# Group 42.1 downloaded from the LMFDB on 27 September 2025. ## Various presentations of this group are stored in this file: # GPC is polycyclic presentation GPerm is permutation group # GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups # Many characteristics of the group are stored as booleans in a record: # Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, # metacyclic, monomial, nilpotent, perfect, quasisimple, rational, # solvable, supersolvable # The character table is stored as a record chartbl_n_i where n is the order # of the group and i is which group of that order it is. The record is # converted to a character table using ConvertToLibraryCharacterTableNC # Constructions GPC := PcGroupCode(37793315,42); a := GPC.1; b := GPC.3; GPerm := Group( (2,7)(3,6)(4,5), (2,3,5)(4,7,6), (1,7,6,5,4,3,2) ); GLZ := Group([[[0, 0, 0, 0, 0, 1], [0, -1, 0, 0, 0, 1], [1, -1, 0, -1, 0, 1], [0, 1, -1, 0, -1, 0], [0, 0, 0, 1, 0, 0], [0, 0, -1, 0, 0, 0]], [[0, -1, 0, 0, 0, 1], [0, -1, 0, 0, 1, 0], [-1, 0, 1, 1, 1, 0], [1, 0, -1, 0, -1, 0], [0, -1, 0, 0, 0, 0], [1, -1, 0, 0, 0, 0]]]); GLFp := Group([[[ Z(7)^0, Z(7)^0 ], [ 0*Z(7), Z(7)^0 ]], [[ Z(7)^0, 0*Z(7) ], [ 0*Z(7), Z(7) ]]]); # Booleans booleans_42_1 := rec( Agroup := true, Zgroup := true, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := true, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true); # Character Table chartbl_42_1:=rec(); chartbl_42_1.IsFinite:= true; chartbl_42_1.UnderlyingCharacteristic:= 0; chartbl_42_1.UnderlyingGroup:= GPC; chartbl_42_1.Size:= 42; chartbl_42_1.InfoText:= "Character table for group 42.1 downloaded from the LMFDB."; chartbl_42_1.Identifier:= " F7 "; chartbl_42_1.NrConjugacyClasses:= 7; chartbl_42_1.ConjugacyClasses:= [ of ..., f1*f2*f3^6, f2*f3^5, f2^2*f3^4, f1*f3^2, f1*f2^2*f3, f3]; chartbl_42_1.IdentificationOfConjugacyClasses:= [1, 2, 3, 4, 5, 6, 7]; chartbl_42_1.ComputedPowerMaps:= [ , [1, 1, 4, 3, 3, 4, 7], [1, 2, 1, 1, 2, 2, 7], [1, 2, 3, 4, 5, 6, 1]]; chartbl_42_1.SizesCentralizers:= [42, 6, 6, 6, 6, 6, 7]; chartbl_42_1.ClassNames:= ["1A", "2A", "3A1", "3A-1", "6A1", "6A-1", "7A"]; chartbl_42_1.OrderClassRepresentatives:= [1, 2, 3, 3, 6, 6, 7]; chartbl_42_1.Irr:= [[1, 1, 1, 1, 1, 1, 1], [1, -1, 1, 1, -1, -1, 1], [1, 1, E(3)^-1, E(3), E(3), E(3)^-1, 1], [1, 1, E(3), E(3)^-1, E(3)^-1, E(3), 1], [1, -1, E(3)^-1, E(3), -1*E(3), -1*E(3)^-1, 1], [1, -1, E(3), E(3)^-1, -1*E(3)^-1, -1*E(3), 1], [6, 0, 0, 0, 0, 0, -1]]; ConvertToLibraryCharacterTableNC(chartbl_42_1);