Properties

Label 4148928.a
Order \( 2^{6} \cdot 3^{3} \cdot 7^{4} \)
Exponent \( 2^{4} \cdot 3 \cdot 7 \)
Nilpotent no
Solvable no
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \cdot 3^{2} \)
$\card{Z(G)}$ 6
$\card{\Aut(G)}$ \( 2^{8} \cdot 3^{3} \cdot 7^{4} \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \cdot 3 \)
Perm deg. $75$
Trans deg. $336$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 75 | (1,2,5,15,30,23,12)(3,17,21,9,37,16,10)(4,11,26,49,51,44,45)(6,29,13,32,27,20,8)(7,34,14,48,28,46,35)(18,25,50,41,38,22,40)(19,47,33,31,36,42,39)(73,74,75), (57,58)(59,63)(60,64)(61,65)(62,66)(67,69)(68,71)(70,72), (1,3,18,27,39,44)(2,10,25,32,19,51)(4,23,21,22,8,36)(5,16,50,13,47,49)(6,31,11,30,9,38)(7,34)(12,17,40,20,42,45)(14,35)(15,37,41,29,33,26)(24,52,54,43,53,55)(46,48)(57,59,67,65,71,60)(58,63,69,61,68,64)(62,66), (1,4,24)(2,11,43)(3,18,42)(5,26,53)(6,29,32)(9,22,31)(10,41,47)(12,45,52)(13,20,27)(14,34,28)(15,49,54)(16,40,36)(17,38,33)(19,37,50)(21,25,39)(23,44,55)(30,51,56)(35,48,46)(57,60,70)(58,64,72)(59,67,71)(63,69,68)(73,74,75), (1,5,15)(2,12,23)(3,9,17)(4,11,44)(7,14,48)(8,32,20)(13,29,27)(16,21,37)(18,22,38)(24,53,54)(25,50,40)(31,42,39)(33,47,36)(34,35,46)(43,52,55)(45,51,49)(57,58)(59,63)(60,64)(61,65)(62,66)(67,69)(68,71)(70,72), (1,6,2,13,23,32)(3,19,10,42,21,36)(4,25,11,41,44,38)(5,27)(7,14,35)(8,12,20,30,29,15)(9,39,37,47,17,33)(16,31)(18,45,40,51,50,49)(22,26)(24,54,53)(28,48,34)(43,55,52)(57,61)(58,65)(59,68)(60,69)(63,71)(64,67)(70,72)(73,75,74), (1,7,19,50,37,8)(2,14,36,41,10,32)(3,20,23,48,39,18)(5,28,47,38,17,6)(9,27,15,35,42,22)(11,26,51)(12,46,31,25,21,13)(16,29,30,34,33,40)(44,49,45)(57,62,71,67,63,61)(58,66,68,69,59,65)(70,72)(73,75,74), (1,2,5,15,30,23,12)(3,21,37,10,17,9,16)(6,27,29,20,13,8,32)(7,14,28,35,34,48,46)(18,25,50,41,38,22,40)(19,36,47,42,33,39,31)(24,43,53,54,56,55,52)(57,58)(59,63)(60,64)(61,65)(62,66)(67,69)(68,71)(70,72), (1,8,37,50,19,7)(2,6,16,41,47,34)(3,22,31,48,15,13)(5,29,10,38,33,14)(9,25,39,35,12,20)(17,40,36,28,30,32)(18,42,46,23,27,21)(43,53,56)(52,55,54)(57,61,63,67,71,62)(58,65,59,69,68,66)(70,72), (1,5,30,12,2,15,23)(3,17,21,9,37,16,10)(6,32,8,13,20,29,27)(7,35,46,28,48,14,34)(18,22,41,25,40,38,50)(19,36,47,42,33,39,31)(57,58)(59,63)(60,64)(61,65)(62,66)(67,69)(68,71)(70,72), (1,9,40,20,42,44,15,21,38,29,36,49,12,17,50,27,31,11,5,3,18,6,33,45,23,10,22,32,47,51,2,16,41,8,19,26,30,37,25,13,39,4)(7,14,35)(24,43,53,54,56,55,52)(28,48,34)(57,59,67,65,71,60)(58,63,69,61,68,64)(62,66)(73,74,75), (73,75,74) >;
 
Copy content gap:G := Group( (1,2,5,15,30,23,12)(3,17,21,9,37,16,10)(4,11,26,49,51,44,45)(6,29,13,32,27,20,8)(7,34,14,48,28,46,35)(18,25,50,41,38,22,40)(19,47,33,31,36,42,39)(73,74,75), (57,58)(59,63)(60,64)(61,65)(62,66)(67,69)(68,71)(70,72), (1,3,18,27,39,44)(2,10,25,32,19,51)(4,23,21,22,8,36)(5,16,50,13,47,49)(6,31,11,30,9,38)(7,34)(12,17,40,20,42,45)(14,35)(15,37,41,29,33,26)(24,52,54,43,53,55)(46,48)(57,59,67,65,71,60)(58,63,69,61,68,64)(62,66), (1,4,24)(2,11,43)(3,18,42)(5,26,53)(6,29,32)(9,22,31)(10,41,47)(12,45,52)(13,20,27)(14,34,28)(15,49,54)(16,40,36)(17,38,33)(19,37,50)(21,25,39)(23,44,55)(30,51,56)(35,48,46)(57,60,70)(58,64,72)(59,67,71)(63,69,68)(73,74,75), (1,5,15)(2,12,23)(3,9,17)(4,11,44)(7,14,48)(8,32,20)(13,29,27)(16,21,37)(18,22,38)(24,53,54)(25,50,40)(31,42,39)(33,47,36)(34,35,46)(43,52,55)(45,51,49)(57,58)(59,63)(60,64)(61,65)(62,66)(67,69)(68,71)(70,72), (1,6,2,13,23,32)(3,19,10,42,21,36)(4,25,11,41,44,38)(5,27)(7,14,35)(8,12,20,30,29,15)(9,39,37,47,17,33)(16,31)(18,45,40,51,50,49)(22,26)(24,54,53)(28,48,34)(43,55,52)(57,61)(58,65)(59,68)(60,69)(63,71)(64,67)(70,72)(73,75,74), (1,7,19,50,37,8)(2,14,36,41,10,32)(3,20,23,48,39,18)(5,28,47,38,17,6)(9,27,15,35,42,22)(11,26,51)(12,46,31,25,21,13)(16,29,30,34,33,40)(44,49,45)(57,62,71,67,63,61)(58,66,68,69,59,65)(70,72)(73,75,74), (1,2,5,15,30,23,12)(3,21,37,10,17,9,16)(6,27,29,20,13,8,32)(7,14,28,35,34,48,46)(18,25,50,41,38,22,40)(19,36,47,42,33,39,31)(24,43,53,54,56,55,52)(57,58)(59,63)(60,64)(61,65)(62,66)(67,69)(68,71)(70,72), (1,8,37,50,19,7)(2,6,16,41,47,34)(3,22,31,48,15,13)(5,29,10,38,33,14)(9,25,39,35,12,20)(17,40,36,28,30,32)(18,42,46,23,27,21)(43,53,56)(52,55,54)(57,61,63,67,71,62)(58,65,59,69,68,66)(70,72), (1,5,30,12,2,15,23)(3,17,21,9,37,16,10)(6,32,8,13,20,29,27)(7,35,46,28,48,14,34)(18,22,41,25,40,38,50)(19,36,47,42,33,39,31)(57,58)(59,63)(60,64)(61,65)(62,66)(67,69)(68,71)(70,72), (1,9,40,20,42,44,15,21,38,29,36,49,12,17,50,27,31,11,5,3,18,6,33,45,23,10,22,32,47,51,2,16,41,8,19,26,30,37,25,13,39,4)(7,14,35)(24,43,53,54,56,55,52)(28,48,34)(57,59,67,65,71,60)(58,63,69,61,68,64)(62,66)(73,74,75), (73,75,74) );
 
Copy content sage:G = PermutationGroup(['(1,2,5,15,30,23,12)(3,17,21,9,37,16,10)(4,11,26,49,51,44,45)(6,29,13,32,27,20,8)(7,34,14,48,28,46,35)(18,25,50,41,38,22,40)(19,47,33,31,36,42,39)(73,74,75)', '(57,58)(59,63)(60,64)(61,65)(62,66)(67,69)(68,71)(70,72)', '(1,3,18,27,39,44)(2,10,25,32,19,51)(4,23,21,22,8,36)(5,16,50,13,47,49)(6,31,11,30,9,38)(7,34)(12,17,40,20,42,45)(14,35)(15,37,41,29,33,26)(24,52,54,43,53,55)(46,48)(57,59,67,65,71,60)(58,63,69,61,68,64)(62,66)', '(1,4,24)(2,11,43)(3,18,42)(5,26,53)(6,29,32)(9,22,31)(10,41,47)(12,45,52)(13,20,27)(14,34,28)(15,49,54)(16,40,36)(17,38,33)(19,37,50)(21,25,39)(23,44,55)(30,51,56)(35,48,46)(57,60,70)(58,64,72)(59,67,71)(63,69,68)(73,74,75)', '(1,5,15)(2,12,23)(3,9,17)(4,11,44)(7,14,48)(8,32,20)(13,29,27)(16,21,37)(18,22,38)(24,53,54)(25,50,40)(31,42,39)(33,47,36)(34,35,46)(43,52,55)(45,51,49)(57,58)(59,63)(60,64)(61,65)(62,66)(67,69)(68,71)(70,72)', '(1,6,2,13,23,32)(3,19,10,42,21,36)(4,25,11,41,44,38)(5,27)(7,14,35)(8,12,20,30,29,15)(9,39,37,47,17,33)(16,31)(18,45,40,51,50,49)(22,26)(24,54,53)(28,48,34)(43,55,52)(57,61)(58,65)(59,68)(60,69)(63,71)(64,67)(70,72)(73,75,74)', '(1,7,19,50,37,8)(2,14,36,41,10,32)(3,20,23,48,39,18)(5,28,47,38,17,6)(9,27,15,35,42,22)(11,26,51)(12,46,31,25,21,13)(16,29,30,34,33,40)(44,49,45)(57,62,71,67,63,61)(58,66,68,69,59,65)(70,72)(73,75,74)', '(1,2,5,15,30,23,12)(3,21,37,10,17,9,16)(6,27,29,20,13,8,32)(7,14,28,35,34,48,46)(18,25,50,41,38,22,40)(19,36,47,42,33,39,31)(24,43,53,54,56,55,52)(57,58)(59,63)(60,64)(61,65)(62,66)(67,69)(68,71)(70,72)', '(1,8,37,50,19,7)(2,6,16,41,47,34)(3,22,31,48,15,13)(5,29,10,38,33,14)(9,25,39,35,12,20)(17,40,36,28,30,32)(18,42,46,23,27,21)(43,53,56)(52,55,54)(57,61,63,67,71,62)(58,65,59,69,68,66)(70,72)', '(1,5,30,12,2,15,23)(3,17,21,9,37,16,10)(6,32,8,13,20,29,27)(7,35,46,28,48,14,34)(18,22,41,25,40,38,50)(19,36,47,42,33,39,31)(57,58)(59,63)(60,64)(61,65)(62,66)(67,69)(68,71)(70,72)', '(1,9,40,20,42,44,15,21,38,29,36,49,12,17,50,27,31,11,5,3,18,6,33,45,23,10,22,32,47,51,2,16,41,8,19,26,30,37,25,13,39,4)(7,14,35)(24,43,53,54,56,55,52)(28,48,34)(57,59,67,65,71,60)(58,63,69,61,68,64)(62,66)(73,74,75)', '(73,75,74)'])
 

Group information

Description:$C_7^3.(C_6\times \GL(2,7))$
Order: \(4148928\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 7^{4} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2^2\times C_7^3.C_6.\SO(3,7)\times S_3$, of order \(16595712\)\(\medspace = 2^{8} \cdot 3^{3} \cdot 7^{4} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 3, $C_3$ x 2, $C_7$ x 3, $\PSL(2,7)$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$1$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and nonsolvable. Whether it is almost simple has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 7 8 12 14 16 21 24 28 42 48 56 84 112 168 336
Elements 1 3823 26756 2352 1009892 16806 32928 177576 85014 65856 280572 411600 26460 910908 823200 24696 52920 49392 49392 98784 4148928
Conjugacy classes   1 5 17 2 103 5 4 16 12 8 25 32 3 69 64 2 6 4 4 8 390
Divisions 1 5 9 2 53 5 2 8 12 2 13 8 3 35 8 1 3 1 1 1 173
Autjugacy classes 1 4 7 2 28 5 3 6 10 4 11 9 3 22 12 2 3 2 2 2 138

Minimal presentations

Permutation degree:$75$
Transitive degree:$336$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 48 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Permutation group:Degree $75$ $\langle(1,2,5,15,30,23,12)(3,17,21,9,37,16,10)(4,11,26,49,51,44,45)(6,29,13,32,27,20,8) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 75 | (1,2,5,15,30,23,12)(3,17,21,9,37,16,10)(4,11,26,49,51,44,45)(6,29,13,32,27,20,8)(7,34,14,48,28,46,35)(18,25,50,41,38,22,40)(19,47,33,31,36,42,39)(73,74,75), (57,58)(59,63)(60,64)(61,65)(62,66)(67,69)(68,71)(70,72), (1,3,18,27,39,44)(2,10,25,32,19,51)(4,23,21,22,8,36)(5,16,50,13,47,49)(6,31,11,30,9,38)(7,34)(12,17,40,20,42,45)(14,35)(15,37,41,29,33,26)(24,52,54,43,53,55)(46,48)(57,59,67,65,71,60)(58,63,69,61,68,64)(62,66), (1,4,24)(2,11,43)(3,18,42)(5,26,53)(6,29,32)(9,22,31)(10,41,47)(12,45,52)(13,20,27)(14,34,28)(15,49,54)(16,40,36)(17,38,33)(19,37,50)(21,25,39)(23,44,55)(30,51,56)(35,48,46)(57,60,70)(58,64,72)(59,67,71)(63,69,68)(73,74,75), (1,5,15)(2,12,23)(3,9,17)(4,11,44)(7,14,48)(8,32,20)(13,29,27)(16,21,37)(18,22,38)(24,53,54)(25,50,40)(31,42,39)(33,47,36)(34,35,46)(43,52,55)(45,51,49)(57,58)(59,63)(60,64)(61,65)(62,66)(67,69)(68,71)(70,72), (1,6,2,13,23,32)(3,19,10,42,21,36)(4,25,11,41,44,38)(5,27)(7,14,35)(8,12,20,30,29,15)(9,39,37,47,17,33)(16,31)(18,45,40,51,50,49)(22,26)(24,54,53)(28,48,34)(43,55,52)(57,61)(58,65)(59,68)(60,69)(63,71)(64,67)(70,72)(73,75,74), (1,7,19,50,37,8)(2,14,36,41,10,32)(3,20,23,48,39,18)(5,28,47,38,17,6)(9,27,15,35,42,22)(11,26,51)(12,46,31,25,21,13)(16,29,30,34,33,40)(44,49,45)(57,62,71,67,63,61)(58,66,68,69,59,65)(70,72)(73,75,74), (1,2,5,15,30,23,12)(3,21,37,10,17,9,16)(6,27,29,20,13,8,32)(7,14,28,35,34,48,46)(18,25,50,41,38,22,40)(19,36,47,42,33,39,31)(24,43,53,54,56,55,52)(57,58)(59,63)(60,64)(61,65)(62,66)(67,69)(68,71)(70,72), (1,8,37,50,19,7)(2,6,16,41,47,34)(3,22,31,48,15,13)(5,29,10,38,33,14)(9,25,39,35,12,20)(17,40,36,28,30,32)(18,42,46,23,27,21)(43,53,56)(52,55,54)(57,61,63,67,71,62)(58,65,59,69,68,66)(70,72), (1,5,30,12,2,15,23)(3,17,21,9,37,16,10)(6,32,8,13,20,29,27)(7,35,46,28,48,14,34)(18,22,41,25,40,38,50)(19,36,47,42,33,39,31)(57,58)(59,63)(60,64)(61,65)(62,66)(67,69)(68,71)(70,72), (1,9,40,20,42,44,15,21,38,29,36,49,12,17,50,27,31,11,5,3,18,6,33,45,23,10,22,32,47,51,2,16,41,8,19,26,30,37,25,13,39,4)(7,14,35)(24,43,53,54,56,55,52)(28,48,34)(57,59,67,65,71,60)(58,63,69,61,68,64)(62,66)(73,74,75), (73,75,74) >;
 
Copy content gap:G := Group( (1,2,5,15,30,23,12)(3,17,21,9,37,16,10)(4,11,26,49,51,44,45)(6,29,13,32,27,20,8)(7,34,14,48,28,46,35)(18,25,50,41,38,22,40)(19,47,33,31,36,42,39)(73,74,75), (57,58)(59,63)(60,64)(61,65)(62,66)(67,69)(68,71)(70,72), (1,3,18,27,39,44)(2,10,25,32,19,51)(4,23,21,22,8,36)(5,16,50,13,47,49)(6,31,11,30,9,38)(7,34)(12,17,40,20,42,45)(14,35)(15,37,41,29,33,26)(24,52,54,43,53,55)(46,48)(57,59,67,65,71,60)(58,63,69,61,68,64)(62,66), (1,4,24)(2,11,43)(3,18,42)(5,26,53)(6,29,32)(9,22,31)(10,41,47)(12,45,52)(13,20,27)(14,34,28)(15,49,54)(16,40,36)(17,38,33)(19,37,50)(21,25,39)(23,44,55)(30,51,56)(35,48,46)(57,60,70)(58,64,72)(59,67,71)(63,69,68)(73,74,75), (1,5,15)(2,12,23)(3,9,17)(4,11,44)(7,14,48)(8,32,20)(13,29,27)(16,21,37)(18,22,38)(24,53,54)(25,50,40)(31,42,39)(33,47,36)(34,35,46)(43,52,55)(45,51,49)(57,58)(59,63)(60,64)(61,65)(62,66)(67,69)(68,71)(70,72), (1,6,2,13,23,32)(3,19,10,42,21,36)(4,25,11,41,44,38)(5,27)(7,14,35)(8,12,20,30,29,15)(9,39,37,47,17,33)(16,31)(18,45,40,51,50,49)(22,26)(24,54,53)(28,48,34)(43,55,52)(57,61)(58,65)(59,68)(60,69)(63,71)(64,67)(70,72)(73,75,74), (1,7,19,50,37,8)(2,14,36,41,10,32)(3,20,23,48,39,18)(5,28,47,38,17,6)(9,27,15,35,42,22)(11,26,51)(12,46,31,25,21,13)(16,29,30,34,33,40)(44,49,45)(57,62,71,67,63,61)(58,66,68,69,59,65)(70,72)(73,75,74), (1,2,5,15,30,23,12)(3,21,37,10,17,9,16)(6,27,29,20,13,8,32)(7,14,28,35,34,48,46)(18,25,50,41,38,22,40)(19,36,47,42,33,39,31)(24,43,53,54,56,55,52)(57,58)(59,63)(60,64)(61,65)(62,66)(67,69)(68,71)(70,72), (1,8,37,50,19,7)(2,6,16,41,47,34)(3,22,31,48,15,13)(5,29,10,38,33,14)(9,25,39,35,12,20)(17,40,36,28,30,32)(18,42,46,23,27,21)(43,53,56)(52,55,54)(57,61,63,67,71,62)(58,65,59,69,68,66)(70,72), (1,5,30,12,2,15,23)(3,17,21,9,37,16,10)(6,32,8,13,20,29,27)(7,35,46,28,48,14,34)(18,22,41,25,40,38,50)(19,36,47,42,33,39,31)(57,58)(59,63)(60,64)(61,65)(62,66)(67,69)(68,71)(70,72), (1,9,40,20,42,44,15,21,38,29,36,49,12,17,50,27,31,11,5,3,18,6,33,45,23,10,22,32,47,51,2,16,41,8,19,26,30,37,25,13,39,4)(7,14,35)(24,43,53,54,56,55,52)(28,48,34)(57,59,67,65,71,60)(58,63,69,61,68,64)(62,66)(73,74,75), (73,75,74) );
 
Copy content sage:G = PermutationGroup(['(1,2,5,15,30,23,12)(3,17,21,9,37,16,10)(4,11,26,49,51,44,45)(6,29,13,32,27,20,8)(7,34,14,48,28,46,35)(18,25,50,41,38,22,40)(19,47,33,31,36,42,39)(73,74,75)', '(57,58)(59,63)(60,64)(61,65)(62,66)(67,69)(68,71)(70,72)', '(1,3,18,27,39,44)(2,10,25,32,19,51)(4,23,21,22,8,36)(5,16,50,13,47,49)(6,31,11,30,9,38)(7,34)(12,17,40,20,42,45)(14,35)(15,37,41,29,33,26)(24,52,54,43,53,55)(46,48)(57,59,67,65,71,60)(58,63,69,61,68,64)(62,66)', '(1,4,24)(2,11,43)(3,18,42)(5,26,53)(6,29,32)(9,22,31)(10,41,47)(12,45,52)(13,20,27)(14,34,28)(15,49,54)(16,40,36)(17,38,33)(19,37,50)(21,25,39)(23,44,55)(30,51,56)(35,48,46)(57,60,70)(58,64,72)(59,67,71)(63,69,68)(73,74,75)', '(1,5,15)(2,12,23)(3,9,17)(4,11,44)(7,14,48)(8,32,20)(13,29,27)(16,21,37)(18,22,38)(24,53,54)(25,50,40)(31,42,39)(33,47,36)(34,35,46)(43,52,55)(45,51,49)(57,58)(59,63)(60,64)(61,65)(62,66)(67,69)(68,71)(70,72)', '(1,6,2,13,23,32)(3,19,10,42,21,36)(4,25,11,41,44,38)(5,27)(7,14,35)(8,12,20,30,29,15)(9,39,37,47,17,33)(16,31)(18,45,40,51,50,49)(22,26)(24,54,53)(28,48,34)(43,55,52)(57,61)(58,65)(59,68)(60,69)(63,71)(64,67)(70,72)(73,75,74)', '(1,7,19,50,37,8)(2,14,36,41,10,32)(3,20,23,48,39,18)(5,28,47,38,17,6)(9,27,15,35,42,22)(11,26,51)(12,46,31,25,21,13)(16,29,30,34,33,40)(44,49,45)(57,62,71,67,63,61)(58,66,68,69,59,65)(70,72)(73,75,74)', '(1,2,5,15,30,23,12)(3,21,37,10,17,9,16)(6,27,29,20,13,8,32)(7,14,28,35,34,48,46)(18,25,50,41,38,22,40)(19,36,47,42,33,39,31)(24,43,53,54,56,55,52)(57,58)(59,63)(60,64)(61,65)(62,66)(67,69)(68,71)(70,72)', '(1,8,37,50,19,7)(2,6,16,41,47,34)(3,22,31,48,15,13)(5,29,10,38,33,14)(9,25,39,35,12,20)(17,40,36,28,30,32)(18,42,46,23,27,21)(43,53,56)(52,55,54)(57,61,63,67,71,62)(58,65,59,69,68,66)(70,72)', '(1,5,30,12,2,15,23)(3,17,21,9,37,16,10)(6,32,8,13,20,29,27)(7,35,46,28,48,14,34)(18,22,41,25,40,38,50)(19,36,47,42,33,39,31)(57,58)(59,63)(60,64)(61,65)(62,66)(67,69)(68,71)(70,72)', '(1,9,40,20,42,44,15,21,38,29,36,49,12,17,50,27,31,11,5,3,18,6,33,45,23,10,22,32,47,51,2,16,41,8,19,26,30,37,25,13,39,4)(7,14,35)(24,43,53,54,56,55,52)(28,48,34)(57,59,67,65,71,60)(58,63,69,61,68,64)(62,66)(73,74,75)', '(73,75,74)'])
 
Matrix group:$\left\langle \left(\begin{array}{rrrr} 6 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 6 \end{array}\right), \left(\begin{array}{rrrr} 3 & 0 & 0 & 0 \\ 5 & 6 & 1 & 0 \\ 1 & 0 & 2 & 0 \\ 5 & 2 & 4 & 4 \end{array}\right), \left(\begin{array}{rrrr} 3 & 4 & 1 & 1 \\ 6 & 6 & 3 & 0 \\ 4 & 1 & 3 & 0 \\ 0 & 6 & 5 & 5 \end{array}\right), \left(\begin{array}{rrrr} 0 & 5 & 3 & 2 \\ 1 & 1 & 1 & 3 \\ 3 & 5 & 0 & 2 \\ 6 & 3 & 6 & 1 \end{array}\right), \left(\begin{array}{rrrr} 2 & 5 & 4 & 6 \\ 4 & 1 & 1 & 1 \\ 2 & 3 & 3 & 1 \\ 1 & 1 & 4 & 3 \end{array}\right), \left(\begin{array}{rrrr} 1 & 3 & 3 & 2 \\ 0 & 3 & 6 & 5 \\ 2 & 6 & 5 & 0 \\ 2 & 5 & 4 & 4 \end{array}\right), \left(\begin{array}{rrrr} 1 & 3 & 6 & 6 \\ 2 & 2 & 6 & 6 \\ 6 & 2 & 3 & 4 \\ 4 & 6 & 5 & 4 \end{array}\right), \left(\begin{array}{rrrr} 5 & 6 & 5 & 4 \\ 4 & 2 & 6 & 5 \\ 5 & 2 & 3 & 1 \\ 5 & 5 & 3 & 0 \end{array}\right), \left(\begin{array}{rrrr} 6 & 3 & 6 & 5 \\ 6 & 0 & 5 & 6 \\ 4 & 1 & 3 & 4 \\ 3 & 4 & 1 & 4 \end{array}\right), \left(\begin{array}{rrrr} 6 & 3 & 6 & 0 \\ 2 & 5 & 5 & 6 \\ 6 & 6 & 4 & 4 \\ 6 & 6 & 5 & 3 \end{array}\right), \left(\begin{array}{rrrr} 4 & 4 & 1 & 6 \\ 0 & 1 & 6 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 2 \end{array}\right), \left(\begin{array}{rrrr} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{array}\right) \right\rangle \subseteq \GL_{4}(\F_{7})$
Copy content comment:Define the group as a matrix group with coefficients in GLFp
 
Copy content magma:G := MatrixGroup< 4, GF(7) | [[6, 0, 0, 0, 0, 6, 0, 0, 0, 0, 6, 0, 0, 0, 0, 6], [3, 0, 0, 0, 5, 6, 1, 0, 1, 0, 2, 0, 5, 2, 4, 4], [3, 4, 1, 1, 6, 6, 3, 0, 4, 1, 3, 0, 0, 6, 5, 5], [0, 5, 3, 2, 1, 1, 1, 3, 3, 5, 0, 2, 6, 3, 6, 1], [2, 5, 4, 6, 4, 1, 1, 1, 2, 3, 3, 1, 1, 1, 4, 3], [1, 3, 3, 2, 0, 3, 6, 5, 2, 6, 5, 0, 2, 5, 4, 4], [1, 3, 6, 6, 2, 2, 6, 6, 6, 2, 3, 4, 4, 6, 5, 4], [5, 6, 5, 4, 4, 2, 6, 5, 5, 2, 3, 1, 5, 5, 3, 0], [6, 3, 6, 5, 6, 0, 5, 6, 4, 1, 3, 4, 3, 4, 1, 4], [6, 3, 6, 0, 2, 5, 5, 6, 6, 6, 4, 4, 6, 6, 5, 3], [4, 4, 1, 6, 0, 1, 6, 3, 0, 1, 0, 2, 0, 0, 0, 2], [2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2]] >;
 
Copy content gap:G := Group([[[ Z(7)^3, 0*Z(7), 0*Z(7), 0*Z(7) ], [ 0*Z(7), Z(7)^3, 0*Z(7), 0*Z(7) ], [ 0*Z(7), 0*Z(7), Z(7)^3, 0*Z(7) ], [ 0*Z(7), 0*Z(7), 0*Z(7), Z(7)^3 ]], [[ Z(7), 0*Z(7), 0*Z(7), 0*Z(7) ], [ Z(7)^5, Z(7)^3, Z(7)^0, 0*Z(7) ], [ Z(7)^0, 0*Z(7), Z(7)^2, 0*Z(7) ], [ Z(7)^5, Z(7)^2, Z(7)^4, Z(7)^4 ]], [[ Z(7), Z(7)^4, Z(7)^0, Z(7)^0 ], [ Z(7)^3, Z(7)^3, Z(7), 0*Z(7) ], [ Z(7)^4, Z(7)^0, Z(7), 0*Z(7) ], [ 0*Z(7), Z(7)^3, Z(7)^5, Z(7)^5 ]], [[ 0*Z(7), Z(7)^5, Z(7), Z(7)^2 ], [ Z(7)^0, Z(7)^0, Z(7)^0, Z(7) ], [ Z(7), Z(7)^5, 0*Z(7), Z(7)^2 ], [ Z(7)^3, Z(7), Z(7)^3, Z(7)^0 ]], [[ Z(7)^2, Z(7)^5, Z(7)^4, Z(7)^3 ], [ Z(7)^4, Z(7)^0, Z(7)^0, Z(7)^0 ], [ Z(7)^2, Z(7), Z(7), Z(7)^0 ], [ Z(7)^0, Z(7)^0, Z(7)^4, Z(7) ]], [[ Z(7)^0, Z(7), Z(7), Z(7)^2 ], [ 0*Z(7), Z(7), Z(7)^3, Z(7)^5 ], [ Z(7)^2, Z(7)^3, Z(7)^5, 0*Z(7) ], [ Z(7)^2, Z(7)^5, Z(7)^4, Z(7)^4 ]], [[ Z(7)^0, Z(7), Z(7)^3, Z(7)^3 ], [ Z(7)^2, Z(7)^2, Z(7)^3, Z(7)^3 ], [ Z(7)^3, Z(7)^2, Z(7), Z(7)^4 ], [ Z(7)^4, Z(7)^3, Z(7)^5, Z(7)^4 ]], [[ Z(7)^5, Z(7)^3, Z(7)^5, Z(7)^4 ], [ Z(7)^4, Z(7)^2, Z(7)^3, Z(7)^5 ], [ Z(7)^5, Z(7)^2, Z(7), Z(7)^0 ], [ Z(7)^5, Z(7)^5, Z(7), 0*Z(7) ]], [[ Z(7)^3, Z(7), Z(7)^3, Z(7)^5 ], [ Z(7)^3, 0*Z(7), Z(7)^5, Z(7)^3 ], [ Z(7)^4, Z(7)^0, Z(7), Z(7)^4 ], [ Z(7), Z(7)^4, Z(7)^0, Z(7)^4 ]], [[ Z(7)^3, Z(7), Z(7)^3, 0*Z(7) ], [ Z(7)^2, Z(7)^5, Z(7)^5, Z(7)^3 ], [ Z(7)^3, Z(7)^3, Z(7)^4, Z(7)^4 ], [ Z(7)^3, Z(7)^3, Z(7)^5, Z(7) ]], [[ Z(7)^4, Z(7)^4, Z(7)^0, Z(7)^3 ], [ 0*Z(7), Z(7)^0, Z(7)^3, Z(7) ], [ 0*Z(7), Z(7)^0, 0*Z(7), Z(7)^2 ], [ 0*Z(7), 0*Z(7), 0*Z(7), Z(7)^2 ]], [[ Z(7)^2, 0*Z(7), 0*Z(7), 0*Z(7) ], [ 0*Z(7), Z(7)^2, 0*Z(7), 0*Z(7) ], [ 0*Z(7), 0*Z(7), Z(7)^2, 0*Z(7) ], [ 0*Z(7), 0*Z(7), 0*Z(7), Z(7)^2 ]]]);
 
Copy content sage:MS = MatrixSpace(GF(7), 4, 4) G = MatrixGroup([MS([[6, 0, 0, 0], [0, 6, 0, 0], [0, 0, 6, 0], [0, 0, 0, 6]]), MS([[3, 0, 0, 0], [5, 6, 1, 0], [1, 0, 2, 0], [5, 2, 4, 4]]), MS([[3, 4, 1, 1], [6, 6, 3, 0], [4, 1, 3, 0], [0, 6, 5, 5]]), MS([[0, 5, 3, 2], [1, 1, 1, 3], [3, 5, 0, 2], [6, 3, 6, 1]]), MS([[2, 5, 4, 6], [4, 1, 1, 1], [2, 3, 3, 1], [1, 1, 4, 3]]), MS([[1, 3, 3, 2], [0, 3, 6, 5], [2, 6, 5, 0], [2, 5, 4, 4]]), MS([[1, 3, 6, 6], [2, 2, 6, 6], [6, 2, 3, 4], [4, 6, 5, 4]]), MS([[5, 6, 5, 4], [4, 2, 6, 5], [5, 2, 3, 1], [5, 5, 3, 0]]), MS([[6, 3, 6, 5], [6, 0, 5, 6], [4, 1, 3, 4], [3, 4, 1, 4]]), MS([[6, 3, 6, 0], [2, 5, 5, 6], [6, 6, 4, 4], [6, 6, 5, 3]]), MS([[4, 4, 1, 6], [0, 1, 6, 3], [0, 1, 0, 2], [0, 0, 0, 2]]), MS([[2, 0, 0, 0], [0, 2, 0, 0], [0, 0, 2, 0], [0, 0, 0, 2]])])
 
Direct product: $C_3$ $\, \times\, $ $(C_7^3.(C_2\times \GL(2,7)))$
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_7^3.\GL(2,7))$ . $C_6$ (3) $(C_7^3.\GL(2,7))$ . $C_6$ $(C_7^3.\GL(2,7))$ . $C_6$ (3) $(C_7^3.\GL(2,7))$ . $C_6$ all 38

Elements of the group are displayed as matrices in $\GL_{4}(\F_{7})$.

Homology

Abelianization: $C_{6}^{2} \simeq C_{2}^{2} \times C_{3}^{2}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{6}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 64 normal subgroups (28 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_6$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_7^3.\SL(2,7)$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_2$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2\times \SD_{32}$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^3$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7^3:C_7$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $390 \times 390$ character table is not available for this group.

Rational character table

The $173 \times 173$ rational character table is not available for this group.