/* Group 448.327 downloaded from the LMFDB on 27 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([7, -2, -2, -2, -2, -2, -2, -7, 56, 645, 36, 254, 58, 1684, 851, 102, 1210]); a,b,c,d := Explode([GPC.1, GPC.2, GPC.5, GPC.7]); AssignNames(~GPC, ["a", "b", "b2", "b4", "c", "c2", "d"]); GPerm := PermutationGroup< 27 | (17,18,20,19)(22,23)(24,25)(26,27), (1,2,5,8)(3,9,11,16)(4,12,14,7)(6,13,15,10)(17,19,20,18), (1,3,5,11)(2,6,8,15)(4,13,14,10)(7,16,12,9)(18,19), (1,4,5,14)(2,7,8,12)(3,10,11,13)(6,9,15,16)(17,20)(18,19), (17,20)(18,19), (1,5)(2,8)(3,11)(4,14)(6,15)(7,12)(9,16)(10,13), (21,22,24,26,27,25,23) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_448_327 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, c^2>,< 2, 1, b^4>,< 2, 1, b^4*c^2>,< 4, 2, b^6*c^2>,< 4, 2, b^6>,< 4, 4, a*b^5*c^2>,< 4, 4, a*b>,< 4, 8, a*b^4>,< 4, 14, c>,< 4, 14, b^4*c>,< 4, 28, a*b^7*c^3*d^4>,< 4, 28, a*b^5*c*d^6>,< 4, 28, b^2*c^3*d^2>,< 4, 56, a*b^2*c^3>,< 7, 2, d^2>,< 7, 2, d^4>,< 7, 2, d^6>,< 8, 4, b^7>,< 8, 4, b^5>,< 8, 28, b^3*c^3>,< 8, 28, b*c^3>,< 14, 2, c^2*d>,< 14, 2, c^2*d^3>,< 14, 2, c^2*d^2>,< 14, 2, b^4*d^2>,< 14, 2, b^4*d^6>,< 14, 2, b^4*d^3>,< 14, 2, b^4*c^2*d^2>,< 14, 2, b^4*c^2*d^6>,< 14, 2, b^4*c^2*d^3>,< 28, 4, b^2*c^2*d>,< 28, 4, b^2*c^2*d^3>,< 28, 4, b^2*c^2*d^2>,< 28, 4, b^2*d^2>,< 28, 4, b^6*d^6>,< 28, 4, b^2*d^3>,< 28, 8, a*d>,< 28, 8, a*d^6>,< 28, 8, a*d^3>,< 28, 8, a*d^4>,< 28, 8, a*d^5>,< 28, 8, a*d^2>,< 28, 8, a*b*d>,< 28, 8, a*b*c^2*d>,< 28, 8, a*b*c^2*d^3>,< 28, 8, a*b*d^3>,< 28, 8, a*b*d^2>,< 28, 8, a*b*c^2*d^2>,< 56, 4, b*d>,< 56, 4, b^3*d^3>,< 56, 4, b^3*d^2>,< 56, 4, b*d^2>,< 56, 4, b^5*d^3>,< 56, 4, b^3*d>,< 56, 4, b*d^6>,< 56, 4, b*d^3>,< 56, 4, b^5*d^2>,< 56, 4, b*d^5>,< 56, 4, b*d^4>,< 56, 4, b^5*d>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, -2, 2, 0, 0, 0, 0, 0, -2, 2, 0, 0, 2, 2, 2, 0, 0, 0, 0, 2, -2, -2, 2, -2, -2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, -2, 2, 0, 0, 0, 0, 0, 2, -2, 0, 0, 2, 2, 2, 0, 0, 0, 0, 2, -2, -2, 2, -2, -2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, -2, 0, 0, 0, -2, -2, 0, 0, 2, 0, 2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, -2, 0, 0, 0, 2, 2, 0, 0, -2, 0, 2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,2,-2,2,-2,-2*K.1,2*K.1,0,0,0,0,0,0,0,2,2,2,0,0,0,0,2,-2,-2,2,-2,-2,-2,2,-2,-2,2,-2,2,-2,2,2*K.1,0,0,0,0,-2*K.1,0,0,-2*K.1,2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,2,-2,2,-2,2*K.1,-2*K.1,0,0,0,0,0,0,0,2,2,2,0,0,0,0,2,-2,-2,2,-2,-2,-2,2,-2,-2,2,-2,2,-2,2,-2*K.1,0,0,0,0,2*K.1,0,0,2*K.1,-2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,0,-2,2,0,0,0,0,2,2,2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-2,2,2,-2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,0,-2,2,0,0,0,0,2,2,2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-2,2,2,-2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,0,2,-2,0,0,0,0,2,2,2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-2,2,2,-2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,0,2,-2,0,0,0,0,2,2,2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-2,2,2,-2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,0,0,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,0,0,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,0,0,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,-2,-2,-2,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,0,0,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,-2,-2,-2,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,0,0,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,-2,-2,-2,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,0,0,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,-2,-2,2,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,0,0,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,-2,-2,2,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,0,0,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,-2,-2,2,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,0,0,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-2,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,0,0,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-2,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,0,0,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-2,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,0,0,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,2,-2,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,0,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^9,-1*K.1^4-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^6+K.1^8,K.1^4+K.1^10,-1*K.1^3-K.1^11,-1*K.1^6-K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,2,-2,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,0,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^5+K.1^9,K.1^4+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^8,-1*K.1^4-K.1^10,K.1^3+K.1^11,K.1^6+K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,2,-2,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,0,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^9,K.1^4+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^8,-1*K.1^4-K.1^10,-1*K.1^3-K.1^11,K.1^6+K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,2,-2,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,0,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^5+K.1^9,-1*K.1^4-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^6+K.1^8,K.1^4+K.1^10,K.1^3+K.1^11,-1*K.1^6-K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,2,-2,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,0,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^6-K.1^8,-1*K.1^4-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^5+K.1^9,K.1^4+K.1^10,K.1^6+K.1^8,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1^5+K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,2,-2,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,0,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^6+K.1^8,K.1^4+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^5-K.1^9,-1*K.1^4-K.1^10,-1*K.1^6-K.1^8,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1^5+K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,2,-2,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,0,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^6+K.1^8,K.1^4+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^5+K.1^9,-1*K.1^4-K.1^10,-1*K.1^6-K.1^8,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1^5-K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,2,-2,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,0,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^6-K.1^8,-1*K.1^4-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^5-K.1^9,K.1^4+K.1^10,K.1^6+K.1^8,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1^5-K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,2,-2,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,0,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^3+K.1^11,-1*K.1^6-K.1^8,K.1^4+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^6+K.1^8,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^4-K.1^10,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,2,-2,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,0,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^3-K.1^11,K.1^6+K.1^8,-1*K.1^4-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^8,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^4+K.1^10,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,2,-2,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,0,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^3+K.1^11,K.1^6+K.1^8,-1*K.1^4-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^8,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^4+K.1^10,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,2,-2,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,0,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^3-K.1^11,-1*K.1^6-K.1^8,K.1^4+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^6+K.1^8,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^4-K.1^10,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[4, -4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 0, 0, 0, 0, -4, -4, -4, -4, -4, 4, 4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,-4,-4,4,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,-4,-4,4,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,-4,-4,4,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,-4,-4,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,-4,-4,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,-4,-4,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,0,0,0,0,-2*K.1^8-2*K.1^-8,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,2*K.1^8+2*K.1^-8,-2*K.1^4-2*K.1^-4,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,K.1^5+K.1^9-K.1^19-K.1^23,K.1^5+K.1^9-K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,-1*K.1^5-K.1^9+K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,-1*K.1^5-K.1^9+K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,0,0,0,0,-2*K.1^8-2*K.1^-8,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,2*K.1^8+2*K.1^-8,-2*K.1^4-2*K.1^-4,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,-1*K.1^5-K.1^9+K.1^19+K.1^23,-1*K.1^5-K.1^9+K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,K.1^5+K.1^9-K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,K.1^5+K.1^9-K.1^19-K.1^23,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,-2*K.1^4-2*K.1^-4,-2*K.1^12-2*K.1^-12,-2*K.1^8-2*K.1^-8,2*K.1^8+2*K.1^-8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^5-K.1^9+K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,-1*K.1^5-K.1^9+K.1^19+K.1^23,K.1^5+K.1^9-K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,K.1^5+K.1^9-K.1^19-K.1^23,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,-2*K.1^4-2*K.1^-4,-2*K.1^12-2*K.1^-12,-2*K.1^8-2*K.1^-8,2*K.1^8+2*K.1^-8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^5+K.1^9-K.1^19-K.1^23,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,K.1^5+K.1^9-K.1^19-K.1^23,-1*K.1^5-K.1^9+K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,-1*K.1^5-K.1^9+K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,0,0,0,0,0,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,0,0,0,0,2*K.1^12+2*K.1^-12,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,-2*K.1^12-2*K.1^-12,2*K.1^8+2*K.1^-8,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,K.1^5+K.1^9-K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,-1*K.1^5-K.1^9+K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,-1*K.1^5-K.1^9+K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,K.1^5+K.1^9-K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,0,0,0,0,0,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,0,0,0,0,2*K.1^12+2*K.1^-12,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,-2*K.1^12-2*K.1^-12,2*K.1^8+2*K.1^-8,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,-1*K.1^5-K.1^9+K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,K.1^5+K.1^9-K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,K.1^5+K.1^9-K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,-1*K.1^5-K.1^9+K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,0,0,-2*K.1^8-2*K.1^-8,2*K.1^8+2*K.1^-8,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^12-2*K.1^-12,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1^5-K.1^9+K.1^19-K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,0,0,-2*K.1^8-2*K.1^-8,2*K.1^8+2*K.1^-8,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^12-2*K.1^-12,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,0,0,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,-2*K.1^12-2*K.1^-12,2*K.1^12+2*K.1^-12,2*K.1^8+2*K.1^-8,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,-2*K.1^8-2*K.1^-8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^5-K.1^9+K.1^19-K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,0,0,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,-2*K.1^12-2*K.1^-12,2*K.1^12+2*K.1^-12,2*K.1^8+2*K.1^-8,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,-2*K.1^8-2*K.1^-8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1^5-K.1^9+K.1^19-K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,0,0,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,2*K.1^8+2*K.1^-8,-2*K.1^8-2*K.1^-8,-2*K.1^4-2*K.1^-4,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1^5-K.1^9+K.1^19-K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1^5+K.1^9-K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,0,0,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,2*K.1^8+2*K.1^-8,-2*K.1^8-2*K.1^-8,-2*K.1^4-2*K.1^-4,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1^5-K.1^9+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1^5-K.1^9+K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_448_327:= KnownIrreducibles(CR);