| Permutation group: | Degree $75$
$\langle(1,2,5,15,30,23,12)(3,17,21,9,37,16,10)(4,11,26,49,51,44,45)(6,29,13,32,27,20,8) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 75 | (1,2,5,15,30,23,12)(3,17,21,9,37,16,10)(4,11,26,49,51,44,45)(6,29,13,32,27,20,8)(7,34,14,48,28,46,35)(18,25,50,41,38,22,40)(19,47,33,31,36,42,39)(73,74,75), (57,58)(59,63)(60,64)(61,65)(62,66)(67,69)(68,71)(70,72), (1,3,18,27,39,44)(2,10,25,32,19,51)(4,23,21,22,8,36)(5,16,50,13,47,49)(6,31,11,30,9,38)(7,34)(12,17,40,20,42,45)(14,35)(15,37,41,29,33,26)(24,52,54,43,53,55)(46,48)(57,59,67,65,71,60)(58,63,69,61,68,64)(62,66), (1,4,24)(2,11,43)(3,18,42)(5,26,53)(6,29,32)(9,22,31)(10,41,47)(12,45,52)(13,20,27)(14,34,28)(15,49,54)(16,40,36)(17,38,33)(19,37,50)(21,25,39)(23,44,55)(30,51,56)(35,48,46)(57,60,70)(58,64,72)(59,67,71)(63,69,68)(73,74,75), (1,5,15)(2,12,23)(3,9,17)(4,11,44)(7,14,48)(8,32,20)(13,29,27)(16,21,37)(18,22,38)(24,53,54)(25,50,40)(31,42,39)(33,47,36)(34,35,46)(43,52,55)(45,51,49)(57,58)(59,63)(60,64)(61,65)(62,66)(67,69)(68,71)(70,72), (1,6,2,13,23,32)(3,19,10,42,21,36)(4,25,11,41,44,38)(5,27)(7,14,35)(8,12,20,30,29,15)(9,39,37,47,17,33)(16,31)(18,45,40,51,50,49)(22,26)(24,54,53)(28,48,34)(43,55,52)(57,61)(58,65)(59,68)(60,69)(63,71)(64,67)(70,72)(73,75,74), (1,7,19,50,37,8)(2,14,36,41,10,32)(3,20,23,48,39,18)(5,28,47,38,17,6)(9,27,15,35,42,22)(11,26,51)(12,46,31,25,21,13)(16,29,30,34,33,40)(44,49,45)(57,62,71,67,63,61)(58,66,68,69,59,65)(70,72)(73,75,74), (1,2,5,15,30,23,12)(3,21,37,10,17,9,16)(6,27,29,20,13,8,32)(7,14,28,35,34,48,46)(18,25,50,41,38,22,40)(19,36,47,42,33,39,31)(24,43,53,54,56,55,52)(57,58)(59,63)(60,64)(61,65)(62,66)(67,69)(68,71)(70,72), (1,8,37,50,19,7)(2,6,16,41,47,34)(3,22,31,48,15,13)(5,29,10,38,33,14)(9,25,39,35,12,20)(17,40,36,28,30,32)(18,42,46,23,27,21)(43,53,56)(52,55,54)(57,61,63,67,71,62)(58,65,59,69,68,66)(70,72), (1,5,30,12,2,15,23)(3,17,21,9,37,16,10)(6,32,8,13,20,29,27)(7,35,46,28,48,14,34)(18,22,41,25,40,38,50)(19,36,47,42,33,39,31)(57,58)(59,63)(60,64)(61,65)(62,66)(67,69)(68,71)(70,72), (1,9,40,20,42,44,15,21,38,29,36,49,12,17,50,27,31,11,5,3,18,6,33,45,23,10,22,32,47,51,2,16,41,8,19,26,30,37,25,13,39,4)(7,14,35)(24,43,53,54,56,55,52)(28,48,34)(57,59,67,65,71,60)(58,63,69,61,68,64)(62,66)(73,74,75), (73,75,74) >;
gap:G := Group( (1,2,5,15,30,23,12)(3,17,21,9,37,16,10)(4,11,26,49,51,44,45)(6,29,13,32,27,20,8)(7,34,14,48,28,46,35)(18,25,50,41,38,22,40)(19,47,33,31,36,42,39)(73,74,75), (57,58)(59,63)(60,64)(61,65)(62,66)(67,69)(68,71)(70,72), (1,3,18,27,39,44)(2,10,25,32,19,51)(4,23,21,22,8,36)(5,16,50,13,47,49)(6,31,11,30,9,38)(7,34)(12,17,40,20,42,45)(14,35)(15,37,41,29,33,26)(24,52,54,43,53,55)(46,48)(57,59,67,65,71,60)(58,63,69,61,68,64)(62,66), (1,4,24)(2,11,43)(3,18,42)(5,26,53)(6,29,32)(9,22,31)(10,41,47)(12,45,52)(13,20,27)(14,34,28)(15,49,54)(16,40,36)(17,38,33)(19,37,50)(21,25,39)(23,44,55)(30,51,56)(35,48,46)(57,60,70)(58,64,72)(59,67,71)(63,69,68)(73,74,75), (1,5,15)(2,12,23)(3,9,17)(4,11,44)(7,14,48)(8,32,20)(13,29,27)(16,21,37)(18,22,38)(24,53,54)(25,50,40)(31,42,39)(33,47,36)(34,35,46)(43,52,55)(45,51,49)(57,58)(59,63)(60,64)(61,65)(62,66)(67,69)(68,71)(70,72), (1,6,2,13,23,32)(3,19,10,42,21,36)(4,25,11,41,44,38)(5,27)(7,14,35)(8,12,20,30,29,15)(9,39,37,47,17,33)(16,31)(18,45,40,51,50,49)(22,26)(24,54,53)(28,48,34)(43,55,52)(57,61)(58,65)(59,68)(60,69)(63,71)(64,67)(70,72)(73,75,74), (1,7,19,50,37,8)(2,14,36,41,10,32)(3,20,23,48,39,18)(5,28,47,38,17,6)(9,27,15,35,42,22)(11,26,51)(12,46,31,25,21,13)(16,29,30,34,33,40)(44,49,45)(57,62,71,67,63,61)(58,66,68,69,59,65)(70,72)(73,75,74), (1,2,5,15,30,23,12)(3,21,37,10,17,9,16)(6,27,29,20,13,8,32)(7,14,28,35,34,48,46)(18,25,50,41,38,22,40)(19,36,47,42,33,39,31)(24,43,53,54,56,55,52)(57,58)(59,63)(60,64)(61,65)(62,66)(67,69)(68,71)(70,72), (1,8,37,50,19,7)(2,6,16,41,47,34)(3,22,31,48,15,13)(5,29,10,38,33,14)(9,25,39,35,12,20)(17,40,36,28,30,32)(18,42,46,23,27,21)(43,53,56)(52,55,54)(57,61,63,67,71,62)(58,65,59,69,68,66)(70,72), (1,5,30,12,2,15,23)(3,17,21,9,37,16,10)(6,32,8,13,20,29,27)(7,35,46,28,48,14,34)(18,22,41,25,40,38,50)(19,36,47,42,33,39,31)(57,58)(59,63)(60,64)(61,65)(62,66)(67,69)(68,71)(70,72), (1,9,40,20,42,44,15,21,38,29,36,49,12,17,50,27,31,11,5,3,18,6,33,45,23,10,22,32,47,51,2,16,41,8,19,26,30,37,25,13,39,4)(7,14,35)(24,43,53,54,56,55,52)(28,48,34)(57,59,67,65,71,60)(58,63,69,61,68,64)(62,66)(73,74,75), (73,75,74) );
sage:G = PermutationGroup(['(1,2,5,15,30,23,12)(3,17,21,9,37,16,10)(4,11,26,49,51,44,45)(6,29,13,32,27,20,8)(7,34,14,48,28,46,35)(18,25,50,41,38,22,40)(19,47,33,31,36,42,39)(73,74,75)', '(57,58)(59,63)(60,64)(61,65)(62,66)(67,69)(68,71)(70,72)', '(1,3,18,27,39,44)(2,10,25,32,19,51)(4,23,21,22,8,36)(5,16,50,13,47,49)(6,31,11,30,9,38)(7,34)(12,17,40,20,42,45)(14,35)(15,37,41,29,33,26)(24,52,54,43,53,55)(46,48)(57,59,67,65,71,60)(58,63,69,61,68,64)(62,66)', '(1,4,24)(2,11,43)(3,18,42)(5,26,53)(6,29,32)(9,22,31)(10,41,47)(12,45,52)(13,20,27)(14,34,28)(15,49,54)(16,40,36)(17,38,33)(19,37,50)(21,25,39)(23,44,55)(30,51,56)(35,48,46)(57,60,70)(58,64,72)(59,67,71)(63,69,68)(73,74,75)', '(1,5,15)(2,12,23)(3,9,17)(4,11,44)(7,14,48)(8,32,20)(13,29,27)(16,21,37)(18,22,38)(24,53,54)(25,50,40)(31,42,39)(33,47,36)(34,35,46)(43,52,55)(45,51,49)(57,58)(59,63)(60,64)(61,65)(62,66)(67,69)(68,71)(70,72)', '(1,6,2,13,23,32)(3,19,10,42,21,36)(4,25,11,41,44,38)(5,27)(7,14,35)(8,12,20,30,29,15)(9,39,37,47,17,33)(16,31)(18,45,40,51,50,49)(22,26)(24,54,53)(28,48,34)(43,55,52)(57,61)(58,65)(59,68)(60,69)(63,71)(64,67)(70,72)(73,75,74)', '(1,7,19,50,37,8)(2,14,36,41,10,32)(3,20,23,48,39,18)(5,28,47,38,17,6)(9,27,15,35,42,22)(11,26,51)(12,46,31,25,21,13)(16,29,30,34,33,40)(44,49,45)(57,62,71,67,63,61)(58,66,68,69,59,65)(70,72)(73,75,74)', '(1,2,5,15,30,23,12)(3,21,37,10,17,9,16)(6,27,29,20,13,8,32)(7,14,28,35,34,48,46)(18,25,50,41,38,22,40)(19,36,47,42,33,39,31)(24,43,53,54,56,55,52)(57,58)(59,63)(60,64)(61,65)(62,66)(67,69)(68,71)(70,72)', '(1,8,37,50,19,7)(2,6,16,41,47,34)(3,22,31,48,15,13)(5,29,10,38,33,14)(9,25,39,35,12,20)(17,40,36,28,30,32)(18,42,46,23,27,21)(43,53,56)(52,55,54)(57,61,63,67,71,62)(58,65,59,69,68,66)(70,72)', '(1,5,30,12,2,15,23)(3,17,21,9,37,16,10)(6,32,8,13,20,29,27)(7,35,46,28,48,14,34)(18,22,41,25,40,38,50)(19,36,47,42,33,39,31)(57,58)(59,63)(60,64)(61,65)(62,66)(67,69)(68,71)(70,72)', '(1,9,40,20,42,44,15,21,38,29,36,49,12,17,50,27,31,11,5,3,18,6,33,45,23,10,22,32,47,51,2,16,41,8,19,26,30,37,25,13,39,4)(7,14,35)(24,43,53,54,56,55,52)(28,48,34)(57,59,67,65,71,60)(58,63,69,61,68,64)(62,66)(73,74,75)', '(73,75,74)'])
|
magma:G := MatrixGroup< 4, GF(7) | [[6, 0, 0, 0, 0, 6, 0, 0, 0, 0, 6, 0, 0, 0, 0, 6], [3, 0, 0, 0, 5, 6, 1, 0, 1, 0, 2, 0, 5, 2, 4, 4], [3, 4, 1, 1, 6, 6, 3, 0, 4, 1, 3, 0, 0, 6, 5, 5], [0, 5, 3, 2, 1, 1, 1, 3, 3, 5, 0, 2, 6, 3, 6, 1], [2, 5, 4, 6, 4, 1, 1, 1, 2, 3, 3, 1, 1, 1, 4, 3], [1, 3, 3, 2, 0, 3, 6, 5, 2, 6, 5, 0, 2, 5, 4, 4], [1, 3, 6, 6, 2, 2, 6, 6, 6, 2, 3, 4, 4, 6, 5, 4], [5, 6, 5, 4, 4, 2, 6, 5, 5, 2, 3, 1, 5, 5, 3, 0], [6, 3, 6, 5, 6, 0, 5, 6, 4, 1, 3, 4, 3, 4, 1, 4], [6, 3, 6, 0, 2, 5, 5, 6, 6, 6, 4, 4, 6, 6, 5, 3], [4, 4, 1, 6, 0, 1, 6, 3, 0, 1, 0, 2, 0, 0, 0, 2], [2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2]] >;
gap:G := Group([[[ Z(7)^3, 0*Z(7), 0*Z(7), 0*Z(7) ], [ 0*Z(7), Z(7)^3, 0*Z(7), 0*Z(7) ], [ 0*Z(7), 0*Z(7), Z(7)^3, 0*Z(7) ], [ 0*Z(7), 0*Z(7), 0*Z(7), Z(7)^3 ]], [[ Z(7), 0*Z(7), 0*Z(7), 0*Z(7) ], [ Z(7)^5, Z(7)^3, Z(7)^0, 0*Z(7) ], [ Z(7)^0, 0*Z(7), Z(7)^2, 0*Z(7) ], [ Z(7)^5, Z(7)^2, Z(7)^4, Z(7)^4 ]], [[ Z(7), Z(7)^4, Z(7)^0, Z(7)^0 ], [ Z(7)^3, Z(7)^3, Z(7), 0*Z(7) ], [ Z(7)^4, Z(7)^0, Z(7), 0*Z(7) ], [ 0*Z(7), Z(7)^3, Z(7)^5, Z(7)^5 ]], [[ 0*Z(7), Z(7)^5, Z(7), Z(7)^2 ], [ Z(7)^0, Z(7)^0, Z(7)^0, Z(7) ], [ Z(7), Z(7)^5, 0*Z(7), Z(7)^2 ], [ Z(7)^3, Z(7), Z(7)^3, Z(7)^0 ]], [[ Z(7)^2, Z(7)^5, Z(7)^4, Z(7)^3 ], [ Z(7)^4, Z(7)^0, Z(7)^0, Z(7)^0 ], [ Z(7)^2, Z(7), Z(7), Z(7)^0 ], [ Z(7)^0, Z(7)^0, Z(7)^4, Z(7) ]], [[ Z(7)^0, Z(7), Z(7), Z(7)^2 ], [ 0*Z(7), Z(7), Z(7)^3, Z(7)^5 ], [ Z(7)^2, Z(7)^3, Z(7)^5, 0*Z(7) ], [ Z(7)^2, Z(7)^5, Z(7)^4, Z(7)^4 ]], [[ Z(7)^0, Z(7), Z(7)^3, Z(7)^3 ], [ Z(7)^2, Z(7)^2, Z(7)^3, Z(7)^3 ], [ Z(7)^3, Z(7)^2, Z(7), Z(7)^4 ], [ Z(7)^4, Z(7)^3, Z(7)^5, Z(7)^4 ]], [[ Z(7)^5, Z(7)^3, Z(7)^5, Z(7)^4 ], [ Z(7)^4, Z(7)^2, Z(7)^3, Z(7)^5 ], [ Z(7)^5, Z(7)^2, Z(7), Z(7)^0 ], [ Z(7)^5, Z(7)^5, Z(7), 0*Z(7) ]], [[ Z(7)^3, Z(7), Z(7)^3, Z(7)^5 ], [ Z(7)^3, 0*Z(7), Z(7)^5, Z(7)^3 ], [ Z(7)^4, Z(7)^0, Z(7), Z(7)^4 ], [ Z(7), Z(7)^4, Z(7)^0, Z(7)^4 ]], [[ Z(7)^3, Z(7), Z(7)^3, 0*Z(7) ], [ Z(7)^2, Z(7)^5, Z(7)^5, Z(7)^3 ], [ Z(7)^3, Z(7)^3, Z(7)^4, Z(7)^4 ], [ Z(7)^3, Z(7)^3, Z(7)^5, Z(7) ]], [[ Z(7)^4, Z(7)^4, Z(7)^0, Z(7)^3 ], [ 0*Z(7), Z(7)^0, Z(7)^3, Z(7) ], [ 0*Z(7), Z(7)^0, 0*Z(7), Z(7)^2 ], [ 0*Z(7), 0*Z(7), 0*Z(7), Z(7)^2 ]], [[ Z(7)^2, 0*Z(7), 0*Z(7), 0*Z(7) ], [ 0*Z(7), Z(7)^2, 0*Z(7), 0*Z(7) ], [ 0*Z(7), 0*Z(7), Z(7)^2, 0*Z(7) ], [ 0*Z(7), 0*Z(7), 0*Z(7), Z(7)^2 ]]]);
sage:MS = MatrixSpace(GF(7), 4, 4)
G = MatrixGroup([MS([[6, 0, 0, 0], [0, 6, 0, 0], [0, 0, 6, 0], [0, 0, 0, 6]]), MS([[3, 0, 0, 0], [5, 6, 1, 0], [1, 0, 2, 0], [5, 2, 4, 4]]), MS([[3, 4, 1, 1], [6, 6, 3, 0], [4, 1, 3, 0], [0, 6, 5, 5]]), MS([[0, 5, 3, 2], [1, 1, 1, 3], [3, 5, 0, 2], [6, 3, 6, 1]]), MS([[2, 5, 4, 6], [4, 1, 1, 1], [2, 3, 3, 1], [1, 1, 4, 3]]), MS([[1, 3, 3, 2], [0, 3, 6, 5], [2, 6, 5, 0], [2, 5, 4, 4]]), MS([[1, 3, 6, 6], [2, 2, 6, 6], [6, 2, 3, 4], [4, 6, 5, 4]]), MS([[5, 6, 5, 4], [4, 2, 6, 5], [5, 2, 3, 1], [5, 5, 3, 0]]), MS([[6, 3, 6, 5], [6, 0, 5, 6], [4, 1, 3, 4], [3, 4, 1, 4]]), MS([[6, 3, 6, 0], [2, 5, 5, 6], [6, 6, 4, 4], [6, 6, 5, 3]]), MS([[4, 4, 1, 6], [0, 1, 6, 3], [0, 1, 0, 2], [0, 0, 0, 2]]), MS([[2, 0, 0, 0], [0, 2, 0, 0], [0, 0, 2, 0], [0, 0, 0, 2]])])
|