# Group 444672.d downloaded from the LMFDB on 08 November 2025. ## Various presentations of this group are stored in this file: # GPC is polycyclic presentation GPerm is permutation group # GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups # Many characteristics of the group are stored as booleans in a record: # Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, # metacyclic, monomial, nilpotent, perfect, quasisimple, rational, # solvable, supersolvable # Constructions GPC := PcGroupCode(751439422285399723084728580634392475349297656606895727501979273805193502120847420781610125689145843282026370474097146234748295606108717886994247407825282068300540623424406885855916996249548440770356717644133532280271955546529523807400920076913228169841585385107358079,444672); a := GPC.1; b := GPC.7; GLFp := Group([[[ Z(193)^0, Z(193)^0 ], [ 0*Z(193), Z(193)^0 ]], [[ Z(193), 0*Z(193) ], [ 0*Z(193), Z(193)^7 ]], [[ Z(193)^2, 0*Z(193) ], [ 0*Z(193), Z(193)^190 ]]]); # Booleans booleans_444672_d := rec( Agroup := true, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := true, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true);