| Presentation: |
${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o \mid d^{6}=e^{6}=f^{6}= \!\cdots\! \rangle}$
|
magma:G := PCGroup([21, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3906643104, 4488967141, 106, 10096220234, 2758725692, 12847561779, 3846065856, 329306841, 234, 29821939564, 2761727245, 7760896336, 1220002648, 6573220421, 18514458170, 10739488079, 1607652212, 855890117, 362, 15317701062, 23841948843, 4142492976, 882712725, 1790052018, 56257689607, 27756380764, 10791887953, 1856457190, 474366907, 80923360, 490, 35460307016, 19312156109, 358951874, 31755095, 366282092, 359416877, 43885084329, 19118267310, 14946898731, 5245238952, 2440080813, 620260314, 639307755, 32358216, 16957887, 618, 65964929194, 20245024831, 8239027156, 664758937, 66622, 316123, 52825, 59560812875, 12436653632, 5453378837, 2020870730, 712732703, 420922772, 20602649, 56945102, 11272139, 10304480, 10049, 746, 110984406636, 9572655489, 6074647542, 8156940867, 923674848, 665748837, 18493221, 33085075981, 11939768098, 12962436535, 342921676, 1524193, 762166, 127168, 3772, 66261222734, 61464629555, 27974245376, 3297147917, 342921698, 240045239, 6668123, 1111565, 17161611279, 45054600228, 17742509625, 6646413390, 1270080099, 318173304, 725922, 8826252, 855030, 82164446800, 62878992661, 8213661850, 7627959103, 1648963108, 637099465, 106183387, 17697409, 2911225, 126406816721, 75263162726, 25178283707, 1042720640, 617585573, 221266202, 154396532, 6132878, 4452332, 123330031794, 29280535239, 3612143868, 2114633049, 828400710, 772553499, 176849733, 21460023, 3921621, 117102867859, 66446997160, 22151646781, 9254431282, 1411240423, 1014975484, 66225766, 28178848, 3314050, 32658413780, 29885257625, 23490891710, 2765013635, 3642208520, 2161358765, 344731631, 101172665, 8599751]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o := Explode([G.1, G.2, G.4, G.6, G.8, G.10, G.12, G.14, G.15, G.16, G.17, G.18, G.19, G.20, G.21]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "i", "j", "k", "l", "m", "n", "o"]);
gap:G := PcGroupCode(486363852143766450649420939263231253873540183984735895027157017382358668498456980690396058101851575085814702986556927481555467247978090351455734996913197519228874386322663838446971747076178965898197568575872771699848064233085412317935462073566156328256597738983371313839895713793855113376173078068409700622933133364027453060474026949785169604976485890681144482470679484374773471775402919346217122663695965486234434444893171227430912054533721031882108438703039875295969768570015175758499043722301886136891812388311171794044338547190732001470518154844636658850652342950784943738653258471299181696029061266702671249301166893307362230149745658618498573715843782144794619798856742721435175576152166533282552397231438538091324357970022331227269849200035812531237638431658917335937349040632438604124719061840006968072451305601826343265179459926653673156038552514757522971276216578249855214322972364398802902217564211210881750777043849404957967014514103998791042727031226589566912673714347055251408017381253900728674402271626731811142441879667308440479048423554694835840744634295326176930811721472640243045399898474598347481817298801404577774025628348676208846401822150393223241759736610750768903862447716512662082464843292060021862894005745292785814896156333668843576526564726243737389505962822189703439341055,408146688); a := G.1; b := G.2; c := G.4; d := G.6; e := G.8; f := G.10; g := G.12; h := G.14; i := G.15; j := G.16; k := G.17; l := G.18; m := G.19; n := G.20; o := G.21;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(486363852143766450649420939263231253873540183984735895027157017382358668498456980690396058101851575085814702986556927481555467247978090351455734996913197519228874386322663838446971747076178965898197568575872771699848064233085412317935462073566156328256597738983371313839895713793855113376173078068409700622933133364027453060474026949785169604976485890681144482470679484374773471775402919346217122663695965486234434444893171227430912054533721031882108438703039875295969768570015175758499043722301886136891812388311171794044338547190732001470518154844636658850652342950784943738653258471299181696029061266702671249301166893307362230149745658618498573715843782144794619798856742721435175576152166533282552397231438538091324357970022331227269849200035812531237638431658917335937349040632438604124719061840006968072451305601826343265179459926653673156038552514757522971276216578249855214322972364398802902217564211210881750777043849404957967014514103998791042727031226589566912673714347055251408017381253900728674402271626731811142441879667308440479048423554694835840744634295326176930811721472640243045399898474598347481817298801404577774025628348676208846401822150393223241759736610750768903862447716512662082464843292060021862894005745292785814896156333668843576526564726243737389505962822189703439341055,408146688)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.21;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(486363852143766450649420939263231253873540183984735895027157017382358668498456980690396058101851575085814702986556927481555467247978090351455734996913197519228874386322663838446971747076178965898197568575872771699848064233085412317935462073566156328256597738983371313839895713793855113376173078068409700622933133364027453060474026949785169604976485890681144482470679484374773471775402919346217122663695965486234434444893171227430912054533721031882108438703039875295969768570015175758499043722301886136891812388311171794044338547190732001470518154844636658850652342950784943738653258471299181696029061266702671249301166893307362230149745658618498573715843782144794619798856742721435175576152166533282552397231438538091324357970022331227269849200035812531237638431658917335937349040632438604124719061840006968072451305601826343265179459926653673156038552514757522971276216578249855214322972364398802902217564211210881750777043849404957967014514103998791042727031226589566912673714347055251408017381253900728674402271626731811142441879667308440479048423554694835840744634295326176930811721472640243045399898474598347481817298801404577774025628348676208846401822150393223241759736610750768903862447716512662082464843292060021862894005745292785814896156333668843576526564726243737389505962822189703439341055,408146688)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.21;
|
| Permutation group: | Degree $36$
$\langle(1,8,2,9)(3,7)(4,36)(5,34,6,35)(10,32,13,30,11,33,15,29,12,31,14,28)(16,26,20,23,18,25,19,24,17,27,21,22) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 36 | (1,8,2,9)(3,7)(4,36)(5,34,6,35)(10,32,13,30,11,33,15,29,12,31,14,28)(16,26,20,23,18,25,19,24,17,27,21,22), (1,35)(2,36)(3,34)(4,33,8,28)(5,31,9,29)(6,32,7,30)(10,23,11,22,12,24)(13,25,14,27,15,26)(16,18)(19,20), (1,31,26,18,10,8,3,33,27,16,11,9,2,32,25,17,12,7)(4,35,28,22,20,14,5,36,30,23,19,15,6,34,29,24,21,13) >;
gap:G := Group( (1,8,2,9)(3,7)(4,36)(5,34,6,35)(10,32,13,30,11,33,15,29,12,31,14,28)(16,26,20,23,18,25,19,24,17,27,21,22), (1,35)(2,36)(3,34)(4,33,8,28)(5,31,9,29)(6,32,7,30)(10,23,11,22,12,24)(13,25,14,27,15,26)(16,18)(19,20), (1,31,26,18,10,8,3,33,27,16,11,9,2,32,25,17,12,7)(4,35,28,22,20,14,5,36,30,23,19,15,6,34,29,24,21,13) );
sage:G = PermutationGroup(['(1,8,2,9)(3,7)(4,36)(5,34,6,35)(10,32,13,30,11,33,15,29,12,31,14,28)(16,26,20,23,18,25,19,24,17,27,21,22)', '(1,35)(2,36)(3,34)(4,33,8,28)(5,31,9,29)(6,32,7,30)(10,23,11,22,12,24)(13,25,14,27,15,26)(16,18)(19,20)', '(1,31,26,18,10,8,3,33,27,16,11,9,2,32,25,17,12,7)(4,35,28,22,20,14,5,36,30,23,19,15,6,34,29,24,21,13)'])
|
| Transitive group: |
36T87352 |
36T87490 |
|
|
more information |
| Direct product: |
not computed |
| Semidirect product: |
not computed |
| Trans. wreath product: |
not isomorphic to a non-trivial transitive wreath product |
| Possibly split product: |
$C_3^{12}$ . $(C_2\wr D_6)$ |
$(C_3^{12}.C_2^6)$ . $D_6$ (3) |
$(C_3^{12}.C_2^6.C_2)$ . $S_3$ |
$(C_3^{12}.C_2.C_2^4)$ . $S_4$ |
all 40 |
Elements of the group are displayed as permutations of degree 36.
The $5391 \times 5391$ character table is not available for this group.
The $5257 \times 5257$ rational character table is not available for this group.