/* Group 420.32 downloaded from the LMFDB on 12 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([5, 3, 2, 5, 2, 7, 2281, 26, 903, 58]); a,b,c := Explode([GPC.1, GPC.2, GPC.4]); AssignNames(~GPC, ["a", "b", "b2", "c", "c2"]); GPerm := PermutationGroup< 16 | (14,15,16), (8,9,10,11,12), (1,2,3,4,5,6,7), (13,14)(15,16), (13,15)(14,16) >; GLZN := MatrixGroup< 2, Integers(116) | [[59, 29, 87, 88], [1, 84, 28, 33], [81, 0, 0, 81], [59, 0, 58, 59], [1, 58, 58, 1]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_420_32 := rec< RF | Agroup := true, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := false>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 3, c^7>,< 3, 4, a^2>,< 3, 4, a>,< 5, 1, b^8>,< 5, 1, b^2>,< 5, 1, b^6>,< 5, 1, b^4>,< 7, 1, c^10>,< 7, 1, c^4>,< 7, 1, c^6>,< 7, 1, c^8>,< 7, 1, c^2>,< 7, 1, c^12>,< 10, 3, b^4*c^7>,< 10, 3, b^6*c^7>,< 10, 3, b^2*c^7>,< 10, 3, b^8*c^7>,< 14, 3, c^5>,< 14, 3, c^9>,< 14, 3, c>,< 14, 3, c^13>,< 14, 3, c^11>,< 14, 3, c^3>,< 15, 4, a*b^4>,< 15, 4, a^2*b^6>,< 15, 4, a^2*b^8>,< 15, 4, a*b^2>,< 15, 4, a*b^6>,< 15, 4, a^2*b^4>,< 15, 4, a*b^8>,< 15, 4, a^2*b^2>,< 21, 4, a^2*c^10>,< 21, 4, a*c^4>,< 21, 4, a*c^6>,< 21, 4, a^2*c^8>,< 21, 4, a^2*c^12>,< 21, 4, a*c^2>,< 21, 4, a*c^8>,< 21, 4, a^2*c^6>,< 21, 4, a*c^10>,< 21, 4, a^2*c^4>,< 21, 4, a^2*c^2>,< 21, 4, a*c^12>,< 35, 1, b^4*c^2>,< 35, 1, b^6*c^12>,< 35, 1, b^8*c^4>,< 35, 1, b^2*c^10>,< 35, 1, b^2*c^6>,< 35, 1, b^8*c^8>,< 35, 1, b^6*c^8>,< 35, 1, b^4*c^6>,< 35, 1, b^4*c^12>,< 35, 1, b^6*c^2>,< 35, 1, b^2*c^2>,< 35, 1, b^8*c^12>,< 35, 1, b^6*c^4>,< 35, 1, b^4*c^10>,< 35, 1, b^4*c^8>,< 35, 1, b^6*c^6>,< 35, 1, b^8*c^10>,< 35, 1, b^2*c^4>,< 35, 1, b^2*c^12>,< 35, 1, b^8*c^2>,< 35, 1, b^4*c^4>,< 35, 1, b^6*c^10>,< 35, 1, b^8*c^6>,< 35, 1, b^2*c^8>,< 70, 3, b^2*c>,< 70, 3, b^3*c^6>,< 70, 3, b*c^10>,< 70, 3, b^9*c^4>,< 70, 3, b^3*c^2>,< 70, 3, b^2*c^5>,< 70, 3, b^7*c^4>,< 70, 3, b^8*c^3>,< 70, 3, b*c^6>,< 70, 3, b^4*c>,< 70, 3, b^4*c^3>,< 70, 3, b*c^4>,< 70, 3, b^8*c^5>,< 70, 3, b^7*c^2>,< 70, 3, b*c^2>,< 70, 3, b^4*c^5>,< 70, 3, b^9*c^6>,< 70, 3, b*c>,< 70, 3, b^8*c>,< 70, 3, b^7*c^6>,< 70, 3, b^2*c^3>,< 70, 3, b^3*c^4>,< 70, 3, b*c^12>,< 70, 3, b^9*c^2>,< 105, 4, a*b^2*c^2>,< 105, 4, a^2*b^8*c^12>,< 105, 4, a^2*b^4*c^4>,< 105, 4, a*b*c^10>,< 105, 4, a*b^8*c>,< 105, 4, a^2*b^2*c^6>,< 105, 4, a^2*b*c^2>,< 105, 4, a*b^4*c^12>,< 105, 4, a^2*b^2*c>,< 105, 4, a*b^8*c^6>,< 105, 4, a*b*c^12>,< 105, 4, a^2*b^4*c^2>,< 105, 4, a*b^2*c^4>,< 105, 4, a^2*b^8*c^10>,< 105, 4, a^2*b^4*c^6>,< 105, 4, a*b*c>,< 105, 4, a*b^8*c^10>,< 105, 4, a^2*b^2*c^4>,< 105, 4, a*b^4*c^2>,< 105, 4, a^2*b*c^12>,< 105, 4, a^2*b*c^4>,< 105, 4, a*b^4*c^10>,< 105, 4, a^2*b^2*c^10>,< 105, 4, a*b^8*c^4>,< 105, 4, a^2*b^8*c^2>,< 105, 4, a*b^2*c^12>,< 105, 4, a*b^2*c^6>,< 105, 4, a^2*b^8*c>,< 105, 4, a^2*b^4*c>,< 105, 4, a*b*c^6>,< 105, 4, a*b^8*c^12>,< 105, 4, a^2*b^2*c^2>,< 105, 4, a*b^4*c^4>,< 105, 4, a^2*b*c^10>,< 105, 4, a^2*b*c^6>,< 105, 4, a*b^4*c>,< 105, 4, a^2*b^2*c^12>,< 105, 4, a*b^8*c^2>,< 105, 4, a*b*c^2>,< 105, 4, a^2*b^4*c^12>,< 105, 4, a^2*b^8*c^4>,< 105, 4, a*b^2*c^10>,< 105, 4, a*b^2*c>,< 105, 4, a^2*b^8*c^6>,< 105, 4, a^2*b^4*c^10>,< 105, 4, a*b*c^4>,< 105, 4, a*b^4*c^6>,< 105, 4, a^2*b*c>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,K.1^-2,K.1^2,K.1,K.1^-1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-2,K.1^2,1,1,1,1,1,1,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^-2,K.1,K.1,K.1^2,K.1^-2,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-2,K.1^2,K.1,K.1^2,K.1^-2,K.1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^2,K.1,K.1^2,K.1^-2,K.1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-1,K.1^2,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,K.1^2,K.1^-2,K.1^-1,K.1,1,1,1,1,1,1,K.1^-1,K.1,K.1^2,K.1^-2,1,1,1,1,1,1,K.1^-1,K.1^2,K.1^-2,K.1,K.1^2,K.1^-1,K.1^-2,K.1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-2,K.1^2,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1^2,K.1,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-2,K.1^2,K.1,K.1,K.1^2,K.1^-1,K.1,K.1,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1,K.1,K.1^-1,K.1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,K.1^-1,K.1,K.1^-2,K.1^2,1,1,1,1,1,1,K.1^-2,K.1^2,K.1^-1,K.1,1,1,1,1,1,1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^2,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1^-1,K.1,K.1,K.1^2,K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1,K.1,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^2,K.1^2,K.1,K.1,K.1,K.1^-1,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-1,K.1,K.1^-2,K.1,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-1,K.1,K.1,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1,K.1^-2,K.1,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^2,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,K.1,K.1^-1,K.1^2,K.1^-2,1,1,1,1,1,1,K.1^2,K.1^-2,K.1,K.1^-1,1,1,1,1,1,1,K.1^2,K.1,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^-2,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-1,K.1^2,K.1^-2,K.1,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^2,K.1^2,K.1^-1,K.1,K.1,K.1,K.1^-2,K.1^-1,K.1,K.1^2,K.1,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-1,K.1^2,K.1^-1,K.1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-1,K.1^2,K.1^-1,K.1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-1,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,K.1^-3,K.1^3,K.1^2,K.1^-2,K.1^-1,K.1,1,1,1,1,K.1^-2,K.1^2,K.1,K.1^-1,K.1^3,K.1^-3,1,1,1,1,1,1,1,1,K.1,K.1^2,K.1^3,K.1^-3,K.1,K.1^-2,K.1^-2,K.1^-3,K.1^3,K.1^-1,K.1^2,K.1^-1,K.1^-3,K.1,K.1,K.1^-3,K.1^2,K.1^-2,K.1^2,K.1^-3,K.1^-3,K.1,K.1,K.1^-1,K.1^2,K.1^-2,K.1^3,K.1^-2,K.1^3,K.1^-1,K.1^3,K.1^-1,K.1^2,K.1^3,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^3,K.1,K.1^3,K.1^2,K.1^-3,K.1^-2,K.1,K.1^-2,K.1^-3,K.1^3,K.1,K.1^-3,K.1^-1,K.1^-1,K.1^3,K.1^-2,K.1^2,K.1^-3,K.1,K.1^-1,K.1^-2,K.1^3,K.1^-2,K.1,K.1^3,K.1^3,K.1,K.1^-3,K.1^-3,K.1^-3,K.1^2,K.1^-1,K.1^-3,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1^3,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1^-3,K.1^2,K.1^-1,K.1^-3,K.1^2,K.1^-1,K.1^-3,K.1^3,K.1,K.1^-1,K.1,K.1^-3,K.1,K.1^3,K.1,K.1^-2,K.1^2,K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,K.1^3,K.1^-3,K.1^-2,K.1^2,K.1,K.1^-1,1,1,1,1,K.1^2,K.1^-2,K.1^-1,K.1,K.1^-3,K.1^3,1,1,1,1,1,1,1,1,K.1^-1,K.1^-2,K.1^-3,K.1^3,K.1^-1,K.1^2,K.1^2,K.1^3,K.1^-3,K.1,K.1^-2,K.1,K.1^3,K.1^-1,K.1^-1,K.1^3,K.1^-2,K.1^2,K.1^-2,K.1^3,K.1^3,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-3,K.1^2,K.1^-3,K.1,K.1^-3,K.1,K.1^-2,K.1^-3,K.1^2,K.1,K.1,K.1^-2,K.1^-2,K.1^2,K.1^-3,K.1^-1,K.1^-3,K.1^-2,K.1^3,K.1^2,K.1^-1,K.1^2,K.1^3,K.1^-3,K.1^-1,K.1^3,K.1,K.1,K.1^-3,K.1^2,K.1^-2,K.1^3,K.1^-1,K.1,K.1^2,K.1^-3,K.1^2,K.1^-1,K.1^-3,K.1^-3,K.1^-1,K.1^3,K.1^3,K.1^3,K.1^-2,K.1,K.1^3,K.1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1,K.1^-3,K.1,K.1^-1,K.1^2,K.1^2,K.1^2,K.1,K.1^-2,K.1^3,K.1^-2,K.1,K.1^3,K.1^-2,K.1,K.1^3,K.1^-3,K.1^-1,K.1,K.1^-1,K.1^3,K.1^-1,K.1^-3,K.1^-1,K.1^2,K.1^-2,K.1^-3,K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-3,K.1^3,1,1,1,1,K.1,K.1^-1,K.1^3,K.1^-3,K.1^2,K.1^-2,1,1,1,1,1,1,1,1,K.1^3,K.1^-1,K.1^2,K.1^-2,K.1^3,K.1,K.1,K.1^-2,K.1^2,K.1^-3,K.1^-1,K.1^-3,K.1^-2,K.1^3,K.1^3,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^3,K.1^3,K.1^-3,K.1^-1,K.1,K.1^2,K.1,K.1^2,K.1^-3,K.1^2,K.1^-3,K.1^-1,K.1^2,K.1,K.1^-3,K.1^-3,K.1^-1,K.1^-1,K.1,K.1^2,K.1^3,K.1^2,K.1^-1,K.1^-2,K.1,K.1^3,K.1,K.1^-2,K.1^2,K.1^3,K.1^-2,K.1^-3,K.1^-3,K.1^2,K.1,K.1^-1,K.1^-2,K.1^3,K.1^-3,K.1,K.1^2,K.1,K.1^3,K.1^2,K.1^2,K.1^3,K.1^-2,K.1^-2,K.1^-2,K.1^-1,K.1^-3,K.1^-2,K.1^-3,K.1,K.1^-1,K.1^3,K.1,K.1^-1,K.1^-1,K.1^-3,K.1^2,K.1^-3,K.1^3,K.1,K.1,K.1,K.1^-3,K.1^-1,K.1^-2,K.1^-1,K.1^-3,K.1^-2,K.1^-1,K.1^-3,K.1^-2,K.1^2,K.1^3,K.1^-3,K.1^3,K.1^-2,K.1^3,K.1^2,K.1^3,K.1,K.1^-1,K.1^2,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,K.1^2,K.1^-2,K.1,K.1^-1,K.1^3,K.1^-3,1,1,1,1,K.1^-1,K.1,K.1^-3,K.1^3,K.1^-2,K.1^2,1,1,1,1,1,1,1,1,K.1^-3,K.1,K.1^-2,K.1^2,K.1^-3,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1^3,K.1,K.1^3,K.1^2,K.1^-3,K.1^-3,K.1^2,K.1,K.1^-1,K.1,K.1^2,K.1^2,K.1^-3,K.1^-3,K.1^3,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^-2,K.1^3,K.1^-2,K.1^3,K.1,K.1^-2,K.1^-1,K.1^3,K.1^3,K.1,K.1,K.1^-1,K.1^-2,K.1^-3,K.1^-2,K.1,K.1^2,K.1^-1,K.1^-3,K.1^-1,K.1^2,K.1^-2,K.1^-3,K.1^2,K.1^3,K.1^3,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-3,K.1^3,K.1^-1,K.1^-2,K.1^-1,K.1^-3,K.1^-2,K.1^-2,K.1^-3,K.1^2,K.1^2,K.1^2,K.1,K.1^3,K.1^2,K.1^3,K.1^-1,K.1,K.1^-3,K.1^-1,K.1,K.1,K.1^3,K.1^-2,K.1^3,K.1^-3,K.1^-1,K.1^-1,K.1^-1,K.1^3,K.1,K.1^2,K.1,K.1^3,K.1^2,K.1,K.1^3,K.1^2,K.1^-2,K.1^-3,K.1^3,K.1^-3,K.1^2,K.1^-3,K.1^-2,K.1^-3,K.1^-1,K.1,K.1^-2,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1^3,K.1^-3,K.1^2,K.1^-2,1,1,1,1,K.1^-3,K.1^3,K.1^-2,K.1^2,K.1,K.1^-1,1,1,1,1,1,1,1,1,K.1^-2,K.1^3,K.1,K.1^-1,K.1^-2,K.1^-3,K.1^-3,K.1^-1,K.1,K.1^2,K.1^3,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^3,K.1^-3,K.1^3,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1^3,K.1^-3,K.1,K.1^-3,K.1,K.1^2,K.1,K.1^2,K.1^3,K.1,K.1^-3,K.1^2,K.1^2,K.1^3,K.1^3,K.1^-3,K.1,K.1^-2,K.1,K.1^3,K.1^-1,K.1^-3,K.1^-2,K.1^-3,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1,K.1^-3,K.1^3,K.1^-1,K.1^-2,K.1^2,K.1^-3,K.1,K.1^-3,K.1^-2,K.1,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^3,K.1^2,K.1^-1,K.1^2,K.1^-3,K.1^3,K.1^-2,K.1^-3,K.1^3,K.1^3,K.1^2,K.1,K.1^2,K.1^-2,K.1^-3,K.1^-3,K.1^-3,K.1^2,K.1^3,K.1^-1,K.1^3,K.1^2,K.1^-1,K.1^3,K.1^2,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^-3,K.1^3,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-3,K.1^3,K.1^-2,K.1^2,1,1,1,1,K.1^3,K.1^-3,K.1^2,K.1^-2,K.1^-1,K.1,1,1,1,1,1,1,1,1,K.1^2,K.1^-3,K.1^-1,K.1,K.1^2,K.1^3,K.1^3,K.1,K.1^-1,K.1^-2,K.1^-3,K.1^-2,K.1,K.1^2,K.1^2,K.1,K.1^-3,K.1^3,K.1^-3,K.1,K.1,K.1^2,K.1^2,K.1^-2,K.1^-3,K.1^3,K.1^-1,K.1^3,K.1^-1,K.1^-2,K.1^-1,K.1^-2,K.1^-3,K.1^-1,K.1^3,K.1^-2,K.1^-2,K.1^-3,K.1^-3,K.1^3,K.1^-1,K.1^2,K.1^-1,K.1^-3,K.1,K.1^3,K.1^2,K.1^3,K.1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^3,K.1^-3,K.1,K.1^2,K.1^-2,K.1^3,K.1^-1,K.1^3,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1,K.1,K.1,K.1^-3,K.1^-2,K.1,K.1^-2,K.1^3,K.1^-3,K.1^2,K.1^3,K.1^-3,K.1^-3,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^3,K.1^3,K.1^3,K.1^-2,K.1^-3,K.1,K.1^-3,K.1^-2,K.1,K.1^-3,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1,K.1^2,K.1^-1,K.1^2,K.1^3,K.1^-3,K.1^-1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,1,K.1^-5,K.1^5,K.1^-6,K.1^6,K.1^3,K.1^-3,1,1,1,1,1,1,K.1^3,K.1^-3,K.1^-6,K.1^6,1,1,1,1,1,1,K.1^-7,K.1^4,K.1^-4,K.1^7,K.1^-1,K.1^-2,K.1,K.1^2,K.1^5,K.1^5,K.1^5,K.1^5,K.1^-5,K.1^-5,K.1^5,K.1^-5,K.1^-5,K.1^-5,K.1^-5,K.1^5,K.1^-6,K.1^-6,K.1^6,K.1^6,K.1^-3,K.1^3,K.1^3,K.1^-3,K.1^3,K.1^-3,K.1^3,K.1^6,K.1^-6,K.1^6,K.1^3,K.1^-3,K.1^-6,K.1^3,K.1^-3,K.1^-6,K.1^6,K.1^6,K.1^-6,K.1^-3,K.1^-3,K.1^3,K.1^-3,K.1^3,K.1^-3,K.1^3,K.1^3,K.1^6,K.1^-6,K.1^-3,K.1^-3,K.1^6,K.1^6,K.1^6,K.1^-6,K.1^3,K.1^3,K.1^6,K.1^-6,K.1^-6,K.1^-6,K.1^-3,K.1^6,K.1^-6,K.1^-7,K.1^4,K.1^7,K.1^-4,K.1^-7,K.1^-1,K.1,K.1^-2,K.1,K.1^-1,K.1^-7,K.1^-4,K.1^7,K.1^4,K.1^-4,K.1,K.1^4,K.1^2,K.1^7,K.1^4,K.1^-2,K.1^7,K.1^2,K.1^-7,K.1^-1,K.1,K.1^-2,K.1,K.1^-1,K.1^-7,K.1^-4,K.1^7,K.1^4,K.1^-2,K.1^-1,K.1^-4,K.1^2,K.1^2,K.1^-7,K.1^7,K.1^2,K.1^-1,K.1,K.1^-2,K.1^4,K.1^2,K.1^-4,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,1,K.1^5,K.1^-5,K.1^6,K.1^-6,K.1^-3,K.1^3,1,1,1,1,1,1,K.1^-3,K.1^3,K.1^6,K.1^-6,1,1,1,1,1,1,K.1^7,K.1^-4,K.1^4,K.1^-7,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-5,K.1^-5,K.1^-5,K.1^-5,K.1^5,K.1^5,K.1^-5,K.1^5,K.1^5,K.1^5,K.1^5,K.1^-5,K.1^6,K.1^6,K.1^-6,K.1^-6,K.1^3,K.1^-3,K.1^-3,K.1^3,K.1^-3,K.1^3,K.1^-3,K.1^-6,K.1^6,K.1^-6,K.1^-3,K.1^3,K.1^6,K.1^-3,K.1^3,K.1^6,K.1^-6,K.1^-6,K.1^6,K.1^3,K.1^3,K.1^-3,K.1^3,K.1^-3,K.1^3,K.1^-3,K.1^-3,K.1^-6,K.1^6,K.1^3,K.1^3,K.1^-6,K.1^-6,K.1^-6,K.1^6,K.1^-3,K.1^-3,K.1^-6,K.1^6,K.1^6,K.1^6,K.1^3,K.1^-6,K.1^6,K.1^7,K.1^-4,K.1^-7,K.1^4,K.1^7,K.1,K.1^-1,K.1^2,K.1^-1,K.1,K.1^7,K.1^4,K.1^-7,K.1^-4,K.1^4,K.1^-1,K.1^-4,K.1^-2,K.1^-7,K.1^-4,K.1^2,K.1^-7,K.1^-2,K.1^7,K.1,K.1^-1,K.1^2,K.1^-1,K.1,K.1^7,K.1^4,K.1^-7,K.1^-4,K.1^2,K.1,K.1^4,K.1^-2,K.1^-2,K.1^7,K.1^-7,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-4,K.1^-2,K.1^4,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,1,K.1^-5,K.1^5,K.1^6,K.1^-6,K.1^-3,K.1^3,1,1,1,1,1,1,K.1^-3,K.1^3,K.1^6,K.1^-6,1,1,1,1,1,1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-4,K.1^7,K.1^4,K.1^-7,K.1^5,K.1^5,K.1^5,K.1^5,K.1^-5,K.1^-5,K.1^5,K.1^-5,K.1^-5,K.1^-5,K.1^-5,K.1^5,K.1^6,K.1^6,K.1^-6,K.1^-6,K.1^3,K.1^-3,K.1^-3,K.1^3,K.1^-3,K.1^3,K.1^-3,K.1^-6,K.1^6,K.1^-6,K.1^-3,K.1^3,K.1^6,K.1^-3,K.1^3,K.1^6,K.1^-6,K.1^-6,K.1^6,K.1^3,K.1^3,K.1^-3,K.1^3,K.1^-3,K.1^3,K.1^-3,K.1^-3,K.1^-6,K.1^6,K.1^3,K.1^3,K.1^-6,K.1^-6,K.1^-6,K.1^6,K.1^-3,K.1^-3,K.1^-6,K.1^6,K.1^6,K.1^6,K.1^3,K.1^-6,K.1^6,K.1^2,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-4,K.1^4,K.1^7,K.1^4,K.1^-4,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^4,K.1,K.1^-7,K.1^-2,K.1,K.1^7,K.1^-2,K.1^-7,K.1^2,K.1^-4,K.1^4,K.1^7,K.1^4,K.1^-4,K.1^2,K.1^-1,K.1^-2,K.1,K.1^7,K.1^-4,K.1^-1,K.1^-7,K.1^-7,K.1^2,K.1^-2,K.1^-7,K.1^-4,K.1^4,K.1^7,K.1,K.1^-7,K.1^-1,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,1,K.1^5,K.1^-5,K.1^-6,K.1^6,K.1^3,K.1^-3,1,1,1,1,1,1,K.1^3,K.1^-3,K.1^-6,K.1^6,1,1,1,1,1,1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^4,K.1^-7,K.1^-4,K.1^7,K.1^-5,K.1^-5,K.1^-5,K.1^-5,K.1^5,K.1^5,K.1^-5,K.1^5,K.1^5,K.1^5,K.1^5,K.1^-5,K.1^-6,K.1^-6,K.1^6,K.1^6,K.1^-3,K.1^3,K.1^3,K.1^-3,K.1^3,K.1^-3,K.1^3,K.1^6,K.1^-6,K.1^6,K.1^3,K.1^-3,K.1^-6,K.1^3,K.1^-3,K.1^-6,K.1^6,K.1^6,K.1^-6,K.1^-3,K.1^-3,K.1^3,K.1^-3,K.1^3,K.1^-3,K.1^3,K.1^3,K.1^6,K.1^-6,K.1^-3,K.1^-3,K.1^6,K.1^6,K.1^6,K.1^-6,K.1^3,K.1^3,K.1^6,K.1^-6,K.1^-6,K.1^-6,K.1^-3,K.1^6,K.1^-6,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-2,K.1^4,K.1^-4,K.1^-7,K.1^-4,K.1^4,K.1^-2,K.1,K.1^2,K.1^-1,K.1,K.1^-4,K.1^-1,K.1^7,K.1^2,K.1^-1,K.1^-7,K.1^2,K.1^7,K.1^-2,K.1^4,K.1^-4,K.1^-7,K.1^-4,K.1^4,K.1^-2,K.1,K.1^2,K.1^-1,K.1^-7,K.1^4,K.1,K.1^7,K.1^7,K.1^-2,K.1^2,K.1^7,K.1^4,K.1^-4,K.1^-7,K.1^-1,K.1^7,K.1,K.1^-7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,1,K.1^-5,K.1^5,K.1^-3,K.1^3,K.1^-6,K.1^6,1,1,1,1,1,1,K.1^-6,K.1^6,K.1^-3,K.1^3,1,1,1,1,1,1,K.1^-1,K.1^7,K.1^-7,K.1,K.1^2,K.1^4,K.1^-2,K.1^-4,K.1^5,K.1^5,K.1^5,K.1^5,K.1^-5,K.1^-5,K.1^5,K.1^-5,K.1^-5,K.1^-5,K.1^-5,K.1^5,K.1^-3,K.1^-3,K.1^3,K.1^3,K.1^6,K.1^-6,K.1^-6,K.1^6,K.1^-6,K.1^6,K.1^-6,K.1^3,K.1^-3,K.1^3,K.1^-6,K.1^6,K.1^-3,K.1^-6,K.1^6,K.1^-3,K.1^3,K.1^3,K.1^-3,K.1^6,K.1^6,K.1^-6,K.1^6,K.1^-6,K.1^6,K.1^-6,K.1^-6,K.1^3,K.1^-3,K.1^6,K.1^6,K.1^3,K.1^3,K.1^3,K.1^-3,K.1^-6,K.1^-6,K.1^3,K.1^-3,K.1^-3,K.1^-3,K.1^6,K.1^3,K.1^-3,K.1^-1,K.1^7,K.1,K.1^-7,K.1^-1,K.1^2,K.1^-2,K.1^4,K.1^-2,K.1^2,K.1^-1,K.1^-7,K.1,K.1^7,K.1^-7,K.1^-2,K.1^7,K.1^-4,K.1,K.1^7,K.1^4,K.1,K.1^-4,K.1^-1,K.1^2,K.1^-2,K.1^4,K.1^-2,K.1^2,K.1^-1,K.1^-7,K.1,K.1^7,K.1^4,K.1^2,K.1^-7,K.1^-4,K.1^-4,K.1^-1,K.1,K.1^-4,K.1^2,K.1^-2,K.1^4,K.1^7,K.1^-4,K.1^-7,K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,1,K.1^5,K.1^-5,K.1^3,K.1^-3,K.1^6,K.1^-6,1,1,1,1,1,1,K.1^6,K.1^-6,K.1^3,K.1^-3,1,1,1,1,1,1,K.1,K.1^-7,K.1^7,K.1^-1,K.1^-2,K.1^-4,K.1^2,K.1^4,K.1^-5,K.1^-5,K.1^-5,K.1^-5,K.1^5,K.1^5,K.1^-5,K.1^5,K.1^5,K.1^5,K.1^5,K.1^-5,K.1^3,K.1^3,K.1^-3,K.1^-3,K.1^-6,K.1^6,K.1^6,K.1^-6,K.1^6,K.1^-6,K.1^6,K.1^-3,K.1^3,K.1^-3,K.1^6,K.1^-6,K.1^3,K.1^6,K.1^-6,K.1^3,K.1^-3,K.1^-3,K.1^3,K.1^-6,K.1^-6,K.1^6,K.1^-6,K.1^6,K.1^-6,K.1^6,K.1^6,K.1^-3,K.1^3,K.1^-6,K.1^-6,K.1^-3,K.1^-3,K.1^-3,K.1^3,K.1^6,K.1^6,K.1^-3,K.1^3,K.1^3,K.1^3,K.1^-6,K.1^-3,K.1^3,K.1,K.1^-7,K.1^-1,K.1^7,K.1,K.1^-2,K.1^2,K.1^-4,K.1^2,K.1^-2,K.1,K.1^7,K.1^-1,K.1^-7,K.1^7,K.1^2,K.1^-7,K.1^4,K.1^-1,K.1^-7,K.1^-4,K.1^-1,K.1^4,K.1,K.1^-2,K.1^2,K.1^-4,K.1^2,K.1^-2,K.1,K.1^7,K.1^-1,K.1^-7,K.1^-4,K.1^-2,K.1^7,K.1^4,K.1^4,K.1,K.1^-1,K.1^4,K.1^-2,K.1^2,K.1^-4,K.1^-7,K.1^4,K.1^7,K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,1,K.1^-5,K.1^5,K.1^3,K.1^-3,K.1^6,K.1^-6,1,1,1,1,1,1,K.1^6,K.1^-6,K.1^3,K.1^-3,1,1,1,1,1,1,K.1^-4,K.1^-2,K.1^2,K.1^4,K.1^-7,K.1,K.1^7,K.1^-1,K.1^5,K.1^5,K.1^5,K.1^5,K.1^-5,K.1^-5,K.1^5,K.1^-5,K.1^-5,K.1^-5,K.1^-5,K.1^5,K.1^3,K.1^3,K.1^-3,K.1^-3,K.1^-6,K.1^6,K.1^6,K.1^-6,K.1^6,K.1^-6,K.1^6,K.1^-3,K.1^3,K.1^-3,K.1^6,K.1^-6,K.1^3,K.1^6,K.1^-6,K.1^3,K.1^-3,K.1^-3,K.1^3,K.1^-6,K.1^-6,K.1^6,K.1^-6,K.1^6,K.1^-6,K.1^6,K.1^6,K.1^-3,K.1^3,K.1^-6,K.1^-6,K.1^-3,K.1^-3,K.1^-3,K.1^3,K.1^6,K.1^6,K.1^-3,K.1^3,K.1^3,K.1^3,K.1^-6,K.1^-3,K.1^3,K.1^-4,K.1^-2,K.1^4,K.1^2,K.1^-4,K.1^-7,K.1^7,K.1,K.1^7,K.1^-7,K.1^-4,K.1^2,K.1^4,K.1^-2,K.1^2,K.1^7,K.1^-2,K.1^-1,K.1^4,K.1^-2,K.1,K.1^4,K.1^-1,K.1^-4,K.1^-7,K.1^7,K.1,K.1^7,K.1^-7,K.1^-4,K.1^2,K.1^4,K.1^-2,K.1,K.1^-7,K.1^2,K.1^-1,K.1^-1,K.1^-4,K.1^4,K.1^-1,K.1^-7,K.1^7,K.1,K.1^-2,K.1^-1,K.1^2,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,1,K.1^5,K.1^-5,K.1^-3,K.1^3,K.1^-6,K.1^6,1,1,1,1,1,1,K.1^-6,K.1^6,K.1^-3,K.1^3,1,1,1,1,1,1,K.1^4,K.1^2,K.1^-2,K.1^-4,K.1^7,K.1^-1,K.1^-7,K.1,K.1^-5,K.1^-5,K.1^-5,K.1^-5,K.1^5,K.1^5,K.1^-5,K.1^5,K.1^5,K.1^5,K.1^5,K.1^-5,K.1^-3,K.1^-3,K.1^3,K.1^3,K.1^6,K.1^-6,K.1^-6,K.1^6,K.1^-6,K.1^6,K.1^-6,K.1^3,K.1^-3,K.1^3,K.1^-6,K.1^6,K.1^-3,K.1^-6,K.1^6,K.1^-3,K.1^3,K.1^3,K.1^-3,K.1^6,K.1^6,K.1^-6,K.1^6,K.1^-6,K.1^6,K.1^-6,K.1^-6,K.1^3,K.1^-3,K.1^6,K.1^6,K.1^3,K.1^3,K.1^3,K.1^-3,K.1^-6,K.1^-6,K.1^3,K.1^-3,K.1^-3,K.1^-3,K.1^6,K.1^3,K.1^-3,K.1^4,K.1^2,K.1^-4,K.1^-2,K.1^4,K.1^7,K.1^-7,K.1^-1,K.1^-7,K.1^7,K.1^4,K.1^-2,K.1^-4,K.1^2,K.1^-2,K.1^-7,K.1^2,K.1,K.1^-4,K.1^2,K.1^-1,K.1^-4,K.1,K.1^4,K.1^7,K.1^-7,K.1^-1,K.1^-7,K.1^7,K.1^4,K.1^-2,K.1^-4,K.1^2,K.1^-1,K.1^7,K.1^-2,K.1,K.1,K.1^4,K.1^-4,K.1,K.1^7,K.1^-7,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |1,1,K.1^-7,K.1^7,1,1,1,1,K.1^-9,K.1^9,K.1^6,K.1^-6,K.1^-3,K.1^3,1,1,1,1,K.1^-6,K.1^6,K.1^3,K.1^-3,K.1^9,K.1^-9,K.1^7,K.1^-7,K.1^7,K.1^-7,K.1^7,K.1^-7,K.1^-7,K.1^7,K.1^10,K.1^-8,K.1^-5,K.1^-2,K.1^-4,K.1^8,K.1,K.1^5,K.1^2,K.1^-10,K.1^-1,K.1^4,K.1^-9,K.1^3,K.1^3,K.1^-9,K.1^6,K.1^-6,K.1^6,K.1^-9,K.1^-9,K.1^3,K.1^3,K.1^-3,K.1^6,K.1^-6,K.1^9,K.1^-6,K.1^9,K.1^-3,K.1^9,K.1^-3,K.1^6,K.1^9,K.1^-6,K.1^-3,K.1^-3,K.1^6,K.1^6,K.1^-6,K.1^9,K.1^3,K.1^9,K.1^6,K.1^-9,K.1^-6,K.1^3,K.1^-6,K.1^-9,K.1^9,K.1^3,K.1^-9,K.1^-3,K.1^-3,K.1^9,K.1^-6,K.1^6,K.1^-9,K.1^3,K.1^-3,K.1,K.1^2,K.1^8,K.1^10,K.1^-5,K.1^-5,K.1^-4,K.1^5,K.1^5,K.1^-2,K.1^-8,K.1^4,K.1^5,K.1^-10,K.1,K.1^-1,K.1^-4,K.1,K.1^-1,K.1^-1,K.1^-10,K.1^2,K.1^4,K.1^10,K.1,K.1^8,K.1^8,K.1^-10,K.1^-8,K.1^-2,K.1^-8,K.1^-10,K.1^5,K.1^-1,K.1^4,K.1^-2,K.1^-5,K.1^10,K.1^4,K.1^-4,K.1^-2,K.1^10,K.1^2,K.1^-4,K.1^8,K.1^-8,K.1^-5,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |1,1,K.1^7,K.1^-7,1,1,1,1,K.1^9,K.1^-9,K.1^-6,K.1^6,K.1^3,K.1^-3,1,1,1,1,K.1^6,K.1^-6,K.1^-3,K.1^3,K.1^-9,K.1^9,K.1^-7,K.1^7,K.1^-7,K.1^7,K.1^-7,K.1^7,K.1^7,K.1^-7,K.1^-10,K.1^8,K.1^5,K.1^2,K.1^4,K.1^-8,K.1^-1,K.1^-5,K.1^-2,K.1^10,K.1,K.1^-4,K.1^9,K.1^-3,K.1^-3,K.1^9,K.1^-6,K.1^6,K.1^-6,K.1^9,K.1^9,K.1^-3,K.1^-3,K.1^3,K.1^-6,K.1^6,K.1^-9,K.1^6,K.1^-9,K.1^3,K.1^-9,K.1^3,K.1^-6,K.1^-9,K.1^6,K.1^3,K.1^3,K.1^-6,K.1^-6,K.1^6,K.1^-9,K.1^-3,K.1^-9,K.1^-6,K.1^9,K.1^6,K.1^-3,K.1^6,K.1^9,K.1^-9,K.1^-3,K.1^9,K.1^3,K.1^3,K.1^-9,K.1^6,K.1^-6,K.1^9,K.1^-3,K.1^3,K.1^-1,K.1^-2,K.1^-8,K.1^-10,K.1^5,K.1^5,K.1^4,K.1^-5,K.1^-5,K.1^2,K.1^8,K.1^-4,K.1^-5,K.1^10,K.1^-1,K.1,K.1^4,K.1^-1,K.1,K.1,K.1^10,K.1^-2,K.1^-4,K.1^-10,K.1^-1,K.1^-8,K.1^-8,K.1^10,K.1^8,K.1^2,K.1^8,K.1^10,K.1^-5,K.1,K.1^-4,K.1^2,K.1^5,K.1^-10,K.1^-4,K.1^4,K.1^2,K.1^-10,K.1^-2,K.1^4,K.1^-8,K.1^8,K.1^5,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |1,1,K.1^-7,K.1^7,1,1,1,1,K.1^9,K.1^-9,K.1^-6,K.1^6,K.1^3,K.1^-3,1,1,1,1,K.1^6,K.1^-6,K.1^-3,K.1^3,K.1^-9,K.1^9,K.1^7,K.1^-7,K.1^7,K.1^-7,K.1^7,K.1^-7,K.1^-7,K.1^7,K.1^4,K.1,K.1^-2,K.1^-5,K.1^-10,K.1^-1,K.1^-8,K.1^2,K.1^5,K.1^-4,K.1^8,K.1^10,K.1^9,K.1^-3,K.1^-3,K.1^9,K.1^-6,K.1^6,K.1^-6,K.1^9,K.1^9,K.1^-3,K.1^-3,K.1^3,K.1^-6,K.1^6,K.1^-9,K.1^6,K.1^-9,K.1^3,K.1^-9,K.1^3,K.1^-6,K.1^-9,K.1^6,K.1^3,K.1^3,K.1^-6,K.1^-6,K.1^6,K.1^-9,K.1^-3,K.1^-9,K.1^-6,K.1^9,K.1^6,K.1^-3,K.1^6,K.1^9,K.1^-9,K.1^-3,K.1^9,K.1^3,K.1^3,K.1^-9,K.1^6,K.1^-6,K.1^9,K.1^-3,K.1^3,K.1^-8,K.1^5,K.1^-1,K.1^4,K.1^-2,K.1^-2,K.1^-10,K.1^2,K.1^2,K.1^-5,K.1,K.1^10,K.1^2,K.1^-4,K.1^-8,K.1^8,K.1^-10,K.1^-8,K.1^8,K.1^8,K.1^-4,K.1^5,K.1^10,K.1^4,K.1^-8,K.1^-1,K.1^-1,K.1^-4,K.1,K.1^-5,K.1,K.1^-4,K.1^2,K.1^8,K.1^10,K.1^-5,K.1^-2,K.1^4,K.1^10,K.1^-10,K.1^-5,K.1^4,K.1^5,K.1^-10,K.1^-1,K.1,K.1^-2,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |1,1,K.1^7,K.1^-7,1,1,1,1,K.1^-9,K.1^9,K.1^6,K.1^-6,K.1^-3,K.1^3,1,1,1,1,K.1^-6,K.1^6,K.1^3,K.1^-3,K.1^9,K.1^-9,K.1^-7,K.1^7,K.1^-7,K.1^7,K.1^-7,K.1^7,K.1^7,K.1^-7,K.1^-4,K.1^-1,K.1^2,K.1^5,K.1^10,K.1,K.1^8,K.1^-2,K.1^-5,K.1^4,K.1^-8,K.1^-10,K.1^-9,K.1^3,K.1^3,K.1^-9,K.1^6,K.1^-6,K.1^6,K.1^-9,K.1^-9,K.1^3,K.1^3,K.1^-3,K.1^6,K.1^-6,K.1^9,K.1^-6,K.1^9,K.1^-3,K.1^9,K.1^-3,K.1^6,K.1^9,K.1^-6,K.1^-3,K.1^-3,K.1^6,K.1^6,K.1^-6,K.1^9,K.1^3,K.1^9,K.1^6,K.1^-9,K.1^-6,K.1^3,K.1^-6,K.1^-9,K.1^9,K.1^3,K.1^-9,K.1^-3,K.1^-3,K.1^9,K.1^-6,K.1^6,K.1^-9,K.1^3,K.1^-3,K.1^8,K.1^-5,K.1,K.1^-4,K.1^2,K.1^2,K.1^10,K.1^-2,K.1^-2,K.1^5,K.1^-1,K.1^-10,K.1^-2,K.1^4,K.1^8,K.1^-8,K.1^10,K.1^8,K.1^-8,K.1^-8,K.1^4,K.1^-5,K.1^-10,K.1^-4,K.1^8,K.1,K.1,K.1^4,K.1^-1,K.1^5,K.1^-1,K.1^4,K.1^-2,K.1^-8,K.1^-10,K.1^5,K.1^2,K.1^-4,K.1^-10,K.1^10,K.1^5,K.1^-4,K.1^-5,K.1^10,K.1,K.1^-1,K.1^2,K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |1,1,K.1^-7,K.1^7,1,1,1,1,K.1^-6,K.1^6,K.1^-3,K.1^3,K.1^-9,K.1^9,1,1,1,1,K.1^3,K.1^-3,K.1^9,K.1^-9,K.1^6,K.1^-6,K.1^7,K.1^-7,K.1^7,K.1^-7,K.1^7,K.1^-7,K.1^-7,K.1^7,K.1^-5,K.1^4,K.1^-8,K.1,K.1^2,K.1^-4,K.1^10,K.1^8,K.1^-1,K.1^5,K.1^-10,K.1^-2,K.1^-6,K.1^9,K.1^9,K.1^-6,K.1^-3,K.1^3,K.1^-3,K.1^-6,K.1^-6,K.1^9,K.1^9,K.1^-9,K.1^-3,K.1^3,K.1^6,K.1^3,K.1^6,K.1^-9,K.1^6,K.1^-9,K.1^-3,K.1^6,K.1^3,K.1^-9,K.1^-9,K.1^-3,K.1^-3,K.1^3,K.1^6,K.1^9,K.1^6,K.1^-3,K.1^-6,K.1^3,K.1^9,K.1^3,K.1^-6,K.1^6,K.1^9,K.1^-6,K.1^-9,K.1^-9,K.1^6,K.1^3,K.1^-3,K.1^-6,K.1^9,K.1^-9,K.1^10,K.1^-1,K.1^-4,K.1^-5,K.1^-8,K.1^-8,K.1^2,K.1^8,K.1^8,K.1,K.1^4,K.1^-2,K.1^8,K.1^5,K.1^10,K.1^-10,K.1^2,K.1^10,K.1^-10,K.1^-10,K.1^5,K.1^-1,K.1^-2,K.1^-5,K.1^10,K.1^-4,K.1^-4,K.1^5,K.1^4,K.1,K.1^4,K.1^5,K.1^8,K.1^-10,K.1^-2,K.1,K.1^-8,K.1^-5,K.1^-2,K.1^2,K.1,K.1^-5,K.1^-1,K.1^2,K.1^-4,K.1^4,K.1^-8,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |1,1,K.1^7,K.1^-7,1,1,1,1,K.1^6,K.1^-6,K.1^3,K.1^-3,K.1^9,K.1^-9,1,1,1,1,K.1^-3,K.1^3,K.1^-9,K.1^9,K.1^-6,K.1^6,K.1^-7,K.1^7,K.1^-7,K.1^7,K.1^-7,K.1^7,K.1^7,K.1^-7,K.1^5,K.1^-4,K.1^8,K.1^-1,K.1^-2,K.1^4,K.1^-10,K.1^-8,K.1,K.1^-5,K.1^10,K.1^2,K.1^6,K.1^-9,K.1^-9,K.1^6,K.1^3,K.1^-3,K.1^3,K.1^6,K.1^6,K.1^-9,K.1^-9,K.1^9,K.1^3,K.1^-3,K.1^-6,K.1^-3,K.1^-6,K.1^9,K.1^-6,K.1^9,K.1^3,K.1^-6,K.1^-3,K.1^9,K.1^9,K.1^3,K.1^3,K.1^-3,K.1^-6,K.1^-9,K.1^-6,K.1^3,K.1^6,K.1^-3,K.1^-9,K.1^-3,K.1^6,K.1^-6,K.1^-9,K.1^6,K.1^9,K.1^9,K.1^-6,K.1^-3,K.1^3,K.1^6,K.1^-9,K.1^9,K.1^-10,K.1,K.1^4,K.1^5,K.1^8,K.1^8,K.1^-2,K.1^-8,K.1^-8,K.1^-1,K.1^-4,K.1^2,K.1^-8,K.1^-5,K.1^-10,K.1^10,K.1^-2,K.1^-10,K.1^10,K.1^10,K.1^-5,K.1,K.1^2,K.1^5,K.1^-10,K.1^4,K.1^4,K.1^-5,K.1^-4,K.1^-1,K.1^-4,K.1^-5,K.1^-8,K.1^10,K.1^2,K.1^-1,K.1^8,K.1^5,K.1^2,K.1^-2,K.1^-1,K.1^5,K.1,K.1^-2,K.1^4,K.1^-4,K.1^8,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |1,1,K.1^-7,K.1^7,1,1,1,1,K.1^6,K.1^-6,K.1^3,K.1^-3,K.1^9,K.1^-9,1,1,1,1,K.1^-3,K.1^3,K.1^-9,K.1^9,K.1^-6,K.1^6,K.1^7,K.1^-7,K.1^7,K.1^-7,K.1^7,K.1^-7,K.1^-7,K.1^7,K.1^-2,K.1^10,K.1,K.1^-8,K.1^5,K.1^-10,K.1^4,K.1^-1,K.1^8,K.1^2,K.1^-4,K.1^-5,K.1^6,K.1^-9,K.1^-9,K.1^6,K.1^3,K.1^-3,K.1^3,K.1^6,K.1^6,K.1^-9,K.1^-9,K.1^9,K.1^3,K.1^-3,K.1^-6,K.1^-3,K.1^-6,K.1^9,K.1^-6,K.1^9,K.1^3,K.1^-6,K.1^-3,K.1^9,K.1^9,K.1^3,K.1^3,K.1^-3,K.1^-6,K.1^-9,K.1^-6,K.1^3,K.1^6,K.1^-3,K.1^-9,K.1^-3,K.1^6,K.1^-6,K.1^-9,K.1^6,K.1^9,K.1^9,K.1^-6,K.1^-3,K.1^3,K.1^6,K.1^-9,K.1^9,K.1^4,K.1^8,K.1^-10,K.1^-2,K.1,K.1,K.1^5,K.1^-1,K.1^-1,K.1^-8,K.1^10,K.1^-5,K.1^-1,K.1^2,K.1^4,K.1^-4,K.1^5,K.1^4,K.1^-4,K.1^-4,K.1^2,K.1^8,K.1^-5,K.1^-2,K.1^4,K.1^-10,K.1^-10,K.1^2,K.1^10,K.1^-8,K.1^10,K.1^2,K.1^-1,K.1^-4,K.1^-5,K.1^-8,K.1,K.1^-2,K.1^-5,K.1^5,K.1^-8,K.1^-2,K.1^8,K.1^5,K.1^-10,K.1^10,K.1,K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |1,1,K.1^7,K.1^-7,1,1,1,1,K.1^-6,K.1^6,K.1^-3,K.1^3,K.1^-9,K.1^9,1,1,1,1,K.1^3,K.1^-3,K.1^9,K.1^-9,K.1^6,K.1^-6,K.1^-7,K.1^7,K.1^-7,K.1^7,K.1^-7,K.1^7,K.1^7,K.1^-7,K.1^2,K.1^-10,K.1^-1,K.1^8,K.1^-5,K.1^10,K.1^-4,K.1,K.1^-8,K.1^-2,K.1^4,K.1^5,K.1^-6,K.1^9,K.1^9,K.1^-6,K.1^-3,K.1^3,K.1^-3,K.1^-6,K.1^-6,K.1^9,K.1^9,K.1^-9,K.1^-3,K.1^3,K.1^6,K.1^3,K.1^6,K.1^-9,K.1^6,K.1^-9,K.1^-3,K.1^6,K.1^3,K.1^-9,K.1^-9,K.1^-3,K.1^-3,K.1^3,K.1^6,K.1^9,K.1^6,K.1^-3,K.1^-6,K.1^3,K.1^9,K.1^3,K.1^-6,K.1^6,K.1^9,K.1^-6,K.1^-9,K.1^-9,K.1^6,K.1^3,K.1^-3,K.1^-6,K.1^9,K.1^-9,K.1^-4,K.1^-8,K.1^10,K.1^2,K.1^-1,K.1^-1,K.1^-5,K.1,K.1,K.1^8,K.1^-10,K.1^5,K.1,K.1^-2,K.1^-4,K.1^4,K.1^-5,K.1^-4,K.1^4,K.1^4,K.1^-2,K.1^-8,K.1^5,K.1^2,K.1^-4,K.1^10,K.1^10,K.1^-2,K.1^-10,K.1^8,K.1^-10,K.1^-2,K.1,K.1^4,K.1^5,K.1^8,K.1^-1,K.1^2,K.1^5,K.1^-5,K.1^8,K.1^2,K.1^-8,K.1^-5,K.1^10,K.1^-10,K.1^-1,K.1^-8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |1,1,K.1^-7,K.1^7,1,1,1,1,K.1^-3,K.1^3,K.1^9,K.1^-9,K.1^6,K.1^-6,1,1,1,1,K.1^-9,K.1^9,K.1^-6,K.1^6,K.1^3,K.1^-3,K.1^7,K.1^-7,K.1^7,K.1^-7,K.1^7,K.1^-7,K.1^-7,K.1^7,K.1,K.1^-5,K.1^10,K.1^4,K.1^8,K.1^5,K.1^-2,K.1^-10,K.1^-4,K.1^-1,K.1^2,K.1^-8,K.1^-3,K.1^-6,K.1^-6,K.1^-3,K.1^9,K.1^-9,K.1^9,K.1^-3,K.1^-3,K.1^-6,K.1^-6,K.1^6,K.1^9,K.1^-9,K.1^3,K.1^-9,K.1^3,K.1^6,K.1^3,K.1^6,K.1^9,K.1^3,K.1^-9,K.1^6,K.1^6,K.1^9,K.1^9,K.1^-9,K.1^3,K.1^-6,K.1^3,K.1^9,K.1^-3,K.1^-9,K.1^-6,K.1^-9,K.1^-3,K.1^3,K.1^-6,K.1^-3,K.1^6,K.1^6,K.1^3,K.1^-9,K.1^9,K.1^-3,K.1^-6,K.1^6,K.1^-2,K.1^-4,K.1^5,K.1,K.1^10,K.1^10,K.1^8,K.1^-10,K.1^-10,K.1^4,K.1^-5,K.1^-8,K.1^-10,K.1^-1,K.1^-2,K.1^2,K.1^8,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1^-4,K.1^-8,K.1,K.1^-2,K.1^5,K.1^5,K.1^-1,K.1^-5,K.1^4,K.1^-5,K.1^-1,K.1^-10,K.1^2,K.1^-8,K.1^4,K.1^10,K.1,K.1^-8,K.1^8,K.1^4,K.1,K.1^-4,K.1^8,K.1^5,K.1^-5,K.1^10,K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |1,1,K.1^7,K.1^-7,1,1,1,1,K.1^3,K.1^-3,K.1^-9,K.1^9,K.1^-6,K.1^6,1,1,1,1,K.1^9,K.1^-9,K.1^6,K.1^-6,K.1^-3,K.1^3,K.1^-7,K.1^7,K.1^-7,K.1^7,K.1^-7,K.1^7,K.1^7,K.1^-7,K.1^-1,K.1^5,K.1^-10,K.1^-4,K.1^-8,K.1^-5,K.1^2,K.1^10,K.1^4,K.1,K.1^-2,K.1^8,K.1^3,K.1^6,K.1^6,K.1^3,K.1^-9,K.1^9,K.1^-9,K.1^3,K.1^3,K.1^6,K.1^6,K.1^-6,K.1^-9,K.1^9,K.1^-3,K.1^9,K.1^-3,K.1^-6,K.1^-3,K.1^-6,K.1^-9,K.1^-3,K.1^9,K.1^-6,K.1^-6,K.1^-9,K.1^-9,K.1^9,K.1^-3,K.1^6,K.1^-3,K.1^-9,K.1^3,K.1^9,K.1^6,K.1^9,K.1^3,K.1^-3,K.1^6,K.1^3,K.1^-6,K.1^-6,K.1^-3,K.1^9,K.1^-9,K.1^3,K.1^6,K.1^-6,K.1^2,K.1^4,K.1^-5,K.1^-1,K.1^-10,K.1^-10,K.1^-8,K.1^10,K.1^10,K.1^-4,K.1^5,K.1^8,K.1^10,K.1,K.1^2,K.1^-2,K.1^-8,K.1^2,K.1^-2,K.1^-2,K.1,K.1^4,K.1^8,K.1^-1,K.1^2,K.1^-5,K.1^-5,K.1,K.1^5,K.1^-4,K.1^5,K.1,K.1^10,K.1^-2,K.1^8,K.1^-4,K.1^-10,K.1^-1,K.1^8,K.1^-8,K.1^-4,K.1^-1,K.1^4,K.1^-8,K.1^-5,K.1^5,K.1^-10,K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |1,1,K.1^-7,K.1^7,1,1,1,1,K.1^3,K.1^-3,K.1^-9,K.1^9,K.1^-6,K.1^6,1,1,1,1,K.1^9,K.1^-9,K.1^6,K.1^-6,K.1^-3,K.1^3,K.1^7,K.1^-7,K.1^7,K.1^-7,K.1^7,K.1^-7,K.1^-7,K.1^7,K.1^-8,K.1^-2,K.1^4,K.1^10,K.1^-1,K.1^2,K.1^-5,K.1^-4,K.1^-10,K.1^8,K.1^5,K.1,K.1^3,K.1^6,K.1^6,K.1^3,K.1^-9,K.1^9,K.1^-9,K.1^3,K.1^3,K.1^6,K.1^6,K.1^-6,K.1^-9,K.1^9,K.1^-3,K.1^9,K.1^-3,K.1^-6,K.1^-3,K.1^-6,K.1^-9,K.1^-3,K.1^9,K.1^-6,K.1^-6,K.1^-9,K.1^-9,K.1^9,K.1^-3,K.1^6,K.1^-3,K.1^-9,K.1^3,K.1^9,K.1^6,K.1^9,K.1^3,K.1^-3,K.1^6,K.1^3,K.1^-6,K.1^-6,K.1^-3,K.1^9,K.1^-9,K.1^3,K.1^6,K.1^-6,K.1^-5,K.1^-10,K.1^2,K.1^-8,K.1^4,K.1^4,K.1^-1,K.1^-4,K.1^-4,K.1^10,K.1^-2,K.1,K.1^-4,K.1^8,K.1^-5,K.1^5,K.1^-1,K.1^-5,K.1^5,K.1^5,K.1^8,K.1^-10,K.1,K.1^-8,K.1^-5,K.1^2,K.1^2,K.1^8,K.1^-2,K.1^10,K.1^-2,K.1^8,K.1^-4,K.1^5,K.1,K.1^10,K.1^4,K.1^-8,K.1,K.1^-1,K.1^10,K.1^-8,K.1^-10,K.1^-1,K.1^2,K.1^-2,K.1^4,K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |1,1,K.1^7,K.1^-7,1,1,1,1,K.1^-3,K.1^3,K.1^9,K.1^-9,K.1^6,K.1^-6,1,1,1,1,K.1^-9,K.1^9,K.1^-6,K.1^6,K.1^3,K.1^-3,K.1^-7,K.1^7,K.1^-7,K.1^7,K.1^-7,K.1^7,K.1^7,K.1^-7,K.1^8,K.1^2,K.1^-4,K.1^-10,K.1,K.1^-2,K.1^5,K.1^4,K.1^10,K.1^-8,K.1^-5,K.1^-1,K.1^-3,K.1^-6,K.1^-6,K.1^-3,K.1^9,K.1^-9,K.1^9,K.1^-3,K.1^-3,K.1^-6,K.1^-6,K.1^6,K.1^9,K.1^-9,K.1^3,K.1^-9,K.1^3,K.1^6,K.1^3,K.1^6,K.1^9,K.1^3,K.1^-9,K.1^6,K.1^6,K.1^9,K.1^9,K.1^-9,K.1^3,K.1^-6,K.1^3,K.1^9,K.1^-3,K.1^-9,K.1^-6,K.1^-9,K.1^-3,K.1^3,K.1^-6,K.1^-3,K.1^6,K.1^6,K.1^3,K.1^-9,K.1^9,K.1^-3,K.1^-6,K.1^6,K.1^5,K.1^10,K.1^-2,K.1^8,K.1^-4,K.1^-4,K.1,K.1^4,K.1^4,K.1^-10,K.1^2,K.1^-1,K.1^4,K.1^-8,K.1^5,K.1^-5,K.1,K.1^5,K.1^-5,K.1^-5,K.1^-8,K.1^10,K.1^-1,K.1^8,K.1^5,K.1^-2,K.1^-2,K.1^-8,K.1^2,K.1^-10,K.1^2,K.1^-8,K.1^4,K.1^-5,K.1^-1,K.1^-10,K.1^-4,K.1^8,K.1^-1,K.1,K.1^-10,K.1^8,K.1^10,K.1,K.1^-2,K.1^2,K.1^-4,K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^-14,K.1^14,K.1^7,K.1^-7,K.1^-15,K.1^15,K.1^10,K.1^-10,K.1^-5,K.1^5,K.1^7,K.1^-7,K.1^-14,K.1^14,K.1^-10,K.1^10,K.1^5,K.1^-5,K.1^15,K.1^-15,K.1^7,K.1^-14,K.1^14,K.1^-7,K.1^-14,K.1^7,K.1^14,K.1^-7,K.1^5,K.1^10,K.1^15,K.1^-15,K.1^5,K.1^-10,K.1^-10,K.1^-15,K.1^15,K.1^-5,K.1^10,K.1^-5,K.1^6,K.1^-9,K.1^-16,K.1^-1,K.1^3,K.1^-3,K.1^17,K.1^13,K.1^-8,K.1^-2,K.1^12,K.1^9,K.1^-4,K.1^4,K.1^-13,K.1^-17,K.1,K.1^2,K.1^8,K.1^16,K.1^-11,K.1^-6,K.1^11,K.1^-12,K.1^-12,K.1^17,K.1^3,K.1^-3,K.1^8,K.1^12,K.1^-13,K.1^-11,K.1^6,K.1^-17,K.1^-2,K.1^4,K.1^-1,K.1^-6,K.1^-9,K.1^-8,K.1^2,K.1^9,K.1,K.1^11,K.1^-4,K.1^13,K.1^-16,K.1^16,K.1^-3,K.1,K.1^-17,K.1^-16,K.1^-13,K.1,K.1^-16,K.1^-8,K.1^-1,K.1^6,K.1^17,K.1^9,K.1^13,K.1^16,K.1^4,K.1^-11,K.1^-9,K.1^-17,K.1^3,K.1^-4,K.1^2,K.1^8,K.1^-12,K.1^12,K.1^11,K.1^4,K.1^-3,K.1^9,K.1^-4,K.1^-8,K.1^-11,K.1^-12,K.1^6,K.1^17,K.1^16,K.1^-1,K.1^8,K.1^-2,K.1^2,K.1^-2,K.1^13,K.1^-9,K.1^-6,K.1^12,K.1^11,K.1^3,K.1^-6,K.1^-13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^14,K.1^-14,K.1^-7,K.1^7,K.1^15,K.1^-15,K.1^-10,K.1^10,K.1^5,K.1^-5,K.1^-7,K.1^7,K.1^14,K.1^-14,K.1^10,K.1^-10,K.1^-5,K.1^5,K.1^-15,K.1^15,K.1^-7,K.1^14,K.1^-14,K.1^7,K.1^14,K.1^-7,K.1^-14,K.1^7,K.1^-5,K.1^-10,K.1^-15,K.1^15,K.1^-5,K.1^10,K.1^10,K.1^15,K.1^-15,K.1^5,K.1^-10,K.1^5,K.1^-6,K.1^9,K.1^16,K.1,K.1^-3,K.1^3,K.1^-17,K.1^-13,K.1^8,K.1^2,K.1^-12,K.1^-9,K.1^4,K.1^-4,K.1^13,K.1^17,K.1^-1,K.1^-2,K.1^-8,K.1^-16,K.1^11,K.1^6,K.1^-11,K.1^12,K.1^12,K.1^-17,K.1^-3,K.1^3,K.1^-8,K.1^-12,K.1^13,K.1^11,K.1^-6,K.1^17,K.1^2,K.1^-4,K.1,K.1^6,K.1^9,K.1^8,K.1^-2,K.1^-9,K.1^-1,K.1^-11,K.1^4,K.1^-13,K.1^16,K.1^-16,K.1^3,K.1^-1,K.1^17,K.1^16,K.1^13,K.1^-1,K.1^16,K.1^8,K.1,K.1^-6,K.1^-17,K.1^-9,K.1^-13,K.1^-16,K.1^-4,K.1^11,K.1^9,K.1^17,K.1^-3,K.1^4,K.1^-2,K.1^-8,K.1^12,K.1^-12,K.1^-11,K.1^-4,K.1^3,K.1^-9,K.1^4,K.1^8,K.1^11,K.1^12,K.1^-6,K.1^-17,K.1^-16,K.1,K.1^-8,K.1^2,K.1^-2,K.1^2,K.1^-13,K.1^9,K.1^6,K.1^-12,K.1^-11,K.1^-3,K.1^6,K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^-14,K.1^14,K.1^7,K.1^-7,K.1^15,K.1^-15,K.1^-10,K.1^10,K.1^5,K.1^-5,K.1^7,K.1^-7,K.1^-14,K.1^14,K.1^10,K.1^-10,K.1^-5,K.1^5,K.1^-15,K.1^15,K.1^7,K.1^-14,K.1^14,K.1^-7,K.1^-14,K.1^7,K.1^14,K.1^-7,K.1^-5,K.1^-10,K.1^-15,K.1^15,K.1^-5,K.1^10,K.1^10,K.1^15,K.1^-15,K.1^5,K.1^-10,K.1^5,K.1,K.1^16,K.1^9,K.1^-6,K.1^-17,K.1^17,K.1^-3,K.1^8,K.1^-13,K.1^-12,K.1^2,K.1^-16,K.1^11,K.1^-11,K.1^-8,K.1^3,K.1^6,K.1^12,K.1^13,K.1^-9,K.1^4,K.1^-1,K.1^-4,K.1^-2,K.1^-2,K.1^-3,K.1^-17,K.1^17,K.1^13,K.1^2,K.1^-8,K.1^4,K.1,K.1^3,K.1^-12,K.1^-11,K.1^-6,K.1^-1,K.1^16,K.1^-13,K.1^12,K.1^-16,K.1^6,K.1^-4,K.1^11,K.1^8,K.1^9,K.1^-9,K.1^17,K.1^6,K.1^3,K.1^9,K.1^-8,K.1^6,K.1^9,K.1^-13,K.1^-6,K.1,K.1^-3,K.1^-16,K.1^8,K.1^-9,K.1^-11,K.1^4,K.1^16,K.1^3,K.1^-17,K.1^11,K.1^12,K.1^13,K.1^-2,K.1^2,K.1^-4,K.1^-11,K.1^17,K.1^-16,K.1^11,K.1^-13,K.1^4,K.1^-2,K.1,K.1^-3,K.1^-9,K.1^-6,K.1^13,K.1^-12,K.1^12,K.1^-12,K.1^8,K.1^16,K.1^-1,K.1^2,K.1^-4,K.1^-17,K.1^-1,K.1^-8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^14,K.1^-14,K.1^-7,K.1^7,K.1^-15,K.1^15,K.1^10,K.1^-10,K.1^-5,K.1^5,K.1^-7,K.1^7,K.1^14,K.1^-14,K.1^-10,K.1^10,K.1^5,K.1^-5,K.1^15,K.1^-15,K.1^-7,K.1^14,K.1^-14,K.1^7,K.1^14,K.1^-7,K.1^-14,K.1^7,K.1^5,K.1^10,K.1^15,K.1^-15,K.1^5,K.1^-10,K.1^-10,K.1^-15,K.1^15,K.1^-5,K.1^10,K.1^-5,K.1^-1,K.1^-16,K.1^-9,K.1^6,K.1^17,K.1^-17,K.1^3,K.1^-8,K.1^13,K.1^12,K.1^-2,K.1^16,K.1^-11,K.1^11,K.1^8,K.1^-3,K.1^-6,K.1^-12,K.1^-13,K.1^9,K.1^-4,K.1,K.1^4,K.1^2,K.1^2,K.1^3,K.1^17,K.1^-17,K.1^-13,K.1^-2,K.1^8,K.1^-4,K.1^-1,K.1^-3,K.1^12,K.1^11,K.1^6,K.1,K.1^-16,K.1^13,K.1^-12,K.1^16,K.1^-6,K.1^4,K.1^-11,K.1^-8,K.1^-9,K.1^9,K.1^-17,K.1^-6,K.1^-3,K.1^-9,K.1^8,K.1^-6,K.1^-9,K.1^13,K.1^6,K.1^-1,K.1^3,K.1^16,K.1^-8,K.1^9,K.1^11,K.1^-4,K.1^-16,K.1^-3,K.1^17,K.1^-11,K.1^-12,K.1^-13,K.1^2,K.1^-2,K.1^4,K.1^11,K.1^-17,K.1^16,K.1^-11,K.1^13,K.1^-4,K.1^2,K.1^-1,K.1^3,K.1^9,K.1^6,K.1^-13,K.1^12,K.1^-12,K.1^12,K.1^-8,K.1^-16,K.1,K.1^-2,K.1^4,K.1^17,K.1,K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^-14,K.1^14,K.1^7,K.1^-7,K.1^-10,K.1^10,K.1^-5,K.1^5,K.1^-15,K.1^15,K.1^7,K.1^-7,K.1^-14,K.1^14,K.1^5,K.1^-5,K.1^15,K.1^-15,K.1^10,K.1^-10,K.1^7,K.1^-14,K.1^14,K.1^-7,K.1^-14,K.1^7,K.1^14,K.1^-7,K.1^15,K.1^-5,K.1^10,K.1^-10,K.1^15,K.1^5,K.1^5,K.1^-10,K.1^10,K.1^-15,K.1^-5,K.1^-15,K.1^11,K.1,K.1^-6,K.1^4,K.1^-12,K.1^12,K.1^2,K.1^-17,K.1^-3,K.1^8,K.1^-13,K.1^-1,K.1^16,K.1^-16,K.1^17,K.1^-2,K.1^-4,K.1^-8,K.1^3,K.1^6,K.1^9,K.1^-11,K.1^-9,K.1^13,K.1^13,K.1^2,K.1^-12,K.1^12,K.1^3,K.1^-13,K.1^17,K.1^9,K.1^11,K.1^-2,K.1^8,K.1^-16,K.1^4,K.1^-11,K.1,K.1^-3,K.1^-8,K.1^-1,K.1^-4,K.1^-9,K.1^16,K.1^-17,K.1^-6,K.1^6,K.1^12,K.1^-4,K.1^-2,K.1^-6,K.1^17,K.1^-4,K.1^-6,K.1^-3,K.1^4,K.1^11,K.1^2,K.1^-1,K.1^-17,K.1^6,K.1^-16,K.1^9,K.1,K.1^-2,K.1^-12,K.1^16,K.1^-8,K.1^3,K.1^13,K.1^-13,K.1^-9,K.1^-16,K.1^12,K.1^-1,K.1^16,K.1^-3,K.1^9,K.1^13,K.1^11,K.1^2,K.1^6,K.1^4,K.1^3,K.1^8,K.1^-8,K.1^8,K.1^-17,K.1,K.1^-11,K.1^-13,K.1^-9,K.1^-12,K.1^-11,K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^14,K.1^-14,K.1^-7,K.1^7,K.1^10,K.1^-10,K.1^5,K.1^-5,K.1^15,K.1^-15,K.1^-7,K.1^7,K.1^14,K.1^-14,K.1^-5,K.1^5,K.1^-15,K.1^15,K.1^-10,K.1^10,K.1^-7,K.1^14,K.1^-14,K.1^7,K.1^14,K.1^-7,K.1^-14,K.1^7,K.1^-15,K.1^5,K.1^-10,K.1^10,K.1^-15,K.1^-5,K.1^-5,K.1^10,K.1^-10,K.1^15,K.1^5,K.1^15,K.1^-11,K.1^-1,K.1^6,K.1^-4,K.1^12,K.1^-12,K.1^-2,K.1^17,K.1^3,K.1^-8,K.1^13,K.1,K.1^-16,K.1^16,K.1^-17,K.1^2,K.1^4,K.1^8,K.1^-3,K.1^-6,K.1^-9,K.1^11,K.1^9,K.1^-13,K.1^-13,K.1^-2,K.1^12,K.1^-12,K.1^-3,K.1^13,K.1^-17,K.1^-9,K.1^-11,K.1^2,K.1^-8,K.1^16,K.1^-4,K.1^11,K.1^-1,K.1^3,K.1^8,K.1,K.1^4,K.1^9,K.1^-16,K.1^17,K.1^6,K.1^-6,K.1^-12,K.1^4,K.1^2,K.1^6,K.1^-17,K.1^4,K.1^6,K.1^3,K.1^-4,K.1^-11,K.1^-2,K.1,K.1^17,K.1^-6,K.1^16,K.1^-9,K.1^-1,K.1^2,K.1^12,K.1^-16,K.1^8,K.1^-3,K.1^-13,K.1^13,K.1^9,K.1^16,K.1^-12,K.1,K.1^-16,K.1^3,K.1^-9,K.1^-13,K.1^-11,K.1^-2,K.1^-6,K.1^-4,K.1^-3,K.1^-8,K.1^8,K.1^-8,K.1^17,K.1^-1,K.1^11,K.1^13,K.1^9,K.1^12,K.1^11,K.1^-17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^-14,K.1^14,K.1^7,K.1^-7,K.1^10,K.1^-10,K.1^5,K.1^-5,K.1^15,K.1^-15,K.1^7,K.1^-7,K.1^-14,K.1^14,K.1^-5,K.1^5,K.1^-15,K.1^15,K.1^-10,K.1^10,K.1^7,K.1^-14,K.1^14,K.1^-7,K.1^-14,K.1^7,K.1^14,K.1^-7,K.1^-15,K.1^5,K.1^-10,K.1^10,K.1^-15,K.1^-5,K.1^-5,K.1^10,K.1^-10,K.1^15,K.1^5,K.1^15,K.1^-4,K.1^6,K.1^-1,K.1^-11,K.1^-2,K.1^2,K.1^12,K.1^3,K.1^17,K.1^13,K.1^-8,K.1^-6,K.1^-9,K.1^9,K.1^-3,K.1^-12,K.1^11,K.1^-13,K.1^-17,K.1,K.1^-16,K.1^4,K.1^16,K.1^8,K.1^8,K.1^12,K.1^-2,K.1^2,K.1^-17,K.1^-8,K.1^-3,K.1^-16,K.1^-4,K.1^-12,K.1^13,K.1^9,K.1^-11,K.1^4,K.1^6,K.1^17,K.1^-13,K.1^-6,K.1^11,K.1^16,K.1^-9,K.1^3,K.1^-1,K.1,K.1^2,K.1^11,K.1^-12,K.1^-1,K.1^-3,K.1^11,K.1^-1,K.1^17,K.1^-11,K.1^-4,K.1^12,K.1^-6,K.1^3,K.1,K.1^9,K.1^-16,K.1^6,K.1^-12,K.1^-2,K.1^-9,K.1^-13,K.1^-17,K.1^8,K.1^-8,K.1^16,K.1^9,K.1^2,K.1^-6,K.1^-9,K.1^17,K.1^-16,K.1^8,K.1^-4,K.1^12,K.1,K.1^-11,K.1^-17,K.1^13,K.1^-13,K.1^13,K.1^3,K.1^6,K.1^4,K.1^-8,K.1^16,K.1^-2,K.1^4,K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^14,K.1^-14,K.1^-7,K.1^7,K.1^-10,K.1^10,K.1^-5,K.1^5,K.1^-15,K.1^15,K.1^-7,K.1^7,K.1^14,K.1^-14,K.1^5,K.1^-5,K.1^15,K.1^-15,K.1^10,K.1^-10,K.1^-7,K.1^14,K.1^-14,K.1^7,K.1^14,K.1^-7,K.1^-14,K.1^7,K.1^15,K.1^-5,K.1^10,K.1^-10,K.1^15,K.1^5,K.1^5,K.1^-10,K.1^10,K.1^-15,K.1^-5,K.1^-15,K.1^4,K.1^-6,K.1,K.1^11,K.1^2,K.1^-2,K.1^-12,K.1^-3,K.1^-17,K.1^-13,K.1^8,K.1^6,K.1^9,K.1^-9,K.1^3,K.1^12,K.1^-11,K.1^13,K.1^17,K.1^-1,K.1^16,K.1^-4,K.1^-16,K.1^-8,K.1^-8,K.1^-12,K.1^2,K.1^-2,K.1^17,K.1^8,K.1^3,K.1^16,K.1^4,K.1^12,K.1^-13,K.1^-9,K.1^11,K.1^-4,K.1^-6,K.1^-17,K.1^13,K.1^6,K.1^-11,K.1^-16,K.1^9,K.1^-3,K.1,K.1^-1,K.1^-2,K.1^-11,K.1^12,K.1,K.1^3,K.1^-11,K.1,K.1^-17,K.1^11,K.1^4,K.1^-12,K.1^6,K.1^-3,K.1^-1,K.1^-9,K.1^16,K.1^-6,K.1^12,K.1^2,K.1^9,K.1^13,K.1^17,K.1^-8,K.1^8,K.1^-16,K.1^-9,K.1^-2,K.1^6,K.1^9,K.1^-17,K.1^16,K.1^-8,K.1^4,K.1^-12,K.1^-1,K.1^11,K.1^17,K.1^-13,K.1^13,K.1^-13,K.1^-3,K.1^-6,K.1^-4,K.1^8,K.1^-16,K.1^2,K.1^-4,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^-14,K.1^14,K.1^7,K.1^-7,K.1^-5,K.1^5,K.1^15,K.1^-15,K.1^10,K.1^-10,K.1^7,K.1^-7,K.1^-14,K.1^14,K.1^-15,K.1^15,K.1^-10,K.1^10,K.1^5,K.1^-5,K.1^7,K.1^-14,K.1^14,K.1^-7,K.1^-14,K.1^7,K.1^14,K.1^-7,K.1^-10,K.1^15,K.1^5,K.1^-5,K.1^-10,K.1^-15,K.1^-15,K.1^-5,K.1^5,K.1^10,K.1^15,K.1^10,K.1^16,K.1^11,K.1^4,K.1^9,K.1^8,K.1^-8,K.1^-13,K.1^-12,K.1^2,K.1^-17,K.1^-3,K.1^-11,K.1,K.1^-1,K.1^12,K.1^13,K.1^-9,K.1^17,K.1^-2,K.1^-4,K.1^-6,K.1^-16,K.1^6,K.1^3,K.1^3,K.1^-13,K.1^8,K.1^-8,K.1^-2,K.1^-3,K.1^12,K.1^-6,K.1^16,K.1^13,K.1^-17,K.1^-1,K.1^9,K.1^-16,K.1^11,K.1^2,K.1^17,K.1^-11,K.1^-9,K.1^6,K.1,K.1^-12,K.1^4,K.1^-4,K.1^-8,K.1^-9,K.1^13,K.1^4,K.1^12,K.1^-9,K.1^4,K.1^2,K.1^9,K.1^16,K.1^-13,K.1^-11,K.1^-12,K.1^-4,K.1^-1,K.1^-6,K.1^11,K.1^13,K.1^8,K.1,K.1^17,K.1^-2,K.1^3,K.1^-3,K.1^6,K.1^-1,K.1^-8,K.1^-11,K.1,K.1^2,K.1^-6,K.1^3,K.1^16,K.1^-13,K.1^-4,K.1^9,K.1^-2,K.1^-17,K.1^17,K.1^-17,K.1^-12,K.1^11,K.1^-16,K.1^-3,K.1^6,K.1^8,K.1^-16,K.1^12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^14,K.1^-14,K.1^-7,K.1^7,K.1^5,K.1^-5,K.1^-15,K.1^15,K.1^-10,K.1^10,K.1^-7,K.1^7,K.1^14,K.1^-14,K.1^15,K.1^-15,K.1^10,K.1^-10,K.1^-5,K.1^5,K.1^-7,K.1^14,K.1^-14,K.1^7,K.1^14,K.1^-7,K.1^-14,K.1^7,K.1^10,K.1^-15,K.1^-5,K.1^5,K.1^10,K.1^15,K.1^15,K.1^5,K.1^-5,K.1^-10,K.1^-15,K.1^-10,K.1^-16,K.1^-11,K.1^-4,K.1^-9,K.1^-8,K.1^8,K.1^13,K.1^12,K.1^-2,K.1^17,K.1^3,K.1^11,K.1^-1,K.1,K.1^-12,K.1^-13,K.1^9,K.1^-17,K.1^2,K.1^4,K.1^6,K.1^16,K.1^-6,K.1^-3,K.1^-3,K.1^13,K.1^-8,K.1^8,K.1^2,K.1^3,K.1^-12,K.1^6,K.1^-16,K.1^-13,K.1^17,K.1,K.1^-9,K.1^16,K.1^-11,K.1^-2,K.1^-17,K.1^11,K.1^9,K.1^-6,K.1^-1,K.1^12,K.1^-4,K.1^4,K.1^8,K.1^9,K.1^-13,K.1^-4,K.1^-12,K.1^9,K.1^-4,K.1^-2,K.1^-9,K.1^-16,K.1^13,K.1^11,K.1^12,K.1^4,K.1,K.1^6,K.1^-11,K.1^-13,K.1^-8,K.1^-1,K.1^-17,K.1^2,K.1^-3,K.1^3,K.1^-6,K.1,K.1^8,K.1^11,K.1^-1,K.1^-2,K.1^6,K.1^-3,K.1^-16,K.1^13,K.1^4,K.1^-9,K.1^2,K.1^17,K.1^-17,K.1^17,K.1^12,K.1^-11,K.1^16,K.1^3,K.1^-6,K.1^-8,K.1^16,K.1^-12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^-14,K.1^14,K.1^7,K.1^-7,K.1^5,K.1^-5,K.1^-15,K.1^15,K.1^-10,K.1^10,K.1^7,K.1^-7,K.1^-14,K.1^14,K.1^15,K.1^-15,K.1^10,K.1^-10,K.1^-5,K.1^5,K.1^7,K.1^-14,K.1^14,K.1^-7,K.1^-14,K.1^7,K.1^14,K.1^-7,K.1^10,K.1^-15,K.1^-5,K.1^5,K.1^10,K.1^15,K.1^15,K.1^5,K.1^-5,K.1^-10,K.1^-15,K.1^-10,K.1^-9,K.1^-4,K.1^-11,K.1^-16,K.1^13,K.1^-13,K.1^-8,K.1^-2,K.1^12,K.1^3,K.1^17,K.1^4,K.1^6,K.1^-6,K.1^2,K.1^8,K.1^16,K.1^-3,K.1^-12,K.1^11,K.1^-1,K.1^9,K.1,K.1^-17,K.1^-17,K.1^-8,K.1^13,K.1^-13,K.1^-12,K.1^17,K.1^2,K.1^-1,K.1^-9,K.1^8,K.1^3,K.1^-6,K.1^-16,K.1^9,K.1^-4,K.1^12,K.1^-3,K.1^4,K.1^16,K.1,K.1^6,K.1^-2,K.1^-11,K.1^11,K.1^-13,K.1^16,K.1^8,K.1^-11,K.1^2,K.1^16,K.1^-11,K.1^12,K.1^-16,K.1^-9,K.1^-8,K.1^4,K.1^-2,K.1^11,K.1^-6,K.1^-1,K.1^-4,K.1^8,K.1^13,K.1^6,K.1^-3,K.1^-12,K.1^-17,K.1^17,K.1,K.1^-6,K.1^-13,K.1^4,K.1^6,K.1^12,K.1^-1,K.1^-17,K.1^-9,K.1^-8,K.1^11,K.1^-16,K.1^-12,K.1^3,K.1^-3,K.1^3,K.1^-2,K.1^-4,K.1^9,K.1^17,K.1,K.1^13,K.1^9,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^14,K.1^-14,K.1^-7,K.1^7,K.1^-5,K.1^5,K.1^15,K.1^-15,K.1^10,K.1^-10,K.1^-7,K.1^7,K.1^14,K.1^-14,K.1^-15,K.1^15,K.1^-10,K.1^10,K.1^5,K.1^-5,K.1^-7,K.1^14,K.1^-14,K.1^7,K.1^14,K.1^-7,K.1^-14,K.1^7,K.1^-10,K.1^15,K.1^5,K.1^-5,K.1^-10,K.1^-15,K.1^-15,K.1^-5,K.1^5,K.1^10,K.1^15,K.1^10,K.1^9,K.1^4,K.1^11,K.1^16,K.1^-13,K.1^13,K.1^8,K.1^2,K.1^-12,K.1^-3,K.1^-17,K.1^-4,K.1^-6,K.1^6,K.1^-2,K.1^-8,K.1^-16,K.1^3,K.1^12,K.1^-11,K.1,K.1^-9,K.1^-1,K.1^17,K.1^17,K.1^8,K.1^-13,K.1^13,K.1^12,K.1^-17,K.1^-2,K.1,K.1^9,K.1^-8,K.1^-3,K.1^6,K.1^16,K.1^-9,K.1^4,K.1^-12,K.1^3,K.1^-4,K.1^-16,K.1^-1,K.1^-6,K.1^2,K.1^11,K.1^-11,K.1^13,K.1^-16,K.1^-8,K.1^11,K.1^-2,K.1^-16,K.1^11,K.1^-12,K.1^16,K.1^9,K.1^8,K.1^-4,K.1^2,K.1^-11,K.1^6,K.1,K.1^4,K.1^-8,K.1^-13,K.1^-6,K.1^3,K.1^12,K.1^17,K.1^-17,K.1^-1,K.1^6,K.1^13,K.1^-4,K.1^-6,K.1^-12,K.1,K.1^17,K.1^9,K.1^8,K.1^-11,K.1^16,K.1^12,K.1^-3,K.1^3,K.1^-3,K.1^2,K.1^4,K.1^-9,K.1^-17,K.1^-1,K.1^-13,K.1^-9,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^-7,K.1^7,K.1^-14,K.1^14,K.1^-15,K.1^15,K.1^10,K.1^-10,K.1^-5,K.1^5,K.1^-14,K.1^14,K.1^-7,K.1^7,K.1^-10,K.1^10,K.1^5,K.1^-5,K.1^15,K.1^-15,K.1^-14,K.1^-7,K.1^7,K.1^14,K.1^-7,K.1^-14,K.1^7,K.1^14,K.1^5,K.1^10,K.1^15,K.1^-15,K.1^5,K.1^-10,K.1^-10,K.1^-15,K.1^15,K.1^-5,K.1^10,K.1^-5,K.1^13,K.1^-2,K.1^12,K.1^-8,K.1^-11,K.1^11,K.1^-4,K.1^-1,K.1^6,K.1^-16,K.1^-9,K.1^2,K.1^3,K.1^-3,K.1,K.1^4,K.1^8,K.1^16,K.1^-6,K.1^-12,K.1^17,K.1^-13,K.1^-17,K.1^9,K.1^9,K.1^-4,K.1^-11,K.1^11,K.1^-6,K.1^-9,K.1,K.1^17,K.1^13,K.1^4,K.1^-16,K.1^-3,K.1^-8,K.1^-13,K.1^-2,K.1^6,K.1^16,K.1^2,K.1^8,K.1^-17,K.1^3,K.1^-1,K.1^12,K.1^-12,K.1^11,K.1^8,K.1^4,K.1^12,K.1,K.1^8,K.1^12,K.1^6,K.1^-8,K.1^13,K.1^-4,K.1^2,K.1^-1,K.1^-12,K.1^-3,K.1^17,K.1^-2,K.1^4,K.1^-11,K.1^3,K.1^16,K.1^-6,K.1^9,K.1^-9,K.1^-17,K.1^-3,K.1^11,K.1^2,K.1^3,K.1^6,K.1^17,K.1^9,K.1^13,K.1^-4,K.1^-12,K.1^-8,K.1^-6,K.1^-16,K.1^16,K.1^-16,K.1^-1,K.1^-2,K.1^-13,K.1^-9,K.1^-17,K.1^-11,K.1^-13,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^7,K.1^-7,K.1^14,K.1^-14,K.1^15,K.1^-15,K.1^-10,K.1^10,K.1^5,K.1^-5,K.1^14,K.1^-14,K.1^7,K.1^-7,K.1^10,K.1^-10,K.1^-5,K.1^5,K.1^-15,K.1^15,K.1^14,K.1^7,K.1^-7,K.1^-14,K.1^7,K.1^14,K.1^-7,K.1^-14,K.1^-5,K.1^-10,K.1^-15,K.1^15,K.1^-5,K.1^10,K.1^10,K.1^15,K.1^-15,K.1^5,K.1^-10,K.1^5,K.1^-13,K.1^2,K.1^-12,K.1^8,K.1^11,K.1^-11,K.1^4,K.1,K.1^-6,K.1^16,K.1^9,K.1^-2,K.1^-3,K.1^3,K.1^-1,K.1^-4,K.1^-8,K.1^-16,K.1^6,K.1^12,K.1^-17,K.1^13,K.1^17,K.1^-9,K.1^-9,K.1^4,K.1^11,K.1^-11,K.1^6,K.1^9,K.1^-1,K.1^-17,K.1^-13,K.1^-4,K.1^16,K.1^3,K.1^8,K.1^13,K.1^2,K.1^-6,K.1^-16,K.1^-2,K.1^-8,K.1^17,K.1^-3,K.1,K.1^-12,K.1^12,K.1^-11,K.1^-8,K.1^-4,K.1^-12,K.1^-1,K.1^-8,K.1^-12,K.1^-6,K.1^8,K.1^-13,K.1^4,K.1^-2,K.1,K.1^12,K.1^3,K.1^-17,K.1^2,K.1^-4,K.1^11,K.1^-3,K.1^-16,K.1^6,K.1^-9,K.1^9,K.1^17,K.1^3,K.1^-11,K.1^-2,K.1^-3,K.1^-6,K.1^-17,K.1^-9,K.1^-13,K.1^4,K.1^12,K.1^8,K.1^6,K.1^16,K.1^-16,K.1^16,K.1,K.1^2,K.1^13,K.1^9,K.1^17,K.1^11,K.1^13,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^-7,K.1^7,K.1^-14,K.1^14,K.1^15,K.1^-15,K.1^-10,K.1^10,K.1^5,K.1^-5,K.1^-14,K.1^14,K.1^-7,K.1^7,K.1^10,K.1^-10,K.1^-5,K.1^5,K.1^-15,K.1^15,K.1^-14,K.1^-7,K.1^7,K.1^14,K.1^-7,K.1^-14,K.1^7,K.1^14,K.1^-5,K.1^-10,K.1^-15,K.1^15,K.1^-5,K.1^10,K.1^10,K.1^15,K.1^-15,K.1^5,K.1^-10,K.1^5,K.1^8,K.1^-12,K.1^2,K.1^-13,K.1^4,K.1^-4,K.1^11,K.1^-6,K.1,K.1^9,K.1^16,K.1^12,K.1^-17,K.1^17,K.1^6,K.1^-11,K.1^13,K.1^-9,K.1^-1,K.1^-2,K.1^-3,K.1^-8,K.1^3,K.1^-16,K.1^-16,K.1^11,K.1^4,K.1^-4,K.1^-1,K.1^16,K.1^6,K.1^-3,K.1^8,K.1^-11,K.1^9,K.1^17,K.1^-13,K.1^-8,K.1^-12,K.1,K.1^-9,K.1^12,K.1^13,K.1^3,K.1^-17,K.1^-6,K.1^2,K.1^-2,K.1^-4,K.1^13,K.1^-11,K.1^2,K.1^6,K.1^13,K.1^2,K.1,K.1^-13,K.1^8,K.1^11,K.1^12,K.1^-6,K.1^-2,K.1^17,K.1^-3,K.1^-12,K.1^-11,K.1^4,K.1^-17,K.1^-9,K.1^-1,K.1^-16,K.1^16,K.1^3,K.1^17,K.1^-4,K.1^12,K.1^-17,K.1,K.1^-3,K.1^-16,K.1^8,K.1^11,K.1^-2,K.1^-13,K.1^-1,K.1^9,K.1^-9,K.1^9,K.1^-6,K.1^-12,K.1^-8,K.1^16,K.1^3,K.1^4,K.1^-8,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^7,K.1^-7,K.1^14,K.1^-14,K.1^-15,K.1^15,K.1^10,K.1^-10,K.1^-5,K.1^5,K.1^14,K.1^-14,K.1^7,K.1^-7,K.1^-10,K.1^10,K.1^5,K.1^-5,K.1^15,K.1^-15,K.1^14,K.1^7,K.1^-7,K.1^-14,K.1^7,K.1^14,K.1^-7,K.1^-14,K.1^5,K.1^10,K.1^15,K.1^-15,K.1^5,K.1^-10,K.1^-10,K.1^-15,K.1^15,K.1^-5,K.1^10,K.1^-5,K.1^-8,K.1^12,K.1^-2,K.1^13,K.1^-4,K.1^4,K.1^-11,K.1^6,K.1^-1,K.1^-9,K.1^-16,K.1^-12,K.1^17,K.1^-17,K.1^-6,K.1^11,K.1^-13,K.1^9,K.1,K.1^2,K.1^3,K.1^8,K.1^-3,K.1^16,K.1^16,K.1^-11,K.1^-4,K.1^4,K.1,K.1^-16,K.1^-6,K.1^3,K.1^-8,K.1^11,K.1^-9,K.1^-17,K.1^13,K.1^8,K.1^12,K.1^-1,K.1^9,K.1^-12,K.1^-13,K.1^-3,K.1^17,K.1^6,K.1^-2,K.1^2,K.1^4,K.1^-13,K.1^11,K.1^-2,K.1^-6,K.1^-13,K.1^-2,K.1^-1,K.1^13,K.1^-8,K.1^-11,K.1^-12,K.1^6,K.1^2,K.1^-17,K.1^3,K.1^12,K.1^11,K.1^-4,K.1^17,K.1^9,K.1,K.1^16,K.1^-16,K.1^-3,K.1^-17,K.1^4,K.1^-12,K.1^17,K.1^-1,K.1^3,K.1^16,K.1^-8,K.1^-11,K.1^2,K.1^13,K.1,K.1^-9,K.1^9,K.1^-9,K.1^6,K.1^12,K.1^8,K.1^-16,K.1^-3,K.1^-4,K.1^8,K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^-7,K.1^7,K.1^-14,K.1^14,K.1^-10,K.1^10,K.1^-5,K.1^5,K.1^-15,K.1^15,K.1^-14,K.1^14,K.1^-7,K.1^7,K.1^5,K.1^-5,K.1^15,K.1^-15,K.1^10,K.1^-10,K.1^-14,K.1^-7,K.1^7,K.1^14,K.1^-7,K.1^-14,K.1^7,K.1^14,K.1^15,K.1^-5,K.1^10,K.1^-10,K.1^15,K.1^5,K.1^5,K.1^-10,K.1^10,K.1^-15,K.1^-5,K.1^-15,K.1^-17,K.1^8,K.1^-13,K.1^-3,K.1^9,K.1^-9,K.1^16,K.1^4,K.1^11,K.1^-6,K.1,K.1^-8,K.1^-12,K.1^12,K.1^-4,K.1^-16,K.1^3,K.1^6,K.1^-11,K.1^13,K.1^2,K.1^17,K.1^-2,K.1^-1,K.1^-1,K.1^16,K.1^9,K.1^-9,K.1^-11,K.1,K.1^-4,K.1^2,K.1^-17,K.1^-16,K.1^-6,K.1^12,K.1^-3,K.1^17,K.1^8,K.1^11,K.1^6,K.1^-8,K.1^3,K.1^-2,K.1^-12,K.1^4,K.1^-13,K.1^13,K.1^-9,K.1^3,K.1^-16,K.1^-13,K.1^-4,K.1^3,K.1^-13,K.1^11,K.1^-3,K.1^-17,K.1^16,K.1^-8,K.1^4,K.1^13,K.1^12,K.1^2,K.1^8,K.1^-16,K.1^9,K.1^-12,K.1^6,K.1^-11,K.1^-1,K.1,K.1^-2,K.1^12,K.1^-9,K.1^-8,K.1^-12,K.1^11,K.1^2,K.1^-1,K.1^-17,K.1^16,K.1^13,K.1^-3,K.1^-11,K.1^-6,K.1^6,K.1^-6,K.1^4,K.1^8,K.1^17,K.1,K.1^-2,K.1^9,K.1^17,K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^7,K.1^-7,K.1^14,K.1^-14,K.1^10,K.1^-10,K.1^5,K.1^-5,K.1^15,K.1^-15,K.1^14,K.1^-14,K.1^7,K.1^-7,K.1^-5,K.1^5,K.1^-15,K.1^15,K.1^-10,K.1^10,K.1^14,K.1^7,K.1^-7,K.1^-14,K.1^7,K.1^14,K.1^-7,K.1^-14,K.1^-15,K.1^5,K.1^-10,K.1^10,K.1^-15,K.1^-5,K.1^-5,K.1^10,K.1^-10,K.1^15,K.1^5,K.1^15,K.1^17,K.1^-8,K.1^13,K.1^3,K.1^-9,K.1^9,K.1^-16,K.1^-4,K.1^-11,K.1^6,K.1^-1,K.1^8,K.1^12,K.1^-12,K.1^4,K.1^16,K.1^-3,K.1^-6,K.1^11,K.1^-13,K.1^-2,K.1^-17,K.1^2,K.1,K.1,K.1^-16,K.1^-9,K.1^9,K.1^11,K.1^-1,K.1^4,K.1^-2,K.1^17,K.1^16,K.1^6,K.1^-12,K.1^3,K.1^-17,K.1^-8,K.1^-11,K.1^-6,K.1^8,K.1^-3,K.1^2,K.1^12,K.1^-4,K.1^13,K.1^-13,K.1^9,K.1^-3,K.1^16,K.1^13,K.1^4,K.1^-3,K.1^13,K.1^-11,K.1^3,K.1^17,K.1^-16,K.1^8,K.1^-4,K.1^-13,K.1^-12,K.1^-2,K.1^-8,K.1^16,K.1^-9,K.1^12,K.1^-6,K.1^11,K.1,K.1^-1,K.1^2,K.1^-12,K.1^9,K.1^8,K.1^12,K.1^-11,K.1^-2,K.1,K.1^17,K.1^-16,K.1^-13,K.1^3,K.1^11,K.1^6,K.1^-6,K.1^6,K.1^-4,K.1^-8,K.1^-17,K.1^-1,K.1^2,K.1^-9,K.1^-17,K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^-7,K.1^7,K.1^-14,K.1^14,K.1^10,K.1^-10,K.1^5,K.1^-5,K.1^15,K.1^-15,K.1^-14,K.1^14,K.1^-7,K.1^7,K.1^-5,K.1^5,K.1^-15,K.1^15,K.1^-10,K.1^10,K.1^-14,K.1^-7,K.1^7,K.1^14,K.1^-7,K.1^-14,K.1^7,K.1^14,K.1^-15,K.1^5,K.1^-10,K.1^10,K.1^-15,K.1^-5,K.1^-5,K.1^10,K.1^-10,K.1^15,K.1^5,K.1^15,K.1^3,K.1^13,K.1^-8,K.1^17,K.1^-16,K.1^16,K.1^-9,K.1^-11,K.1^-4,K.1^-1,K.1^6,K.1^-13,K.1^-2,K.1^2,K.1^11,K.1^9,K.1^-17,K.1,K.1^4,K.1^8,K.1^12,K.1^-3,K.1^-12,K.1^-6,K.1^-6,K.1^-9,K.1^-16,K.1^16,K.1^4,K.1^6,K.1^11,K.1^12,K.1^3,K.1^9,K.1^-1,K.1^2,K.1^17,K.1^-3,K.1^13,K.1^-4,K.1,K.1^-13,K.1^-17,K.1^-12,K.1^-2,K.1^-11,K.1^-8,K.1^8,K.1^16,K.1^-17,K.1^9,K.1^-8,K.1^11,K.1^-17,K.1^-8,K.1^-4,K.1^17,K.1^3,K.1^-9,K.1^-13,K.1^-11,K.1^8,K.1^2,K.1^12,K.1^13,K.1^9,K.1^-16,K.1^-2,K.1,K.1^4,K.1^-6,K.1^6,K.1^-12,K.1^2,K.1^16,K.1^-13,K.1^-2,K.1^-4,K.1^12,K.1^-6,K.1^3,K.1^-9,K.1^8,K.1^17,K.1^4,K.1^-1,K.1,K.1^-1,K.1^-11,K.1^13,K.1^-3,K.1^6,K.1^-12,K.1^-16,K.1^-3,K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^7,K.1^-7,K.1^14,K.1^-14,K.1^-10,K.1^10,K.1^-5,K.1^5,K.1^-15,K.1^15,K.1^14,K.1^-14,K.1^7,K.1^-7,K.1^5,K.1^-5,K.1^15,K.1^-15,K.1^10,K.1^-10,K.1^14,K.1^7,K.1^-7,K.1^-14,K.1^7,K.1^14,K.1^-7,K.1^-14,K.1^15,K.1^-5,K.1^10,K.1^-10,K.1^15,K.1^5,K.1^5,K.1^-10,K.1^10,K.1^-15,K.1^-5,K.1^-15,K.1^-3,K.1^-13,K.1^8,K.1^-17,K.1^16,K.1^-16,K.1^9,K.1^11,K.1^4,K.1,K.1^-6,K.1^13,K.1^2,K.1^-2,K.1^-11,K.1^-9,K.1^17,K.1^-1,K.1^-4,K.1^-8,K.1^-12,K.1^3,K.1^12,K.1^6,K.1^6,K.1^9,K.1^16,K.1^-16,K.1^-4,K.1^-6,K.1^-11,K.1^-12,K.1^-3,K.1^-9,K.1,K.1^-2,K.1^-17,K.1^3,K.1^-13,K.1^4,K.1^-1,K.1^13,K.1^17,K.1^12,K.1^2,K.1^11,K.1^8,K.1^-8,K.1^-16,K.1^17,K.1^-9,K.1^8,K.1^-11,K.1^17,K.1^8,K.1^4,K.1^-17,K.1^-3,K.1^9,K.1^13,K.1^11,K.1^-8,K.1^-2,K.1^-12,K.1^-13,K.1^-9,K.1^16,K.1^2,K.1^-1,K.1^-4,K.1^6,K.1^-6,K.1^12,K.1^-2,K.1^-16,K.1^13,K.1^2,K.1^4,K.1^-12,K.1^6,K.1^-3,K.1^9,K.1^-8,K.1^-17,K.1^-4,K.1,K.1^-1,K.1,K.1^11,K.1^-13,K.1^3,K.1^-6,K.1^12,K.1^16,K.1^3,K.1^-11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^-7,K.1^7,K.1^-14,K.1^14,K.1^-5,K.1^5,K.1^15,K.1^-15,K.1^10,K.1^-10,K.1^-14,K.1^14,K.1^-7,K.1^7,K.1^-15,K.1^15,K.1^-10,K.1^10,K.1^5,K.1^-5,K.1^-14,K.1^-7,K.1^7,K.1^14,K.1^-7,K.1^-14,K.1^7,K.1^14,K.1^-10,K.1^15,K.1^5,K.1^-5,K.1^-10,K.1^-15,K.1^-15,K.1^-5,K.1^5,K.1^10,K.1^15,K.1^10,K.1^-12,K.1^-17,K.1^-3,K.1^2,K.1^-6,K.1^6,K.1,K.1^9,K.1^16,K.1^4,K.1^11,K.1^17,K.1^8,K.1^-8,K.1^-9,K.1^-1,K.1^-2,K.1^-4,K.1^-16,K.1^3,K.1^-13,K.1^12,K.1^13,K.1^-11,K.1^-11,K.1,K.1^-6,K.1^6,K.1^-16,K.1^11,K.1^-9,K.1^-13,K.1^-12,K.1^-1,K.1^4,K.1^-8,K.1^2,K.1^12,K.1^-17,K.1^16,K.1^-4,K.1^17,K.1^-2,K.1^13,K.1^8,K.1^9,K.1^-3,K.1^3,K.1^6,K.1^-2,K.1^-1,K.1^-3,K.1^-9,K.1^-2,K.1^-3,K.1^16,K.1^2,K.1^-12,K.1,K.1^17,K.1^9,K.1^3,K.1^-8,K.1^-13,K.1^-17,K.1^-1,K.1^-6,K.1^8,K.1^-4,K.1^-16,K.1^-11,K.1^11,K.1^13,K.1^-8,K.1^6,K.1^17,K.1^8,K.1^16,K.1^-13,K.1^-11,K.1^-12,K.1,K.1^3,K.1^2,K.1^-16,K.1^4,K.1^-4,K.1^4,K.1^9,K.1^-17,K.1^12,K.1^11,K.1^13,K.1^-6,K.1^12,K.1^-9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^7,K.1^-7,K.1^14,K.1^-14,K.1^5,K.1^-5,K.1^-15,K.1^15,K.1^-10,K.1^10,K.1^14,K.1^-14,K.1^7,K.1^-7,K.1^15,K.1^-15,K.1^10,K.1^-10,K.1^-5,K.1^5,K.1^14,K.1^7,K.1^-7,K.1^-14,K.1^7,K.1^14,K.1^-7,K.1^-14,K.1^10,K.1^-15,K.1^-5,K.1^5,K.1^10,K.1^15,K.1^15,K.1^5,K.1^-5,K.1^-10,K.1^-15,K.1^-10,K.1^12,K.1^17,K.1^3,K.1^-2,K.1^6,K.1^-6,K.1^-1,K.1^-9,K.1^-16,K.1^-4,K.1^-11,K.1^-17,K.1^-8,K.1^8,K.1^9,K.1,K.1^2,K.1^4,K.1^16,K.1^-3,K.1^13,K.1^-12,K.1^-13,K.1^11,K.1^11,K.1^-1,K.1^6,K.1^-6,K.1^16,K.1^-11,K.1^9,K.1^13,K.1^12,K.1,K.1^-4,K.1^8,K.1^-2,K.1^-12,K.1^17,K.1^-16,K.1^4,K.1^-17,K.1^2,K.1^-13,K.1^-8,K.1^-9,K.1^3,K.1^-3,K.1^-6,K.1^2,K.1,K.1^3,K.1^9,K.1^2,K.1^3,K.1^-16,K.1^-2,K.1^12,K.1^-1,K.1^-17,K.1^-9,K.1^-3,K.1^8,K.1^13,K.1^17,K.1,K.1^6,K.1^-8,K.1^4,K.1^16,K.1^11,K.1^-11,K.1^-13,K.1^8,K.1^-6,K.1^-17,K.1^-8,K.1^-16,K.1^13,K.1^11,K.1^12,K.1^-1,K.1^-3,K.1^-2,K.1^16,K.1^-4,K.1^4,K.1^-4,K.1^-9,K.1^17,K.1^-12,K.1^-11,K.1^-13,K.1^6,K.1^-12,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^-7,K.1^7,K.1^-14,K.1^14,K.1^5,K.1^-5,K.1^-15,K.1^15,K.1^-10,K.1^10,K.1^-14,K.1^14,K.1^-7,K.1^7,K.1^15,K.1^-15,K.1^10,K.1^-10,K.1^-5,K.1^5,K.1^-14,K.1^-7,K.1^7,K.1^14,K.1^-7,K.1^-14,K.1^7,K.1^14,K.1^10,K.1^-15,K.1^-5,K.1^5,K.1^10,K.1^15,K.1^15,K.1^5,K.1^-5,K.1^-10,K.1^-15,K.1^-10,K.1^-2,K.1^3,K.1^17,K.1^12,K.1^-1,K.1,K.1^6,K.1^-16,K.1^-9,K.1^-11,K.1^-4,K.1^-3,K.1^13,K.1^-13,K.1^16,K.1^-6,K.1^-12,K.1^11,K.1^9,K.1^-17,K.1^-8,K.1^2,K.1^8,K.1^4,K.1^4,K.1^6,K.1^-1,K.1,K.1^9,K.1^-4,K.1^16,K.1^-8,K.1^-2,K.1^-6,K.1^-11,K.1^-13,K.1^12,K.1^2,K.1^3,K.1^-9,K.1^11,K.1^-3,K.1^-12,K.1^8,K.1^13,K.1^-16,K.1^17,K.1^-17,K.1,K.1^-12,K.1^-6,K.1^17,K.1^16,K.1^-12,K.1^17,K.1^-9,K.1^12,K.1^-2,K.1^6,K.1^-3,K.1^-16,K.1^-17,K.1^-13,K.1^-8,K.1^3,K.1^-6,K.1^-1,K.1^13,K.1^11,K.1^9,K.1^4,K.1^-4,K.1^8,K.1^-13,K.1,K.1^-3,K.1^13,K.1^-9,K.1^-8,K.1^4,K.1^-2,K.1^6,K.1^-17,K.1^12,K.1^9,K.1^-11,K.1^11,K.1^-11,K.1^-16,K.1^3,K.1^2,K.1^-4,K.1^8,K.1^-1,K.1^2,K.1^16]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |1,1,1,1,K.1^7,K.1^-7,K.1^14,K.1^-14,K.1^-5,K.1^5,K.1^15,K.1^-15,K.1^10,K.1^-10,K.1^14,K.1^-14,K.1^7,K.1^-7,K.1^-15,K.1^15,K.1^-10,K.1^10,K.1^5,K.1^-5,K.1^14,K.1^7,K.1^-7,K.1^-14,K.1^7,K.1^14,K.1^-7,K.1^-14,K.1^-10,K.1^15,K.1^5,K.1^-5,K.1^-10,K.1^-15,K.1^-15,K.1^-5,K.1^5,K.1^10,K.1^15,K.1^10,K.1^2,K.1^-3,K.1^-17,K.1^-12,K.1,K.1^-1,K.1^-6,K.1^16,K.1^9,K.1^11,K.1^4,K.1^3,K.1^-13,K.1^13,K.1^-16,K.1^6,K.1^12,K.1^-11,K.1^-9,K.1^17,K.1^8,K.1^-2,K.1^-8,K.1^-4,K.1^-4,K.1^-6,K.1,K.1^-1,K.1^-9,K.1^4,K.1^-16,K.1^8,K.1^2,K.1^6,K.1^11,K.1^13,K.1^-12,K.1^-2,K.1^-3,K.1^9,K.1^-11,K.1^3,K.1^12,K.1^-8,K.1^-13,K.1^16,K.1^-17,K.1^17,K.1^-1,K.1^12,K.1^6,K.1^-17,K.1^-16,K.1^12,K.1^-17,K.1^9,K.1^-12,K.1^2,K.1^-6,K.1^3,K.1^16,K.1^17,K.1^13,K.1^8,K.1^-3,K.1^6,K.1,K.1^-13,K.1^-11,K.1^-9,K.1^-4,K.1^4,K.1^-8,K.1^13,K.1^-1,K.1^3,K.1^-13,K.1^9,K.1^8,K.1^-4,K.1^2,K.1^-6,K.1^17,K.1^-12,K.1^-9,K.1^11,K.1^-11,K.1^11,K.1^16,K.1^-3,K.1^-2,K.1^4,K.1^-8,K.1,K.1^-2,K.1^-16]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^-35,K.1^35,K.1^-42,K.1^42,K.1^21,K.1^-21,K.1^-45,K.1^45,K.1^30,K.1^-30,K.1^-15,K.1^15,K.1^21,K.1^-21,K.1^-42,K.1^42,K.1^-30,K.1^30,K.1^15,K.1^-15,K.1^45,K.1^-45,K.1^-49,K.1^28,K.1^-28,K.1^49,K.1^-7,K.1^-14,K.1^7,K.1^14,K.1^50,K.1^-40,K.1^-25,K.1^-10,K.1^-20,K.1^40,K.1^5,K.1^25,K.1^10,K.1^-50,K.1^-5,K.1^20,K.1^18,K.1^-27,K.1^-48,K.1^-3,K.1^9,K.1^-9,K.1^51,K.1^39,K.1^-24,K.1^-6,K.1^36,K.1^27,K.1^-12,K.1^12,K.1^-39,K.1^-51,K.1^3,K.1^6,K.1^24,K.1^48,K.1^-33,K.1^-18,K.1^33,K.1^-36,K.1^-36,K.1^51,K.1^9,K.1^-9,K.1^24,K.1^36,K.1^-39,K.1^-33,K.1^18,K.1^-51,K.1^-6,K.1^12,K.1^-3,K.1^-18,K.1^-27,K.1^-24,K.1^6,K.1^27,K.1^3,K.1^33,K.1^-12,K.1^39,K.1^-48,K.1^48,K.1^26,K.1^-32,K.1^19,K.1^-13,K.1^-4,K.1^38,K.1^22,K.1^46,K.1^-38,K.1^-52,K.1^-19,K.1^-43,K.1^4,K.1^13,K.1^47,K.1^37,K.1^43,K.1^-16,K.1^-26,K.1^-47,K.1^-29,K.1^-11,K.1^-1,K.1^-34,K.1^-37,K.1^-23,K.1^-44,K.1^-8,K.1^23,K.1^11,K.1^2,K.1^34,K.1^-17,K.1^16,K.1^-22,K.1^32,K.1^-46,K.1^29,K.1^41,K.1^-41,K.1^-31,K.1^8,K.1^52,K.1,K.1^-2,K.1^44,K.1^17,K.1^31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^35,K.1^-35,K.1^42,K.1^-42,K.1^-21,K.1^21,K.1^45,K.1^-45,K.1^-30,K.1^30,K.1^15,K.1^-15,K.1^-21,K.1^21,K.1^42,K.1^-42,K.1^30,K.1^-30,K.1^-15,K.1^15,K.1^-45,K.1^45,K.1^49,K.1^-28,K.1^28,K.1^-49,K.1^7,K.1^14,K.1^-7,K.1^-14,K.1^-50,K.1^40,K.1^25,K.1^10,K.1^20,K.1^-40,K.1^-5,K.1^-25,K.1^-10,K.1^50,K.1^5,K.1^-20,K.1^-18,K.1^27,K.1^48,K.1^3,K.1^-9,K.1^9,K.1^-51,K.1^-39,K.1^24,K.1^6,K.1^-36,K.1^-27,K.1^12,K.1^-12,K.1^39,K.1^51,K.1^-3,K.1^-6,K.1^-24,K.1^-48,K.1^33,K.1^18,K.1^-33,K.1^36,K.1^36,K.1^-51,K.1^-9,K.1^9,K.1^-24,K.1^-36,K.1^39,K.1^33,K.1^-18,K.1^51,K.1^6,K.1^-12,K.1^3,K.1^18,K.1^27,K.1^24,K.1^-6,K.1^-27,K.1^-3,K.1^-33,K.1^12,K.1^-39,K.1^48,K.1^-48,K.1^-26,K.1^32,K.1^-19,K.1^13,K.1^4,K.1^-38,K.1^-22,K.1^-46,K.1^38,K.1^52,K.1^19,K.1^43,K.1^-4,K.1^-13,K.1^-47,K.1^-37,K.1^-43,K.1^16,K.1^26,K.1^47,K.1^29,K.1^11,K.1,K.1^34,K.1^37,K.1^23,K.1^44,K.1^8,K.1^-23,K.1^-11,K.1^-2,K.1^-34,K.1^17,K.1^-16,K.1^22,K.1^-32,K.1^46,K.1^-29,K.1^-41,K.1^41,K.1^31,K.1^-8,K.1^-52,K.1^-1,K.1^2,K.1^-44,K.1^-17,K.1^-31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^-35,K.1^35,K.1^-42,K.1^42,K.1^21,K.1^-21,K.1^45,K.1^-45,K.1^-30,K.1^30,K.1^15,K.1^-15,K.1^21,K.1^-21,K.1^-42,K.1^42,K.1^30,K.1^-30,K.1^-15,K.1^15,K.1^-45,K.1^45,K.1^-49,K.1^28,K.1^-28,K.1^49,K.1^-7,K.1^-14,K.1^7,K.1^14,K.1^20,K.1^5,K.1^-10,K.1^-25,K.1^-50,K.1^-5,K.1^-40,K.1^10,K.1^25,K.1^-20,K.1^40,K.1^50,K.1^3,K.1^48,K.1^27,K.1^-18,K.1^-51,K.1^51,K.1^-9,K.1^24,K.1^-39,K.1^-36,K.1^6,K.1^-48,K.1^33,K.1^-33,K.1^-24,K.1^9,K.1^18,K.1^36,K.1^39,K.1^-27,K.1^12,K.1^-3,K.1^-12,K.1^-6,K.1^-6,K.1^-9,K.1^-51,K.1^51,K.1^39,K.1^6,K.1^-24,K.1^12,K.1^3,K.1^9,K.1^-36,K.1^-33,K.1^-18,K.1^-3,K.1^48,K.1^-39,K.1^36,K.1^-48,K.1^18,K.1^-12,K.1^33,K.1^24,K.1^27,K.1^-27,K.1^-19,K.1^-17,K.1^-26,K.1^-43,K.1^11,K.1^-52,K.1^-8,K.1^31,K.1^52,K.1^38,K.1^26,K.1^-13,K.1^-11,K.1^43,K.1^2,K.1^-23,K.1^13,K.1^44,K.1^19,K.1^-2,K.1,K.1^4,K.1^29,K.1^41,K.1^23,K.1^37,K.1^16,K.1^22,K.1^-37,K.1^-4,K.1^47,K.1^-41,K.1^-32,K.1^-44,K.1^8,K.1^17,K.1^-31,K.1^-1,K.1^-34,K.1^34,K.1^-46,K.1^-22,K.1^-38,K.1^-29,K.1^-47,K.1^-16,K.1^32,K.1^46]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^35,K.1^-35,K.1^42,K.1^-42,K.1^-21,K.1^21,K.1^-45,K.1^45,K.1^30,K.1^-30,K.1^-15,K.1^15,K.1^-21,K.1^21,K.1^42,K.1^-42,K.1^-30,K.1^30,K.1^15,K.1^-15,K.1^45,K.1^-45,K.1^49,K.1^-28,K.1^28,K.1^-49,K.1^7,K.1^14,K.1^-7,K.1^-14,K.1^-20,K.1^-5,K.1^10,K.1^25,K.1^50,K.1^5,K.1^40,K.1^-10,K.1^-25,K.1^20,K.1^-40,K.1^-50,K.1^-3,K.1^-48,K.1^-27,K.1^18,K.1^51,K.1^-51,K.1^9,K.1^-24,K.1^39,K.1^36,K.1^-6,K.1^48,K.1^-33,K.1^33,K.1^24,K.1^-9,K.1^-18,K.1^-36,K.1^-39,K.1^27,K.1^-12,K.1^3,K.1^12,K.1^6,K.1^6,K.1^9,K.1^51,K.1^-51,K.1^-39,K.1^-6,K.1^24,K.1^-12,K.1^-3,K.1^-9,K.1^36,K.1^33,K.1^18,K.1^3,K.1^-48,K.1^39,K.1^-36,K.1^48,K.1^-18,K.1^12,K.1^-33,K.1^-24,K.1^-27,K.1^27,K.1^19,K.1^17,K.1^26,K.1^43,K.1^-11,K.1^52,K.1^8,K.1^-31,K.1^-52,K.1^-38,K.1^-26,K.1^13,K.1^11,K.1^-43,K.1^-2,K.1^23,K.1^-13,K.1^-44,K.1^-19,K.1^2,K.1^-1,K.1^-4,K.1^-29,K.1^-41,K.1^-23,K.1^-37,K.1^-16,K.1^-22,K.1^37,K.1^4,K.1^-47,K.1^41,K.1^32,K.1^44,K.1^-8,K.1^-17,K.1^31,K.1,K.1^34,K.1^-34,K.1^46,K.1^22,K.1^38,K.1^29,K.1^47,K.1^16,K.1^-32,K.1^-46]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^-35,K.1^35,K.1^-42,K.1^42,K.1^21,K.1^-21,K.1^-30,K.1^30,K.1^-15,K.1^15,K.1^-45,K.1^45,K.1^21,K.1^-21,K.1^-42,K.1^42,K.1^15,K.1^-15,K.1^45,K.1^-45,K.1^30,K.1^-30,K.1^-49,K.1^28,K.1^-28,K.1^49,K.1^-7,K.1^-14,K.1^7,K.1^14,K.1^-25,K.1^20,K.1^-40,K.1^5,K.1^10,K.1^-20,K.1^50,K.1^40,K.1^-5,K.1^25,K.1^-50,K.1^-10,K.1^33,K.1^3,K.1^-18,K.1^12,K.1^-36,K.1^36,K.1^6,K.1^-51,K.1^-9,K.1^24,K.1^-39,K.1^-3,K.1^48,K.1^-48,K.1^51,K.1^-6,K.1^-12,K.1^-24,K.1^9,K.1^18,K.1^27,K.1^-33,K.1^-27,K.1^39,K.1^39,K.1^6,K.1^-36,K.1^36,K.1^9,K.1^-39,K.1^51,K.1^27,K.1^33,K.1^-6,K.1^24,K.1^-48,K.1^12,K.1^-33,K.1^3,K.1^-9,K.1^-24,K.1^-3,K.1^-12,K.1^-27,K.1^48,K.1^-51,K.1^-18,K.1^18,K.1^-34,K.1^-47,K.1^-41,K.1^17,K.1^-19,K.1^23,K.1^52,K.1^-44,K.1^-23,K.1^-37,K.1^41,K.1^32,K.1^19,K.1^-17,K.1^-13,K.1^-8,K.1^-32,K.1^29,K.1^34,K.1^13,K.1^46,K.1^-26,K.1^-31,K.1^-4,K.1^8,K.1^22,K.1,K.1^-38,K.1^-22,K.1^26,K.1^-43,K.1^4,K.1^-2,K.1^-29,K.1^-52,K.1^47,K.1^44,K.1^-46,K.1^11,K.1^-11,K.1^-16,K.1^38,K.1^37,K.1^31,K.1^43,K.1^-1,K.1^2,K.1^16]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^35,K.1^-35,K.1^42,K.1^-42,K.1^-21,K.1^21,K.1^30,K.1^-30,K.1^15,K.1^-15,K.1^45,K.1^-45,K.1^-21,K.1^21,K.1^42,K.1^-42,K.1^-15,K.1^15,K.1^-45,K.1^45,K.1^-30,K.1^30,K.1^49,K.1^-28,K.1^28,K.1^-49,K.1^7,K.1^14,K.1^-7,K.1^-14,K.1^25,K.1^-20,K.1^40,K.1^-5,K.1^-10,K.1^20,K.1^-50,K.1^-40,K.1^5,K.1^-25,K.1^50,K.1^10,K.1^-33,K.1^-3,K.1^18,K.1^-12,K.1^36,K.1^-36,K.1^-6,K.1^51,K.1^9,K.1^-24,K.1^39,K.1^3,K.1^-48,K.1^48,K.1^-51,K.1^6,K.1^12,K.1^24,K.1^-9,K.1^-18,K.1^-27,K.1^33,K.1^27,K.1^-39,K.1^-39,K.1^-6,K.1^36,K.1^-36,K.1^-9,K.1^39,K.1^-51,K.1^-27,K.1^-33,K.1^6,K.1^-24,K.1^48,K.1^-12,K.1^33,K.1^-3,K.1^9,K.1^24,K.1^3,K.1^12,K.1^27,K.1^-48,K.1^51,K.1^18,K.1^-18,K.1^34,K.1^47,K.1^41,K.1^-17,K.1^19,K.1^-23,K.1^-52,K.1^44,K.1^23,K.1^37,K.1^-41,K.1^-32,K.1^-19,K.1^17,K.1^13,K.1^8,K.1^32,K.1^-29,K.1^-34,K.1^-13,K.1^-46,K.1^26,K.1^31,K.1^4,K.1^-8,K.1^-22,K.1^-1,K.1^38,K.1^22,K.1^-26,K.1^43,K.1^-4,K.1^2,K.1^29,K.1^52,K.1^-47,K.1^-44,K.1^46,K.1^-11,K.1^11,K.1^16,K.1^-38,K.1^-37,K.1^-31,K.1^-43,K.1,K.1^-2,K.1^-16]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^-35,K.1^35,K.1^-42,K.1^42,K.1^21,K.1^-21,K.1^30,K.1^-30,K.1^15,K.1^-15,K.1^45,K.1^-45,K.1^21,K.1^-21,K.1^-42,K.1^42,K.1^-15,K.1^15,K.1^-45,K.1^45,K.1^-30,K.1^30,K.1^-49,K.1^28,K.1^-28,K.1^49,K.1^-7,K.1^-14,K.1^7,K.1^14,K.1^-10,K.1^50,K.1^5,K.1^-40,K.1^25,K.1^-50,K.1^20,K.1^-5,K.1^40,K.1^10,K.1^-20,K.1^-25,K.1^-12,K.1^18,K.1^-3,K.1^-33,K.1^-6,K.1^6,K.1^36,K.1^9,K.1^51,K.1^39,K.1^-24,K.1^-18,K.1^-27,K.1^27,K.1^-9,K.1^-36,K.1^33,K.1^-39,K.1^-51,K.1^3,K.1^-48,K.1^12,K.1^48,K.1^24,K.1^24,K.1^36,K.1^-6,K.1^6,K.1^-51,K.1^-24,K.1^-9,K.1^-48,K.1^-12,K.1^-36,K.1^39,K.1^27,K.1^-33,K.1^12,K.1^18,K.1^51,K.1^-39,K.1^-18,K.1^33,K.1^48,K.1^-27,K.1^9,K.1^-3,K.1^3,K.1^41,K.1^-2,K.1^34,K.1^32,K.1^26,K.1^-37,K.1^-38,K.1^16,K.1^37,K.1^23,K.1^-34,K.1^17,K.1^-26,K.1^-32,K.1^-43,K.1^22,K.1^-17,K.1^-1,K.1^-41,K.1^43,K.1^31,K.1^19,K.1^-46,K.1^11,K.1^-22,K.1^-8,K.1^-29,K.1^52,K.1^8,K.1^-19,K.1^-13,K.1^-11,K.1^-47,K.1,K.1^38,K.1^2,K.1^-16,K.1^-31,K.1^-4,K.1^4,K.1^44,K.1^-52,K.1^-23,K.1^46,K.1^13,K.1^29,K.1^47,K.1^-44]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^35,K.1^-35,K.1^42,K.1^-42,K.1^-21,K.1^21,K.1^-30,K.1^30,K.1^-15,K.1^15,K.1^-45,K.1^45,K.1^-21,K.1^21,K.1^42,K.1^-42,K.1^15,K.1^-15,K.1^45,K.1^-45,K.1^30,K.1^-30,K.1^49,K.1^-28,K.1^28,K.1^-49,K.1^7,K.1^14,K.1^-7,K.1^-14,K.1^10,K.1^-50,K.1^-5,K.1^40,K.1^-25,K.1^50,K.1^-20,K.1^5,K.1^-40,K.1^-10,K.1^20,K.1^25,K.1^12,K.1^-18,K.1^3,K.1^33,K.1^6,K.1^-6,K.1^-36,K.1^-9,K.1^-51,K.1^-39,K.1^24,K.1^18,K.1^27,K.1^-27,K.1^9,K.1^36,K.1^-33,K.1^39,K.1^51,K.1^-3,K.1^48,K.1^-12,K.1^-48,K.1^-24,K.1^-24,K.1^-36,K.1^6,K.1^-6,K.1^51,K.1^24,K.1^9,K.1^48,K.1^12,K.1^36,K.1^-39,K.1^-27,K.1^33,K.1^-12,K.1^-18,K.1^-51,K.1^39,K.1^18,K.1^-33,K.1^-48,K.1^27,K.1^-9,K.1^3,K.1^-3,K.1^-41,K.1^2,K.1^-34,K.1^-32,K.1^-26,K.1^37,K.1^38,K.1^-16,K.1^-37,K.1^-23,K.1^34,K.1^-17,K.1^26,K.1^32,K.1^43,K.1^-22,K.1^17,K.1,K.1^41,K.1^-43,K.1^-31,K.1^-19,K.1^46,K.1^-11,K.1^22,K.1^8,K.1^29,K.1^-52,K.1^-8,K.1^19,K.1^13,K.1^11,K.1^47,K.1^-1,K.1^-38,K.1^-2,K.1^16,K.1^31,K.1^4,K.1^-4,K.1^-44,K.1^52,K.1^23,K.1^-46,K.1^-13,K.1^-29,K.1^-47,K.1^44]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^-35,K.1^35,K.1^-42,K.1^42,K.1^21,K.1^-21,K.1^-15,K.1^15,K.1^45,K.1^-45,K.1^30,K.1^-30,K.1^21,K.1^-21,K.1^-42,K.1^42,K.1^-45,K.1^45,K.1^-30,K.1^30,K.1^15,K.1^-15,K.1^-49,K.1^28,K.1^-28,K.1^49,K.1^-7,K.1^-14,K.1^7,K.1^14,K.1^5,K.1^-25,K.1^50,K.1^20,K.1^40,K.1^25,K.1^-10,K.1^-50,K.1^-20,K.1^-5,K.1^10,K.1^-40,K.1^48,K.1^33,K.1^12,K.1^27,K.1^24,K.1^-24,K.1^-39,K.1^-36,K.1^6,K.1^-51,K.1^-9,K.1^-33,K.1^3,K.1^-3,K.1^36,K.1^39,K.1^-27,K.1^51,K.1^-6,K.1^-12,K.1^-18,K.1^-48,K.1^18,K.1^9,K.1^9,K.1^-39,K.1^24,K.1^-24,K.1^-6,K.1^-9,K.1^36,K.1^-18,K.1^48,K.1^39,K.1^-51,K.1^-3,K.1^27,K.1^-48,K.1^33,K.1^6,K.1^51,K.1^-33,K.1^-27,K.1^18,K.1^3,K.1^-36,K.1^12,K.1^-12,K.1^11,K.1^43,K.1^4,K.1^47,K.1^-34,K.1^8,K.1^-23,K.1^-29,K.1^-8,K.1^-22,K.1^-4,K.1^2,K.1^34,K.1^-47,K.1^32,K.1^52,K.1^-2,K.1^-31,K.1^-11,K.1^-32,K.1^16,K.1^-41,K.1^44,K.1^26,K.1^-52,K.1^-38,K.1^46,K.1^37,K.1^38,K.1^41,K.1^17,K.1^-26,K.1^13,K.1^31,K.1^23,K.1^-43,K.1^29,K.1^-16,K.1^-19,K.1^19,K.1^-1,K.1^-37,K.1^22,K.1^-44,K.1^-17,K.1^-46,K.1^-13,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^35,K.1^-35,K.1^42,K.1^-42,K.1^-21,K.1^21,K.1^15,K.1^-15,K.1^-45,K.1^45,K.1^-30,K.1^30,K.1^-21,K.1^21,K.1^42,K.1^-42,K.1^45,K.1^-45,K.1^30,K.1^-30,K.1^-15,K.1^15,K.1^49,K.1^-28,K.1^28,K.1^-49,K.1^7,K.1^14,K.1^-7,K.1^-14,K.1^-5,K.1^25,K.1^-50,K.1^-20,K.1^-40,K.1^-25,K.1^10,K.1^50,K.1^20,K.1^5,K.1^-10,K.1^40,K.1^-48,K.1^-33,K.1^-12,K.1^-27,K.1^-24,K.1^24,K.1^39,K.1^36,K.1^-6,K.1^51,K.1^9,K.1^33,K.1^-3,K.1^3,K.1^-36,K.1^-39,K.1^27,K.1^-51,K.1^6,K.1^12,K.1^18,K.1^48,K.1^-18,K.1^-9,K.1^-9,K.1^39,K.1^-24,K.1^24,K.1^6,K.1^9,K.1^-36,K.1^18,K.1^-48,K.1^-39,K.1^51,K.1^3,K.1^-27,K.1^48,K.1^-33,K.1^-6,K.1^-51,K.1^33,K.1^27,K.1^-18,K.1^-3,K.1^36,K.1^-12,K.1^12,K.1^-11,K.1^-43,K.1^-4,K.1^-47,K.1^34,K.1^-8,K.1^23,K.1^29,K.1^8,K.1^22,K.1^4,K.1^-2,K.1^-34,K.1^47,K.1^-32,K.1^-52,K.1^2,K.1^31,K.1^11,K.1^32,K.1^-16,K.1^41,K.1^-44,K.1^-26,K.1^52,K.1^38,K.1^-46,K.1^-37,K.1^-38,K.1^-41,K.1^-17,K.1^26,K.1^-13,K.1^-31,K.1^-23,K.1^43,K.1^-29,K.1^16,K.1^19,K.1^-19,K.1,K.1^37,K.1^-22,K.1^44,K.1^17,K.1^46,K.1^13,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^-35,K.1^35,K.1^-42,K.1^42,K.1^21,K.1^-21,K.1^15,K.1^-15,K.1^-45,K.1^45,K.1^-30,K.1^30,K.1^21,K.1^-21,K.1^-42,K.1^42,K.1^45,K.1^-45,K.1^30,K.1^-30,K.1^-15,K.1^15,K.1^-49,K.1^28,K.1^-28,K.1^49,K.1^-7,K.1^-14,K.1^7,K.1^14,K.1^-40,K.1^-10,K.1^20,K.1^50,K.1^-5,K.1^10,K.1^-25,K.1^-20,K.1^-50,K.1^40,K.1^25,K.1^5,K.1^-27,K.1^-12,K.1^-33,K.1^-48,K.1^39,K.1^-39,K.1^-24,K.1^-6,K.1^36,K.1^9,K.1^51,K.1^12,K.1^18,K.1^-18,K.1^6,K.1^24,K.1^48,K.1^-9,K.1^-36,K.1^33,K.1^-3,K.1^27,K.1^3,K.1^-51,K.1^-51,K.1^-24,K.1^39,K.1^-39,K.1^-36,K.1^51,K.1^6,K.1^-3,K.1^-27,K.1^24,K.1^9,K.1^-18,K.1^-48,K.1^27,K.1^-12,K.1^36,K.1^-9,K.1^12,K.1^48,K.1^3,K.1^18,K.1^-6,K.1^-33,K.1^33,K.1^-4,K.1^13,K.1^-11,K.1^2,K.1^41,K.1^-22,K.1^37,K.1,K.1^22,K.1^8,K.1^11,K.1^47,K.1^-41,K.1^-2,K.1^17,K.1^-38,K.1^-47,K.1^-46,K.1^4,K.1^-17,K.1^-44,K.1^34,K.1^-16,K.1^-19,K.1^38,K.1^52,K.1^31,K.1^-23,K.1^-52,K.1^-34,K.1^32,K.1^19,K.1^43,K.1^46,K.1^-37,K.1^-13,K.1^-1,K.1^44,K.1^26,K.1^-26,K.1^29,K.1^23,K.1^-8,K.1^16,K.1^-32,K.1^-31,K.1^-43,K.1^-29]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^35,K.1^-35,K.1^42,K.1^-42,K.1^-21,K.1^21,K.1^-15,K.1^15,K.1^45,K.1^-45,K.1^30,K.1^-30,K.1^-21,K.1^21,K.1^42,K.1^-42,K.1^-45,K.1^45,K.1^-30,K.1^30,K.1^15,K.1^-15,K.1^49,K.1^-28,K.1^28,K.1^-49,K.1^7,K.1^14,K.1^-7,K.1^-14,K.1^40,K.1^10,K.1^-20,K.1^-50,K.1^5,K.1^-10,K.1^25,K.1^20,K.1^50,K.1^-40,K.1^-25,K.1^-5,K.1^27,K.1^12,K.1^33,K.1^48,K.1^-39,K.1^39,K.1^24,K.1^6,K.1^-36,K.1^-9,K.1^-51,K.1^-12,K.1^-18,K.1^18,K.1^-6,K.1^-24,K.1^-48,K.1^9,K.1^36,K.1^-33,K.1^3,K.1^-27,K.1^-3,K.1^51,K.1^51,K.1^24,K.1^-39,K.1^39,K.1^36,K.1^-51,K.1^-6,K.1^3,K.1^27,K.1^-24,K.1^-9,K.1^18,K.1^48,K.1^-27,K.1^12,K.1^-36,K.1^9,K.1^-12,K.1^-48,K.1^-3,K.1^-18,K.1^6,K.1^33,K.1^-33,K.1^4,K.1^-13,K.1^11,K.1^-2,K.1^-41,K.1^22,K.1^-37,K.1^-1,K.1^-22,K.1^-8,K.1^-11,K.1^-47,K.1^41,K.1^2,K.1^-17,K.1^38,K.1^47,K.1^46,K.1^-4,K.1^17,K.1^44,K.1^-34,K.1^16,K.1^19,K.1^-38,K.1^-52,K.1^-31,K.1^23,K.1^52,K.1^34,K.1^-32,K.1^-19,K.1^-43,K.1^-46,K.1^37,K.1^13,K.1,K.1^-44,K.1^-26,K.1^26,K.1^-29,K.1^-23,K.1^8,K.1^-16,K.1^32,K.1^31,K.1^43,K.1^29]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^-35,K.1^35,K.1^42,K.1^-42,K.1^-21,K.1^21,K.1^-45,K.1^45,K.1^30,K.1^-30,K.1^-15,K.1^15,K.1^-21,K.1^21,K.1^42,K.1^-42,K.1^-30,K.1^30,K.1^15,K.1^-15,K.1^45,K.1^-45,K.1^14,K.1^7,K.1^-7,K.1^-14,K.1^-28,K.1^49,K.1^28,K.1^-49,K.1^50,K.1^-40,K.1^-25,K.1^-10,K.1^-20,K.1^40,K.1^5,K.1^25,K.1^10,K.1^-50,K.1^-5,K.1^20,K.1^-3,K.1^-48,K.1^-27,K.1^18,K.1^51,K.1^-51,K.1^9,K.1^-24,K.1^39,K.1^36,K.1^-6,K.1^48,K.1^-33,K.1^33,K.1^24,K.1^-9,K.1^-18,K.1^-36,K.1^-39,K.1^27,K.1^-12,K.1^3,K.1^12,K.1^6,K.1^6,K.1^9,K.1^51,K.1^-51,K.1^-39,K.1^-6,K.1^24,K.1^-12,K.1^-3,K.1^-9,K.1^36,K.1^33,K.1^18,K.1^3,K.1^-48,K.1^39,K.1^-36,K.1^48,K.1^-18,K.1^12,K.1^-33,K.1^-24,K.1^-27,K.1^27,K.1^-16,K.1^52,K.1^-44,K.1^8,K.1^-46,K.1^17,K.1^43,K.1^4,K.1^-17,K.1^32,K.1^44,K.1^-22,K.1^46,K.1^-8,K.1^-37,K.1^-47,K.1^22,K.1^26,K.1^16,K.1^37,K.1^34,K.1^31,K.1^41,K.1^29,K.1^47,K.1^-2,K.1^19,K.1^13,K.1^2,K.1^-31,K.1^23,K.1^-29,K.1^-38,K.1^-26,K.1^-43,K.1^-52,K.1^-4,K.1^-34,K.1^-1,K.1,K.1^11,K.1^-13,K.1^-32,K.1^-41,K.1^-23,K.1^-19,K.1^38,K.1^-11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^35,K.1^-35,K.1^-42,K.1^42,K.1^21,K.1^-21,K.1^45,K.1^-45,K.1^-30,K.1^30,K.1^15,K.1^-15,K.1^21,K.1^-21,K.1^-42,K.1^42,K.1^30,K.1^-30,K.1^-15,K.1^15,K.1^-45,K.1^45,K.1^-14,K.1^-7,K.1^7,K.1^14,K.1^28,K.1^-49,K.1^-28,K.1^49,K.1^-50,K.1^40,K.1^25,K.1^10,K.1^20,K.1^-40,K.1^-5,K.1^-25,K.1^-10,K.1^50,K.1^5,K.1^-20,K.1^3,K.1^48,K.1^27,K.1^-18,K.1^-51,K.1^51,K.1^-9,K.1^24,K.1^-39,K.1^-36,K.1^6,K.1^-48,K.1^33,K.1^-33,K.1^-24,K.1^9,K.1^18,K.1^36,K.1^39,K.1^-27,K.1^12,K.1^-3,K.1^-12,K.1^-6,K.1^-6,K.1^-9,K.1^-51,K.1^51,K.1^39,K.1^6,K.1^-24,K.1^12,K.1^3,K.1^9,K.1^-36,K.1^-33,K.1^-18,K.1^-3,K.1^48,K.1^-39,K.1^36,K.1^-48,K.1^18,K.1^-12,K.1^33,K.1^24,K.1^27,K.1^-27,K.1^16,K.1^-52,K.1^44,K.1^-8,K.1^46,K.1^-17,K.1^-43,K.1^-4,K.1^17,K.1^-32,K.1^-44,K.1^22,K.1^-46,K.1^8,K.1^37,K.1^47,K.1^-22,K.1^-26,K.1^-16,K.1^-37,K.1^-34,K.1^-31,K.1^-41,K.1^-29,K.1^-47,K.1^2,K.1^-19,K.1^-13,K.1^-2,K.1^31,K.1^-23,K.1^29,K.1^38,K.1^26,K.1^43,K.1^52,K.1^4,K.1^34,K.1,K.1^-1,K.1^-11,K.1^13,K.1^32,K.1^41,K.1^23,K.1^19,K.1^-38,K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^-35,K.1^35,K.1^42,K.1^-42,K.1^-21,K.1^21,K.1^45,K.1^-45,K.1^-30,K.1^30,K.1^15,K.1^-15,K.1^-21,K.1^21,K.1^42,K.1^-42,K.1^30,K.1^-30,K.1^-15,K.1^15,K.1^-45,K.1^45,K.1^14,K.1^7,K.1^-7,K.1^-14,K.1^-28,K.1^49,K.1^28,K.1^-49,K.1^20,K.1^5,K.1^-10,K.1^-25,K.1^-50,K.1^-5,K.1^-40,K.1^10,K.1^25,K.1^-20,K.1^40,K.1^50,K.1^-18,K.1^27,K.1^48,K.1^3,K.1^-9,K.1^9,K.1^-51,K.1^-39,K.1^24,K.1^6,K.1^-36,K.1^-27,K.1^12,K.1^-12,K.1^39,K.1^51,K.1^-3,K.1^-6,K.1^-24,K.1^-48,K.1^33,K.1^18,K.1^-33,K.1^36,K.1^36,K.1^-51,K.1^-9,K.1^9,K.1^-24,K.1^-36,K.1^39,K.1^33,K.1^-18,K.1^51,K.1^6,K.1^-12,K.1^3,K.1^18,K.1^27,K.1^24,K.1^-6,K.1^-27,K.1^-3,K.1^-33,K.1^12,K.1^-39,K.1^48,K.1^-48,K.1^44,K.1^-38,K.1^16,K.1^-22,K.1^-31,K.1^32,K.1^13,K.1^-11,K.1^-32,K.1^17,K.1^-16,K.1^8,K.1^31,K.1^22,K.1^23,K.1^-2,K.1^-8,K.1^-19,K.1^-44,K.1^-23,K.1^-41,K.1^46,K.1^-34,K.1^-1,K.1^2,K.1^-47,K.1^-26,K.1^43,K.1^47,K.1^-46,K.1^-37,K.1,K.1^52,K.1^19,K.1^-13,K.1^38,K.1^11,K.1^41,K.1^29,K.1^-29,K.1^-4,K.1^-43,K.1^-17,K.1^34,K.1^37,K.1^26,K.1^-52,K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^35,K.1^-35,K.1^-42,K.1^42,K.1^21,K.1^-21,K.1^-45,K.1^45,K.1^30,K.1^-30,K.1^-15,K.1^15,K.1^21,K.1^-21,K.1^-42,K.1^42,K.1^-30,K.1^30,K.1^15,K.1^-15,K.1^45,K.1^-45,K.1^-14,K.1^-7,K.1^7,K.1^14,K.1^28,K.1^-49,K.1^-28,K.1^49,K.1^-20,K.1^-5,K.1^10,K.1^25,K.1^50,K.1^5,K.1^40,K.1^-10,K.1^-25,K.1^20,K.1^-40,K.1^-50,K.1^18,K.1^-27,K.1^-48,K.1^-3,K.1^9,K.1^-9,K.1^51,K.1^39,K.1^-24,K.1^-6,K.1^36,K.1^27,K.1^-12,K.1^12,K.1^-39,K.1^-51,K.1^3,K.1^6,K.1^24,K.1^48,K.1^-33,K.1^-18,K.1^33,K.1^-36,K.1^-36,K.1^51,K.1^9,K.1^-9,K.1^24,K.1^36,K.1^-39,K.1^-33,K.1^18,K.1^-51,K.1^-6,K.1^12,K.1^-3,K.1^-18,K.1^-27,K.1^-24,K.1^6,K.1^27,K.1^3,K.1^33,K.1^-12,K.1^39,K.1^-48,K.1^48,K.1^-44,K.1^38,K.1^-16,K.1^22,K.1^31,K.1^-32,K.1^-13,K.1^11,K.1^32,K.1^-17,K.1^16,K.1^-8,K.1^-31,K.1^-22,K.1^-23,K.1^2,K.1^8,K.1^19,K.1^44,K.1^23,K.1^41,K.1^-46,K.1^34,K.1,K.1^-2,K.1^47,K.1^26,K.1^-43,K.1^-47,K.1^46,K.1^37,K.1^-1,K.1^-52,K.1^-19,K.1^13,K.1^-38,K.1^-11,K.1^-41,K.1^-29,K.1^29,K.1^4,K.1^43,K.1^17,K.1^-34,K.1^-37,K.1^-26,K.1^52,K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^-35,K.1^35,K.1^42,K.1^-42,K.1^-21,K.1^21,K.1^-30,K.1^30,K.1^-15,K.1^15,K.1^-45,K.1^45,K.1^-21,K.1^21,K.1^42,K.1^-42,K.1^15,K.1^-15,K.1^45,K.1^-45,K.1^30,K.1^-30,K.1^14,K.1^7,K.1^-7,K.1^-14,K.1^-28,K.1^49,K.1^28,K.1^-49,K.1^-25,K.1^20,K.1^-40,K.1^5,K.1^10,K.1^-20,K.1^50,K.1^40,K.1^-5,K.1^25,K.1^-50,K.1^-10,K.1^12,K.1^-18,K.1^3,K.1^33,K.1^6,K.1^-6,K.1^-36,K.1^-9,K.1^-51,K.1^-39,K.1^24,K.1^18,K.1^27,K.1^-27,K.1^9,K.1^36,K.1^-33,K.1^39,K.1^51,K.1^-3,K.1^48,K.1^-12,K.1^-48,K.1^-24,K.1^-24,K.1^-36,K.1^6,K.1^-6,K.1^51,K.1^24,K.1^9,K.1^48,K.1^12,K.1^36,K.1^-39,K.1^-27,K.1^33,K.1^-12,K.1^-18,K.1^-51,K.1^39,K.1^18,K.1^-33,K.1^-48,K.1^27,K.1^-9,K.1^3,K.1^-3,K.1^29,K.1^37,K.1,K.1^38,K.1^44,K.1^2,K.1^-32,K.1^19,K.1^-2,K.1^47,K.1^-1,K.1^-52,K.1^-44,K.1^-38,K.1^8,K.1^13,K.1^52,K.1^-34,K.1^-29,K.1^-8,K.1^4,K.1^16,K.1^11,K.1^-46,K.1^-13,K.1^43,K.1^-41,K.1^-17,K.1^-43,K.1^-16,K.1^-22,K.1^46,K.1^-23,K.1^34,K.1^32,K.1^-37,K.1^-19,K.1^-4,K.1^-31,K.1^31,K.1^26,K.1^17,K.1^-47,K.1^-11,K.1^22,K.1^41,K.1^23,K.1^-26]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^35,K.1^-35,K.1^-42,K.1^42,K.1^21,K.1^-21,K.1^30,K.1^-30,K.1^15,K.1^-15,K.1^45,K.1^-45,K.1^21,K.1^-21,K.1^-42,K.1^42,K.1^-15,K.1^15,K.1^-45,K.1^45,K.1^-30,K.1^30,K.1^-14,K.1^-7,K.1^7,K.1^14,K.1^28,K.1^-49,K.1^-28,K.1^49,K.1^25,K.1^-20,K.1^40,K.1^-5,K.1^-10,K.1^20,K.1^-50,K.1^-40,K.1^5,K.1^-25,K.1^50,K.1^10,K.1^-12,K.1^18,K.1^-3,K.1^-33,K.1^-6,K.1^6,K.1^36,K.1^9,K.1^51,K.1^39,K.1^-24,K.1^-18,K.1^-27,K.1^27,K.1^-9,K.1^-36,K.1^33,K.1^-39,K.1^-51,K.1^3,K.1^-48,K.1^12,K.1^48,K.1^24,K.1^24,K.1^36,K.1^-6,K.1^6,K.1^-51,K.1^-24,K.1^-9,K.1^-48,K.1^-12,K.1^-36,K.1^39,K.1^27,K.1^-33,K.1^12,K.1^18,K.1^51,K.1^-39,K.1^-18,K.1^33,K.1^48,K.1^-27,K.1^9,K.1^-3,K.1^3,K.1^-29,K.1^-37,K.1^-1,K.1^-38,K.1^-44,K.1^-2,K.1^32,K.1^-19,K.1^2,K.1^-47,K.1,K.1^52,K.1^44,K.1^38,K.1^-8,K.1^-13,K.1^-52,K.1^34,K.1^29,K.1^8,K.1^-4,K.1^-16,K.1^-11,K.1^46,K.1^13,K.1^-43,K.1^41,K.1^17,K.1^43,K.1^16,K.1^22,K.1^-46,K.1^23,K.1^-34,K.1^-32,K.1^37,K.1^19,K.1^4,K.1^31,K.1^-31,K.1^-26,K.1^-17,K.1^47,K.1^11,K.1^-22,K.1^-41,K.1^-23,K.1^26]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^-35,K.1^35,K.1^42,K.1^-42,K.1^-21,K.1^21,K.1^30,K.1^-30,K.1^15,K.1^-15,K.1^45,K.1^-45,K.1^-21,K.1^21,K.1^42,K.1^-42,K.1^-15,K.1^15,K.1^-45,K.1^45,K.1^-30,K.1^30,K.1^14,K.1^7,K.1^-7,K.1^-14,K.1^-28,K.1^49,K.1^28,K.1^-49,K.1^-10,K.1^50,K.1^5,K.1^-40,K.1^25,K.1^-50,K.1^20,K.1^-5,K.1^40,K.1^10,K.1^-20,K.1^-25,K.1^-33,K.1^-3,K.1^18,K.1^-12,K.1^36,K.1^-36,K.1^-6,K.1^51,K.1^9,K.1^-24,K.1^39,K.1^3,K.1^-48,K.1^48,K.1^-51,K.1^6,K.1^12,K.1^24,K.1^-9,K.1^-18,K.1^-27,K.1^33,K.1^27,K.1^-39,K.1^-39,K.1^-6,K.1^36,K.1^-36,K.1^-9,K.1^39,K.1^-51,K.1^-27,K.1^-33,K.1^6,K.1^-24,K.1^48,K.1^-12,K.1^33,K.1^-3,K.1^9,K.1^24,K.1^3,K.1^12,K.1^27,K.1^-48,K.1^51,K.1^18,K.1^-18,K.1^-1,K.1^-23,K.1^-29,K.1^-52,K.1^-16,K.1^47,K.1^-17,K.1^-26,K.1^-47,K.1^2,K.1^29,K.1^38,K.1^16,K.1^52,K.1^-22,K.1^43,K.1^-38,K.1^41,K.1,K.1^22,K.1^-11,K.1^-44,K.1^-4,K.1^-31,K.1^-43,K.1^13,K.1^34,K.1^-32,K.1^-13,K.1^44,K.1^8,K.1^31,K.1^37,K.1^-41,K.1^17,K.1^23,K.1^26,K.1^11,K.1^-46,K.1^46,K.1^-19,K.1^32,K.1^-2,K.1^4,K.1^-8,K.1^-34,K.1^-37,K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^35,K.1^-35,K.1^-42,K.1^42,K.1^21,K.1^-21,K.1^-30,K.1^30,K.1^-15,K.1^15,K.1^-45,K.1^45,K.1^21,K.1^-21,K.1^-42,K.1^42,K.1^15,K.1^-15,K.1^45,K.1^-45,K.1^30,K.1^-30,K.1^-14,K.1^-7,K.1^7,K.1^14,K.1^28,K.1^-49,K.1^-28,K.1^49,K.1^10,K.1^-50,K.1^-5,K.1^40,K.1^-25,K.1^50,K.1^-20,K.1^5,K.1^-40,K.1^-10,K.1^20,K.1^25,K.1^33,K.1^3,K.1^-18,K.1^12,K.1^-36,K.1^36,K.1^6,K.1^-51,K.1^-9,K.1^24,K.1^-39,K.1^-3,K.1^48,K.1^-48,K.1^51,K.1^-6,K.1^-12,K.1^-24,K.1^9,K.1^18,K.1^27,K.1^-33,K.1^-27,K.1^39,K.1^39,K.1^6,K.1^-36,K.1^36,K.1^9,K.1^-39,K.1^51,K.1^27,K.1^33,K.1^-6,K.1^24,K.1^-48,K.1^12,K.1^-33,K.1^3,K.1^-9,K.1^-24,K.1^-3,K.1^-12,K.1^-27,K.1^48,K.1^-51,K.1^-18,K.1^18,K.1,K.1^23,K.1^29,K.1^52,K.1^16,K.1^-47,K.1^17,K.1^26,K.1^47,K.1^-2,K.1^-29,K.1^-38,K.1^-16,K.1^-52,K.1^22,K.1^-43,K.1^38,K.1^-41,K.1^-1,K.1^-22,K.1^11,K.1^44,K.1^4,K.1^31,K.1^43,K.1^-13,K.1^-34,K.1^32,K.1^13,K.1^-44,K.1^-8,K.1^-31,K.1^-37,K.1^41,K.1^-17,K.1^-23,K.1^-26,K.1^-11,K.1^46,K.1^-46,K.1^19,K.1^-32,K.1^2,K.1^-4,K.1^8,K.1^34,K.1^37,K.1^-19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^-35,K.1^35,K.1^42,K.1^-42,K.1^-21,K.1^21,K.1^-15,K.1^15,K.1^45,K.1^-45,K.1^30,K.1^-30,K.1^-21,K.1^21,K.1^42,K.1^-42,K.1^-45,K.1^45,K.1^-30,K.1^30,K.1^15,K.1^-15,K.1^14,K.1^7,K.1^-7,K.1^-14,K.1^-28,K.1^49,K.1^28,K.1^-49,K.1^5,K.1^-25,K.1^50,K.1^20,K.1^40,K.1^25,K.1^-10,K.1^-50,K.1^-20,K.1^-5,K.1^10,K.1^-40,K.1^27,K.1^12,K.1^33,K.1^48,K.1^-39,K.1^39,K.1^24,K.1^6,K.1^-36,K.1^-9,K.1^-51,K.1^-12,K.1^-18,K.1^18,K.1^-6,K.1^-24,K.1^-48,K.1^9,K.1^36,K.1^-33,K.1^3,K.1^-27,K.1^-3,K.1^51,K.1^51,K.1^24,K.1^-39,K.1^39,K.1^36,K.1^-51,K.1^-6,K.1^3,K.1^27,K.1^-24,K.1^-9,K.1^18,K.1^48,K.1^-27,K.1^12,K.1^-36,K.1^9,K.1^-12,K.1^-48,K.1^-3,K.1^-18,K.1^6,K.1^33,K.1^-33,K.1^-31,K.1^22,K.1^46,K.1^-37,K.1^29,K.1^-13,K.1^-2,K.1^34,K.1^13,K.1^-43,K.1^-46,K.1^23,K.1^-29,K.1^37,K.1^-52,K.1^-32,K.1^-23,K.1^11,K.1^31,K.1^52,K.1^-26,K.1,K.1^-19,K.1^-16,K.1^32,K.1^-17,K.1^4,K.1^-47,K.1^17,K.1^-1,K.1^38,K.1^16,K.1^-8,K.1^-11,K.1^2,K.1^-22,K.1^-34,K.1^26,K.1^44,K.1^-44,K.1^41,K.1^47,K.1^43,K.1^19,K.1^-38,K.1^-4,K.1^8,K.1^-41]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^35,K.1^-35,K.1^-42,K.1^42,K.1^21,K.1^-21,K.1^15,K.1^-15,K.1^-45,K.1^45,K.1^-30,K.1^30,K.1^21,K.1^-21,K.1^-42,K.1^42,K.1^45,K.1^-45,K.1^30,K.1^-30,K.1^-15,K.1^15,K.1^-14,K.1^-7,K.1^7,K.1^14,K.1^28,K.1^-49,K.1^-28,K.1^49,K.1^-5,K.1^25,K.1^-50,K.1^-20,K.1^-40,K.1^-25,K.1^10,K.1^50,K.1^20,K.1^5,K.1^-10,K.1^40,K.1^-27,K.1^-12,K.1^-33,K.1^-48,K.1^39,K.1^-39,K.1^-24,K.1^-6,K.1^36,K.1^9,K.1^51,K.1^12,K.1^18,K.1^-18,K.1^6,K.1^24,K.1^48,K.1^-9,K.1^-36,K.1^33,K.1^-3,K.1^27,K.1^3,K.1^-51,K.1^-51,K.1^-24,K.1^39,K.1^-39,K.1^-36,K.1^51,K.1^6,K.1^-3,K.1^-27,K.1^24,K.1^9,K.1^-18,K.1^-48,K.1^27,K.1^-12,K.1^36,K.1^-9,K.1^12,K.1^48,K.1^3,K.1^18,K.1^-6,K.1^-33,K.1^33,K.1^31,K.1^-22,K.1^-46,K.1^37,K.1^-29,K.1^13,K.1^2,K.1^-34,K.1^-13,K.1^43,K.1^46,K.1^-23,K.1^29,K.1^-37,K.1^52,K.1^32,K.1^23,K.1^-11,K.1^-31,K.1^-52,K.1^26,K.1^-1,K.1^19,K.1^16,K.1^-32,K.1^17,K.1^-4,K.1^47,K.1^-17,K.1,K.1^-38,K.1^-16,K.1^8,K.1^11,K.1^-2,K.1^22,K.1^34,K.1^-26,K.1^-44,K.1^44,K.1^-41,K.1^-47,K.1^-43,K.1^-19,K.1^38,K.1^4,K.1^-8,K.1^41]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^-35,K.1^35,K.1^42,K.1^-42,K.1^-21,K.1^21,K.1^15,K.1^-15,K.1^-45,K.1^45,K.1^-30,K.1^30,K.1^-21,K.1^21,K.1^42,K.1^-42,K.1^45,K.1^-45,K.1^30,K.1^-30,K.1^-15,K.1^15,K.1^14,K.1^7,K.1^-7,K.1^-14,K.1^-28,K.1^49,K.1^28,K.1^-49,K.1^-40,K.1^-10,K.1^20,K.1^50,K.1^-5,K.1^10,K.1^-25,K.1^-20,K.1^-50,K.1^40,K.1^25,K.1^5,K.1^-48,K.1^-33,K.1^-12,K.1^-27,K.1^-24,K.1^24,K.1^39,K.1^36,K.1^-6,K.1^51,K.1^9,K.1^33,K.1^-3,K.1^3,K.1^-36,K.1^-39,K.1^27,K.1^-51,K.1^6,K.1^12,K.1^18,K.1^48,K.1^-18,K.1^-9,K.1^-9,K.1^39,K.1^-24,K.1^24,K.1^6,K.1^9,K.1^-36,K.1^18,K.1^-48,K.1^-39,K.1^51,K.1^3,K.1^-27,K.1^48,K.1^-33,K.1^-6,K.1^-51,K.1^33,K.1^27,K.1^-18,K.1^-3,K.1^36,K.1^-12,K.1^12,K.1^-46,K.1^-8,K.1^31,K.1^23,K.1^-1,K.1^-43,K.1^-47,K.1^-41,K.1^43,K.1^-13,K.1^-31,K.1^-37,K.1,K.1^-23,K.1^38,K.1^-17,K.1^37,K.1^-4,K.1^46,K.1^-38,K.1^19,K.1^-29,K.1^26,K.1^44,K.1^17,K.1^-32,K.1^-11,K.1^-2,K.1^32,K.1^29,K.1^-52,K.1^-44,K.1^22,K.1^4,K.1^47,K.1^8,K.1^41,K.1^-19,K.1^-16,K.1^16,K.1^-34,K.1^2,K.1^13,K.1^-26,K.1^52,K.1^11,K.1^-22,K.1^34]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^35,K.1^-35,K.1^-42,K.1^42,K.1^21,K.1^-21,K.1^-15,K.1^15,K.1^45,K.1^-45,K.1^30,K.1^-30,K.1^21,K.1^-21,K.1^-42,K.1^42,K.1^-45,K.1^45,K.1^-30,K.1^30,K.1^15,K.1^-15,K.1^-14,K.1^-7,K.1^7,K.1^14,K.1^28,K.1^-49,K.1^-28,K.1^49,K.1^40,K.1^10,K.1^-20,K.1^-50,K.1^5,K.1^-10,K.1^25,K.1^20,K.1^50,K.1^-40,K.1^-25,K.1^-5,K.1^48,K.1^33,K.1^12,K.1^27,K.1^24,K.1^-24,K.1^-39,K.1^-36,K.1^6,K.1^-51,K.1^-9,K.1^-33,K.1^3,K.1^-3,K.1^36,K.1^39,K.1^-27,K.1^51,K.1^-6,K.1^-12,K.1^-18,K.1^-48,K.1^18,K.1^9,K.1^9,K.1^-39,K.1^24,K.1^-24,K.1^-6,K.1^-9,K.1^36,K.1^-18,K.1^48,K.1^39,K.1^-51,K.1^-3,K.1^27,K.1^-48,K.1^33,K.1^6,K.1^51,K.1^-33,K.1^-27,K.1^18,K.1^3,K.1^-36,K.1^12,K.1^-12,K.1^46,K.1^8,K.1^-31,K.1^-23,K.1,K.1^43,K.1^47,K.1^41,K.1^-43,K.1^13,K.1^31,K.1^37,K.1^-1,K.1^23,K.1^-38,K.1^17,K.1^-37,K.1^4,K.1^-46,K.1^38,K.1^-19,K.1^29,K.1^-26,K.1^-44,K.1^-17,K.1^32,K.1^11,K.1^2,K.1^-32,K.1^-29,K.1^52,K.1^44,K.1^-22,K.1^-4,K.1^-47,K.1^-8,K.1^-41,K.1^19,K.1^16,K.1^-16,K.1^34,K.1^-2,K.1^-13,K.1^26,K.1^-52,K.1^-11,K.1^22,K.1^-34]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^-35,K.1^35,K.1^-21,K.1^21,K.1^-42,K.1^42,K.1^-45,K.1^45,K.1^30,K.1^-30,K.1^-15,K.1^15,K.1^-42,K.1^42,K.1^-21,K.1^21,K.1^-30,K.1^30,K.1^15,K.1^-15,K.1^45,K.1^-45,K.1^-7,K.1^49,K.1^-49,K.1^7,K.1^14,K.1^28,K.1^-14,K.1^-28,K.1^50,K.1^-40,K.1^-25,K.1^-10,K.1^-20,K.1^40,K.1^5,K.1^25,K.1^10,K.1^-50,K.1^-5,K.1^20,K.1^39,K.1^-6,K.1^36,K.1^-24,K.1^-33,K.1^33,K.1^-12,K.1^-3,K.1^18,K.1^-48,K.1^-27,K.1^6,K.1^9,K.1^-9,K.1^3,K.1^12,K.1^24,K.1^48,K.1^-18,K.1^-36,K.1^51,K.1^-39,K.1^-51,K.1^27,K.1^27,K.1^-12,K.1^-33,K.1^33,K.1^-18,K.1^-27,K.1^3,K.1^51,K.1^39,K.1^12,K.1^-48,K.1^-9,K.1^-24,K.1^-39,K.1^-6,K.1^18,K.1^48,K.1^6,K.1^24,K.1^-51,K.1^9,K.1^-3,K.1^36,K.1^-36,K.1^-37,K.1^-11,K.1^-23,K.1^-34,K.1^38,K.1^-46,K.1,K.1^-17,K.1^46,K.1^-31,K.1^23,K.1^41,K.1^-38,K.1^34,K.1^26,K.1^16,K.1^-41,K.1^47,K.1^37,K.1^-26,K.1^13,K.1^52,K.1^-43,K.1^8,K.1^-16,K.1^-44,K.1^-2,K.1^-29,K.1^44,K.1^-52,K.1^-19,K.1^-8,K.1^4,K.1^-47,K.1^-1,K.1^11,K.1^17,K.1^-13,K.1^-22,K.1^22,K.1^32,K.1^29,K.1^31,K.1^43,K.1^19,K.1^2,K.1^-4,K.1^-32]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^35,K.1^-35,K.1^21,K.1^-21,K.1^42,K.1^-42,K.1^45,K.1^-45,K.1^-30,K.1^30,K.1^15,K.1^-15,K.1^42,K.1^-42,K.1^21,K.1^-21,K.1^30,K.1^-30,K.1^-15,K.1^15,K.1^-45,K.1^45,K.1^7,K.1^-49,K.1^49,K.1^-7,K.1^-14,K.1^-28,K.1^14,K.1^28,K.1^-50,K.1^40,K.1^25,K.1^10,K.1^20,K.1^-40,K.1^-5,K.1^-25,K.1^-10,K.1^50,K.1^5,K.1^-20,K.1^-39,K.1^6,K.1^-36,K.1^24,K.1^33,K.1^-33,K.1^12,K.1^3,K.1^-18,K.1^48,K.1^27,K.1^-6,K.1^-9,K.1^9,K.1^-3,K.1^-12,K.1^-24,K.1^-48,K.1^18,K.1^36,K.1^-51,K.1^39,K.1^51,K.1^-27,K.1^-27,K.1^12,K.1^33,K.1^-33,K.1^18,K.1^27,K.1^-3,K.1^-51,K.1^-39,K.1^-12,K.1^48,K.1^9,K.1^24,K.1^39,K.1^6,K.1^-18,K.1^-48,K.1^-6,K.1^-24,K.1^51,K.1^-9,K.1^3,K.1^-36,K.1^36,K.1^37,K.1^11,K.1^23,K.1^34,K.1^-38,K.1^46,K.1^-1,K.1^17,K.1^-46,K.1^31,K.1^-23,K.1^-41,K.1^38,K.1^-34,K.1^-26,K.1^-16,K.1^41,K.1^-47,K.1^-37,K.1^26,K.1^-13,K.1^-52,K.1^43,K.1^-8,K.1^16,K.1^44,K.1^2,K.1^29,K.1^-44,K.1^52,K.1^19,K.1^8,K.1^-4,K.1^47,K.1,K.1^-11,K.1^-17,K.1^13,K.1^22,K.1^-22,K.1^-32,K.1^-29,K.1^-31,K.1^-43,K.1^-19,K.1^-2,K.1^4,K.1^32]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^-35,K.1^35,K.1^-21,K.1^21,K.1^-42,K.1^42,K.1^45,K.1^-45,K.1^-30,K.1^30,K.1^15,K.1^-15,K.1^-42,K.1^42,K.1^-21,K.1^21,K.1^30,K.1^-30,K.1^-15,K.1^15,K.1^-45,K.1^45,K.1^-7,K.1^49,K.1^-49,K.1^7,K.1^14,K.1^28,K.1^-14,K.1^-28,K.1^20,K.1^5,K.1^-10,K.1^-25,K.1^-50,K.1^-5,K.1^-40,K.1^10,K.1^25,K.1^-20,K.1^40,K.1^50,K.1^24,K.1^-36,K.1^6,K.1^-39,K.1^12,K.1^-12,K.1^33,K.1^-18,K.1^3,K.1^27,K.1^48,K.1^36,K.1^-51,K.1^51,K.1^18,K.1^-33,K.1^39,K.1^-27,K.1^-3,K.1^-6,K.1^-9,K.1^-24,K.1^9,K.1^-48,K.1^-48,K.1^33,K.1^12,K.1^-12,K.1^-3,K.1^48,K.1^18,K.1^-9,K.1^24,K.1^-33,K.1^27,K.1^51,K.1^-39,K.1^-24,K.1^-36,K.1^3,K.1^-27,K.1^36,K.1^39,K.1^9,K.1^-51,K.1^-18,K.1^6,K.1^-6,K.1^23,K.1^4,K.1^37,K.1^41,K.1^-52,K.1^-31,K.1^-29,K.1^-32,K.1^31,K.1^-46,K.1^-37,K.1^-34,K.1^52,K.1^-41,K.1^-19,K.1^-44,K.1^34,K.1^2,K.1^-23,K.1^19,K.1^43,K.1^-38,K.1^-13,K.1^-22,K.1^44,K.1^16,K.1^-47,K.1,K.1^-16,K.1^38,K.1^26,K.1^22,K.1^-11,K.1^-2,K.1^29,K.1^-4,K.1^32,K.1^-43,K.1^8,K.1^-8,K.1^17,K.1^-1,K.1^46,K.1^13,K.1^-26,K.1^47,K.1^11,K.1^-17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^35,K.1^-35,K.1^21,K.1^-21,K.1^42,K.1^-42,K.1^-45,K.1^45,K.1^30,K.1^-30,K.1^-15,K.1^15,K.1^42,K.1^-42,K.1^21,K.1^-21,K.1^-30,K.1^30,K.1^15,K.1^-15,K.1^45,K.1^-45,K.1^7,K.1^-49,K.1^49,K.1^-7,K.1^-14,K.1^-28,K.1^14,K.1^28,K.1^-20,K.1^-5,K.1^10,K.1^25,K.1^50,K.1^5,K.1^40,K.1^-10,K.1^-25,K.1^20,K.1^-40,K.1^-50,K.1^-24,K.1^36,K.1^-6,K.1^39,K.1^-12,K.1^12,K.1^-33,K.1^18,K.1^-3,K.1^-27,K.1^-48,K.1^-36,K.1^51,K.1^-51,K.1^-18,K.1^33,K.1^-39,K.1^27,K.1^3,K.1^6,K.1^9,K.1^24,K.1^-9,K.1^48,K.1^48,K.1^-33,K.1^-12,K.1^12,K.1^3,K.1^-48,K.1^-18,K.1^9,K.1^-24,K.1^33,K.1^-27,K.1^-51,K.1^39,K.1^24,K.1^36,K.1^-3,K.1^27,K.1^-36,K.1^-39,K.1^-9,K.1^51,K.1^18,K.1^-6,K.1^6,K.1^-23,K.1^-4,K.1^-37,K.1^-41,K.1^52,K.1^31,K.1^29,K.1^32,K.1^-31,K.1^46,K.1^37,K.1^34,K.1^-52,K.1^41,K.1^19,K.1^44,K.1^-34,K.1^-2,K.1^23,K.1^-19,K.1^-43,K.1^38,K.1^13,K.1^22,K.1^-44,K.1^-16,K.1^47,K.1^-1,K.1^16,K.1^-38,K.1^-26,K.1^-22,K.1^11,K.1^2,K.1^-29,K.1^4,K.1^-32,K.1^43,K.1^-8,K.1^8,K.1^-17,K.1,K.1^-46,K.1^-13,K.1^26,K.1^-47,K.1^-11,K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^-35,K.1^35,K.1^-21,K.1^21,K.1^-42,K.1^42,K.1^-30,K.1^30,K.1^-15,K.1^15,K.1^-45,K.1^45,K.1^-42,K.1^42,K.1^-21,K.1^21,K.1^15,K.1^-15,K.1^45,K.1^-45,K.1^30,K.1^-30,K.1^-7,K.1^49,K.1^-49,K.1^7,K.1^14,K.1^28,K.1^-14,K.1^-28,K.1^-25,K.1^20,K.1^-40,K.1^5,K.1^10,K.1^-20,K.1^50,K.1^40,K.1^-5,K.1^25,K.1^-50,K.1^-10,K.1^-51,K.1^24,K.1^-39,K.1^-9,K.1^27,K.1^-27,K.1^48,K.1^12,K.1^33,K.1^-18,K.1^3,K.1^-24,K.1^-36,K.1^36,K.1^-12,K.1^-48,K.1^9,K.1^18,K.1^-33,K.1^39,K.1^6,K.1^51,K.1^-6,K.1^-3,K.1^-3,K.1^48,K.1^27,K.1^-27,K.1^-33,K.1^3,K.1^-12,K.1^6,K.1^-51,K.1^-48,K.1^-18,K.1^36,K.1^-9,K.1^51,K.1^24,K.1^33,K.1^18,K.1^-24,K.1^9,K.1^-6,K.1^-36,K.1^12,K.1^-39,K.1^39,K.1^8,K.1^-26,K.1^22,K.1^-4,K.1^23,K.1^44,K.1^31,K.1^-2,K.1^-44,K.1^-16,K.1^-22,K.1^11,K.1^-23,K.1^4,K.1^-34,K.1^-29,K.1^-11,K.1^-13,K.1^-8,K.1^34,K.1^-17,K.1^37,K.1^32,K.1^38,K.1^29,K.1,K.1^43,K.1^46,K.1^-1,K.1^-37,K.1^41,K.1^-38,K.1^19,K.1^13,K.1^-31,K.1^26,K.1^2,K.1^17,K.1^-52,K.1^52,K.1^47,K.1^-46,K.1^16,K.1^-32,K.1^-41,K.1^-43,K.1^-19,K.1^-47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^35,K.1^-35,K.1^21,K.1^-21,K.1^42,K.1^-42,K.1^30,K.1^-30,K.1^15,K.1^-15,K.1^45,K.1^-45,K.1^42,K.1^-42,K.1^21,K.1^-21,K.1^-15,K.1^15,K.1^-45,K.1^45,K.1^-30,K.1^30,K.1^7,K.1^-49,K.1^49,K.1^-7,K.1^-14,K.1^-28,K.1^14,K.1^28,K.1^25,K.1^-20,K.1^40,K.1^-5,K.1^-10,K.1^20,K.1^-50,K.1^-40,K.1^5,K.1^-25,K.1^50,K.1^10,K.1^51,K.1^-24,K.1^39,K.1^9,K.1^-27,K.1^27,K.1^-48,K.1^-12,K.1^-33,K.1^18,K.1^-3,K.1^24,K.1^36,K.1^-36,K.1^12,K.1^48,K.1^-9,K.1^-18,K.1^33,K.1^-39,K.1^-6,K.1^-51,K.1^6,K.1^3,K.1^3,K.1^-48,K.1^-27,K.1^27,K.1^33,K.1^-3,K.1^12,K.1^-6,K.1^51,K.1^48,K.1^18,K.1^-36,K.1^9,K.1^-51,K.1^-24,K.1^-33,K.1^-18,K.1^24,K.1^-9,K.1^6,K.1^36,K.1^-12,K.1^39,K.1^-39,K.1^-8,K.1^26,K.1^-22,K.1^4,K.1^-23,K.1^-44,K.1^-31,K.1^2,K.1^44,K.1^16,K.1^22,K.1^-11,K.1^23,K.1^-4,K.1^34,K.1^29,K.1^11,K.1^13,K.1^8,K.1^-34,K.1^17,K.1^-37,K.1^-32,K.1^-38,K.1^-29,K.1^-1,K.1^-43,K.1^-46,K.1,K.1^37,K.1^-41,K.1^38,K.1^-19,K.1^-13,K.1^31,K.1^-26,K.1^-2,K.1^-17,K.1^52,K.1^-52,K.1^-47,K.1^46,K.1^-16,K.1^32,K.1^41,K.1^43,K.1^19,K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^-35,K.1^35,K.1^-21,K.1^21,K.1^-42,K.1^42,K.1^30,K.1^-30,K.1^15,K.1^-15,K.1^45,K.1^-45,K.1^-42,K.1^42,K.1^-21,K.1^21,K.1^-15,K.1^15,K.1^-45,K.1^45,K.1^-30,K.1^30,K.1^-7,K.1^49,K.1^-49,K.1^7,K.1^14,K.1^28,K.1^-14,K.1^-28,K.1^-10,K.1^50,K.1^5,K.1^-40,K.1^25,K.1^-50,K.1^20,K.1^-5,K.1^40,K.1^10,K.1^-20,K.1^-25,K.1^9,K.1^39,K.1^-24,K.1^51,K.1^-48,K.1^48,K.1^-27,K.1^-33,K.1^-12,K.1^-3,K.1^18,K.1^-39,K.1^-6,K.1^6,K.1^33,K.1^27,K.1^-51,K.1^3,K.1^12,K.1^24,K.1^36,K.1^-9,K.1^-36,K.1^-18,K.1^-18,K.1^-27,K.1^-48,K.1^48,K.1^12,K.1^18,K.1^33,K.1^36,K.1^9,K.1^27,K.1^-3,K.1^6,K.1^51,K.1^-9,K.1^39,K.1^-12,K.1^3,K.1^-39,K.1^-51,K.1^-36,K.1^-6,K.1^-33,K.1^-24,K.1^24,K.1^-22,K.1^19,K.1^-8,K.1^11,K.1^-37,K.1^-16,K.1^46,K.1^-47,K.1^16,K.1^44,K.1^8,K.1^-4,K.1^37,K.1^-11,K.1^41,K.1,K.1^4,K.1^-43,K.1^22,K.1^-41,K.1^-32,K.1^-23,K.1^17,K.1^-52,K.1^-1,K.1^-29,K.1^13,K.1^31,K.1^29,K.1^23,K.1^-34,K.1^52,K.1^-26,K.1^43,K.1^-46,K.1^-19,K.1^47,K.1^32,K.1^38,K.1^-38,K.1^2,K.1^-31,K.1^-44,K.1^-17,K.1^34,K.1^-13,K.1^26,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^35,K.1^-35,K.1^21,K.1^-21,K.1^42,K.1^-42,K.1^-30,K.1^30,K.1^-15,K.1^15,K.1^-45,K.1^45,K.1^42,K.1^-42,K.1^21,K.1^-21,K.1^15,K.1^-15,K.1^45,K.1^-45,K.1^30,K.1^-30,K.1^7,K.1^-49,K.1^49,K.1^-7,K.1^-14,K.1^-28,K.1^14,K.1^28,K.1^10,K.1^-50,K.1^-5,K.1^40,K.1^-25,K.1^50,K.1^-20,K.1^5,K.1^-40,K.1^-10,K.1^20,K.1^25,K.1^-9,K.1^-39,K.1^24,K.1^-51,K.1^48,K.1^-48,K.1^27,K.1^33,K.1^12,K.1^3,K.1^-18,K.1^39,K.1^6,K.1^-6,K.1^-33,K.1^-27,K.1^51,K.1^-3,K.1^-12,K.1^-24,K.1^-36,K.1^9,K.1^36,K.1^18,K.1^18,K.1^27,K.1^48,K.1^-48,K.1^-12,K.1^-18,K.1^-33,K.1^-36,K.1^-9,K.1^-27,K.1^3,K.1^-6,K.1^-51,K.1^9,K.1^-39,K.1^12,K.1^-3,K.1^39,K.1^51,K.1^36,K.1^6,K.1^33,K.1^24,K.1^-24,K.1^22,K.1^-19,K.1^8,K.1^-11,K.1^37,K.1^16,K.1^-46,K.1^47,K.1^-16,K.1^-44,K.1^-8,K.1^4,K.1^-37,K.1^11,K.1^-41,K.1^-1,K.1^-4,K.1^43,K.1^-22,K.1^41,K.1^32,K.1^23,K.1^-17,K.1^52,K.1,K.1^29,K.1^-13,K.1^-31,K.1^-29,K.1^-23,K.1^34,K.1^-52,K.1^26,K.1^-43,K.1^46,K.1^19,K.1^-47,K.1^-32,K.1^-38,K.1^38,K.1^-2,K.1^31,K.1^44,K.1^17,K.1^-34,K.1^13,K.1^-26,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^-35,K.1^35,K.1^-21,K.1^21,K.1^-42,K.1^42,K.1^-15,K.1^15,K.1^45,K.1^-45,K.1^30,K.1^-30,K.1^-42,K.1^42,K.1^-21,K.1^21,K.1^-45,K.1^45,K.1^-30,K.1^30,K.1^15,K.1^-15,K.1^-7,K.1^49,K.1^-49,K.1^7,K.1^14,K.1^28,K.1^-14,K.1^-28,K.1^5,K.1^-25,K.1^50,K.1^20,K.1^40,K.1^25,K.1^-10,K.1^-50,K.1^-20,K.1^-5,K.1^10,K.1^-40,K.1^-36,K.1^-51,K.1^-9,K.1^6,K.1^-18,K.1^18,K.1^3,K.1^27,K.1^48,K.1^12,K.1^33,K.1^51,K.1^24,K.1^-24,K.1^-27,K.1^-3,K.1^-6,K.1^-12,K.1^-48,K.1^9,K.1^-39,K.1^36,K.1^39,K.1^-33,K.1^-33,K.1^3,K.1^-18,K.1^18,K.1^-48,K.1^33,K.1^-27,K.1^-39,K.1^-36,K.1^-3,K.1^12,K.1^-24,K.1^6,K.1^36,K.1^-51,K.1^48,K.1^-12,K.1^51,K.1^-6,K.1^39,K.1^24,K.1^27,K.1^-9,K.1^9,K.1^-52,K.1^-41,K.1^-38,K.1^26,K.1^8,K.1^29,K.1^-44,K.1^13,K.1^-29,K.1^-1,K.1^38,K.1^-19,K.1^-8,K.1^-26,K.1^11,K.1^31,K.1^19,K.1^32,K.1^52,K.1^-11,K.1^-47,K.1^22,K.1^2,K.1^-37,K.1^-31,K.1^46,K.1^-17,K.1^16,K.1^-46,K.1^-22,K.1^-4,K.1^37,K.1^34,K.1^-32,K.1^44,K.1^41,K.1^-13,K.1^47,K.1^23,K.1^-23,K.1^-43,K.1^-16,K.1,K.1^-2,K.1^4,K.1^17,K.1^-34,K.1^43]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^35,K.1^-35,K.1^21,K.1^-21,K.1^42,K.1^-42,K.1^15,K.1^-15,K.1^-45,K.1^45,K.1^-30,K.1^30,K.1^42,K.1^-42,K.1^21,K.1^-21,K.1^45,K.1^-45,K.1^30,K.1^-30,K.1^-15,K.1^15,K.1^7,K.1^-49,K.1^49,K.1^-7,K.1^-14,K.1^-28,K.1^14,K.1^28,K.1^-5,K.1^25,K.1^-50,K.1^-20,K.1^-40,K.1^-25,K.1^10,K.1^50,K.1^20,K.1^5,K.1^-10,K.1^40,K.1^36,K.1^51,K.1^9,K.1^-6,K.1^18,K.1^-18,K.1^-3,K.1^-27,K.1^-48,K.1^-12,K.1^-33,K.1^-51,K.1^-24,K.1^24,K.1^27,K.1^3,K.1^6,K.1^12,K.1^48,K.1^-9,K.1^39,K.1^-36,K.1^-39,K.1^33,K.1^33,K.1^-3,K.1^18,K.1^-18,K.1^48,K.1^-33,K.1^27,K.1^39,K.1^36,K.1^3,K.1^-12,K.1^24,K.1^-6,K.1^-36,K.1^51,K.1^-48,K.1^12,K.1^-51,K.1^6,K.1^-39,K.1^-24,K.1^-27,K.1^9,K.1^-9,K.1^52,K.1^41,K.1^38,K.1^-26,K.1^-8,K.1^-29,K.1^44,K.1^-13,K.1^29,K.1,K.1^-38,K.1^19,K.1^8,K.1^26,K.1^-11,K.1^-31,K.1^-19,K.1^-32,K.1^-52,K.1^11,K.1^47,K.1^-22,K.1^-2,K.1^37,K.1^31,K.1^-46,K.1^17,K.1^-16,K.1^46,K.1^22,K.1^4,K.1^-37,K.1^-34,K.1^32,K.1^-44,K.1^-41,K.1^13,K.1^-47,K.1^-23,K.1^23,K.1^43,K.1^16,K.1^-1,K.1^2,K.1^-4,K.1^-17,K.1^34,K.1^-43]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^-35,K.1^35,K.1^-21,K.1^21,K.1^-42,K.1^42,K.1^15,K.1^-15,K.1^-45,K.1^45,K.1^-30,K.1^30,K.1^-42,K.1^42,K.1^-21,K.1^21,K.1^45,K.1^-45,K.1^30,K.1^-30,K.1^-15,K.1^15,K.1^-7,K.1^49,K.1^-49,K.1^7,K.1^14,K.1^28,K.1^-14,K.1^-28,K.1^-40,K.1^-10,K.1^20,K.1^50,K.1^-5,K.1^10,K.1^-25,K.1^-20,K.1^-50,K.1^40,K.1^25,K.1^5,K.1^-6,K.1^9,K.1^51,K.1^36,K.1^-3,K.1^3,K.1^18,K.1^-48,K.1^-27,K.1^-33,K.1^-12,K.1^-9,K.1^39,K.1^-39,K.1^48,K.1^-18,K.1^-36,K.1^33,K.1^27,K.1^-51,K.1^-24,K.1^6,K.1^24,K.1^12,K.1^12,K.1^18,K.1^-3,K.1^3,K.1^27,K.1^-12,K.1^48,K.1^-24,K.1^-6,K.1^-18,K.1^-33,K.1^-39,K.1^36,K.1^6,K.1^9,K.1^-27,K.1^33,K.1^-9,K.1^-36,K.1^24,K.1^39,K.1^-48,K.1^51,K.1^-51,K.1^38,K.1^34,K.1^52,K.1^-19,K.1^-22,K.1^-1,K.1^16,K.1^43,K.1,K.1^29,K.1^-52,K.1^26,K.1^22,K.1^19,K.1^-4,K.1^46,K.1^-26,K.1^17,K.1^-38,K.1^4,K.1^-2,K.1^-8,K.1^47,K.1^23,K.1^-46,K.1^31,K.1^-32,K.1^-44,K.1^-31,K.1^8,K.1^11,K.1^-23,K.1^-41,K.1^-17,K.1^-16,K.1^-34,K.1^-43,K.1^2,K.1^-37,K.1^37,K.1^-13,K.1^44,K.1^-29,K.1^-47,K.1^-11,K.1^32,K.1^41,K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^35,K.1^-35,K.1^21,K.1^-21,K.1^42,K.1^-42,K.1^-15,K.1^15,K.1^45,K.1^-45,K.1^30,K.1^-30,K.1^42,K.1^-42,K.1^21,K.1^-21,K.1^-45,K.1^45,K.1^-30,K.1^30,K.1^15,K.1^-15,K.1^7,K.1^-49,K.1^49,K.1^-7,K.1^-14,K.1^-28,K.1^14,K.1^28,K.1^40,K.1^10,K.1^-20,K.1^-50,K.1^5,K.1^-10,K.1^25,K.1^20,K.1^50,K.1^-40,K.1^-25,K.1^-5,K.1^6,K.1^-9,K.1^-51,K.1^-36,K.1^3,K.1^-3,K.1^-18,K.1^48,K.1^27,K.1^33,K.1^12,K.1^9,K.1^-39,K.1^39,K.1^-48,K.1^18,K.1^36,K.1^-33,K.1^-27,K.1^51,K.1^24,K.1^-6,K.1^-24,K.1^-12,K.1^-12,K.1^-18,K.1^3,K.1^-3,K.1^-27,K.1^12,K.1^-48,K.1^24,K.1^6,K.1^18,K.1^33,K.1^39,K.1^-36,K.1^-6,K.1^-9,K.1^27,K.1^-33,K.1^9,K.1^36,K.1^-24,K.1^-39,K.1^48,K.1^-51,K.1^51,K.1^-38,K.1^-34,K.1^-52,K.1^19,K.1^22,K.1,K.1^-16,K.1^-43,K.1^-1,K.1^-29,K.1^52,K.1^-26,K.1^-22,K.1^-19,K.1^4,K.1^-46,K.1^26,K.1^-17,K.1^38,K.1^-4,K.1^2,K.1^8,K.1^-47,K.1^-23,K.1^46,K.1^-31,K.1^32,K.1^44,K.1^31,K.1^-8,K.1^-11,K.1^23,K.1^41,K.1^17,K.1^16,K.1^34,K.1^43,K.1^-2,K.1^37,K.1^-37,K.1^13,K.1^-44,K.1^29,K.1^47,K.1^11,K.1^-32,K.1^-41,K.1^-13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^-35,K.1^35,K.1^21,K.1^-21,K.1^42,K.1^-42,K.1^-45,K.1^45,K.1^30,K.1^-30,K.1^-15,K.1^15,K.1^42,K.1^-42,K.1^21,K.1^-21,K.1^-30,K.1^30,K.1^15,K.1^-15,K.1^45,K.1^-45,K.1^-28,K.1^-14,K.1^14,K.1^28,K.1^-49,K.1^7,K.1^49,K.1^-7,K.1^50,K.1^-40,K.1^-25,K.1^-10,K.1^-20,K.1^40,K.1^5,K.1^25,K.1^10,K.1^-50,K.1^-5,K.1^20,K.1^-24,K.1^36,K.1^-6,K.1^39,K.1^-12,K.1^12,K.1^-33,K.1^18,K.1^-3,K.1^-27,K.1^-48,K.1^-36,K.1^51,K.1^-51,K.1^-18,K.1^33,K.1^-39,K.1^27,K.1^3,K.1^6,K.1^9,K.1^24,K.1^-9,K.1^48,K.1^48,K.1^-33,K.1^-12,K.1^12,K.1^3,K.1^-48,K.1^-18,K.1^9,K.1^-24,K.1^33,K.1^-27,K.1^-51,K.1^39,K.1^24,K.1^36,K.1^-3,K.1^27,K.1^-36,K.1^-39,K.1^-9,K.1^51,K.1^18,K.1^-6,K.1^6,K.1^47,K.1^31,K.1^-2,K.1^29,K.1^17,K.1^-4,K.1^-41,K.1^-38,K.1^4,K.1^11,K.1^2,K.1^-1,K.1^-17,K.1^-29,K.1^-16,K.1^-26,K.1,K.1^-37,K.1^-47,K.1^16,K.1^-8,K.1^-32,K.1^-22,K.1^-13,K.1^26,K.1^19,K.1^-23,K.1^34,K.1^-19,K.1^32,K.1^44,K.1^13,K.1^46,K.1^37,K.1^41,K.1^-31,K.1^38,K.1^8,K.1^-43,K.1^43,K.1^-52,K.1^-34,K.1^-11,K.1^22,K.1^-44,K.1^23,K.1^-46,K.1^52]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^35,K.1^-35,K.1^-21,K.1^21,K.1^-42,K.1^42,K.1^45,K.1^-45,K.1^-30,K.1^30,K.1^15,K.1^-15,K.1^-42,K.1^42,K.1^-21,K.1^21,K.1^30,K.1^-30,K.1^-15,K.1^15,K.1^-45,K.1^45,K.1^28,K.1^14,K.1^-14,K.1^-28,K.1^49,K.1^-7,K.1^-49,K.1^7,K.1^-50,K.1^40,K.1^25,K.1^10,K.1^20,K.1^-40,K.1^-5,K.1^-25,K.1^-10,K.1^50,K.1^5,K.1^-20,K.1^24,K.1^-36,K.1^6,K.1^-39,K.1^12,K.1^-12,K.1^33,K.1^-18,K.1^3,K.1^27,K.1^48,K.1^36,K.1^-51,K.1^51,K.1^18,K.1^-33,K.1^39,K.1^-27,K.1^-3,K.1^-6,K.1^-9,K.1^-24,K.1^9,K.1^-48,K.1^-48,K.1^33,K.1^12,K.1^-12,K.1^-3,K.1^48,K.1^18,K.1^-9,K.1^24,K.1^-33,K.1^27,K.1^51,K.1^-39,K.1^-24,K.1^-36,K.1^3,K.1^-27,K.1^36,K.1^39,K.1^9,K.1^-51,K.1^-18,K.1^6,K.1^-6,K.1^-47,K.1^-31,K.1^2,K.1^-29,K.1^-17,K.1^4,K.1^41,K.1^38,K.1^-4,K.1^-11,K.1^-2,K.1,K.1^17,K.1^29,K.1^16,K.1^26,K.1^-1,K.1^37,K.1^47,K.1^-16,K.1^8,K.1^32,K.1^22,K.1^13,K.1^-26,K.1^-19,K.1^23,K.1^-34,K.1^19,K.1^-32,K.1^-44,K.1^-13,K.1^-46,K.1^-37,K.1^-41,K.1^31,K.1^-38,K.1^-8,K.1^43,K.1^-43,K.1^52,K.1^34,K.1^11,K.1^-22,K.1^44,K.1^-23,K.1^46,K.1^-52]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^-35,K.1^35,K.1^21,K.1^-21,K.1^42,K.1^-42,K.1^45,K.1^-45,K.1^-30,K.1^30,K.1^15,K.1^-15,K.1^42,K.1^-42,K.1^21,K.1^-21,K.1^30,K.1^-30,K.1^-15,K.1^15,K.1^-45,K.1^45,K.1^-28,K.1^-14,K.1^14,K.1^28,K.1^-49,K.1^7,K.1^49,K.1^-7,K.1^20,K.1^5,K.1^-10,K.1^-25,K.1^-50,K.1^-5,K.1^-40,K.1^10,K.1^25,K.1^-20,K.1^40,K.1^50,K.1^-39,K.1^6,K.1^-36,K.1^24,K.1^33,K.1^-33,K.1^12,K.1^3,K.1^-18,K.1^48,K.1^27,K.1^-6,K.1^-9,K.1^9,K.1^-3,K.1^-12,K.1^-24,K.1^-48,K.1^18,K.1^36,K.1^-51,K.1^39,K.1^51,K.1^-27,K.1^-27,K.1^12,K.1^33,K.1^-33,K.1^18,K.1^27,K.1^-3,K.1^-51,K.1^-39,K.1^-12,K.1^48,K.1^9,K.1^24,K.1^39,K.1^6,K.1^-18,K.1^-48,K.1^-6,K.1^-24,K.1^51,K.1^-9,K.1^3,K.1^-36,K.1^36,K.1^2,K.1^46,K.1^-47,K.1^-1,K.1^32,K.1^11,K.1^34,K.1^52,K.1^-11,K.1^-4,K.1^47,K.1^29,K.1^-32,K.1,K.1^44,K.1^19,K.1^-29,K.1^23,K.1^-2,K.1^-44,K.1^22,K.1^-17,K.1^8,K.1^-43,K.1^-19,K.1^-26,K.1^37,K.1^-41,K.1^26,K.1^17,K.1^-16,K.1^43,K.1^31,K.1^-23,K.1^-34,K.1^-46,K.1^-52,K.1^-22,K.1^-13,K.1^13,K.1^38,K.1^41,K.1^4,K.1^-8,K.1^16,K.1^-37,K.1^-31,K.1^-38]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^35,K.1^-35,K.1^-21,K.1^21,K.1^-42,K.1^42,K.1^-45,K.1^45,K.1^30,K.1^-30,K.1^-15,K.1^15,K.1^-42,K.1^42,K.1^-21,K.1^21,K.1^-30,K.1^30,K.1^15,K.1^-15,K.1^45,K.1^-45,K.1^28,K.1^14,K.1^-14,K.1^-28,K.1^49,K.1^-7,K.1^-49,K.1^7,K.1^-20,K.1^-5,K.1^10,K.1^25,K.1^50,K.1^5,K.1^40,K.1^-10,K.1^-25,K.1^20,K.1^-40,K.1^-50,K.1^39,K.1^-6,K.1^36,K.1^-24,K.1^-33,K.1^33,K.1^-12,K.1^-3,K.1^18,K.1^-48,K.1^-27,K.1^6,K.1^9,K.1^-9,K.1^3,K.1^12,K.1^24,K.1^48,K.1^-18,K.1^-36,K.1^51,K.1^-39,K.1^-51,K.1^27,K.1^27,K.1^-12,K.1^-33,K.1^33,K.1^-18,K.1^-27,K.1^3,K.1^51,K.1^39,K.1^12,K.1^-48,K.1^-9,K.1^-24,K.1^-39,K.1^-6,K.1^18,K.1^48,K.1^6,K.1^24,K.1^-51,K.1^9,K.1^-3,K.1^36,K.1^-36,K.1^-2,K.1^-46,K.1^47,K.1,K.1^-32,K.1^-11,K.1^-34,K.1^-52,K.1^11,K.1^4,K.1^-47,K.1^-29,K.1^32,K.1^-1,K.1^-44,K.1^-19,K.1^29,K.1^-23,K.1^2,K.1^44,K.1^-22,K.1^17,K.1^-8,K.1^43,K.1^19,K.1^26,K.1^-37,K.1^41,K.1^-26,K.1^-17,K.1^16,K.1^-43,K.1^-31,K.1^23,K.1^34,K.1^46,K.1^52,K.1^22,K.1^13,K.1^-13,K.1^-38,K.1^-41,K.1^-4,K.1^8,K.1^-16,K.1^37,K.1^31,K.1^38]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^-35,K.1^35,K.1^21,K.1^-21,K.1^42,K.1^-42,K.1^-30,K.1^30,K.1^-15,K.1^15,K.1^-45,K.1^45,K.1^42,K.1^-42,K.1^21,K.1^-21,K.1^15,K.1^-15,K.1^45,K.1^-45,K.1^30,K.1^-30,K.1^-28,K.1^-14,K.1^14,K.1^28,K.1^-49,K.1^7,K.1^49,K.1^-7,K.1^-25,K.1^20,K.1^-40,K.1^5,K.1^10,K.1^-20,K.1^50,K.1^40,K.1^-5,K.1^25,K.1^-50,K.1^-10,K.1^-9,K.1^-39,K.1^24,K.1^-51,K.1^48,K.1^-48,K.1^27,K.1^33,K.1^12,K.1^3,K.1^-18,K.1^39,K.1^6,K.1^-6,K.1^-33,K.1^-27,K.1^51,K.1^-3,K.1^-12,K.1^-24,K.1^-36,K.1^9,K.1^36,K.1^18,K.1^18,K.1^27,K.1^48,K.1^-48,K.1^-12,K.1^-18,K.1^-33,K.1^-36,K.1^-9,K.1^-27,K.1^3,K.1^-6,K.1^-51,K.1^9,K.1^-39,K.1^12,K.1^-3,K.1^39,K.1^51,K.1^36,K.1^6,K.1^33,K.1^24,K.1^-24,K.1^-13,K.1^16,K.1^43,K.1^-46,K.1^2,K.1^-19,K.1^-11,K.1^-23,K.1^19,K.1^26,K.1^-43,K.1^-31,K.1^-2,K.1^46,K.1^29,K.1^34,K.1^31,K.1^8,K.1^13,K.1^-29,K.1^-38,K.1^-47,K.1^-52,K.1^17,K.1^-34,K.1^-41,K.1^22,K.1^4,K.1^41,K.1^47,K.1^-1,K.1^-17,K.1^-44,K.1^-8,K.1^11,K.1^-16,K.1^23,K.1^38,K.1^32,K.1^-32,K.1^-37,K.1^-4,K.1^-26,K.1^52,K.1,K.1^-22,K.1^44,K.1^37]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^35,K.1^-35,K.1^-21,K.1^21,K.1^-42,K.1^42,K.1^30,K.1^-30,K.1^15,K.1^-15,K.1^45,K.1^-45,K.1^-42,K.1^42,K.1^-21,K.1^21,K.1^-15,K.1^15,K.1^-45,K.1^45,K.1^-30,K.1^30,K.1^28,K.1^14,K.1^-14,K.1^-28,K.1^49,K.1^-7,K.1^-49,K.1^7,K.1^25,K.1^-20,K.1^40,K.1^-5,K.1^-10,K.1^20,K.1^-50,K.1^-40,K.1^5,K.1^-25,K.1^50,K.1^10,K.1^9,K.1^39,K.1^-24,K.1^51,K.1^-48,K.1^48,K.1^-27,K.1^-33,K.1^-12,K.1^-3,K.1^18,K.1^-39,K.1^-6,K.1^6,K.1^33,K.1^27,K.1^-51,K.1^3,K.1^12,K.1^24,K.1^36,K.1^-9,K.1^-36,K.1^-18,K.1^-18,K.1^-27,K.1^-48,K.1^48,K.1^12,K.1^18,K.1^33,K.1^36,K.1^9,K.1^27,K.1^-3,K.1^6,K.1^51,K.1^-9,K.1^39,K.1^-12,K.1^3,K.1^-39,K.1^-51,K.1^-36,K.1^-6,K.1^-33,K.1^-24,K.1^24,K.1^13,K.1^-16,K.1^-43,K.1^46,K.1^-2,K.1^19,K.1^11,K.1^23,K.1^-19,K.1^-26,K.1^43,K.1^31,K.1^2,K.1^-46,K.1^-29,K.1^-34,K.1^-31,K.1^-8,K.1^-13,K.1^29,K.1^38,K.1^47,K.1^52,K.1^-17,K.1^34,K.1^41,K.1^-22,K.1^-4,K.1^-41,K.1^-47,K.1,K.1^17,K.1^44,K.1^8,K.1^-11,K.1^16,K.1^-23,K.1^-38,K.1^-32,K.1^32,K.1^37,K.1^4,K.1^26,K.1^-52,K.1^-1,K.1^22,K.1^-44,K.1^-37]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^-35,K.1^35,K.1^21,K.1^-21,K.1^42,K.1^-42,K.1^30,K.1^-30,K.1^15,K.1^-15,K.1^45,K.1^-45,K.1^42,K.1^-42,K.1^21,K.1^-21,K.1^-15,K.1^15,K.1^-45,K.1^45,K.1^-30,K.1^30,K.1^-28,K.1^-14,K.1^14,K.1^28,K.1^-49,K.1^7,K.1^49,K.1^-7,K.1^-10,K.1^50,K.1^5,K.1^-40,K.1^25,K.1^-50,K.1^20,K.1^-5,K.1^40,K.1^10,K.1^-20,K.1^-25,K.1^51,K.1^-24,K.1^39,K.1^9,K.1^-27,K.1^27,K.1^-48,K.1^-12,K.1^-33,K.1^18,K.1^-3,K.1^24,K.1^36,K.1^-36,K.1^12,K.1^48,K.1^-9,K.1^-18,K.1^33,K.1^-39,K.1^-6,K.1^-51,K.1^6,K.1^3,K.1^3,K.1^-48,K.1^-27,K.1^27,K.1^33,K.1^-3,K.1^12,K.1^-6,K.1^51,K.1^48,K.1^18,K.1^-36,K.1^9,K.1^-51,K.1^-24,K.1^-33,K.1^-18,K.1^24,K.1^-9,K.1^6,K.1^36,K.1^-12,K.1^39,K.1^-39,K.1^-43,K.1^-44,K.1^13,K.1^-31,K.1^47,K.1^26,K.1^4,K.1^37,K.1^-26,K.1^-19,K.1^-13,K.1^-46,K.1^-47,K.1^31,K.1^-1,K.1^-41,K.1^46,K.1^-22,K.1^43,K.1,K.1^52,K.1^-2,K.1^38,K.1^32,K.1^41,K.1^34,K.1^-8,K.1^-11,K.1^-34,K.1^2,K.1^29,K.1^-32,K.1^16,K.1^22,K.1^-4,K.1^44,K.1^-37,K.1^-52,K.1^17,K.1^-17,K.1^23,K.1^11,K.1^19,K.1^-38,K.1^-29,K.1^8,K.1^-16,K.1^-23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^35,K.1^-35,K.1^-21,K.1^21,K.1^-42,K.1^42,K.1^-30,K.1^30,K.1^-15,K.1^15,K.1^-45,K.1^45,K.1^-42,K.1^42,K.1^-21,K.1^21,K.1^15,K.1^-15,K.1^45,K.1^-45,K.1^30,K.1^-30,K.1^28,K.1^14,K.1^-14,K.1^-28,K.1^49,K.1^-7,K.1^-49,K.1^7,K.1^10,K.1^-50,K.1^-5,K.1^40,K.1^-25,K.1^50,K.1^-20,K.1^5,K.1^-40,K.1^-10,K.1^20,K.1^25,K.1^-51,K.1^24,K.1^-39,K.1^-9,K.1^27,K.1^-27,K.1^48,K.1^12,K.1^33,K.1^-18,K.1^3,K.1^-24,K.1^-36,K.1^36,K.1^-12,K.1^-48,K.1^9,K.1^18,K.1^-33,K.1^39,K.1^6,K.1^51,K.1^-6,K.1^-3,K.1^-3,K.1^48,K.1^27,K.1^-27,K.1^-33,K.1^3,K.1^-12,K.1^6,K.1^-51,K.1^-48,K.1^-18,K.1^36,K.1^-9,K.1^51,K.1^24,K.1^33,K.1^18,K.1^-24,K.1^9,K.1^-6,K.1^-36,K.1^12,K.1^-39,K.1^39,K.1^43,K.1^44,K.1^-13,K.1^31,K.1^-47,K.1^-26,K.1^-4,K.1^-37,K.1^26,K.1^19,K.1^13,K.1^46,K.1^47,K.1^-31,K.1,K.1^41,K.1^-46,K.1^22,K.1^-43,K.1^-1,K.1^-52,K.1^2,K.1^-38,K.1^-32,K.1^-41,K.1^-34,K.1^8,K.1^11,K.1^34,K.1^-2,K.1^-29,K.1^32,K.1^-16,K.1^-22,K.1^4,K.1^-44,K.1^37,K.1^52,K.1^-17,K.1^17,K.1^-23,K.1^-11,K.1^-19,K.1^38,K.1^29,K.1^-8,K.1^16,K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^-35,K.1^35,K.1^21,K.1^-21,K.1^42,K.1^-42,K.1^-15,K.1^15,K.1^45,K.1^-45,K.1^30,K.1^-30,K.1^42,K.1^-42,K.1^21,K.1^-21,K.1^-45,K.1^45,K.1^-30,K.1^30,K.1^15,K.1^-15,K.1^-28,K.1^-14,K.1^14,K.1^28,K.1^-49,K.1^7,K.1^49,K.1^-7,K.1^5,K.1^-25,K.1^50,K.1^20,K.1^40,K.1^25,K.1^-10,K.1^-50,K.1^-20,K.1^-5,K.1^10,K.1^-40,K.1^6,K.1^-9,K.1^-51,K.1^-36,K.1^3,K.1^-3,K.1^-18,K.1^48,K.1^27,K.1^33,K.1^12,K.1^9,K.1^-39,K.1^39,K.1^-48,K.1^18,K.1^36,K.1^-33,K.1^-27,K.1^51,K.1^24,K.1^-6,K.1^-24,K.1^-12,K.1^-12,K.1^-18,K.1^3,K.1^-3,K.1^-27,K.1^12,K.1^-48,K.1^24,K.1^6,K.1^18,K.1^33,K.1^39,K.1^-36,K.1^-6,K.1^-9,K.1^27,K.1^-33,K.1^9,K.1^36,K.1^-24,K.1^-39,K.1^48,K.1^-51,K.1^51,K.1^32,K.1,K.1^-17,K.1^-16,K.1^-13,K.1^-34,K.1^19,K.1^-8,K.1^34,K.1^41,K.1^17,K.1^44,K.1^13,K.1^16,K.1^-31,K.1^-11,K.1^-44,K.1^-52,K.1^-32,K.1^31,K.1^37,K.1^43,K.1^23,K.1^47,K.1^11,K.1^4,K.1^-38,K.1^-26,K.1^-4,K.1^-43,K.1^-46,K.1^-47,K.1^-29,K.1^52,K.1^-19,K.1^-1,K.1^8,K.1^-37,K.1^2,K.1^-2,K.1^-22,K.1^26,K.1^-41,K.1^-23,K.1^46,K.1^38,K.1^29,K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^35,K.1^-35,K.1^-21,K.1^21,K.1^-42,K.1^42,K.1^15,K.1^-15,K.1^-45,K.1^45,K.1^-30,K.1^30,K.1^-42,K.1^42,K.1^-21,K.1^21,K.1^45,K.1^-45,K.1^30,K.1^-30,K.1^-15,K.1^15,K.1^28,K.1^14,K.1^-14,K.1^-28,K.1^49,K.1^-7,K.1^-49,K.1^7,K.1^-5,K.1^25,K.1^-50,K.1^-20,K.1^-40,K.1^-25,K.1^10,K.1^50,K.1^20,K.1^5,K.1^-10,K.1^40,K.1^-6,K.1^9,K.1^51,K.1^36,K.1^-3,K.1^3,K.1^18,K.1^-48,K.1^-27,K.1^-33,K.1^-12,K.1^-9,K.1^39,K.1^-39,K.1^48,K.1^-18,K.1^-36,K.1^33,K.1^27,K.1^-51,K.1^-24,K.1^6,K.1^24,K.1^12,K.1^12,K.1^18,K.1^-3,K.1^3,K.1^27,K.1^-12,K.1^48,K.1^-24,K.1^-6,K.1^-18,K.1^-33,K.1^-39,K.1^36,K.1^6,K.1^9,K.1^-27,K.1^33,K.1^-9,K.1^-36,K.1^24,K.1^39,K.1^-48,K.1^51,K.1^-51,K.1^-32,K.1^-1,K.1^17,K.1^16,K.1^13,K.1^34,K.1^-19,K.1^8,K.1^-34,K.1^-41,K.1^-17,K.1^-44,K.1^-13,K.1^-16,K.1^31,K.1^11,K.1^44,K.1^52,K.1^32,K.1^-31,K.1^-37,K.1^-43,K.1^-23,K.1^-47,K.1^-11,K.1^-4,K.1^38,K.1^26,K.1^4,K.1^43,K.1^46,K.1^47,K.1^29,K.1^-52,K.1^19,K.1,K.1^-8,K.1^37,K.1^-2,K.1^2,K.1^22,K.1^-26,K.1^41,K.1^23,K.1^-46,K.1^-38,K.1^-29,K.1^-22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^-35,K.1^35,K.1^21,K.1^-21,K.1^42,K.1^-42,K.1^15,K.1^-15,K.1^-45,K.1^45,K.1^-30,K.1^30,K.1^42,K.1^-42,K.1^21,K.1^-21,K.1^45,K.1^-45,K.1^30,K.1^-30,K.1^-15,K.1^15,K.1^-28,K.1^-14,K.1^14,K.1^28,K.1^-49,K.1^7,K.1^49,K.1^-7,K.1^-40,K.1^-10,K.1^20,K.1^50,K.1^-5,K.1^10,K.1^-25,K.1^-20,K.1^-50,K.1^40,K.1^25,K.1^5,K.1^36,K.1^51,K.1^9,K.1^-6,K.1^18,K.1^-18,K.1^-3,K.1^-27,K.1^-48,K.1^-12,K.1^-33,K.1^-51,K.1^-24,K.1^24,K.1^27,K.1^3,K.1^6,K.1^12,K.1^48,K.1^-9,K.1^39,K.1^-36,K.1^-39,K.1^33,K.1^33,K.1^-3,K.1^18,K.1^-18,K.1^48,K.1^-33,K.1^27,K.1^39,K.1^36,K.1^3,K.1^-12,K.1^24,K.1^-6,K.1^-36,K.1^51,K.1^-48,K.1^12,K.1^-51,K.1^6,K.1^-39,K.1^-24,K.1^-27,K.1^9,K.1^-9,K.1^17,K.1^-29,K.1^-32,K.1^44,K.1^-43,K.1^41,K.1^-26,K.1^22,K.1^-41,K.1^-34,K.1^32,K.1^-16,K.1^43,K.1^-44,K.1^-46,K.1^4,K.1^16,K.1^38,K.1^-17,K.1^46,K.1^-23,K.1^13,K.1^-37,K.1^2,K.1^-4,K.1^-11,K.1^52,K.1^19,K.1^11,K.1^-13,K.1^-31,K.1^-2,K.1,K.1^-38,K.1^26,K.1^29,K.1^-22,K.1^23,K.1^47,K.1^-47,K.1^8,K.1^-19,K.1^34,K.1^37,K.1^31,K.1^-52,K.1^-1,K.1^-8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(105: Sparse := true); S := [ K |1,1,K.1^35,K.1^-35,K.1^-21,K.1^21,K.1^-42,K.1^42,K.1^-15,K.1^15,K.1^45,K.1^-45,K.1^30,K.1^-30,K.1^-42,K.1^42,K.1^-21,K.1^21,K.1^-45,K.1^45,K.1^-30,K.1^30,K.1^15,K.1^-15,K.1^28,K.1^14,K.1^-14,K.1^-28,K.1^49,K.1^-7,K.1^-49,K.1^7,K.1^40,K.1^10,K.1^-20,K.1^-50,K.1^5,K.1^-10,K.1^25,K.1^20,K.1^50,K.1^-40,K.1^-25,K.1^-5,K.1^-36,K.1^-51,K.1^-9,K.1^6,K.1^-18,K.1^18,K.1^3,K.1^27,K.1^48,K.1^12,K.1^33,K.1^51,K.1^24,K.1^-24,K.1^-27,K.1^-3,K.1^-6,K.1^-12,K.1^-48,K.1^9,K.1^-39,K.1^36,K.1^39,K.1^-33,K.1^-33,K.1^3,K.1^-18,K.1^18,K.1^-48,K.1^33,K.1^-27,K.1^-39,K.1^-36,K.1^-3,K.1^12,K.1^-24,K.1^6,K.1^36,K.1^-51,K.1^48,K.1^-12,K.1^51,K.1^-6,K.1^39,K.1^24,K.1^27,K.1^-9,K.1^9,K.1^-17,K.1^29,K.1^32,K.1^-44,K.1^43,K.1^-41,K.1^26,K.1^-22,K.1^41,K.1^34,K.1^-32,K.1^16,K.1^-43,K.1^44,K.1^46,K.1^-4,K.1^-16,K.1^-38,K.1^17,K.1^-46,K.1^23,K.1^-13,K.1^37,K.1^-2,K.1^4,K.1^11,K.1^-52,K.1^-19,K.1^-11,K.1^13,K.1^31,K.1^2,K.1^-1,K.1^38,K.1^-26,K.1^-29,K.1^22,K.1^-23,K.1^-47,K.1^47,K.1^-8,K.1^19,K.1^-34,K.1^-37,K.1^-31,K.1^52,K.1,K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[3, -1, 0, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |3,-1,0,0,3*K.1^-2,3*K.1^2,3*K.1,3*K.1^-1,3,3,3,3,3,3,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-2,3*K.1^-2,3*K.1^2,3*K.1^2,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^2,3*K.1^-2,3*K.1^2,3*K.1,3*K.1^-1,3*K.1^-2,3*K.1,3*K.1^-1,3*K.1^-2,3*K.1^2,3*K.1^2,3*K.1^-2,3*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |3,-1,0,0,3*K.1^2,3*K.1^-2,3*K.1^-1,3*K.1,3,3,3,3,3,3,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^2,3*K.1^2,3*K.1^-2,3*K.1^-2,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1^-2,3*K.1^2,3*K.1^-2,3*K.1^-1,3*K.1,3*K.1^2,3*K.1^-1,3*K.1,3*K.1^2,3*K.1^-2,3*K.1^-2,3*K.1^2,3*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |3,-1,0,0,3*K.1^-1,3*K.1,3*K.1^-2,3*K.1^2,3,3,3,3,3,3,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1,3*K.1^2,3*K.1^-2,3*K.1^-2,3*K.1^2,3*K.1^-2,3*K.1^2,3*K.1^-2,3*K.1,3*K.1^-1,3*K.1,3*K.1^-2,3*K.1^2,3*K.1^-1,3*K.1^-2,3*K.1^2,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |3,-1,0,0,3*K.1,3*K.1^-1,3*K.1^2,3*K.1^-2,3,3,3,3,3,3,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1^-2,3*K.1^2,3*K.1^2,3*K.1^-2,3*K.1^2,3*K.1^-2,3*K.1^2,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1^2,3*K.1^-2,3*K.1,3*K.1^2,3*K.1^-2,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |3,-1,0,0,3,3,3,3,3*K.1^-3,3*K.1^3,3*K.1^2,3*K.1^-2,3*K.1^-1,3*K.1,-1,-1,-1,-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^3,-1*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-3,3*K.1,3*K.1,3*K.1^-3,3*K.1^2,3*K.1^-2,3*K.1^2,3*K.1^-3,3*K.1^-3,3*K.1,3*K.1,3*K.1^-1,3*K.1^2,3*K.1^-2,3*K.1^3,3*K.1^-2,3*K.1^3,3*K.1^-1,3*K.1^3,3*K.1^-1,3*K.1^2,3*K.1^3,3*K.1^-2,3*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^2,-1*K.1^-3,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-3,-1*K.1^3,-1*K.1,-1*K.1^-3,-1*K.1^-1,-1*K.1^-1,-1*K.1^3,-1*K.1^-2,-1*K.1^2,-1*K.1^-3,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |3,-1,0,0,3,3,3,3,3*K.1^3,3*K.1^-3,3*K.1^-2,3*K.1^2,3*K.1,3*K.1^-1,-1,-1,-1,-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-3,-1*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^3,3*K.1^-1,3*K.1^-1,3*K.1^3,3*K.1^-2,3*K.1^2,3*K.1^-2,3*K.1^3,3*K.1^3,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-2,3*K.1^2,3*K.1^-3,3*K.1^2,3*K.1^-3,3*K.1,3*K.1^-3,3*K.1,3*K.1^-2,3*K.1^-3,3*K.1^2,3*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-3,-1*K.1^-1,-1*K.1^-3,-1*K.1^-2,-1*K.1^3,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^3,-1*K.1^-3,-1*K.1^-1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^-3,-1*K.1^2,-1*K.1^-2,-1*K.1^3,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |3,-1,0,0,3,3,3,3,3*K.1^-2,3*K.1^2,3*K.1^-1,3*K.1,3*K.1^-3,3*K.1^3,-1,-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^3,-1*K.1^-3,-1*K.1^2,-1*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-2,3*K.1^3,3*K.1^3,3*K.1^-2,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1^-2,3*K.1^-2,3*K.1^3,3*K.1^3,3*K.1^-3,3*K.1^-1,3*K.1,3*K.1^2,3*K.1,3*K.1^2,3*K.1^-3,3*K.1^2,3*K.1^-3,3*K.1^-1,3*K.1^2,3*K.1,3*K.1^-3,-1*K.1^-3,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^3,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^3,-1*K.1^-2,-1*K.1^-3,-1*K.1^-3,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^3,-1*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |3,-1,0,0,3,3,3,3,3*K.1^2,3*K.1^-2,3*K.1,3*K.1^-1,3*K.1^3,3*K.1^-3,-1,-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-3,-1*K.1^3,-1*K.1^-2,-1*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^2,3*K.1^-3,3*K.1^-3,3*K.1^2,3*K.1,3*K.1^-1,3*K.1,3*K.1^2,3*K.1^2,3*K.1^-3,3*K.1^-3,3*K.1^3,3*K.1,3*K.1^-1,3*K.1^-2,3*K.1^-1,3*K.1^-2,3*K.1^3,3*K.1^-2,3*K.1^3,3*K.1,3*K.1^-2,3*K.1^-1,3*K.1^3,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-3,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-3,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-3,-1*K.1^2,-1*K.1^3,-1*K.1^3,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-3,-1*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |3,-1,0,0,3,3,3,3,3*K.1^-1,3*K.1,3*K.1^3,3*K.1^-3,3*K.1^2,3*K.1^-2,-1,-1,-1,-1,-1*K.1^-3,-1*K.1^3,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-1,3*K.1^-2,3*K.1^-2,3*K.1^-1,3*K.1^3,3*K.1^-3,3*K.1^3,3*K.1^-1,3*K.1^-1,3*K.1^-2,3*K.1^-2,3*K.1^2,3*K.1^3,3*K.1^-3,3*K.1,3*K.1^-3,3*K.1,3*K.1^2,3*K.1,3*K.1^2,3*K.1^3,3*K.1,3*K.1^-3,3*K.1^2,-1*K.1^2,-1*K.1^3,-1*K.1^3,-1*K.1^-3,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^3,-1*K.1^-1,-1*K.1^-3,-1*K.1^-2,-1*K.1^-3,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-3,-1*K.1^3,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |3,-1,0,0,3,3,3,3,3*K.1,3*K.1^-1,3*K.1^-3,3*K.1^3,3*K.1^-2,3*K.1^2,-1,-1,-1,-1,-1*K.1^3,-1*K.1^-3,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1,3*K.1^2,3*K.1^2,3*K.1,3*K.1^-3,3*K.1^3,3*K.1^-3,3*K.1,3*K.1,3*K.1^2,3*K.1^2,3*K.1^-2,3*K.1^-3,3*K.1^3,3*K.1^-1,3*K.1^3,3*K.1^-1,3*K.1^-2,3*K.1^-1,3*K.1^-2,3*K.1^-3,3*K.1^-1,3*K.1^3,3*K.1^-2,-1*K.1^-2,-1*K.1^-3,-1*K.1^-3,-1*K.1^3,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-3,-1*K.1,-1*K.1^3,-1*K.1^2,-1*K.1^3,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^3,-1*K.1^-3,-1*K.1,-1*K.1^2,-1*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |3,-1,0,0,3*K.1^-14,3*K.1^14,3*K.1^7,3*K.1^-7,3*K.1^-15,3*K.1^15,3*K.1^10,3*K.1^-10,3*K.1^-5,3*K.1^5,-1*K.1^7,-1*K.1^-7,-1*K.1^-14,-1*K.1^14,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^-5,-1*K.1^15,-1*K.1^-15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^6,3*K.1^-9,3*K.1^-16,3*K.1^-1,3*K.1^3,3*K.1^-3,3*K.1^17,3*K.1^13,3*K.1^-8,3*K.1^-2,3*K.1^12,3*K.1^9,3*K.1^-4,3*K.1^4,3*K.1^-13,3*K.1^-17,3*K.1,3*K.1^2,3*K.1^8,3*K.1^16,3*K.1^-11,3*K.1^-6,3*K.1^11,3*K.1^-12,-1*K.1^-12,-1*K.1^17,-1*K.1^3,-1*K.1^-3,-1*K.1^8,-1*K.1^12,-1*K.1^-13,-1*K.1^-11,-1*K.1^6,-1*K.1^-17,-1*K.1^-2,-1*K.1^4,-1*K.1^-1,-1*K.1^-6,-1*K.1^-9,-1*K.1^-8,-1*K.1^2,-1*K.1^9,-1*K.1,-1*K.1^11,-1*K.1^-4,-1*K.1^13,-1*K.1^-16,-1*K.1^16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |3,-1,0,0,3*K.1^14,3*K.1^-14,3*K.1^-7,3*K.1^7,3*K.1^15,3*K.1^-15,3*K.1^-10,3*K.1^10,3*K.1^5,3*K.1^-5,-1*K.1^-7,-1*K.1^7,-1*K.1^14,-1*K.1^-14,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,-1*K.1^-15,-1*K.1^15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-6,3*K.1^9,3*K.1^16,3*K.1,3*K.1^-3,3*K.1^3,3*K.1^-17,3*K.1^-13,3*K.1^8,3*K.1^2,3*K.1^-12,3*K.1^-9,3*K.1^4,3*K.1^-4,3*K.1^13,3*K.1^17,3*K.1^-1,3*K.1^-2,3*K.1^-8,3*K.1^-16,3*K.1^11,3*K.1^6,3*K.1^-11,3*K.1^12,-1*K.1^12,-1*K.1^-17,-1*K.1^-3,-1*K.1^3,-1*K.1^-8,-1*K.1^-12,-1*K.1^13,-1*K.1^11,-1*K.1^-6,-1*K.1^17,-1*K.1^2,-1*K.1^-4,-1*K.1,-1*K.1^6,-1*K.1^9,-1*K.1^8,-1*K.1^-2,-1*K.1^-9,-1*K.1^-1,-1*K.1^-11,-1*K.1^4,-1*K.1^-13,-1*K.1^16,-1*K.1^-16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |3,-1,0,0,3*K.1^-14,3*K.1^14,3*K.1^7,3*K.1^-7,3*K.1^15,3*K.1^-15,3*K.1^-10,3*K.1^10,3*K.1^5,3*K.1^-5,-1*K.1^7,-1*K.1^-7,-1*K.1^-14,-1*K.1^14,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,-1*K.1^-15,-1*K.1^15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1,3*K.1^16,3*K.1^9,3*K.1^-6,3*K.1^-17,3*K.1^17,3*K.1^-3,3*K.1^8,3*K.1^-13,3*K.1^-12,3*K.1^2,3*K.1^-16,3*K.1^11,3*K.1^-11,3*K.1^-8,3*K.1^3,3*K.1^6,3*K.1^12,3*K.1^13,3*K.1^-9,3*K.1^4,3*K.1^-1,3*K.1^-4,3*K.1^-2,-1*K.1^-2,-1*K.1^-3,-1*K.1^-17,-1*K.1^17,-1*K.1^13,-1*K.1^2,-1*K.1^-8,-1*K.1^4,-1*K.1,-1*K.1^3,-1*K.1^-12,-1*K.1^-11,-1*K.1^-6,-1*K.1^-1,-1*K.1^16,-1*K.1^-13,-1*K.1^12,-1*K.1^-16,-1*K.1^6,-1*K.1^-4,-1*K.1^11,-1*K.1^8,-1*K.1^9,-1*K.1^-9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |3,-1,0,0,3*K.1^14,3*K.1^-14,3*K.1^-7,3*K.1^7,3*K.1^-15,3*K.1^15,3*K.1^10,3*K.1^-10,3*K.1^-5,3*K.1^5,-1*K.1^-7,-1*K.1^7,-1*K.1^14,-1*K.1^-14,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^-5,-1*K.1^15,-1*K.1^-15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-1,3*K.1^-16,3*K.1^-9,3*K.1^6,3*K.1^17,3*K.1^-17,3*K.1^3,3*K.1^-8,3*K.1^13,3*K.1^12,3*K.1^-2,3*K.1^16,3*K.1^-11,3*K.1^11,3*K.1^8,3*K.1^-3,3*K.1^-6,3*K.1^-12,3*K.1^-13,3*K.1^9,3*K.1^-4,3*K.1,3*K.1^4,3*K.1^2,-1*K.1^2,-1*K.1^3,-1*K.1^17,-1*K.1^-17,-1*K.1^-13,-1*K.1^-2,-1*K.1^8,-1*K.1^-4,-1*K.1^-1,-1*K.1^-3,-1*K.1^12,-1*K.1^11,-1*K.1^6,-1*K.1,-1*K.1^-16,-1*K.1^13,-1*K.1^-12,-1*K.1^16,-1*K.1^-6,-1*K.1^4,-1*K.1^-11,-1*K.1^-8,-1*K.1^-9,-1*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |3,-1,0,0,3*K.1^-14,3*K.1^14,3*K.1^7,3*K.1^-7,3*K.1^-10,3*K.1^10,3*K.1^-5,3*K.1^5,3*K.1^-15,3*K.1^15,-1*K.1^7,-1*K.1^-7,-1*K.1^-14,-1*K.1^14,-1*K.1^5,-1*K.1^-5,-1*K.1^15,-1*K.1^-15,-1*K.1^10,-1*K.1^-10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^11,3*K.1,3*K.1^-6,3*K.1^4,3*K.1^-12,3*K.1^12,3*K.1^2,3*K.1^-17,3*K.1^-3,3*K.1^8,3*K.1^-13,3*K.1^-1,3*K.1^16,3*K.1^-16,3*K.1^17,3*K.1^-2,3*K.1^-4,3*K.1^-8,3*K.1^3,3*K.1^6,3*K.1^9,3*K.1^-11,3*K.1^-9,3*K.1^13,-1*K.1^13,-1*K.1^2,-1*K.1^-12,-1*K.1^12,-1*K.1^3,-1*K.1^-13,-1*K.1^17,-1*K.1^9,-1*K.1^11,-1*K.1^-2,-1*K.1^8,-1*K.1^-16,-1*K.1^4,-1*K.1^-11,-1*K.1,-1*K.1^-3,-1*K.1^-8,-1*K.1^-1,-1*K.1^-4,-1*K.1^-9,-1*K.1^16,-1*K.1^-17,-1*K.1^-6,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |3,-1,0,0,3*K.1^14,3*K.1^-14,3*K.1^-7,3*K.1^7,3*K.1^10,3*K.1^-10,3*K.1^5,3*K.1^-5,3*K.1^15,3*K.1^-15,-1*K.1^-7,-1*K.1^7,-1*K.1^14,-1*K.1^-14,-1*K.1^-5,-1*K.1^5,-1*K.1^-15,-1*K.1^15,-1*K.1^-10,-1*K.1^10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-11,3*K.1^-1,3*K.1^6,3*K.1^-4,3*K.1^12,3*K.1^-12,3*K.1^-2,3*K.1^17,3*K.1^3,3*K.1^-8,3*K.1^13,3*K.1,3*K.1^-16,3*K.1^16,3*K.1^-17,3*K.1^2,3*K.1^4,3*K.1^8,3*K.1^-3,3*K.1^-6,3*K.1^-9,3*K.1^11,3*K.1^9,3*K.1^-13,-1*K.1^-13,-1*K.1^-2,-1*K.1^12,-1*K.1^-12,-1*K.1^-3,-1*K.1^13,-1*K.1^-17,-1*K.1^-9,-1*K.1^-11,-1*K.1^2,-1*K.1^-8,-1*K.1^16,-1*K.1^-4,-1*K.1^11,-1*K.1^-1,-1*K.1^3,-1*K.1^8,-1*K.1,-1*K.1^4,-1*K.1^9,-1*K.1^-16,-1*K.1^17,-1*K.1^6,-1*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |3,-1,0,0,3*K.1^-14,3*K.1^14,3*K.1^7,3*K.1^-7,3*K.1^10,3*K.1^-10,3*K.1^5,3*K.1^-5,3*K.1^15,3*K.1^-15,-1*K.1^7,-1*K.1^-7,-1*K.1^-14,-1*K.1^14,-1*K.1^-5,-1*K.1^5,-1*K.1^-15,-1*K.1^15,-1*K.1^-10,-1*K.1^10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-4,3*K.1^6,3*K.1^-1,3*K.1^-11,3*K.1^-2,3*K.1^2,3*K.1^12,3*K.1^3,3*K.1^17,3*K.1^13,3*K.1^-8,3*K.1^-6,3*K.1^-9,3*K.1^9,3*K.1^-3,3*K.1^-12,3*K.1^11,3*K.1^-13,3*K.1^-17,3*K.1,3*K.1^-16,3*K.1^4,3*K.1^16,3*K.1^8,-1*K.1^8,-1*K.1^12,-1*K.1^-2,-1*K.1^2,-1*K.1^-17,-1*K.1^-8,-1*K.1^-3,-1*K.1^-16,-1*K.1^-4,-1*K.1^-12,-1*K.1^13,-1*K.1^9,-1*K.1^-11,-1*K.1^4,-1*K.1^6,-1*K.1^17,-1*K.1^-13,-1*K.1^-6,-1*K.1^11,-1*K.1^16,-1*K.1^-9,-1*K.1^3,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |3,-1,0,0,3*K.1^14,3*K.1^-14,3*K.1^-7,3*K.1^7,3*K.1^-10,3*K.1^10,3*K.1^-5,3*K.1^5,3*K.1^-15,3*K.1^15,-1*K.1^-7,-1*K.1^7,-1*K.1^14,-1*K.1^-14,-1*K.1^5,-1*K.1^-5,-1*K.1^15,-1*K.1^-15,-1*K.1^10,-1*K.1^-10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^4,3*K.1^-6,3*K.1,3*K.1^11,3*K.1^2,3*K.1^-2,3*K.1^-12,3*K.1^-3,3*K.1^-17,3*K.1^-13,3*K.1^8,3*K.1^6,3*K.1^9,3*K.1^-9,3*K.1^3,3*K.1^12,3*K.1^-11,3*K.1^13,3*K.1^17,3*K.1^-1,3*K.1^16,3*K.1^-4,3*K.1^-16,3*K.1^-8,-1*K.1^-8,-1*K.1^-12,-1*K.1^2,-1*K.1^-2,-1*K.1^17,-1*K.1^8,-1*K.1^3,-1*K.1^16,-1*K.1^4,-1*K.1^12,-1*K.1^-13,-1*K.1^-9,-1*K.1^11,-1*K.1^-4,-1*K.1^-6,-1*K.1^-17,-1*K.1^13,-1*K.1^6,-1*K.1^-11,-1*K.1^-16,-1*K.1^9,-1*K.1^-3,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |3,-1,0,0,3*K.1^-14,3*K.1^14,3*K.1^7,3*K.1^-7,3*K.1^-5,3*K.1^5,3*K.1^15,3*K.1^-15,3*K.1^10,3*K.1^-10,-1*K.1^7,-1*K.1^-7,-1*K.1^-14,-1*K.1^14,-1*K.1^-15,-1*K.1^15,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^16,3*K.1^11,3*K.1^4,3*K.1^9,3*K.1^8,3*K.1^-8,3*K.1^-13,3*K.1^-12,3*K.1^2,3*K.1^-17,3*K.1^-3,3*K.1^-11,3*K.1,3*K.1^-1,3*K.1^12,3*K.1^13,3*K.1^-9,3*K.1^17,3*K.1^-2,3*K.1^-4,3*K.1^-6,3*K.1^-16,3*K.1^6,3*K.1^3,-1*K.1^3,-1*K.1^-13,-1*K.1^8,-1*K.1^-8,-1*K.1^-2,-1*K.1^-3,-1*K.1^12,-1*K.1^-6,-1*K.1^16,-1*K.1^13,-1*K.1^-17,-1*K.1^-1,-1*K.1^9,-1*K.1^-16,-1*K.1^11,-1*K.1^2,-1*K.1^17,-1*K.1^-11,-1*K.1^-9,-1*K.1^6,-1*K.1,-1*K.1^-12,-1*K.1^4,-1*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |3,-1,0,0,3*K.1^14,3*K.1^-14,3*K.1^-7,3*K.1^7,3*K.1^5,3*K.1^-5,3*K.1^-15,3*K.1^15,3*K.1^-10,3*K.1^10,-1*K.1^-7,-1*K.1^7,-1*K.1^14,-1*K.1^-14,-1*K.1^15,-1*K.1^-15,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-16,3*K.1^-11,3*K.1^-4,3*K.1^-9,3*K.1^-8,3*K.1^8,3*K.1^13,3*K.1^12,3*K.1^-2,3*K.1^17,3*K.1^3,3*K.1^11,3*K.1^-1,3*K.1,3*K.1^-12,3*K.1^-13,3*K.1^9,3*K.1^-17,3*K.1^2,3*K.1^4,3*K.1^6,3*K.1^16,3*K.1^-6,3*K.1^-3,-1*K.1^-3,-1*K.1^13,-1*K.1^-8,-1*K.1^8,-1*K.1^2,-1*K.1^3,-1*K.1^-12,-1*K.1^6,-1*K.1^-16,-1*K.1^-13,-1*K.1^17,-1*K.1,-1*K.1^-9,-1*K.1^16,-1*K.1^-11,-1*K.1^-2,-1*K.1^-17,-1*K.1^11,-1*K.1^9,-1*K.1^-6,-1*K.1^-1,-1*K.1^12,-1*K.1^-4,-1*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |3,-1,0,0,3*K.1^-14,3*K.1^14,3*K.1^7,3*K.1^-7,3*K.1^5,3*K.1^-5,3*K.1^-15,3*K.1^15,3*K.1^-10,3*K.1^10,-1*K.1^7,-1*K.1^-7,-1*K.1^-14,-1*K.1^14,-1*K.1^15,-1*K.1^-15,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-9,3*K.1^-4,3*K.1^-11,3*K.1^-16,3*K.1^13,3*K.1^-13,3*K.1^-8,3*K.1^-2,3*K.1^12,3*K.1^3,3*K.1^17,3*K.1^4,3*K.1^6,3*K.1^-6,3*K.1^2,3*K.1^8,3*K.1^16,3*K.1^-3,3*K.1^-12,3*K.1^11,3*K.1^-1,3*K.1^9,3*K.1,3*K.1^-17,-1*K.1^-17,-1*K.1^-8,-1*K.1^13,-1*K.1^-13,-1*K.1^-12,-1*K.1^17,-1*K.1^2,-1*K.1^-1,-1*K.1^-9,-1*K.1^8,-1*K.1^3,-1*K.1^-6,-1*K.1^-16,-1*K.1^9,-1*K.1^-4,-1*K.1^12,-1*K.1^-3,-1*K.1^4,-1*K.1^16,-1*K.1,-1*K.1^6,-1*K.1^-2,-1*K.1^-11,-1*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |3,-1,0,0,3*K.1^14,3*K.1^-14,3*K.1^-7,3*K.1^7,3*K.1^-5,3*K.1^5,3*K.1^15,3*K.1^-15,3*K.1^10,3*K.1^-10,-1*K.1^-7,-1*K.1^7,-1*K.1^14,-1*K.1^-14,-1*K.1^-15,-1*K.1^15,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^9,3*K.1^4,3*K.1^11,3*K.1^16,3*K.1^-13,3*K.1^13,3*K.1^8,3*K.1^2,3*K.1^-12,3*K.1^-3,3*K.1^-17,3*K.1^-4,3*K.1^-6,3*K.1^6,3*K.1^-2,3*K.1^-8,3*K.1^-16,3*K.1^3,3*K.1^12,3*K.1^-11,3*K.1,3*K.1^-9,3*K.1^-1,3*K.1^17,-1*K.1^17,-1*K.1^8,-1*K.1^-13,-1*K.1^13,-1*K.1^12,-1*K.1^-17,-1*K.1^-2,-1*K.1,-1*K.1^9,-1*K.1^-8,-1*K.1^-3,-1*K.1^6,-1*K.1^16,-1*K.1^-9,-1*K.1^4,-1*K.1^-12,-1*K.1^3,-1*K.1^-4,-1*K.1^-16,-1*K.1^-1,-1*K.1^-6,-1*K.1^2,-1*K.1^11,-1*K.1^-11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |3,-1,0,0,3*K.1^-7,3*K.1^7,3*K.1^-14,3*K.1^14,3*K.1^-15,3*K.1^15,3*K.1^10,3*K.1^-10,3*K.1^-5,3*K.1^5,-1*K.1^-14,-1*K.1^14,-1*K.1^-7,-1*K.1^7,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^-5,-1*K.1^15,-1*K.1^-15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^13,3*K.1^-2,3*K.1^12,3*K.1^-8,3*K.1^-11,3*K.1^11,3*K.1^-4,3*K.1^-1,3*K.1^6,3*K.1^-16,3*K.1^-9,3*K.1^2,3*K.1^3,3*K.1^-3,3*K.1,3*K.1^4,3*K.1^8,3*K.1^16,3*K.1^-6,3*K.1^-12,3*K.1^17,3*K.1^-13,3*K.1^-17,3*K.1^9,-1*K.1^9,-1*K.1^-4,-1*K.1^-11,-1*K.1^11,-1*K.1^-6,-1*K.1^-9,-1*K.1,-1*K.1^17,-1*K.1^13,-1*K.1^4,-1*K.1^-16,-1*K.1^-3,-1*K.1^-8,-1*K.1^-13,-1*K.1^-2,-1*K.1^6,-1*K.1^16,-1*K.1^2,-1*K.1^8,-1*K.1^-17,-1*K.1^3,-1*K.1^-1,-1*K.1^12,-1*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |3,-1,0,0,3*K.1^7,3*K.1^-7,3*K.1^14,3*K.1^-14,3*K.1^15,3*K.1^-15,3*K.1^-10,3*K.1^10,3*K.1^5,3*K.1^-5,-1*K.1^14,-1*K.1^-14,-1*K.1^7,-1*K.1^-7,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,-1*K.1^-15,-1*K.1^15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-13,3*K.1^2,3*K.1^-12,3*K.1^8,3*K.1^11,3*K.1^-11,3*K.1^4,3*K.1,3*K.1^-6,3*K.1^16,3*K.1^9,3*K.1^-2,3*K.1^-3,3*K.1^3,3*K.1^-1,3*K.1^-4,3*K.1^-8,3*K.1^-16,3*K.1^6,3*K.1^12,3*K.1^-17,3*K.1^13,3*K.1^17,3*K.1^-9,-1*K.1^-9,-1*K.1^4,-1*K.1^11,-1*K.1^-11,-1*K.1^6,-1*K.1^9,-1*K.1^-1,-1*K.1^-17,-1*K.1^-13,-1*K.1^-4,-1*K.1^16,-1*K.1^3,-1*K.1^8,-1*K.1^13,-1*K.1^2,-1*K.1^-6,-1*K.1^-16,-1*K.1^-2,-1*K.1^-8,-1*K.1^17,-1*K.1^-3,-1*K.1,-1*K.1^-12,-1*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |3,-1,0,0,3*K.1^-7,3*K.1^7,3*K.1^-14,3*K.1^14,3*K.1^15,3*K.1^-15,3*K.1^-10,3*K.1^10,3*K.1^5,3*K.1^-5,-1*K.1^-14,-1*K.1^14,-1*K.1^-7,-1*K.1^7,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,-1*K.1^-15,-1*K.1^15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^8,3*K.1^-12,3*K.1^2,3*K.1^-13,3*K.1^4,3*K.1^-4,3*K.1^11,3*K.1^-6,3*K.1,3*K.1^9,3*K.1^16,3*K.1^12,3*K.1^-17,3*K.1^17,3*K.1^6,3*K.1^-11,3*K.1^13,3*K.1^-9,3*K.1^-1,3*K.1^-2,3*K.1^-3,3*K.1^-8,3*K.1^3,3*K.1^-16,-1*K.1^-16,-1*K.1^11,-1*K.1^4,-1*K.1^-4,-1*K.1^-1,-1*K.1^16,-1*K.1^6,-1*K.1^-3,-1*K.1^8,-1*K.1^-11,-1*K.1^9,-1*K.1^17,-1*K.1^-13,-1*K.1^-8,-1*K.1^-12,-1*K.1,-1*K.1^-9,-1*K.1^12,-1*K.1^13,-1*K.1^3,-1*K.1^-17,-1*K.1^-6,-1*K.1^2,-1*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |3,-1,0,0,3*K.1^7,3*K.1^-7,3*K.1^14,3*K.1^-14,3*K.1^-15,3*K.1^15,3*K.1^10,3*K.1^-10,3*K.1^-5,3*K.1^5,-1*K.1^14,-1*K.1^-14,-1*K.1^7,-1*K.1^-7,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^-5,-1*K.1^15,-1*K.1^-15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-8,3*K.1^12,3*K.1^-2,3*K.1^13,3*K.1^-4,3*K.1^4,3*K.1^-11,3*K.1^6,3*K.1^-1,3*K.1^-9,3*K.1^-16,3*K.1^-12,3*K.1^17,3*K.1^-17,3*K.1^-6,3*K.1^11,3*K.1^-13,3*K.1^9,3*K.1,3*K.1^2,3*K.1^3,3*K.1^8,3*K.1^-3,3*K.1^16,-1*K.1^16,-1*K.1^-11,-1*K.1^-4,-1*K.1^4,-1*K.1,-1*K.1^-16,-1*K.1^-6,-1*K.1^3,-1*K.1^-8,-1*K.1^11,-1*K.1^-9,-1*K.1^-17,-1*K.1^13,-1*K.1^8,-1*K.1^12,-1*K.1^-1,-1*K.1^9,-1*K.1^-12,-1*K.1^-13,-1*K.1^-3,-1*K.1^17,-1*K.1^6,-1*K.1^-2,-1*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |3,-1,0,0,3*K.1^-7,3*K.1^7,3*K.1^-14,3*K.1^14,3*K.1^-10,3*K.1^10,3*K.1^-5,3*K.1^5,3*K.1^-15,3*K.1^15,-1*K.1^-14,-1*K.1^14,-1*K.1^-7,-1*K.1^7,-1*K.1^5,-1*K.1^-5,-1*K.1^15,-1*K.1^-15,-1*K.1^10,-1*K.1^-10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-17,3*K.1^8,3*K.1^-13,3*K.1^-3,3*K.1^9,3*K.1^-9,3*K.1^16,3*K.1^4,3*K.1^11,3*K.1^-6,3*K.1,3*K.1^-8,3*K.1^-12,3*K.1^12,3*K.1^-4,3*K.1^-16,3*K.1^3,3*K.1^6,3*K.1^-11,3*K.1^13,3*K.1^2,3*K.1^17,3*K.1^-2,3*K.1^-1,-1*K.1^-1,-1*K.1^16,-1*K.1^9,-1*K.1^-9,-1*K.1^-11,-1*K.1,-1*K.1^-4,-1*K.1^2,-1*K.1^-17,-1*K.1^-16,-1*K.1^-6,-1*K.1^12,-1*K.1^-3,-1*K.1^17,-1*K.1^8,-1*K.1^11,-1*K.1^6,-1*K.1^-8,-1*K.1^3,-1*K.1^-2,-1*K.1^-12,-1*K.1^4,-1*K.1^-13,-1*K.1^13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |3,-1,0,0,3*K.1^7,3*K.1^-7,3*K.1^14,3*K.1^-14,3*K.1^10,3*K.1^-10,3*K.1^5,3*K.1^-5,3*K.1^15,3*K.1^-15,-1*K.1^14,-1*K.1^-14,-1*K.1^7,-1*K.1^-7,-1*K.1^-5,-1*K.1^5,-1*K.1^-15,-1*K.1^15,-1*K.1^-10,-1*K.1^10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^17,3*K.1^-8,3*K.1^13,3*K.1^3,3*K.1^-9,3*K.1^9,3*K.1^-16,3*K.1^-4,3*K.1^-11,3*K.1^6,3*K.1^-1,3*K.1^8,3*K.1^12,3*K.1^-12,3*K.1^4,3*K.1^16,3*K.1^-3,3*K.1^-6,3*K.1^11,3*K.1^-13,3*K.1^-2,3*K.1^-17,3*K.1^2,3*K.1,-1*K.1,-1*K.1^-16,-1*K.1^-9,-1*K.1^9,-1*K.1^11,-1*K.1^-1,-1*K.1^4,-1*K.1^-2,-1*K.1^17,-1*K.1^16,-1*K.1^6,-1*K.1^-12,-1*K.1^3,-1*K.1^-17,-1*K.1^-8,-1*K.1^-11,-1*K.1^-6,-1*K.1^8,-1*K.1^-3,-1*K.1^2,-1*K.1^12,-1*K.1^-4,-1*K.1^13,-1*K.1^-13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |3,-1,0,0,3*K.1^-7,3*K.1^7,3*K.1^-14,3*K.1^14,3*K.1^10,3*K.1^-10,3*K.1^5,3*K.1^-5,3*K.1^15,3*K.1^-15,-1*K.1^-14,-1*K.1^14,-1*K.1^-7,-1*K.1^7,-1*K.1^-5,-1*K.1^5,-1*K.1^-15,-1*K.1^15,-1*K.1^-10,-1*K.1^10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^3,3*K.1^13,3*K.1^-8,3*K.1^17,3*K.1^-16,3*K.1^16,3*K.1^-9,3*K.1^-11,3*K.1^-4,3*K.1^-1,3*K.1^6,3*K.1^-13,3*K.1^-2,3*K.1^2,3*K.1^11,3*K.1^9,3*K.1^-17,3*K.1,3*K.1^4,3*K.1^8,3*K.1^12,3*K.1^-3,3*K.1^-12,3*K.1^-6,-1*K.1^-6,-1*K.1^-9,-1*K.1^-16,-1*K.1^16,-1*K.1^4,-1*K.1^6,-1*K.1^11,-1*K.1^12,-1*K.1^3,-1*K.1^9,-1*K.1^-1,-1*K.1^2,-1*K.1^17,-1*K.1^-3,-1*K.1^13,-1*K.1^-4,-1*K.1,-1*K.1^-13,-1*K.1^-17,-1*K.1^-12,-1*K.1^-2,-1*K.1^-11,-1*K.1^-8,-1*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |3,-1,0,0,3*K.1^7,3*K.1^-7,3*K.1^14,3*K.1^-14,3*K.1^-10,3*K.1^10,3*K.1^-5,3*K.1^5,3*K.1^-15,3*K.1^15,-1*K.1^14,-1*K.1^-14,-1*K.1^7,-1*K.1^-7,-1*K.1^5,-1*K.1^-5,-1*K.1^15,-1*K.1^-15,-1*K.1^10,-1*K.1^-10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-3,3*K.1^-13,3*K.1^8,3*K.1^-17,3*K.1^16,3*K.1^-16,3*K.1^9,3*K.1^11,3*K.1^4,3*K.1,3*K.1^-6,3*K.1^13,3*K.1^2,3*K.1^-2,3*K.1^-11,3*K.1^-9,3*K.1^17,3*K.1^-1,3*K.1^-4,3*K.1^-8,3*K.1^-12,3*K.1^3,3*K.1^12,3*K.1^6,-1*K.1^6,-1*K.1^9,-1*K.1^16,-1*K.1^-16,-1*K.1^-4,-1*K.1^-6,-1*K.1^-11,-1*K.1^-12,-1*K.1^-3,-1*K.1^-9,-1*K.1,-1*K.1^-2,-1*K.1^-17,-1*K.1^3,-1*K.1^-13,-1*K.1^4,-1*K.1^-1,-1*K.1^13,-1*K.1^17,-1*K.1^12,-1*K.1^2,-1*K.1^11,-1*K.1^8,-1*K.1^-8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |3,-1,0,0,3*K.1^-7,3*K.1^7,3*K.1^-14,3*K.1^14,3*K.1^-5,3*K.1^5,3*K.1^15,3*K.1^-15,3*K.1^10,3*K.1^-10,-1*K.1^-14,-1*K.1^14,-1*K.1^-7,-1*K.1^7,-1*K.1^-15,-1*K.1^15,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-12,3*K.1^-17,3*K.1^-3,3*K.1^2,3*K.1^-6,3*K.1^6,3*K.1,3*K.1^9,3*K.1^16,3*K.1^4,3*K.1^11,3*K.1^17,3*K.1^8,3*K.1^-8,3*K.1^-9,3*K.1^-1,3*K.1^-2,3*K.1^-4,3*K.1^-16,3*K.1^3,3*K.1^-13,3*K.1^12,3*K.1^13,3*K.1^-11,-1*K.1^-11,-1*K.1,-1*K.1^-6,-1*K.1^6,-1*K.1^-16,-1*K.1^11,-1*K.1^-9,-1*K.1^-13,-1*K.1^-12,-1*K.1^-1,-1*K.1^4,-1*K.1^-8,-1*K.1^2,-1*K.1^12,-1*K.1^-17,-1*K.1^16,-1*K.1^-4,-1*K.1^17,-1*K.1^-2,-1*K.1^13,-1*K.1^8,-1*K.1^9,-1*K.1^-3,-1*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |3,-1,0,0,3*K.1^7,3*K.1^-7,3*K.1^14,3*K.1^-14,3*K.1^5,3*K.1^-5,3*K.1^-15,3*K.1^15,3*K.1^-10,3*K.1^10,-1*K.1^14,-1*K.1^-14,-1*K.1^7,-1*K.1^-7,-1*K.1^15,-1*K.1^-15,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^12,3*K.1^17,3*K.1^3,3*K.1^-2,3*K.1^6,3*K.1^-6,3*K.1^-1,3*K.1^-9,3*K.1^-16,3*K.1^-4,3*K.1^-11,3*K.1^-17,3*K.1^-8,3*K.1^8,3*K.1^9,3*K.1,3*K.1^2,3*K.1^4,3*K.1^16,3*K.1^-3,3*K.1^13,3*K.1^-12,3*K.1^-13,3*K.1^11,-1*K.1^11,-1*K.1^-1,-1*K.1^6,-1*K.1^-6,-1*K.1^16,-1*K.1^-11,-1*K.1^9,-1*K.1^13,-1*K.1^12,-1*K.1,-1*K.1^-4,-1*K.1^8,-1*K.1^-2,-1*K.1^-12,-1*K.1^17,-1*K.1^-16,-1*K.1^4,-1*K.1^-17,-1*K.1^2,-1*K.1^-13,-1*K.1^-8,-1*K.1^-9,-1*K.1^3,-1*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |3,-1,0,0,3*K.1^-7,3*K.1^7,3*K.1^-14,3*K.1^14,3*K.1^5,3*K.1^-5,3*K.1^-15,3*K.1^15,3*K.1^-10,3*K.1^10,-1*K.1^-14,-1*K.1^14,-1*K.1^-7,-1*K.1^7,-1*K.1^15,-1*K.1^-15,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-2,3*K.1^3,3*K.1^17,3*K.1^12,3*K.1^-1,3*K.1,3*K.1^6,3*K.1^-16,3*K.1^-9,3*K.1^-11,3*K.1^-4,3*K.1^-3,3*K.1^13,3*K.1^-13,3*K.1^16,3*K.1^-6,3*K.1^-12,3*K.1^11,3*K.1^9,3*K.1^-17,3*K.1^-8,3*K.1^2,3*K.1^8,3*K.1^4,-1*K.1^4,-1*K.1^6,-1*K.1^-1,-1*K.1,-1*K.1^9,-1*K.1^-4,-1*K.1^16,-1*K.1^-8,-1*K.1^-2,-1*K.1^-6,-1*K.1^-11,-1*K.1^-13,-1*K.1^12,-1*K.1^2,-1*K.1^3,-1*K.1^-9,-1*K.1^11,-1*K.1^-3,-1*K.1^-12,-1*K.1^8,-1*K.1^13,-1*K.1^-16,-1*K.1^17,-1*K.1^-17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |3,-1,0,0,3*K.1^7,3*K.1^-7,3*K.1^14,3*K.1^-14,3*K.1^-5,3*K.1^5,3*K.1^15,3*K.1^-15,3*K.1^10,3*K.1^-10,-1*K.1^14,-1*K.1^-14,-1*K.1^7,-1*K.1^-7,-1*K.1^-15,-1*K.1^15,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^2,3*K.1^-3,3*K.1^-17,3*K.1^-12,3*K.1,3*K.1^-1,3*K.1^-6,3*K.1^16,3*K.1^9,3*K.1^11,3*K.1^4,3*K.1^3,3*K.1^-13,3*K.1^13,3*K.1^-16,3*K.1^6,3*K.1^12,3*K.1^-11,3*K.1^-9,3*K.1^17,3*K.1^8,3*K.1^-2,3*K.1^-8,3*K.1^-4,-1*K.1^-4,-1*K.1^-6,-1*K.1,-1*K.1^-1,-1*K.1^-9,-1*K.1^4,-1*K.1^-16,-1*K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^11,-1*K.1^13,-1*K.1^-12,-1*K.1^-2,-1*K.1^-3,-1*K.1^9,-1*K.1^-11,-1*K.1^3,-1*K.1^12,-1*K.1^-8,-1*K.1^-13,-1*K.1^16,-1*K.1^-17,-1*K.1^17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_420_32:= KnownIrreducibles(CR);