8)^3, E(8)+E(8)^3, -2, 2, -2, -2, -2, -2, 2, 2, -2, 2, -2, -2, 2, -2, -2, 2, 2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, -2, -2, 2, 0, -2, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, -2, 2, -2, -2, -2, -2, 2, 2, -2, -2, 2, 2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, -2, -2, 2, 0, -2, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, -2, 2, -2, -2, -2, -2, 2, 2, -2, -2, 2, 2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, 2, 2, 2, 2, 0, 0, 0, 0, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2], [2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, 2, 2, 2, 2, 0, 0, 0, 0, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)+E(7)^-1], [2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, 2, 2, 2, 2, 0, 0, 0, 0, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3], [2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, -2, -2, -2, -2, 0, 0, 0, 0, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2], [2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, -2, -2, -2, -2, 0, 0, 0, 0, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1], [2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, -2, -2, -2, -2, 0, 0, 0, 0, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3], [2, 2, 2, 2, 2, -2, 2, -2, -2, 0, 0, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)+E(7)^-1, -1*E(7)^3+E(7)^-3, E(7)^3-E(7)^-3, -1*E(7)^2+E(7)^-2, -1*E(7)^3+E(7)^-3, E(7)-E(7)^-1, E(7)^3-E(7)^-3, E(7)^2-E(7)^-2, E(7)^3-E(7)^-3, E(7)-E(7)^-1, -1*E(7)+E(7)^-1, E(7)^2-E(7)^-2, -1*E(7)^2+E(7)^-2, -1*E(7)+E(7)^-1, E(7)-E(7)^-1, -1*E(7)^2+E(7)^-2, E(7)^3-E(7)^-3, -1*E(7)^3+E(7)^-3, -1*E(7)+E(7)^-1, E(7)-E(7)^-1, -1*E(7)^3+E(7)^-3, E(7)^2-E(7)^-2, -1*E(7)^2+E(7)^-2, E(7)^2-E(7)^-2], [2, 2, 2, 2, 2, -2, 2, -2, -2, 0, 0, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, E(7)-E(7)^-1, E(7)^3-E(7)^-3, -1*E(7)^3+E(7)^-3, E(7)^2-E(7)^-2, E(7)^3-E(7)^-3, -1*E(7)+E(7)^-1, -1*E(7)^3+E(7)^-3, -1*E(7)^2+E(7)^-2, -1*E(7)^3+E(7)^-3, -1*E(7)+E(7)^-1, E(7)-E(7)^-1, -1*E(7)^2+E(7)^-2, E(7)^2-E(7)^-2, E(7)-E(7)^-1, -1*E(7)+E(7)^-1, E(7)^2-E(7)^-2, -1*E(7)^3+E(7)^-3, E(7)^3-E(7)^-3, E(7)-E(7)^-1, -1*E(7)+E(7)^-1, E(7)^3-E(7)^-3, -1*E(7)^2+E(7)^-2, E(7)^2-E(7)^-2, -1*E(7)^2+E(7)^-2], [2, 2, 2, 2, 2, -2, 2, -2, -2, 0, 0, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3+E(7)^-3, -1*E(7)^2+E(7)^-2, E(7)^2-E(7)^-2, E(7)-E(7)^-1, -1*E(7)^2+E(7)^-2, E(7)^3-E(7)^-3, E(7)^2-E(7)^-2, -1*E(7)+E(7)^-1, E(7)^2-E(7)^-2, E(7)^3-E(7)^-3, -1*E(7)^3+E(7)^-3, -1*E(7)+E(7)^-1, E(7)-E(7)^-1, -1*E(7)^3+E(7)^-3, E(7)^3-E(7)^-3, E(7)-E(7)^-1, E(7)^2-E(7)^-2, -1*E(7)^2+E(7)^-2, -1*E(7)^3+E(7)^-3, E(7)^3-E(7)^-3, -1*E(7)^2+E(7)^-2, -1*E(7)+E(7)^-1, E(7)-E(7)^-1, -1*E(7)+E(7)^-1], [2, 2, 2, 2, 2, -2, 2, -2, -2, 0, 0, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, E(7)^3-E(7)^-3, E(7)^2-E(7)^-2, -1*E(7)^2+E(7)^-2, -1*E(7)+E(7)^-1, E(7)^2-E(7)^-2, -1*E(7)^3+E(7)^-3, -1*E(7)^2+E(7)^-2, E(7)-E(7)^-1, -1*E(7)^2+E(7)^-2, -1*E(7)^3+E(7)^-3, E(7)^3-E(7)^-3, E(7)-E(7)^-1, -1*E(7)+E(7)^-1, E(7)^3-E(7)^-3, -1*E(7)^3+E(7)^-3, -1*E(7)+E(7)^-1, -1*E(7)^2+E(7)^-2, E(7)^2-E(7)^-2, E(7)^3-E(7)^-3, -1*E(7)^3+E(7)^-3, E(7)^2-E(7)^-2, E(7)-E(7)^-1, -1*E(7)+E(7)^-1, E(7)-E(7)^-1], [2, 2, 2, 2, 2, -2, 2, -2, -2, 0, 0, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2+E(7)^-2, E(7)-E(7)^-1, -1*E(7)+E(7)^-1, E(7)^3-E(7)^-3, E(7)-E(7)^-1, E(7)^2-E(7)^-2, -1*E(7)+E(7)^-1, -1*E(7)^3+E(7)^-3, -1*E(7)+E(7)^-1, E(7)^2-E(7)^-2, -1*E(7)^2+E(7)^-2, -1*E(7)^3+E(7)^-3, E(7)^3-E(7)^-3, -1*E(7)^2+E(7)^-2, E(7)^2-E(7)^-2, E(7)^3-E(7)^-3, -1*E(7)+E(7)^-1, E(7)-E(7)^-1, -1*E(7)^2+E(7)^-2, E(7)^2-E(7)^-2, E(7)-E(7)^-1, -1*E(7)^3+E(7)^-3, E(7)^3-E(7)^-3, -1*E(7)^3+E(7)^-3], [2, 2, 2, 2, 2, -2, 2, -2, -2, 0, 0, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, E(7)^2-E(7)^-2, -1*E(7)+E(7)^-1, E(7)-E(7)^-1, -1*E(7)^3+E(7)^-3, -1*E(7)+E(7)^-1, -1*E(7)^2+E(7)^-2, E(7)-E(7)^-1, E(7)^3-E(7)^-3, E(7)-E(7)^-1, -1*E(7)^2+E(7)^-2, E(7)^2-E(7)^-2, E(7)^3-E(7)^-3, -1*E(7)^3+E(7)^-3, E(7)^2-E(7)^-2, -1*E(7)^2+E(7)^-2, -1*E(7)^3+E(7)^-3, E(7)-E(7)^-1, -1*E(7)+E(7)^-1, E(7)^2-E(7)^-2, -1*E(7)^2+E(7)^-2, -1*E(7)+E(7)^-1, E(7)^3-E(7)^-3, -1*E(7)^3+E(7)^-3, E(7)^3-E(7)^-3], [2, 2, 2, 2, -2, -2, -2, -2, 2, 0, 0, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -2*E(28)^7, 2*E(28)^7, 2*E(28)^7, -2*E(28)^7, 0, 0, 0, 0, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^-6, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^6+E(28)^-6, E(28)^6+E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, -1*E(28)^6-E(28)^-6, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, E(28)^3+E(28)^11, -1*E(28)^5-E(28)^9, -1*E(28)^5-E(28)^9, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^9, E(28)^3+E(28)^11, E(28)^5+E(28)^9, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^9, E(28)^3+E(28)^11, -1*E(28)^3-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^3+E(28)^11, -1*E(28)^3-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^9, E(28)^5+E(28)^9, -1*E(28)^3-E(28)^11, -1*E(28)^3-E(28)^11, E(28)^5+E(28)^9, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11], [2, 2, 2, 2, -2, -2, -2, -2, 2, 0, 0, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, 2*E(28)^7, -2*E(28)^7, -2*E(28)^7, 2*E(28)^7, 0, 0, 0, 0, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^-6, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^6+E(28)^-6, E(28)^6+E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, -1*E(28)^6-E(28)^-6, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^3-E(28)^11, E(28)^5+E(28)^9, E(28)^5+E(28)^9, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^9, -1*E(28)^3-E(28)^11, -1*E(28)^5-E(28)^9, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^9, -1*E(28)^3-E(28)^11, E(28)^3+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^3-E(28)^11, E(28)^3+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^9, -1*E(28)^5-E(28)^9, E(28)^3+E(28)^11, E(28)^3+E(28)^11, -1*E(28)^5-E(28)^9, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11], [2, 2, 2, 2, -2, -2, -2, -2, 2, 0, 0, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -2*E(28)^7, 2*E(28)^7, 2*E(28)^7, -2*E(28)^7, 0, 0, 0, 0, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^6+E(28)^-6, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^-4, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^4-E(28)^-4, -1*E(28)^4-E(28)^-4, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^4+E(28)^-4, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, -1*E(28)^5-E(28)^9, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^3-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^5-E(28)^9, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^3-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^5-E(28)^9, E(28)^5+E(28)^9, E(28)^3+E(28)^11, E(28)^3+E(28)^11, -1*E(28)^5-E(28)^9, E(28)^5+E(28)^9, E(28)^3+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^5+E(28)^9, E(28)^5+E(28)^9, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^3+E(28)^11, -1*E(28)^3-E(28)^11, -1*E(28)^3-E(28)^11], [2, 2, 2, 2, -2, -2, -2, -2, 2, 0, 0, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, 2*E(28)^7, -2*E(28)^7, -2*E(28)^7, 2*E(28)^7, 0, 0, 0, 0, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^6+E(28)^-6, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^-4, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^4-E(28)^-4, -1*E(28)^4-E(28)^-4, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^4+E(28)^-4, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^5+E(28)^9, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^3+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^5+E(28)^9, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^3+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^5+E(28)^9, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^11, -1*E(28)^3-E(28)^11, E(28)^5+E(28)^9, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^5-E(28)^9, -1*E(28)^5-E(28)^9, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^3-E(28)^11, E(28)^3+E(28)^11, E(28)^3+E(28)^11], [2, 2, 2, 2, -2, -2, -2, -2, 2, 0, 0, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, -2*E(28)^7, 2*E(28)^7, 2*E(28)^7, -2*E(28)^7, 0, 0, 0, 0, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^-6, E(28)^2+E(28)^-2, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^2+E(28)^-2, E(28)^2+E(28)^-2, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^2-E(28)^-2, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^3+E(28)^11, E(28)^3+E(28)^11, E(28)^5+E(28)^9, E(28)^3+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^3-E(28)^11, E(28)^5+E(28)^9, E(28)^3+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^9, -1*E(28)^5-E(28)^9, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^11, -1*E(28)^3-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^3-E(28)^11, -1*E(28)^5-E(28)^9, E(28)^5+E(28)^9, E(28)^5+E(28)^9], [2, 2, 2, 2, -2, -2, -2, -2, 2, 0, 0, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, 2*E(28)^7, -2*E(28)^7, -2*E(28)^7, 2*E(28)^7, 0, 0, 0, 0, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^-6, E(28)^2+E(28)^-2, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^2+E(28)^-2, E(28)^2+E(28)^-2, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^2-E(28)^-2, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^3-E(28)^11, -1*E(28)^3-E(28)^11, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^3+E(28)^11, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^9, E(28)^5+E(28)^9, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^9, E(28)^3+E(28)^11, E(28)^3+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^3+E(28)^11, E(28)^5+E(28)^9, -1*E(28)^5-E(28)^9, -1*E(28)^5-E(28)^9], [2, 2, 2, 2, -2, 2, -2, 2, -2, 0, 0, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^-6, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^6+E(28)^-6, -1*E(28)^6-E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, E(28)^6+E(28)^-6, E(28)^6+E(28)^-6, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^-4, -1*E(28)^3-E(28)^-3, -1*E(28)^5-E(28)^-5, E(28)^5+E(28)^-5, E(28)+E(28)^-1, -1*E(28)^5-E(28)^-5, E(28)^3+E(28)^-3, -1*E(28)^5-E(28)^-5, -1*E(28)-E(28)^-1, E(28)^5+E(28)^-5, E(28)^3+E(28)^-3, E(28)^3+E(28)^-3, E(28)+E(28)^-1, -1*E(28)-E(28)^-1, -1*E(28)^3-E(28)^-3, -1*E(28)^3-E(28)^-3, -1*E(28)-E(28)^-1, -1*E(28)^5-E(28)^-5, E(28)^5+E(28)^-5, E(28)^3+E(28)^-3, -1*E(28)^3-E(28)^-3, E(28)^5+E(28)^-5, E(28)+E(28)^-1, E(28)+E(28)^-1, -1*E(28)-E(28)^-1], [2, 2, 2, 2, -2, 2, -2, 2, -2, 0, 0, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^-6, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^6+E(28)^-6, -1*E(28)^6-E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, E(28)^6+E(28)^-6, E(28)^6+E(28)^-6, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^-4, E(28)^3+E(28)^-3, E(28)^5+E(28)^-5, -1*E(28)^5-E(28)^-5, -1*E(28)-E(28)^-1, E(28)^5+E(28)^-5, -1*E(28)^3-E(28)^-3, E(28)^5+E(28)^-5, E(28)+E(28)^-1, -1*E(28)^5-E(28)^-5, -1*E(28)^3-E(28)^-3, -1*E(28)^3-E(28)^-3, -1*E(28)-E(28)^-1, E(28)+E(28)^-1, E(28)^3+E(28)^-3, E(28)^3+E(28)^-3, E(28)+E(28)^-1, E(28)^5+E(28)^-5, -1*E(28)^5-E(28)^-5, -1*E(28)^3-E(28)^-3, E(28)^3+E(28)^-3, -1*E(28)^5-E(28)^-5, -1*E(28)-E(28)^-1, -1*E(28)-E(28)^-1, E(28)+E(28)^-1], [2, 2, 2, 2, -2, 2, -2, 2, -2, 0, 0, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, 0, 0, 0, 0, 0, 0, 0, 0, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^6+E(28)^-6, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^-4, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^4-E(28)^-4, E(28)^4+E(28)^-4, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^-6, E(28)^2+E(28)^-2, -1*E(28)^5-E(28)^-5, -1*E(28)-E(28)^-1, E(28)+E(28)^-1, -1*E(28)^3-E(28)^-3, -1*E(28)-E(28)^-1, E(28)^5+E(28)^-5, -1*E(28)-E(28)^-1, E(28)^3+E(28)^-3, E(28)+E(28)^-1, E(28)^5+E(28)^-5, E(28)^5+E(28)^-5, -1*E(28)^3-E(28)^-3, E(28)^3+E(28)^-3, -1*E(28)^5-E(28)^-5, -1*E(28)^5-E(28)^-5, E(28)^3+E(28)^-3, -1*E(28)-E(28)^-1, E(28)+E(28)^-1, E(28)^5+E(28)^-5, -1*E(28)^5-E(28)^-5, E(28)+E(28)^-1, -1*E(28)^3-E(28)^-3, -1*E(28)^3-E(28)^-3, E(28)^3+E(28)^-3], [2, 2, 2, 2, -2, 2, -2, 2, -2, 0, 0, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, 0, 0, 0, 0, 0, 0, 0, 0, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^6+E(28)^-6, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^-4, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^4-E(28)^-4, E(28)^4+E(28)^-4, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^-6, E(28)^2+E(28)^-2, E(28)^5+E(28)^-5, E(28)+E(28)^-1, -1*E(28)-E(28)^-1, E(28)^3+E(28)^-3, E(28)+E(28)^-1, -1*E(28)^5-E(28)^-5, E(28)+E(28)^-1, -1*E(28)^3-E(28)^-3, -1*E(28)-E(28)^-1, -1*E(28)^5-E(28)^-5, -1*E(28)^5-E(28)^-5, E(28)^3+E(28)^-3, -1*E(28)^3-E(28)^-3, E(28)^5+E(28)^-5, E(28)^5+E(28)^-5, -1*E(28)^3-E(28)^-3, E(28)+E(28)^-1, -1*E(28)-E(28)^-1, -1*E(28)^5-E(28)^-5, E(28)^5+E(28)^-5, -1*E(28)-E(28)^-1, E(28)^3+E(28)^-3, E(28)^3+E(28)^-3, -1*E(28)^3-E(28)^-3], [2, 2, 2, 2, -2, 2, -2, 2, -2, 0, 0, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^-6, E(28)^2+E(28)^-2, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^2+E(28)^-2, -1*E(28)^2-E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, E(28)^2+E(28)^-2, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^-6, -1*E(28)-E(28)^-1, E(28)^3+E(28)^-3, -1*E(28)^3-E(28)^-3, -1*E(28)^5-E(28)^-5, E(28)^3+E(28)^-3, E(28)+E(28)^-1, E(28)^3+E(28)^-3, E(28)^5+E(28)^-5, -1*E(28)^3-E(28)^-3, E(28)+E(28)^-1, E(28)+E(28)^-1, -1*E(28)^5-E(28)^-5, E(28)^5+E(28)^-5, -1*E(28)-E(28)^-1, -1*E(28)-E(28)^-1, E(28)^5+E(28)^-5, E(28)^3+E(28)^-3, -1*E(28)^3-E(28)^-3, E(28)+E(28)^-1, -1*E(28)-E(28)^-1, -1*E(28)^3-E(28)^-3, -1*E(28)^5-E(28)^-5, -1*E(28)^5-E(28)^-5, E(28)^5+E(28)^-5], [2, 2, 2, 2, -2, 2, -2, 2, -2, 0, 0, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^-6, E(28)^2+E(28)^-2, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^2+E(28)^-2, -1*E(28)^2-E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, E(28)^2+E(28)^-2, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^-6, E(28)+E(28)^-1, -1*E(28)^3-E(28)^-3, E(28)^3+E(28)^-3, E(28)^5+E(28)^-5, -1*E(28)^3-E(28)^-3, -1*E(28)-E(28)^-1, -1*E(28)^3-E(28)^-3, -1*E(28)^5-E(28)^-5, E(28)^3+E(28)^-3, -1*E(28)-E(28)^-1, -1*E(28)-E(28)^-1, E(28)^5+E(28)^-5, -1*E(28)^5-E(28)^-5, E(28)+E(28)^-1, E(28)+E(28)^-1, -1*E(28)^5-E(28)^-5, -1*E(28)^3-E(28)^-3, E(28)^3+E(28)^-3, -1*E(28)-E(28)^-1, E(28)+E(28)^-1, E(28)^3+E(28)^-3, E(28)^5+E(28)^-5, E(28)^5+E(28)^-5, -1*E(28)^5-E(28)^-5], [2, -2, 2, -2, 0, -2, 0, 2, 0, 0, 0, -1*E(56)^4-E(56)^-4, E(56)^8+E(56)^-8, -1*E(56)^12-E(56)^-12, -1*E(56)^7-E(56)^-7, -1*E(56)^7-E(56)^-7, E(56)^7+E(56)^-7, E(56)^7+E(56)^-7, 0, 0, 0, 0, -1*E(56)^12-E(56)^-12, -1*E(56)^8-E(56)^-8, E(56)^12+E(56)^-12, -1*E(56)^8-E(56)^-8, -1*E(56)^4-E(56)^-4, E(56)^4+E(56)^-4, E(56)^12+E(56)^-12, E(56)^4+E(56)^-4, E(56)^8+E(56)^-8, -1*E(56)^10-E(56)^-10, E(56)^6+E(56)^-6, E(56)^10+E(56)^-10, -1*E(56)^6-E(56)^-6, -1*E(56)^2-E(56)^-2, E(56)^2+E(56)^-2, E(56)^6+E(56)^-6, E(56)^10+E(56)^-10, -1*E(56)^6-E(56)^-6, -1*E(56)^10-E(56)^-10, E(56)^2+E(56)^-2, -1*E(56)^2-E(56)^-2, -1*E(56)^12-E(56)^-12, -1*E(56)^6-E(56)^-6, E(56)^10+E(56)^-10, E(56)^12+E(56)^-12, -1*E(56)^8-E(56)^-8, E(56)^4+E(56)^-4, E(56)^8+E(56)^-8, -1*E(56)^4-E(56)^-4, E(56)^2+E(56)^-2, -1*E(56)^2-E(56)^-2, -1*E(56)^10-E(56)^-10, E(56)^6+E(56)^-6, E(56)^13+E(56)^-13, -1*E(56)^3-E(56)^-3, E(56)^11+E(56)^-11, E(56)^9+E(56)^-9, E(56)^3+E(56)^-3, -1*E(56)-E(56)^-1, E(56)^3+E(56)^-3, -1*E(56)^5-E(56)^-5, -1*E(56)^11-E(56)^-11, E(56)+E(56)^-1, E(56)+E(56)^-1, -1*E(56)^9-E(56)^-9, E(56)^5+E(56)^-5, -1*E(56)^13-E(56)^-13, -1*E(56)^13-E(56)^-13, -1*E(56)^5-E(56)^-5, -1*E(56)^3-E(56)^-3, -1*E(56)^11-E(56)^-11, -1*E(56)-E(56)^-1, E(56)^13+E(56)^-13, E(56)^11+E(56)^-11, E(56)^9+E(56)^-9, -1*E(56)^9-E(56)^-9, E(56)^5+E(56)^-5], [2, -2, 2, -2, 0, -2, 0, 2, 0, 0, 0, -1*E(56)^4-E(56)^-4, E(56)^8+E(56)^-8, -1*E(56)^12-E(56)^-12, -1*E(56)^7-E(56)^-7, -1*E(56)^7-E(56)^-7, E(56)^7+E(56)^-7, E(56)^7+E(56)^-7, 0, 0, 0, 0, -1*E(56)^12-E(56)^-12, -1*E(56)^8-E(56)^-8, E(56)^12+E(56)^-12, -1*E(56)^8-E(56)^-8, -1*E(56)^4-E(56)^-4, E(56)^4+E(56)^-4, E(56)^12+E(56)^-12, E(56)^4+E(56)^-4, E(56)^8+E(56)^-8, E(56)^10+E(56)^-10, -1*E(56)^6-E(56)^-6, -1*E(56)^10-E(56)^-10, E(56)^6+E(56)^-6, E(56)^2+E(56)^-2, -1*E(56)^2-E(56)^-2, -1*E(56)^6-E(56)^-6, -1*E(56)^10-E(56)^-10, E(56)^6+E(56)^-6, E(56)^10+E(56)^-10, -1*E(56)^2-E(56)^-2, E(56)^2+E(56)^-2, -1*E(56)^12-E(56)^-12, E(56)^6+E(56)^-6, -1*E(56)^10-E(56)^-10, E(56)^12+E(56)^-12, -1*E(56)^8-E(56)^-8, E(56)^4+E(56)^-4, E(56)^8+E(56)^-8, -1*E(56)^4-E(56)^-4, -1*E(56)^2-E(56)^-2, E(56)^2+E(56)^-2, E(56)^10+E(56)^-10, -1*E(56)^6-E(56)^-6, -1*E(56)-E(56)^-1, -1*E(56)^11-E(56)^-11, E(56)^3+E(56)^-3, -1*E(56)^5-E(56)^-5, E(56)^11+E(56)^-11, E(56)^13+E(56)^-13, E(56)^11+E(56)^-11, E(56)^9+E(56)^-9, -1*E(56)^3-E(56)^-3, -1*E(56)^13-E(56)^-13, -1*E(56)^13-E(56)^-13, E(56)^5+E(56)^-5, -1*E(56)^9-E(56)^-9, E(56)+E(56)^-1, E(56)+E(56)^-1, E(56)^9+E(56)^-9, -1*E(56)^11-E(56)^-11, -1*E(56)^3-E(56)^-3, E(56)^13+E(56)^-13, -1*E(56)-E(56)^-1, E(56)^3+E(56)^-3, -1*E(56)^5-E(56)^-5, E(56)^5+E(56)^-5, -1*E(56)^9-E(56)^-9], [2, -2, 2, -2, 0, -2, 0, 2, 0, 0, 0, -1*E(56)^4-E(56)^-4, E(56)^8+E(56)^-8, -1*E(56)^12-E(56)^-12, E(56)^7+E(56)^-7, E(56)^7+E(56)^-7, -1*E(56)^7-E(56)^-7, -1*E(56)^7-E(56)^-7, 0, 0, 0, 0, -1*E(56)^12-E(56)^-12, -1*E(56)^8-E(56)^-8, E(56)^12+E(56)^-12, -1*E(56)^8-E(56)^-8, -1*E(56)^4-E(56)^-4, E(56)^4+E(56)^-4, E(56)^12+E(56)^-12, E(56)^4+E(56)^-4, E(56)^8+E(56)^-8, -1*E(56)^10-E(56)^-10, E(56)^6+E(56)^-6, E(56)^10+E(56)^-10, -1*E(56)^6-E(56)^-6, -1*E(56)^2-E(56)^-2, E(56)^2+E(56)^-2, E(56)^6+E(56)^-6, E(56)^10+E(56)^-10, -1*E(56)^6-E(56)^-6, -1*E(56)^10-E(56)^-10, E(56)^2+E(56)^-2, -1*E(56)^2-E(56)^-2, -1*E(56)^12-E(56)^-12, -1*E(56)^6-E(56)^-6, E(56)^10+E(56)^-10, E(56)^12+E(56)^-12, -1*E(56)^8-E(56)^-8, E(56)^4+E(56)^-4, E(56)^8+E(56)^-8, -1*E(56)^4-E(56)^-4, E(56)^2+E(56)^-2, -1*E(56)^2-E(56)^-2, -1*E(56)^10-E(56)^-10, E(56)^6+E(56)^-6, -1*E(56)^13-E(56)^-13, E(56)^3+E(56)^-3, -1*E(56)^11-E(56)^-11, -1*E(56)^9-E(56)^-9, -1*E(56)^3-E(56)^-3, E(56)+E(56)^-1, -1*E(56)^3-E(56)^-3, E(56)^5+E(56)^-5, E(56)^11+E(56)^-11, -1*E(56)-E(56)^-1, -1*E(56)-E(56)^-1, E(56)^9+E(56)^-9, -1*E(56)^5-E(56)^-5, E(56)^13+E(56)^-13, E(56)^13+E(56)^-13, E(56)^5+E(56)^-5, E(56)^3+E(56)^-3, E(56)^11+E(56)^-11, E(56)+E(56)^-1, -1*E(56)^13-E(56)^-13, -1*E(56)^11-E(56)^-11, -1*E(56)^9-E(56)^-9, E(56)^9+E(56)^-9, -1*E(56)^5-E(56)^-5], [2, -2, 2, -2, 0, -2, 0, 2, 0, 0, 0, -1*E(56)^4-E(56)^-4, E(56)^8+E(56)^-8, -1*E(56)^12-E(56)^-12, E(56)^7+E(56)^-7, E(56)^7+E(56)^-7, -1*E(56)^7-E(56)^-7, -1*E(56)^7-E(56)^-7, 0, 0, 0, 0, -1*E(56)^12-E(56)^-12, -1*E(56)^8-E(56)^-8, E(56)^12+E(56)^-12, -1*E(56)^8-E(56)^-8, -1*E(56)^4-E(56)^-4, E(56)^4+E(56)^-4, E(56)^12+E(56)^-12, E(56)^4+E(56)^-4, E(56)^8+E(56)^-8, E(56)^10+E(56)^-10, -1*E(56)^6-E(56)^-6, -1*E(56)^10-E(56)^-10, E(56)^6+E(56)^-6, E(56)^2+E(56)^-2, -1*E(56)^2-E(56)^-2, -1*E(56)^6-E(56)^-6, -1*E(56)^10-E(56)^-10, E(56)^6+E(56)^-6, E(56)^10+E(56)^-10, -1*E(56)^2-E(56)^-2, E(56)^2+E(56)^-2, -1*E(56)^12-E(56)^-12, E(56)^6+E(56)^-6, -1*E(56)^10-E(56)^-10, E(56)^12+E(56)^-12, -1*E(56)^8-E(56)^-8, E(56)^4+E(56)^-4, E(56)^8+E(56)^-8, -1*E(56)^4-E(56)^-4, -1*E(56)^2-E(56)^-2, E(56)^2+E(56)^-2, E(56)^10+E(56)^-10, -1*E(56)^6-E(56)^-6, E(56)+E(56)^-1, E(56)^11+E(56)^-11, -1*E(56)^3-E(56)^-3, E(56)^5+E(56)^-5, -1*E(56)^11-E(56)^-11, -1*E(56)^13-E(56)^-13, -1*E(56)^11-E(56)^-11, -1*E(56)^9-E(56)^-9, E(56)^3+E(56)^-3, E(56)^13+E(56)^-13, E(56)^13+E(56)^-13, -1*E(56)^5-E(56)^-5, E(56)^9+E(56)^-9, -1*E(56)-E(56)^-1, -1*E(56)-E(56)^-1, -1*E(56)^9-E(56)^-9, E(56)^11+E(56)^-11, E(56)^3+E(56)^-3, -1*E(56)^13-E(56)^-13, E(56)+E(56)^-1, -1*E(56)^3-E(56)^-3, E(56)^5+E(56)^-5, -1*E(56)^5-E(56)^-5, E(56)^9+E(56)^-9], [2, -2, 2, -2, 0, -2, 0, 2, 0, 0, 0, -1*E(56)^12-E(56)^-12, -1*E(56)^4-E(56)^-4, E(56)^8+E(56)^-8, -1*E(56)^7-E(56)^-7, -1*E(56)^7-E(56)^-7, E(56)^7+E(56)^-7, E(56)^7+E(56)^-7, 0, 0, 0, 0, E(56)^8+E(56)^-8, E(56)^4+E(56)^-4, -1*E(56)^8-E(56)^-8, E(56)^4+E(56)^-4, -1*E(56)^12-E(56)^-12, E(56)^12+E(56)^-12, -1*E(56)^8-E(56)^-8, E(56)^12+E(56)^-12, -1*E(56)^4-E(56)^-4, -1*E(56)^2-E(56)^-2, E(56)^10+E(56)^-10, E(56)^2+E(56)^-2, -1*E(56)^10-E(56)^-10, E(56)^6+E(56)^-6, -1*E(56)^6-E(56)^-6, E(56)^10+E(56)^-10, E(56)^2+E(56)^-2, -1*E(56)^10-E(56)^-10, -1*E(56)^2-E(56)^-2, -1*E(56)^6-E(56)^-6, E(56)^6+E(56)^-6, E(56)^8+E(56)^-8, -1*E(56)^10-E(56)^-10, E(56)^2+E(56)^-2, -1*E(56)^8-E(56)^-8, E(56)^4+E(56)^-4, E(56)^12+E(56)^-12, -1*E(56)^4-E(56)^-4, -1*E(56)^12-E(56)^-12, -1*E(56)^6-E(56)^-6, E(56)^6+E(56)^-6, -1*E(56)^2-E(56)^-2, E(56)^10+E(56)^-10, E(56)^3+E(56)^-3, -1*E(56)^5-E(56)^-5, -1*E(56)^9-E(56)^-9, -1*E(56)^13-E(56)^-13, E(56)^5+E(56)^-5, E(56)^11+E(56)^-11, E(56)^5+E(56)^-5, E(56)+E(56)^-1, E(56)^9+E(56)^-9, -1*E(56)^11-E(56)^-11, -1*E(56)^11-E(56)^-11, E(56)^13+E(56)^-13, -1*E(56)-E(56)^-1, -1*E(56)^3-E(56)^-3, -1*E(56)^3-E(56)^-3, E(56)+E(56)^-1, -1*E(56)^5-E(56)^-5, E(56)^9+E(56)^-9, E(56)^11+E(56)^-11, E(56)^3+E(56)^-3, -1*E(56)^9-E(56)^-9, -1*E(56)^13-E(56)^-13, E(56)^13+E(56)^-13, -1*E(56)-E(56)^-1], [2, -2, 2, -2, 0, -2, 0, 2, 0, 0, 0, -1*E(56)^12-E(56)^-12, -1*E(56)^4-E(56)^-4, E(56)^8+E(56)^-8, -1*E(56)^7-E(56)^-7, -1*E(56)^7-E(56)^-7, E(56)^7+E(56)^-7, E(56)^7+E(56)^-7, 0, 0, 0, 0, E(56)^8+E(56)^-8, E(56)^4+E(56)^-4, -1*E(56)^8-E(56)^-8, E(56)^4+E(56)^-4, -1*E(56)^12-E(56)^-12, E(56)^12+E(56)^-12, -1*E(56)^8-E(56)^-8, E(56)^12+E(56)^-12, -1*E(56)^4-E(56)^-4, E(56)^2+E(56)^-2, -1*E(56)^10-E(56)^-10, -1*E(56)^2-E(56)^-2, E(56)^10+E(56)^-10, -1*E(56)^6-E(56)^-6, E(56)^6+E(56)^-6, -1*E(56)^10-E(56)^-10, -1*E(56)^2-E(56)^-2, E(56)^10+E(56)^-10, E(56)^2+E(56)^-2, E(56)^6+E(56)^-6, -1*E(56)^6-E(56)^-6, E(56)^8+E(56)^-8, E(56)^10+E(56)^-10, -1*E(56)^2-E(56)^-2, -1*E(56)^8-E(56)^-8, E(56)^4+E(56)^-4, E(56)^12+E(56)^-12, -1*E(56)^4-E(56)^-4, -1*E(56)^12-E(56)^-12, E(56)^6+E(56)^-6, -1*E(56)^6-E(56)^-6, E(56)^2+E(56)^-2, -1*E(56)^10-E(56)^-10, E(56)^11+E(56)^-11, E(56)^9+E(56)^-9, E(56)^5+E(56)^-5, E(56)+E(56)^-1, -1*E(56)^9-E(56)^-9, E(56)^3+E(56)^-3, -1*E(56)^9-E(56)^-9, -1*E(56)^13-E(56)^-13, -1*E(56)^5-E(56)^-5, -1*E(56)^3-E(56)^-3, -1*E(56)^3-E(56)^-3, -1*E(56)-E(56)^-1, E(56)^13+E(56)^-13, -1*E(56)^11-E(56)^-11, -1*E(56)^11-E(56)^-11, -1*E(56)^13-E(56)^-13, E(56)^9+E(56)^-9, -1*E(56)^5-E(56)^-5, E(56)^3+E(56)^-3, E(56)^11+E(56)^-11, E(56)^5+E(56)^-5, E(56)+E(56)^-1, -1*E(56)-E(56)^-1, E(56)^13+E(56)^-13], [2, -2, 2, -2, 0, -2, 0, 2, 0, 0, 0, -1*E(56)^12-E(56)^-12, -1*E(56)^4-E(56)^-4, E(56)^8+E(56)^-8, E(56)^7+E(56)^-7, E(56)^7+E(56)^-7, -1*E(56)^7-E(56)^-7, -1*E(56)^7-E(56)^-7, 0, 0, 0, 0, E(56)^8+E(56)^-8, E(56)^4+E(56)^-4, -1*E(56)^8-E(56)^-8, E(56)^4+E(56)^-4, -1*E(56)^12-E(56)^-12, E(56)^12+E(56)^-12, -1*E(56)^8-E(56)^-8, E(56)^12+E(56)^-12, -1*E(56)^4-E(56)^-4, -1*E(56)^2-E(56)^-2, E(56)^10+E(56)^-10, E(56)^2+E(56)^-2, -1*E(56)^10-E(56)^-10, E(56)^6+E(56)^-6, -1*E(56)^6-E(56)^-6, E(56)^10+E(56)^-10, E(56)^2+E(56)^-2, -1*E(56)^10-E(56)^-10, -1*E(56)^2-E(56)^-2, -1*E(56)^6-E(56)^-6, E(56)^6+E(56)^-6, E(56)^8+E(56)^-8, -1*E(56)^10-E(56)^-10, E(56)^2+E(56)^-2, -1*E(56)^8-E(56)^-8, E(56)^4+E(56)^-4, E(56)^12+E(56)^-12, -1*E(56)^4-E(56)^-4, -1*E(56)^12-E(56)^-12, -1*E(56)^6-E(56)^-6, E(56)^6+E(56)^-6, -1*E(56)^2-E(56)^-2, E(56)^10+E(56)^-10, -1*E(56)^3-E(56)^-3, E(56)^5+E(56)^-5, E(56)^9+E(56)^-9, E(56)^13+E(56)^-13, -1*E(56)^5-E(56)^-5, -1*E(56)^11-E(56)^-11, -1*E(56)^5-E(56)^-5, -1*E(56)-E(56)^-1, -1*E(56)^9-E(56)^-9, E(56)^11+E(56)^-11, E(56)^11+E(56)^-11, -1*E(56)^13-E(56)^-13, E(56)+E(56)^-1, E(56)^3+E(56)^-3, E(56)^3+E(56)^-3, -1*E(56)-E(56)^-1, E(56)^5+E(56)^-5, -1*E(56)^9-E(56)^-9, -1*E(56)^11-E(56)^-11, -1*E(56)^3-E(56)^-3, E(56)^9+E(56)^-9, E(56)^13+E(56)^-13, -1*E(56)^13-E(56)^-13, E(56)+E(56)^-1], [2, -2, 2, -2, 0, -2, 0, 2, 0, 0, 0, -1*E(56)^12-E(56)^-12, -1*E(56)^4-E(56)^-4, E(56)^8+E(56)^-8, E(56)^7+E(56)^-7, E(56)^7+E(56)^-7, -1*E(56)^7-E(56)^-7, -1*E(56)^7-E(56)^-7, 0, 0, 0, 0, E(56)^8+E(56)^-8, E(56)^4+E(56)^-4, -1*E(56)^8-E(56)^-8, E(56)^4+E(56)^-4, -1*E(56)^12-E(56)^-12, E(56)^12+E(56)^-12, -1*E(56)^8-E(56)^-8, E(56)^12+E(56)^-12, -1*E(56)^4-E(56)^-4, E(56)^2+E(56)^-2, -1*E(56)^10-E(56)^-10, -1*E(56)^2-E(56)^-2, E(56)^10+E(56)^-10, -1*E(56)^6-E(56)^-6, E(56)^6+E(56)^-6, -1*E(56)^10-E(56)^-10, -1*E(56)^2-E(56)^-2, E(56)^10+E(56)^-10, E(56)^2+E(56)^-2, E(56)^6+E(56)^-6, -1*E(56)^6-E(56)^-6, E(56)^8+E(56)^-8, E(56)^10+E(56)^-10, -1*E(56)^2-E(56)^-2, -1*E(56)^8-E(56)^-8, E(56)^4+E(56)^-4, E(56)^12+E(56)^-12, -1*E(56)^4-E(56)^-4, -1*E(56)^12-E(56)^-12, E(56)^6+E(56)^-6, -1*E(56)^6-E(56)^-6, E(56)^2+E(56)^-2, -1*E(56)^10-E(56)^-10, -1*E(56)^11-E(56)^-11, -1*E(56)^9-E(56)^-9, -1*E(56)^5-E(56)^-5, -1*E(56)-E(56)^-1, E(56)^9+E(56)^-9, -1*E(56)^3-E(56)^-3, E(56)^9+E(56)^-9, E(56)^13+E(56)^-13, E(56)^5+E(56)^-5, E(56)^3+E(56)^-3, E(56)^3+E(56)^-3, E(56)+E(56)^-1, -1*E(56)^13-E(56)^-13, E(56)^11+E(56)^-11, E(56)^11+E(56)^-11, E(56)^13+E(56)^-13, -1*E(56)^9-E(56)^-9, E(56)^5+E(56)^-5, -1*E(56)^3-E(56)^-3, -1*E(56)^11-E(56)^-11, -1*E(56)^5-E(56)^-5, -1*E(56)-E(56)^-1, E(56)+E(56)^-1, -1*E(56)^13-E(56)^-13], [2, -2, 2, -2, 0, -2, 0, 2, 0, 0, 0, E(56)^8+E(56)^-8, -1*E(56)^12-E(56)^-12, -1*E(56)^4-E(56)^-4, -1*E(56)^7-E(56)^-7, -1*E(56)^7-E(56)^-7, E(56)^7+E(56)^-7, E(56)^7+E(56)^-7, 0, 0, 0, 0, -1*E(56)^4-E(56)^-4, E(56)^12+E(56)^-12, E(56)^4+E(56)^-4, E(56)^12+E(56)^-12, E(56)^8+E(56)^-8, -1*E(56)^8-E(56)^-8, E(56)^4+E(56)^-4, -1*E(56)^8-E(56)^-8, -1*E(56)^12-E(56)^-12, -1*E(56)^6-E(56)^-6, -1*E(56)^2-E(56)^-2, E(56)^6+E(56)^-6, E(56)^2+E(56)^-2, -1*E(56)^10-E(56)^-10, E(56)^10+E(56)^-10, -1*E(56)^2-E(56)^-2, E(56)^6+E(56)^-6, E(56)^2+E(56)^-2, -1*E(56)^6-E(56)^-6, E(56)^10+E(56)^-10, -1*E(56)^10-E(56)^-10, -1*E(56)^4-E(56)^-4, E(56)^2+E(56)^-2, E(56)^6+E(56)^-6, E(56)^4+E(56)^-4, E(56)^12+E(56)^-12, -1*E(56)^8-E(56)^-8, -1*E(56)^12-E(56)^-12, E(56)^8+E(56)^-8, E(56)^10+E(56)^-10, -1*E(56)^10-E(56)^-10, -1*E(56)^6-E(56)^-6, -1*E(56)^2-E(56)^-2, -1*E(56)^9-E(56)^-9, -1*E(56)^13-E(56)^-13, -1*E(56)-E(56)^-1, -1*E(56)^11-E(56)^-11, E(56)^13+E(56)^-13, E(56)^5+E(56)^-5, E(56)^13+E(56)^-13, -1*E(56)^3-E(56)^-3, E(56)+E(56)^-1, -1*E(56)^5-E(56)^-5, -1*E(56)^5-E(56)^-5, E(56)^11+E(56)^-11, E(56)^3+E(56)^-3, E(56)^9+E(56)^-9, E(56)^9+E(56)^-9, -1*E(56)^3-E(56)^-3, -1*E(56)^13-E(56)^-13, E(56)+E(56)^-1, E(56)^5+E(56)^-5, -1*E(56)^9-E(56)^-9, -1*E(56)-E(56)^-1, -1*E(56)^11-E(56)^-11, E(56)^11+E(56)^-11, E(56)^3+E(56)^-3], [2, -2, 2, -2, 0, -2, 0, 2, 0, 0, 0, E(56)^8+E(56)^-8, -1*E(56)^12-E(56)^-12, -1*E(56)^4-E(56)^-4, -1*E(56)^7-E(56)^-7, -1*E(56)^7-E(56)^-7, E(56)^7+E(56)^-7, E(56)^7+E(56)^-7, 0, 0, 0, 0, -1*E(56)^4-E(56)^-4, E(56)^12+E(56)^-12, E(56)^4+E(56)^-4, E(56)^12+E(56)^-12, E(56)^8+E(56)^-8, -1*E(56)^8-E(56)^-8, E(56)^4+E(56)^-4, -1*E(56)^8-E(56)^-8, -1*E(56)^12-E(56)^-12, E(56)^6+E(56)^-6, E(56)^2+E(56)^-2, -1*E(56)^6-E(56)^-6, -1*E(56)^2-E(56)^-2, E(56)^10+E(56)^-10, -1*E(56)^10-E(56)^-10, E(56)^2+E(56)^-2, -1*E(56)^6-E(56)^-6, -1*E(56)^2-E(56)^-2, E(56)^6+E(56)^-6, -1*E(56)^10-E(56)^-10, E(56)^10+E(56)^-10, -1*E(56)^4-E(56)^-4, -1*E(56)^2-E(56)^-2, -1*E(56)^6-E(56)^-6, E(56)^4+E(56)^-4, E(56)^12+E(56)^-12, -1*E(56)^8-E(56)^-8, -1*E(56)^12-E(56)^-12, E(56)^8+E(56)^-8, -1*E(56)^10-E(56)^-10, E(56)^10+E(56)^-10, E(56)^6+E(56)^-6, E(56)^2+E(56)^-2, E(56)^5+E(56)^-5, E(56)+E(56)^-1, E(56)^13+E(56)^-13, -1*E(56)^3-E(56)^-3, -1*E(56)-E(56)^-1, -1*E(56)^9-E(56)^-9, -1*E(56)-E(56)^-1, -1*E(56)^11-E(56)^-11, -1*E(56)^13-E(56)^-13, E(56)^9+E(56)^-9, E(56)^9+E(56)^-9, E(56)^3+E(56)^-3, E(56)^11+E(56)^-11, -1*E(56)^5-E(56)^-5, -1*E(56)^5-E(56)^-5, -1*E(56)^11-E(56)^-11, E(56)+E(56)^-1, -1*E(56)^13-E(56)^-13, -1*E(56)^9-E(56)^-9, E(56)^5+E(56)^-5, E(56)^13+E(56)^-13, -1*E(56)^3-E(56)^-3, E(56)^3+E(56)^-3, E(56)^11+E(56)^-11], [2, -2, 2, -2, 0, -2, 0, 2, 0, 0, 0, E(56)^8+E(56)^-8, -1*E(56)^12-E(56)^-12, -1*E(56)^4-E(56)^-4, E(56)^7+E(56)^-7, E(56)^7+E(56)^-7, -1*E(56)^7-E(56)^-7, -1*E(56)^7-E(56)^-7, 0, 0, 0, 0, -1*E(56)^4-E(56)^-4, E(56)^12+E(56)^-12, E(56)^4+E(56)^-4, E(56)^12+E(56)^-12, E(56)^8+E(56)^-8, -1*E(56)^8-E(56)^-8, E(56)^4+E(56)^-4, -1*E(56)^8-E(56)^-8, -1*E(56)^12-E(56)^-12, -1*E(56)^6-E(56)^-6, -1*E(56)^2-E(56)^-2, E(56)^6+E(56)^-6, E(56)^2+E(56)^-2, -1*E(56)^10-E(56)^-10, E(56)^10+E(56)^-10, -1*E(56)^2-E(56)^-2, E(56)^6+E(56)^-6, E(56)^2+E(56)^-2, -1*E(56)^6-E(56)^-6, E(56)^10+E(56)^-10, -1*E(56)^10-E(56)^-10, -1*E(56)^4-E(56)^-4, E(56)^2+E(56)^-2, E(56)^6+E(56)^-6, E(56)^4+E(56)^-4, E(56)^12+E(56)^-12, -1*E(56)^8-E(56)^-8, -1*E(56)^12-E(56)^-12, E(56)^8+E(56)^-8, E(56)^10+E(56)^-10, -1*E(56)^10-E(56)^-10, -1*E(56)^6-E(56)^-6, -1*E(56)^2-E(56)^-2, E(56)^9+E(56)^-9, E(56)^13+E(56)^-13, E(56)+E(56)^-1, E(56)^11+E(56)^-11, -1*E(56)^13-E(56)^-13, -1*E(56)^5-E(56)^-5, -1*E(56)^13-E(56)^-13, E(56)^3+E(56)^-3, -1*E(56)-E(56)^-1, E(56)^5+E(56)^-5, E(56)^5+E(56)^-5, -1*E(56)^11-E(56)^-11, -1*E(56)^3-E(56)^-3, -1*E(56)^9-E(56)^-9, -1*E(56)^9-E(56)^-9, E(56)^3+E(56)^-3, E(56)^13+E(56)^-13, -1*E(56)-E(56)^-1, -1*E(56)^5-E(56)^-5, E(56)^9+E(56)^-9, E(56)+E(56)^-1, E(56)^11+E(56)^-11, -1*E(56)^11-E(56)^-11, -1*E(56)^3-E(56)^-3], [2, -2, 2, -2, 0, -2, 0, 2, 0, 0, 0, E(56)^8+E(56)^-8, -1*E(56)^12-E(56)^-12, -1*E(56)^4-E(56)^-4, E(56)^7+E(56)^-7, E(56)^7+E(56)^-7, -1*E(56)^7-E(56)^-7, -1*E(56)^7-E(56)^-7, 0, 0, 0, 0, -1*E(56)^4-E(56)^-4, E(56)^12+E(56)^-12, E(56)^4+E(56)^-4, E(56)^12+E(56)^-12, E(56)^8+E(56)^-8, -1*E(56)^8-E(56)^-8, E(56)^4+E(56)^-4, -1*E(56)^8-E(56)^-8, -1*E(56)^12-E(56)^-12, E(56)^6+E(56)^-6, E(56)^2+E(56)^-2, -1*E(56)^6-E(56)^-6, -1*E(56)^2-E(56)^-2, E(56)^10+E(56)^-10, -1*E(56)^10-E(56)^-10, E(56)^2+E(56)^-2, -1*E(56)^6-E(56)^-6, -1*E(56)^2-E(56)^-2, E(56)^6+E(56)^-6, -1*E(56)^10-E(56)^-10, E(56)^10+E(56)^-10, -1*E(56)^4-E(56)^-4, -1*E(56)^2-E(56)^-2, -1*E(56)^6-E(56)^-6, E(56)^4+E(56)^-4, E(56)^12+E(56)^-12, -1*E(56)^8-E(56)^-8, -1*E(56)^12-E(56)^-12, E(56)^8+E(56)^-8, -1*E(56)^10-E(56)^-10, E(56)^10+E(56)^-10, E(56)^6+E(56)^-6, E(56)^2+E(56)^-2, -1*E(56)^5-E(56)^-5, -1*E(56)-E(56)^-1, -1*E(56)^13-E(56)^-13, E(56)^3+E(56)^-3, E(56)+E(56)^-1, E(56)^9+E(56)^-9, E(56)+E(56)^-1, E(56)^11+E(56)^-11, E(56)^13+E(56)^-13, -1*E(56)^9-E(56)^-9, -1*E(56)^9-E(56)^-9, -1*E(56)^3-E(56)^-3, -1*E(56)^11-E(56)^-11, E(56)^5+E(56)^-5, E(56)^5+E(56)^-5, E(56)^11+E(56)^-11, -1*E(56)-E(56)^-1, E(56)^13+E(56)^-13, E(56)^9+E(56)^-9, -1*E(56)^5-E(56)^-5, -1*E(56)^13-E(56)^-13, E(56)^3+E(56)^-3, -1*E(56)^3-E(56)^-3, -1*E(56)^11-E(56)^-11], [2, -2, 2, -2, 0, 2, 0, -2, 0, 0, 0, -1*E(56)^4-E(56)^-4, E(56)^8+E(56)^-8, -1*E(56)^12-E(56)^-12, -1*E(56)^7-E(56)^21, E(56)^7+E(56)^21, -1*E(56)^7-E(56)^21, E(56)^7+E(56)^21, 0, 0, 0, 0, -1*E(56)^12-E(56)^-12, -1*E(56)^8-E(56)^-8, E(56)^12+E(56)^-12, -1*E(56)^8-E(56)^-8, -1*E(56)^4-E(56)^-4, E(56)^4+E(56)^-4, E(56)^12+E(56)^-12, E(56)^4+E(56)^-4, E(56)^8+E(56)^-8, -1*E(56)^10-E(56)^-10, E(56)^6+E(56)^-6, E(56)^10+E(56)^-10, -1*E(56)^6-E(56)^-6, -1*E(56)^2-E(56)^-2, E(56)^2+E(56)^-2, E(56)^6+E(56)^-6, E(56)^10+E(56)^-10, -1*E(56)^6-E(56)^-6, -1*E(56)^10-E(56)^-10, E(56)^2+E(56)^-2, -1*E(56)^2-E(56)^-2, E(56)^12+E(56)^-12, E(56)^6+E(56)^-6, -1*E(56)^10-E(56)^-10, -1*E(56)^12-E(56)^-12, E(56)^8+E(56)^-8, -1*E(56)^4-E(56)^-4, -1*E(56)^8-E(56)^-8, E(56)^4+E(56)^-4, -1*E(56)^2-E(56)^-2, E(56)^2+E(56)^-2, E(56)^10+E(56)^-10, -1*E(56)^6-E(56)^-6, E(56)^13+E(56)^15, -1*E(56)+E(56)^3+E(56)^5-E(56)^9+E(56)^13-E(56)^17+E(56)^21, -1*E(56)^11-E(56)^17, -1*E(56)^9-E(56)^19, E(56)-E(56)^3-E(56)^5+E(56)^9-E(56)^13+E(56)^17-E(56)^21, -1*E(56)+E(56)^3-E(56)^7+E(56)^11-E(56)^15+E(56)^19-E(56)^23, -1*E(56)+E(56)^3+E(56)^5-E(56)^9+E(56)^13-E(56)^17+E(56)^21, E(56)^5+E(56)^23, E(56)^11+E(56)^17, E(56)-E(56)^3+E(56)^7-E(56)^11+E(56)^15-E(56)^19+E(56)^23, -1*E(56)+E(56)^3-E(56)^7+E(56)^11-E(56)^15+E(56)^19-E(56)^23, -1*E(56)^9-E(56)^19, E(56)^5+E(56)^23, -1*E(56)^13-E(56)^15, E(56)^13+E(56)^15, -1*E(56)^5-E(56)^23, E(56)-E(56)^3-E(56)^5+E(56)^9-E(56)^13+E(56)^17-E(56)^21, -1*E(56)^11-E(56)^17, E(56)-E(56)^3+E(56)^7-E(56)^11+E(56)^15-E(56)^19+E(56)^23, -1*E(56)^13-E(56)^15, E(56)^11+E(56)^17, E(56)^9+E(56)^19, E(56)^9+E(56)^19, -1*E(56)^5-E(56)^23], [2, -2, 2, -2, 0, 2, 0, -2, 0, 0, 0, -1*E(56)^4-E(56)^-4, E(56)^8+E(56)^-8, -1*E(56)^12-E(56)^-12, E(56)^7+E(56)^21, -1*E(56)^7-E(56)^21, E(56)^7+E(56)^21, -1*E(56)^7-E(56)^21, 0, 0, 0, 0, -1*E(56)^12-E(56)^-12, -1*E(56)^8-E(56)^-8, E(56)^12+E(56)^-12, -1*E(56)^8-E(56)^-8, -1*E(56)^4-E(56)^-4, E(56)^4+E(56)^-4, E(56)^12+E(56)^-12, E(56)^4+E(56)^-4, E(56)^8+E(56)^-8, -1*E(56)^10-E(56)^-10, E(56)^6+E(56)^-6, E(56)^10+E(56)^-10, -1*E(56)^6-E(56)^-6, -1*E(56)^2-E(56)^-2, E(56)^2+E(56)^-2, E(56)^6+E(56)^-6, E(56)^10+E(56)^-10, -1*E(56)^6-E(56)^-6, -1*E(56)^10-E(56)^-10, E(56)^2+E(56)^-2, -1*E(56)^2-E(56)^-2, E(56)^12+E(56)^-12, E(56)^6+E(56)^-6, -1*E(56)^10-E(56)^-10, -1*E(56)^12-E(56)^-12, E(56)^8+E(56)^-8, -1*E(56)^4-E(56)^-4, -1*E(56)^8-E(56)^-8, E(56)^4+E(56)^-4, -1*E(56)^2-E(56)^-2, E(56)^2+E(56)^-2, E(56)^10+E(56)^-10, -1*E(56)^6-E(56)^-6, -1*E(56)^13-E(56)^15, E(56)-E(56)^3-E(56)^5+E(56)^9-E(56)^13+E(56)^17-E(56)^21, E(56)^11+E(56)^17, E(56)^9+E(56)^19, -1*E(56)+E(56)^3+E(56)^5-E(56)^9+E(56)^13-E(56)^17+E(56)^21, E(56)-E(56)^3+E(56)^7-E(56)^11+E(56)^15-E(56)^19+E(56)^23, E(56)-E(56)^3-E(56)^5+E(56)^9-E(56)^13+E(56)^17-E(56)^21, -1*E(56)^5-E(56)^23, -1*E(56)^11-E(56)^17, -1*E(56)+E(56)^3-E(56)^7+E(56)^11-E(56)^15+E(56)^19-E(56)^23, E(56)-E(56)^3+E(56)^7-E(56)^11+E(56)^15-E(56)^19+E(56)^23, E(56)^9+E(56)^19, -1*E(56)^5-E(56)^23, E(56)^13+E(56)^15, -1*E(56)^13-E(56)^15, E(56)^5+E(56)^23, -1*E(56)+E(56)^3+E(56)^5-E(56)^9+E(56)^13-E(56)^17+E(56)^21, E(56)^11+E(56)^17, -1*E(56)+E(56)^3-E(56)^7+E(56)^11-E(56)^15+E(56)^19-E(56)^23, E(56)^13+E(56)^15, -1*E(56)^11-E(56)^17, -1*E(56)^9-E(56)^19, -1*E(56)^9-E(56)^19, E(56)^5+E(56)^23], [2, -2, 2, -2, 0, 2, 0, -2, 0, 0, 0, -1*E(56)^4-E(56)^-4, E(56)^8+E(56)^-8, -1*E(56)^12-E(56)^-12, -1*E(56)^7-E(56)^21, E(56)^7+E(56)^21, -1*E(56)^7-E(56)^21, E(56)^7+E(56)^21, 0, 0, 0, 0, -1*E(56)^12-E(56)^-12, -1*E(56)^8-E(56)^-8, E(56)^12+E(56)^-12, -1*E(56)^8-E(56)^-8, -1*E(56)^4-E(56)^-4, E(56)^4+E(56)^-4, E(56)^12+E(56)^-12, E(56)^4+E(56)^-4, E(56)^8+E(56)^-8, E(56)^10+E(56)^-10, -1*E(56)^6-E(56)^-6, -1*E(56)^10-E(56)^-10, E(56)^6+E(56)^-6, E(56)^2+E(56)^-2, -1*E(56)^2-E(56)^-2, -1*E(56)^6-E(56)^-6, -1*E(56)^10-E(56)^-10, E(56)^6+E(56)^-6, E(56)^10+E(56)^-10, -1*E(56)^2-E(56)^-2, E(56)^2+E(56)^-2, E(56)^12+E(56)^-12, -1*E(56)^6-E(56)^-6, E(56)^10+E(56)^-10, -1*E(56)^12-E(56)^-12, E(56)^8+E(56)^-8, -1*E(56)^4-E(56)^-4, -1*E(56)^8-E(56)^-8, E(56)^4+E(56)^-4, E(56)^2+E(56)^-2, -1*E(56)^2-E(56)^-2, -1*E(56)^10-E(56)^-10, E(56)^6+E(56)^-6, -1*E(56)+E(56)^3-E(56)^7+E(56)^11-E(56)^15+E(56)^19-E(56)^23, E(56)^11+E(56)^17, E(56)-E(56)^3-E(56)^5+E(56)^9-E(56)^13+E(56)^17-E(56)^21, E(56)^5+E(56)^23, -1*E(56)^11-E(56)^17, E(56)^13+E(56)^15, E(56)^11+E(56)^17, -1*E(56)^9-E(56)^19, -1*E(56)+E(56)^3+E(56)^5-E(56)^9+E(56)^13-E(56)^17+E(56)^21, -1*E(56)^13-E(56)^15, E(56)^13+E(56)^15, E(56)^5+E(56)^23, -1*E(56)^9-E(56)^19, E(56)-E(56)^3+E(56)^7-E(56)^11+E(56)^15-E(56)^19+E(56)^23, -1*E(56)+E(56)^3-E(56)^7+E(56)^11-E(56)^15+E(56)^19-E(56)^23, E(56)^9+E(56)^19, -1*E(56)^11-E(56)^17, E(56)-E(56)^3-E(56)^5+E(56)^9-E(56)^13+E(56)^17-E(56)^21, -1*E(56)^13-E(56)^15, E(56)-E(56)^3+E(56)^7-E(56)^11+E(56)^15-E(56)^19+E(56)^23, -1*E(56)+E(56)^3+E(56)^5-E(56)^9+E(56)^13-E(56)^17+E(56)^21, -1*E(56)^5-E(56)^23, -1*E(56)^5-E(56)^23, E(56)^9+E(56)^19], [2, -2, 2, -2, 0, 2, 0, -2, 0, 0, 0, -1*E(56)^4-E(56)^-4, E(56)^8+E(56)^-8, -1*E(56)^12-E(56)^-12, E(56)^7+E(56)^21, -1*E(56)^7-E(56)^21, E(56)^7+E(56)^21, -1*E(56)^7-E(56)^21, 0, 0, 0, 0, -1*E(56)^12-E(56)^-12, -1*E(56)^8-E(56)^-8, E(56)^12+E(56)^-12, -1*E(56)^8-E(56)^-8, -1*E(56)^4-E(56)^-4, E(56)^4+E(56)^-4, E(56)^12+E(56)^-12, E(56)^4+E(56)^-4, E(56)^8+E(56)^-8, E(56)^10+E(56)^-10, -1*E(56)^6-E(56)^-6, -1*E(56)^10-E(56)^-10, E(56)^6+E(56)^-6, E(56)^2+E(56)^-2, -1*E(56)^2-E(56)^-2, -1*E(56)^6-E(56)^-6, -1*E(56)^10-E(56)^-10, E(56)^6+E(56)^-6, E(56)^10+E(56)^-10, -1*E(56)^2-E(56)^-2, E(56)^2+E(56)^-2, E(56)^12+E(56)^-12, -1*E(56)^6-E(56)^-6, E(56)^10+E(56)^-10, -1*E(56)^12-E(56)^-12, E(56)^8+E(56)^-8, -1*E(56)^4-E(56)^-4, -1*E(56)^8-E(56)^-8, E(56)^4+E(56)^-4, E(56)^2+E(56)^-2, -1*E(56)^2-E(56)^-2, -1*E(56)^10-E(56)^-10, E(56)^6+E(56)^-6, E(56)-E(56)^3+E(56)^7-E(56)^11+E(56)^15-E(56)^19+E(56)^23, -1*E(56)^11-E(56)^17, -1*E(56)+E(56)^3+E(56)^5-E(56)^9+E(56)^13-E(56)^17+E(56)^21, -1*E(56)^5-E(56)^23, E(56)^11+E(56)^17, -1*E(56)^13-E(56)^15, -1*E(56)^11-E(56)^17, E(56)^9+E(56)^19, E(56)-E(56)^3-E(56)^5+E(56)^9-E(56)^13+E(56)^17-E(56)^21, E(56)^13+E(56)^15, -1*E(56)^13-E(56)^15, -1*E(56)^5-E(56)^23, E(56)^9+E(56)^19, -1*E(56)+E(56)^3-E(56)^7+E(56)^11-E(56)^15+E(56)^19-E(56)^23, E(56)-E(56)^3+E(56)^7-E(56)^11+E(56)^15-E(56)^19+E(56)^23, -1*E(56)^9-E(56)^19, E(56)^11+E(56)^17, -1*E(56)+E(56)^3+E(56)^5-E(56)^9+E(56)^13-E(56)^17+E(56)^21, E(56)^13+E(56)^15, -1*E(56)+E(56)^3-E(56)^7+E(56)^11-E(56)^15+E(56)^19-E(56)^23, E(56)-E(56)^3-E(56)^5+E(56)^9-E(56)^13+E(56)^17-E(56)^21, E(56)^5+E(56)^23, E(56)^5+E(56)^23, -1*E(56)^9-E(56)^19], [2, -2, 2, -2, 0, 2, 0, -2, 0, 0, 0, -1*E(56)^12-E(56)^-12, -1*E(56)^4-E(56)^-4, E(56)^8+E(56)^-8, -1*E(56)^7-E(56)^21, E(56)^7+E(56)^21, -1*E(56)^7-E(56)^21, E(56)^7+E(56)^21, 0, 0, 0, 0, E(56)^8+E(56)^-8, E(56)^4+E(56)^-4, -1*E(56)^8-E(56)^-8, E(56)^4+E(56)^-4, -1*E(56)^12-E(56)^-12, E(56)^12+E(56)^-12, -1*E(56)^8-E(56)^-8, E(56)^12+E(56)^-12, -1*E(56)^4-E(56)^-4, -1*E(56)^2-E(56)^-2, E(56)^10+E(56)^-10, E(56)^2+E(56)^-2, -1*E(56)^10-E(56)^-10, E(56)^6+E(56)^-6, -1*E(56)^6-E(56)^-6, E(56)^10+E(56)^-10, E(56)^2+E(56)^-2, -1*E(56)^10-E(56)^-10, -1*E(56)^2-E(56)^-2, -1*E(56)^6-E(56)^-6, E(56)^6+E(56)^-6, -1*E(56)^8-E(56)^-8, E(56)^10+E(56)^-10, -1*E(56)^2-E(56)^-2, E(56)^8+E(56)^-8, -1*E(56)^4-E(56)^-4, -1*E(56)^12-E(56)^-12, E(56)^4+E(56)^-4, E(56)^12+E(56)^-12, E(56)^6+E(56)^-6, -1*E(56)^6-E(56)^-6, E(56)^2+E(56)^-2, -1*E(56)^10-E(56)^-10, E(56)-E(56)^3-E(56)^5+E(56)^9-E(56)^13+E(56)^17-E(56)^21, -1*E(56)^5-E(56)^23, -1*E(56)^9-E(56)^19, E(56)^13+E(56)^15, E(56)^5+E(56)^23, -1*E(56)^11-E(56)^17, -1*E(56)^5-E(56)^23, -1*E(56)+E(56)^3-E(56)^7+E(56)^11-E(56)^15+E(56)^19-E(56)^23, E(56)^9+E(56)^19, E(56)^11+E(56)^17, -1*E(56)^11-E(56)^17, E(56)^13+E(56)^15, -1*E(56)+E(56)^3-E(56)^7+E(56)^11-E(56)^15+E(56)^19-E(56)^23, -1*E(56)+E(56)^3+E(56)^5-E(56)^9+E(56)^13-E(56)^17+E(56)^21, E(56)-E(56)^3-E(56)^5+E(56)^9-E(56)^13+E(56)^17-E(56)^21, E(56)-E(56)^3+E(56)^7-E(56)^11+E(56)^15-E(56)^19+E(56)^23, E(56)^5+E(56)^23, -1*E(56)^9-E(56)^19, E(56)^11+E(56)^17, -1*E(56)+E(56)^3+E(56)^5-E(56)^9+E(56)^13-E(56)^17+E(56)^21, E(56)^9+E(56)^19, -1*E(56)^13-E(56)^15, -1*E(56)^13-E(56)^15, E(56)-E(56)^3+E(56)^7-E(56)^11+E(56)^15-E(56)^19+E(56)^23], [2, -2, 2, -2, 0, 2, 0, -2, 0, 0, 0, -1*E(56)^12-E(56)^-12, -1*E(56)^4-E(56)^-4, E(56)^8+E(56)^-8, E(56)^7+E(56)^21, -1*E(56)^7-E(56)^21, E(56)^7+E(56)^21, -1*E(56)^7-E(56)^21, 0, 0, 0, 0, E(56)^8+E(56)^-8, E(56)^4+E(56)^-4, -1*E(56)^8-E(56)^-8, E(56)^4+E(56)^-4, -1*E(56)^12-E(56)^-12, E(56)^12+E(56)^-12, -1*E(56)^8-E(56)^-8, E(56)^12+E(56)^-12, -1*E(56)^4-E(56)^-4, -1*E(56)^2-E(56)^-2, E(56)^10+E(56)^-10, E(56)^2+E(56)^-2, -1*E(56)^10-E(56)^-10, E(56)^6+E(56)^-6, -1*E(56)^6-E(56)^-6, E(56)^10+E(56)^-10, E(56)^2+E(56)^-2, -1*E(56)^10-E(56)^-10, -1*E(56)^2-E(56)^-2, -1*E(56)^6-E(56)^-6, E(56)^6+E(56)^-6, -1*E(56)^8-E(56)^-8, E(56)^10+E(56)^-10, -1*E(56)^2-E(56)^-2, E(56)^8+E(56)^-8, -1*E(56)^4-E(56)^-4, -1*E(56)^12-E(56)^-12, E(56)^4+E(56)^-4, E(56)^12+E(56)^-12, E(56)^6+E(56)^-6, -1*E(56)^6-E(56)^-6, E(56)^2+E(56)^-2, -1*E(56)^10-E(56)^-10, -1*E(56)+E(56)^3+E(56)^5-E(56)^9+E(56)^13-E(56)^17+E(56)^21, E(56)^5+E(56)^23, E(56)^9+E(56)^19, -1*E(56)^13-E(56)^15, -1*E(56)^5-E(56)^23, E(56)^11+E(56)^17, E(56)^5+E(56)^23, E(56)-E(56)^3+E(56)^7-E(56)^11+E(56)^15-E(56)^19+E(56)^23, -1*E(56)^9-E(56)^19, -1*E(56)^11-E(56)^17, E(56)^11+E(56)^17, -1*E(56)^13-E(56)^15, E(56)-E(56)^3+E(56)^7-E(56)^11+E(56)^15-E(56)^19+E(56)^23, E(56)-E(56)^3-E(56)^5+E(56)^9-E(56)^13+E(56)^17-E(56)^21, -1*E(56)+E(56)^3+E(56)^5-E(56)^9+E(56)^13-E(56)^17+E(56)^21, -1*E(56)+E(56)^3-E(56)^7+E(56)^11-E(56)^15+E(56)^19-E(56)^23, -1*E(56)^5-E(56)^23, E(56)^9+E(56)^19, -1*E(56)^11-E(56)^17, E(56)-E(56)^3-E(56)^5+E(56)^9-E(56)^13+E(56)^17-E(56)^21, -1*E(56)^9-E(56)^19, E(56)^13+E(56)^15, E(56)^13+E(56)^15, -1*E(56)+E(56)^3-E(56)^7+E(56)^11-E(56)^15+E(56)^19-E(56)^23], [2, -2, 2, -2, 0, 2, 0, -2, 0, 0, 0, -1*E(56)^12-E(56)^-12, -1*E(56)^4-E(56)^-4, E(56)^8+E(56)^-8, -1*E(56)^7-E(56)^21, E(56)^7+E(56)^21, -1*E(56)^7-E(56)^21, E(56)^7+E(56)^21, 0, 0, 0, 0, E(56)^8+E(56)^-8, E(56)^4+E(56)^-4, -1*E(56)^8-E(56)^-8, E(56)^4+E(56)^-4, -1*E(56)^12-E(56)^-12, E(56)^12+E(56)^-12, -1*E(56)^8-E(56)^-8, E(56)^12+E(56)^-12, -1*E(56)^4-E(56)^-4, E(56)^2+E(56)^-2, -1*E(56)^10-E(56)^-10, -1*E(56)^2-E(56)^-2, E(56)^10+E(56)^-10, -1*E(56)^6-E(56)^-6, E(56)^6+E(56)^-6, -1*E(56)^10-E(56)^-10, -1*E(56)^2-E(56)^-2, E(56)^10+E(56)^-10, E(56)^2+E(56)^-2, E(56)^6+E(56)^-6, -1*E(56)^6-E(56)^-6, -1*E(56)^8-E(56)^-8, -1*E(56)^10-E(56)^-10, E(56)^2+E(56)^-2, E(56)^8+E(56)^-8, -1*E(56)^4-E(56)^-4, -1*E(56)^12-E(56)^-12, E(56)^4+E(56)^-4, E(56)^12+E(56)^-12, -1*E(56)^6-E(56)^-6, E(56)^6+E(56)^-6, -1*E(56)^2-E(56)^-2, E(56)^10+E(56)^-10, -1*E(56)^11-E(56)^17, E(56)^9+E(56)^19, E(56)^5+E(56)^23, -1*E(56)+E(56)^3-E(56)^7+E(56)^11-E(56)^15+E(56)^19-E(56)^23, -1*E(56)^9-E(56)^19, E(56)-E(56)^3-E(56)^5+E(56)^9-E(56)^13+E(56)^17-E(56)^21, E(56)^9+E(56)^19, E(56)^13+E(56)^15, -1*E(56)^5-E(56)^23, -1*E(56)+E(56)^3+E(56)^5-E(56)^9+E(56)^13-E(56)^17+E(56)^21, E(56)-E(56)^3-E(56)^5+E(56)^9-E(56)^13+E(56)^17-E(56)^21, -1*E(56)+E(56)^3-E(56)^7+E(56)^11-E(56)^15+E(56)^19-E(56)^23, E(56)^13+E(56)^15, E(56)^11+E(56)^17, -1*E(56)^11-E(56)^17, -1*E(56)^13-E(56)^15, -1*E(56)^9-E(56)^19, E(56)^5+E(56)^23, -1*E(56)+E(56)^3+E(56)^5-E(56)^9+E(56)^13-E(56)^17+E(56)^21, E(56)^11+E(56)^17, -1*E(56)^5-E(56)^23, E(56)-E(56)^3+E(56)^7-E(56)^11+E(56)^15-E(56)^19+E(56)^23, E(56)-E(56)^3+E(56)^7-E(56)^11+E(56)^15-E(56)^19+E(56)^23, -1*E(56)^13-E(56)^15], [2, -2, 2, -2, 0, 2, 0, -2, 0, 0, 0, -1*E(56)^12-E(56)^-12, -1*E(56)^4-E(56)^-4, E(56)^8+E(56)^-8, E(56)^7+E(56)^21, -1*E(56)^7-E(56)^21, E(56)^7+E(56)^21, -1*E(56)^7-E(56)^21, 0, 0, 0, 0, E(56)^8+E(56)^-8, E(56)^4+E(56)^-4, -1*E(56)^8-E(56)^-8, E(56)^4+E(56)^-4, -1*E(56)^12-E(56)^-12, E(56)^12+E(56)^-12, -1*E(56)^8-E(56)^-8, E(56)^12+E(56)^-12, -1*E(56)^4-E(56)^-4, E(56)^2+E(56)^-2, -1*E(56)^10-E(56)^-10, -1*E(56)^2-E(56)^-2, E(56)^10+E(56)^-10, -1*E(56)^6-E(56)^-6, E(56)^6+E(56)^-6, -1*E(56)^10-E(56)^-10, -1*E(56)^2-E(56)^-2, E(56)^10+E(56)^-10, E(56)^2+E(56)^-2, E(56)^6+E(56)^-6, -1*E(56)^6-E(56)^-6, -1*E(56)^8-E(56)^-8, -1*E(56)^10-E(56)^-10, E(56)^2+E(56)^-2, E(56)^8+E(56)^-8, -1*E(56)^4-E(56)^-4, -1*E(56)^12-E(56)^-12, E(56)^4+E(56)^-4, E(56)^12+E(56)^-12, -1*E(56)^6-E(56)^-6, E(56)^6+E(56)^-6, -1*E(56)^2-E(56)^-2, E(56)^10+E(56)^-10, E(56)^11+E(56)^17, -1*E(56)^9-E(56)^19, -1*E(56)^5-E(56)^23, E(56)-E(56)^3+E(56)^7-E(56)^11+E(56)^15-E(56)^19+E(56)^23, E(56)^9+E(56)^19, -1*E(56)+E(56)^3+E(56)^5-E(56)^9+E(56)^13-E(56)^17+E(56)^21, -1*E(56)^9-E(56)^19, -1*E(56)^13-E(56)^15, E(56)^5+E(56)^23, E(56)-E(56)^3-E(56)^5+E(56)^9-E(56)^13+E(56)^17-E(56)^21, -1*E(56)+E(56)^3+E(56)^5-E(56)^9+E(56)^13-E(56)^17+E(56)^21, E(56)-E(56)^3+E(56)^7-E(56)^11+E(56)^15-E(56)^19+E(56)^23, -1*E(56)^13-E(56)^15, -1*E(56)^11-E(56)^17, E(56)^11+E(56)^17, E(56)^13+E(56)^15, E(56)^9+E(56)^19, -1*E(56)^5-E(56)^23, E(56)-E(56)^3-E(56)^5+E(56)^9-E(56)^13+E(56)^17-E(56)^21, -1*E(56)^11-E(56)^17, E(56)^5+E(56)^23, -1*E(56)+E(56)^3-E(56)^7+E(56)^11-E(56)^15+E(56)^19-E(56)^23, -1*E(56)+E(56)^3-E(56)^7+E(56)^11-E(56)^15+E(56)^19-E(56)^23, E(56)^13+E(56)^15], [2, -2, 2, -2, 0, 2, 0, -2, 0, 0, 0, E(56)^8+E(56)^-8, -1*E(56)^12-E(56)^-12, -1*E(56)^4-E(56)^-4, -1*E(56)^7-E(56)^21, E(56)^7+E(56)^21, -1*E(56)^7-E(56)^21, E(56)^7+E(56)^21, 0, 0, 0, 0, -1*E(56)^4-E(56)^-4, E(56)^12+E(56)^-12, E(56)^4+E(56)^-4, E(56)^12+E(56)^-12, E(56)^8+E(56)^-8, -1*E(56)^8-E(56)^-8, E(56)^4+E(56)^-4, -1*E(56)^8-E(56)^-8, -1*E(56)^12-E(56)^-12, -1*E(56)^6-E(56)^-6, -1*E(56)^2-E(56)^-2, E(56)^6+E(56)^-6, E(56)^2+E(56)^-2, -1*E(56)^10-E(56)^-10, E(56)^10+E(56)^-10, -1*E(56)^2-E(56)^-2, E(56)^6+E(56)^-6, E(56)^2+E(56)^-2, -1*E(56)^6-E(56)^-6, E(56)^10+E(56)^-10, -1*E(56)^10-E(56)^-10, E(56)^4+E(56)^-4, -1*E(56)^2-E(56)^-2, -1*E(56)^6-E(56)^-6, -1*E(56)^4-E(56)^-4, -1*E(56)^12-E(56)^-12, E(56)^8+E(56)^-8, E(56)^12+E(56)^-12, -1*E(56)^8-E(56)^-8, -1*E(56)^10-E(56)^-10, E(56)^10+E(56)^-10, E(56)^6+E(56)^-6, E(56)^2+E(56)^-2, -1*E(56)^9-E(56)^19, -1*E(56)^13-E(56)^15, -1*E(56)+E(56)^3-E(56)^7+E(56)^11-E(56)^15+E(56)^19-E(56)^23, -1*E(56)^11-E(56)^17, E(56)^13+E(56)^15, E(56)^5+E(56)^23, -1*E(56)^13-E(56)^15, E(56)-E(56)^3-E(56)^5+E(56)^9-E(56)^13+E(56)^17-E(56)^21, E(56)-E(56)^3+E(56)^7-E(56)^11+E(56)^15-E(56)^19+E(56)^23, -1*E(56)^5-E(56)^23, E(56)^5+E(56)^23, -1*E(56)^11-E(56)^17, E(56)-E(56)^3-E(56)^5+E(56)^9-E(56)^13+E(56)^17-E(56)^21, E(56)^9+E(56)^19, -1*E(56)^9-E(56)^19, -1*E(56)+E(56)^3+E(56)^5-E(56)^9+E(56)^13-E(56)^17+E(56)^21, E(56)^13+E(56)^15, -1*E(56)+E(56)^3-E(56)^7+E(56)^11-E(56)^15+E(56)^19-E(56)^23, -1*E(56)^5-E(56)^23, E(56)^9+E(56)^19, E(56)-E(56)^3+E(56)^7-E(56)^11+E(56)^15-E(56)^19+E(56)^23, E(56)^11+E(56)^17, E(56)^11+E(56)^17, -1*E(56)+E(56)^3+E(56)^5-E(56)^9+E(56)^13-E(56)^17+E(56)^21], [2, -2, 2, -2, 0, 2, 0, -2, 0, 0, 0, E(56)^8+E(56)^-8, -1*E(56)^12-E(56)^-12, -1*E(56)^4-E(56)^-4, E(56)^7+E(56)^21, -1*E(56)^7-E(56)^21, E(56)^7+E(56)^21, -1*E(56)^7-E(56)^21, 0, 0, 0, 0, -1*E(56)^4-E(56)^-4, E(56)^12+E(56)^-12, E(56)^4+E(56)^-4, E(56)^12+E(56)^-12, E(56)^8+E(56)^-8, -1*E(56)^8-E(56)^-8, E(56)^4+E(56)^-4, -1*E(56)^8-E(56)^-8, -1*E(56)^12-E(56)^-12, -1*E(56)^6-E(56)^-6, -1*E(56)^2-E(56)^-2, E(56)^6+E(56)^-6, E(56)^2+E(56)^-2, -1*E(56)^10-E(56)^-10, E(56)^10+E(56)^-10, -1*E(56)^2-E(56)^-2, E(56)^6+E(56)^-6, E(56)^2+E(56)^-2, -1*E(56)^6-E(56)^-6, E(56)^10+E(56)^-10, -1*E(56)^10-E(56)^-10, E(56)^4+E(56)^-4, -1*E(56)^2-E(56)^-2, -1*E(56)^6-E(56)^-6, -1*E(56)^4-E(56)^-4, -1*E(56)^12-E(56)^-12, E(56)^8+E(56)^-8, E(56)^12+E(56)^-12, -1*E(56)^8-E(56)^-8, -1*E(56)^10-E(56)^-10, E(56)^10+E(56)^-10, E(56)^6+E(56)^-6, E(56)^2+E(56)^-2, E(56)^9+E(56)^19, E(56)^13+E(56)^15, E(56)-E(56)^3+E(56)^7-E(56)^11+E(56)^15-E(56)^19+E(56)^23, E(56)^11+E(56)^17, -1*E(56)^13-E(56)^15, -1*E(56)^5-E(56)^23, E(56)^13+E(56)^15, -1*E(56)+E(56)^3+E(56)^5-E(56)^9+E(56)^13-E(56)^17+E(56)^21, -1*E(56)+E(56)^3-E(56)^7+E(56)^11-E(56)^15+E(56)^19-E(56)^23, E(56)^5+E(56)^23, -1*E(56)^5-E(56)^23, E(56)^11+E(56)^17, -1*E(56)+E(56)^3+E(56)^5-E(56)^9+E(56)^13-E(56)^17+E(56)^21, -1*E(56)^9-E(56)^19, E(56)^9+E(56)^19, E(56)-E(56)^3-E(56)^5+E(56)^9-E(56)^13+E(56)^17-E(56)^21, -1*E(56)^13-E(56)^15, E(56)-E(56)^3+E(56)^7-E(56)^11+E(56)^15-E(56)^19+E(56)^23, E(56)^5+E(56)^23, -1*E(56)^9-E(56)^19, -1*E(56)+E(56)^3-E(56)^7+E(56)^11-E(56)^15+E(56)^19-E(56)^23, -1*E(56)^11-E(56)^17, -1*E(56)^11-E(56)^17, E(56)-E(56)^3-E(56)^5+E(56)^9-E(56)^13+E(56)^17-E(56)^21], [2, -2, 2, -2, 0, 2, 0, -2, 0, 0, 0, E(56)^8+E(56)^-8, -1*E(56)^12-E(56)^-12, -1*E(56)^4-E(56)^-4, -1*E(56)^7-E(56)^21, E(56)^7+E(56)^21, -1*E(56)^7-E(56)^21, E(56)^7+E(56)^21, 0, 0, 0, 0, -1*E(56)^4-E(56)^-4, E(56)^12+E(56)^-12, E(56)^4+E(56)^-4, E(56)^12+E(56)^-12, E(56)^8+E(56)^-8, -1*E(56)^8-E(56)^-8, E(56)^4+E(56)^-4, -1*E(56)^8-E(56)^-8, -1*E(56)^12-E(56)^-12, E(56)^6+E(56)^-6, E(56)^2+E(56)^-2, -1*E(56)^6-E(56)^-6, -1*E(56)^2-E(56)^-2, E(56)^10+E(56)^-10, -1*E(56)^10-E(56)^-10, E(56)^2+E(56)^-2, -1*E(56)^6-E(56)^-6, -1*E(56)^2-E(56)^-2, E(56)^6+E(56)^-6, -1*E(56)^10-E(56)^-10, E(56)^10+E(56)^-10, E(56)^4+E(56)^-4, E(56)^2+E(56)^-2, E(56)^6+E(56)^-6, -1*E(56)^4-E(56)^-4, -1*E(56)^12-E(56)^-12, E(56)^8+E(56)^-8, E(56)^12+E(56)^-12, -1*E(56)^8-E(56)^-8, E(56)^10+E(56)^-10, -1*E(56)^10-E(56)^-10, -1*E(56)^6-E(56)^-6, -1*E(56)^2-E(56)^-2, E(56)^5+E(56)^23, E(56)-E(56)^3+E(56)^7-E(56)^11+E(56)^15-E(56)^19+E(56)^23, E(56)^13+E(56)^15, E(56)-E(56)^3-E(56)^5+E(56)^9-E(56)^13+E(56)^17-E(56)^21, -1*E(56)+E(56)^3-E(56)^7+E(56)^11-E(56)^15+E(56)^19-E(56)^23, -1*E(56)^9-E(56)^19, E(56)-E(56)^3+E(56)^7-E(56)^11+E(56)^15-E(56)^19+E(56)^23, -1*E(56)^11-E(56)^17, -1*E(56)^13-E(56)^15, E(56)^9+E(56)^19, -1*E(56)^9-E(56)^19, E(56)-E(56)^3-E(56)^5+E(56)^9-E(56)^13+E(56)^17-E(56)^21, -1*E(56)^11-E(56)^17, -1*E(56)^5-E(56)^23, E(56)^5+E(56)^23, E(56)^11+E(56)^17, -1*E(56)+E(56)^3-E(56)^7+E(56)^11-E(56)^15+E(56)^19-E(56)^23, E(56)^13+E(56)^15, E(56)^9+E(56)^19, -1*E(56)^5-E(56)^23, -1*E(56)^13-E(56)^15, -1*E(56)+E(56)^3+E(56)^5-E(56)^9+E(56)^13-E(56)^17+E(56)^21, -1*E(56)+E(56)^3+E(56)^5-E(56)^9+E(56)^13-E(56)^17+E(56)^21, E(56)^11+E(56)^17], [2, -2, 2, -2, 0, 2, 0, -2, 0, 0, 0, E(56)^8+E(56)^-8, -1*E(56)^12-E(56)^-12, -1*E(56)^4-E(56)^-4, E(56)^7+E(56)^21, -1*E(56)^7-E(56)^21, E(56)^7+E(56)^21, -1*E(56)^7-E(56)^21, 0, 0, 0, 0, -1*E(56)^4-E(56)^-4, E(56)^12+E(56)^-12, E(56)^4+E(56)^-4, E(56)^12+E(56)^-12, E(56)^8+E(56)^-8, -1*E(56)^8-E(56)^-8, E(56)^4+E(56)^-4, -1*E(56)^8-E(56)^-8, -1*E(56)^12-E(56)^-12, E(56)^6+E(56)^-6, E(56)^2+E(56)^-2, -1*E(56)^6-E(56)^-6, -1*E(56)^2-E(56)^-2, E(56)^10+E(56)^-10, -1*E(56)^10-E(56)^-10, E(56)^2+E(56)^-2, -1*E(56)^6-E(56)^-6, -1*E(56)^2-E(56)^-2, E(56)^6+E(56)^-6, -1*E(56)^10-E(56)^-10, E(56)^10+E(56)^-10, E(56)^4+E(56)^-4, E(56)^2+E(56)^-2, E(56)^6+E(56)^-6, -1*E(56)^4-E(56)^-4, -1*E(56)^12-E(56)^-12, E(56)^8+E(56)^-8, E(56)^12+E(56)^-12, -1*E(56)^8-E(56)^-8, E(56)^10+E(56)^-10, -1*E(56)^10-E(56)^-10, -1*E(56)^6-E(56)^-6, -1*E(56)^2-E(56)^-2, -1*E(56)^5-E(56)^23, -1*E(56)+E(56)^3-E(56)^7+E(56)^11-E(56)^15+E(56)^19-E(56)^23, -1*E(56)^13-E(56)^15, -1*E(56)+E(56)^3+E(56)^5-E(56)^9+E(56)^13-E(56)^17+E(56)^21, E(56)-E(56)^3+E(56)^7-E(56)^11+E(56)^15-E(56)^19+E(56)^23, E(56)^9+E(56)^19, -1*E(56)+E(56)^3-E(56)^7+E(56)^11-E(56)^15+E(56)^19-E(56)^23, E(56)^11+E(56)^17, E(56)^13+E(56)^15, -1*E(56)^9-E(56)^19, E(56)^9+E(56)^19, -1*E(56)+E(56)^3+E(56)^5-E(56)^9+E(56)^13-E(56)^17+E(56)^21, E(56)^11+E(56)^17, E(56)^5+E(56)^23, -1*E(56)^5-E(56)^23, -1*E(56)^11-E(56)^17, E(56)-E(56)^3+E(56)^7-E(56)^11+E(56)^15-E(56)^19+E(56)^23, -1*E(56)^13-E(56)^15, -1*E(56)^9-E(56)^19, E(56)^5+E(56)^23, E(56)^13+E(56)^15, E(56)-E(56)^3-E(56)^5+E(56)^9-E(56)^13+E(56)^17-E(56)^21, E(56)-E(56)^3-E(56)^5+E(56)^9-E(56)^13+E(56)^17-E(56)^21, -1*E(56)^11-E(56)^17], [4, -4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 4, 4, -4, 4, -4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, 4, -4, -4, -4, 0, 4, 0, 0, 0, 0, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(7)^2-2*E(7)^-2, 2*E(7)+2*E(7)^-1, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, -2*E(7)^3-2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, -2*E(7)-2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, 2*E(7)+2*E(7)^-1, -2*E(7)^2-2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, 4, -4, -4, -4, 0, 4, 0, 0, 0, 0, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(7)-2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, -2*E(7)-2*E(7)^-1, -2*E(7)-2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)+2*E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, 4, -4, -4, -4, 0, 4, 0, 0, 0, 0, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(7)^3-2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, -2*E(7)-2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, -2*E(7)^2-2*E(7)^-2, 2*E(7)+2*E(7)^-1, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, -2*E(7)^3-2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, 4, -4, -4, 4, 0, -4, 0, 0, 0, 0, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(7)^2-2*E(7)^-2, 2*E(7)+2*E(7)^-1, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, -2*E(7)^3-2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, -2*E(7)-2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, 4, -4, -4, 4, 0, -4, 0, 0, 0, 0, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(7)-2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)+2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, -2*E(7)-2*E(7)^-1, -2*E(7)-2*E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, 4, -4, -4, 4, 0, -4, 0, 0, 0, 0, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(7)^3-2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, -2*E(7)-2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, -2*E(7)^2-2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, -2*E(7)^3-2*E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, -4, -4, 4, 0, 0, 0, 0, 0, 0, 0, -2*E(28)^2-2*E(28)^-2, 2*E(28)^4+2*E(28)^-4, -2*E(28)^6-2*E(28)^-6, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(28)^6+2*E(28)^-6, -2*E(28)^4-2*E(28)^-4, -2*E(28)^6-2*E(28)^-6, 2*E(28)^4+2*E(28)^-4, 2*E(28)^2+2*E(28)^-2, -2*E(28)^2-2*E(28)^-2, 2*E(28)^6+2*E(28)^-6, 2*E(28)^2+2*E(28)^-2, -2*E(28)^4-2*E(28)^-4, -2*E(28)^5-2*E(28)^-5, -2*E(28)^3-2*E(28)^-3, -2*E(28)^5-2*E(28)^-5, -2*E(28)^3-2*E(28)^-3, 2*E(28)+2*E(28)^-1, -2*E(28)-2*E(28)^-1, 2*E(28)^3+2*E(28)^-3, 2*E(28)^5+2*E(28)^-5, 2*E(28)^3+2*E(28)^-3, 2*E(28)^5+2*E(28)^-5, 2*E(28)+2*E(28)^-1, -2*E(28)-2*E(28)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, -4, -4, 4, 0, 0, 0, 0, 0, 0, 0, -2*E(28)^2-2*E(28)^-2, 2*E(28)^4+2*E(28)^-4, -2*E(28)^6-2*E(28)^-6, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(28)^6+2*E(28)^-6, -2*E(28)^4-2*E(28)^-4, -2*E(28)^6-2*E(28)^-6, 2*E(28)^4+2*E(28)^-4, 2*E(28)^2+2*E(28)^-2, -2*E(28)^2-2*E(28)^-2, 2*E(28)^6+2*E(28)^-6, 2*E(28)^2+2*E(28)^-2, -2*E(28)^4-2*E(28)^-4, 2*E(28)^5+2*E(28)^-5, 2*E(28)^3+2*E(28)^-3, 2*E(28)^5+2*E(28)^-5, 2*E(28)^3+2*E(28)^-3, -2*E(28)-2*E(28)^-1, 2*E(28)+2*E(28)^-1, -2*E(28)^3-2*E(28)^-3, -2*E(28)^5-2*E(28)^-5, -2*E(28)^3-2*E(28)^-3, -2*E(28)^5-2*E(28)^-5, -2*E(28)-2*E(28)^-1, 2*E(28)+2*E(28)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, -4, -4, 4, 0, 0, 0, 0, 0, 0, 0, -2*E(28)^6-2*E(28)^-6, -2*E(28)^2-2*E(28)^-2, 2*E(28)^4+2*E(28)^-4, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(28)^4-2*E(28)^-4, 2*E(28)^2+2*E(28)^-2, 2*E(28)^4+2*E(28)^-4, -2*E(28)^2-2*E(28)^-2, 2*E(28)^6+2*E(28)^-6, -2*E(28)^6-2*E(28)^-6, -2*E(28)^4-2*E(28)^-4, 2*E(28)^6+2*E(28)^-6, 2*E(28)^2+2*E(28)^-2, -2*E(28)-2*E(28)^-1, -2*E(28)^5-2*E(28)^-5, -2*E(28)-2*E(28)^-1, -2*E(28)^5-2*E(28)^-5, -2*E(28)^3-2*E(28)^-3, 2*E(28)^3+2*E(28)^-3, 2*E(28)^5+2*E(28)^-5, 2*E(28)+2*E(28)^-1, 2*E(28)^5+2*E(28)^-5, 2*E(28)+2*E(28)^-1, -2*E(28)^3-2*E(28)^-3, 2*E(28)^3+2*E(28)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, -4, -4, 4, 0, 0, 0, 0, 0, 0, 0, -2*E(28)^6-2*E(28)^-6, -2*E(28)^2-2*E(28)^-2, 2*E(28)^4+2*E(28)^-4, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(28)^4-2*E(28)^-4, 2*E(28)^2+2*E(28)^-2, 2*E(28)^4+2*E(28)^-4, -2*E(28)^2-2*E(28)^-2, 2*E(28)^6+2*E(28)^-6, -2*E(28)^6-2*E(28)^-6, -2*E(28)^4-2*E(28)^-4, 2*E(28)^6+2*E(28)^-6, 2*E(28)^2+2*E(28)^-2, 2*E(28)+2*E(28)^-1, 2*E(28)^5+2*E(28)^-5, 2*E(28)+2*E(28)^-1, 2*E(28)^5+2*E(28)^-5, 2*E(28)^3+2*E(28)^-3, -2*E(28)^3-2*E(28)^-3, -2*E(28)^5-2*E(28)^-5, -2*E(28)-2*E(28)^-1, -2*E(28)^5-2*E(28)^-5, -2*E(28)-2*E(28)^-1, 2*E(28)^3+2*E(28)^-3, -2*E(28)^3-2*E(28)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, -4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 2*E(28)^4+2*E(28)^-4, -2*E(28)^6-2*E(28)^-6, -2*E(28)^2-2*E(28)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(28)^2+2*E(28)^-2, 2*E(28)^6+2*E(28)^-6, -2*E(28)^2-2*E(28)^-2, -2*E(28)^6-2*E(28)^-6, -2*E(28)^4-2*E(28)^-4, 2*E(28)^4+2*E(28)^-4, 2*E(28)^2+2*E(28)^-2, -2*E(28)^4-2*E(28)^-4, 2*E(28)^6+2*E(28)^-6, -2*E(28)^3-2*E(28)^-3, 2*E(28)+2*E(28)^-1, -2*E(28)^3-2*E(28)^-3, 2*E(28)+2*E(28)^-1, 2*E(28)^5+2*E(28)^-5, -2*E(28)^5-2*E(28)^-5, -2*E(28)-2*E(28)^-1, 2*E(28)^3+2*E(28)^-3, -2*E(28)-2*E(28)^-1, 2*E(28)^3+2*E(28)^-3, 2*E(28)^5+2*E(28)^-5, -2*E(28)^5-2*E(28)^-5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, -4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 2*E(28)^4+2*E(28)^-4, -2*E(28)^6-2*E(28)^-6, -2*E(28)^2-2*E(28)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(28)^2+2*E(28)^-2, 2*E(28)^6+2*E(28)^-6, -2*E(28)^2-2*E(28)^-2, -2*E(28)^6-2*E(28)^-6, -2*E(28)^4-2*E(28)^-4, 2*E(28)^4+2*E(28)^-4, 2*E(28)^2+2*E(28)^-2, -2*E(28)^4-2*E(28)^-4, 2*E(28)^6+2*E(28)^-6, 2*E(28)^3+2*E(28)^-3, -2*E(28)-2*E(28)^-1, 2*E(28)^3+2*E(28)^-3, -2*E(28)-2*E(28)^-1, -2*E(28)^5-2*E(28)^-5, 2*E(28)^5+2*E(28)^-5, 2*E(28)+2*E(28)^-1, -2*E(28)^3-2*E(28)^-3, 2*E(28)+2*E(28)^-1, -2*E(28)^3-2*E(28)^-3, -2*E(28)^5-2*E(28)^-5, 2*E(28)^5+2*E(28)^-5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]; ConvertToLibraryCharacterTableNC(chartbl_448_43);