Properties

Label 408146688.wn
Order \( 2^{8} \cdot 3^{13} \)
Exponent \( 2^{2} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{9} \cdot 3^{14} \)
$\card{\mathrm{Out}(G)}$ \( 2 \cdot 3 \)
Perm deg. $36$
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,8,2,9)(3,7)(4,36)(5,34,6,35)(10,32,13,30,11,33,15,29,12,31,14,28)(16,26,20,23,18,25,19,24,17,27,21,22), (1,35)(2,36)(3,34)(4,33,8,28)(5,31,9,29)(6,32,7,30)(10,23,11,22,12,24)(13,25,14,27,15,26)(16,18)(19,20), (1,31,26,18,10,8,3,33,27,16,11,9,2,32,25,17,12,7)(4,35,28,22,20,14,5,36,30,23,19,15,6,34,29,24,21,13) >;
 
Copy content gap:G := Group( (1,8,2,9)(3,7)(4,36)(5,34,6,35)(10,32,13,30,11,33,15,29,12,31,14,28)(16,26,20,23,18,25,19,24,17,27,21,22), (1,35)(2,36)(3,34)(4,33,8,28)(5,31,9,29)(6,32,7,30)(10,23,11,22,12,24)(13,25,14,27,15,26)(16,18)(19,20), (1,31,26,18,10,8,3,33,27,16,11,9,2,32,25,17,12,7)(4,35,28,22,20,14,5,36,30,23,19,15,6,34,29,24,21,13) );
 
Copy content sage:G = PermutationGroup(['(1,8,2,9)(3,7)(4,36)(5,34,6,35)(10,32,13,30,11,33,15,29,12,31,14,28)(16,26,20,23,18,25,19,24,17,27,21,22)', '(1,35)(2,36)(3,34)(4,33,8,28)(5,31,9,29)(6,32,7,30)(10,23,11,22,12,24)(13,25,14,27,15,26)(16,18)(19,20)', '(1,31,26,18,10,8,3,33,27,16,11,9,2,32,25,17,12,7)(4,35,28,22,20,14,5,36,30,23,19,15,6,34,29,24,21,13)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(486363852143766450649420939263231253873540183984735895027157017382358668498456980690396058101851575085814702986556927481555467247978090351455734996913197519228874386322663838446971747076178965898197568575872771699848064233085412317935462073566156328256597738983371313839895713793855113376173078068409700622933133364027453060474026949785169604976485890681144482470679484374773471775402919346217122663695965486234434444893171227430912054533721031882108438703039875295969768570015175758499043722301886136891812388311171794044338547190732001470518154844636658850652342950784943738653258471299181696029061266702671249301166893307362230149745658618498573715843782144794619798856742721435175576152166533282552397231438538091324357970022331227269849200035812531237638431658917335937349040632438604124719061840006968072451305601826343265179459926653673156038552514757522971276216578249855214322972364398802902217564211210881750777043849404957967014514103998791042727031226589566912673714347055251408017381253900728674402271626731811142441879667308440479048423554694835840744634295326176930811721472640243045399898474598347481817298801404577774025628348676208846401822150393223241759736610750768903862447716512662082464843292060021862894005745292785814896156333668843576526564726243737389505962822189703439341055,408146688)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.21;
 

Group information

Description:$C_3^8.(C_6^4.(S_3\times D_4))$
Order: \(408146688\)\(\medspace = 2^{8} \cdot 3^{13} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(2448880128\)\(\medspace = 2^{9} \cdot 3^{14} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 8, $C_3$ x 13
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 9 12 18
Elements 1 1058319 741392 24529392 99502128 16796160 205053120 60466176 408146688
Conjugacy classes   1 17 1459 15 3355 14 522 8 5391
Divisions 1 17 1459 15 3355 10 394 6 5257
Autjugacy classes 1 17 543 15 1467 10 206 6 2265

Minimal presentations

Permutation degree:$36$
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o \mid d^{6}=e^{6}=f^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([21, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3906643104, 4488967141, 106, 10096220234, 2758725692, 12847561779, 3846065856, 329306841, 234, 29821939564, 2761727245, 7760896336, 1220002648, 6573220421, 18514458170, 10739488079, 1607652212, 855890117, 362, 15317701062, 23841948843, 4142492976, 882712725, 1790052018, 56257689607, 27756380764, 10791887953, 1856457190, 474366907, 80923360, 490, 35460307016, 19312156109, 358951874, 31755095, 366282092, 359416877, 43885084329, 19118267310, 14946898731, 5245238952, 2440080813, 620260314, 639307755, 32358216, 16957887, 618, 65964929194, 20245024831, 8239027156, 664758937, 66622, 316123, 52825, 59560812875, 12436653632, 5453378837, 2020870730, 712732703, 420922772, 20602649, 56945102, 11272139, 10304480, 10049, 746, 110984406636, 9572655489, 6074647542, 8156940867, 923674848, 665748837, 18493221, 33085075981, 11939768098, 12962436535, 342921676, 1524193, 762166, 127168, 3772, 66261222734, 61464629555, 27974245376, 3297147917, 342921698, 240045239, 6668123, 1111565, 17161611279, 45054600228, 17742509625, 6646413390, 1270080099, 318173304, 725922, 8826252, 855030, 82164446800, 62878992661, 8213661850, 7627959103, 1648963108, 637099465, 106183387, 17697409, 2911225, 126406816721, 75263162726, 25178283707, 1042720640, 617585573, 221266202, 154396532, 6132878, 4452332, 123330031794, 29280535239, 3612143868, 2114633049, 828400710, 772553499, 176849733, 21460023, 3921621, 117102867859, 66446997160, 22151646781, 9254431282, 1411240423, 1014975484, 66225766, 28178848, 3314050, 32658413780, 29885257625, 23490891710, 2765013635, 3642208520, 2161358765, 344731631, 101172665, 8599751]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o := Explode([G.1, G.2, G.4, G.6, G.8, G.10, G.12, G.14, G.15, G.16, G.17, G.18, G.19, G.20, G.21]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "i", "j", "k", "l", "m", "n", "o"]);
 
Copy content gap:G := PcGroupCode(486363852143766450649420939263231253873540183984735895027157017382358668498456980690396058101851575085814702986556927481555467247978090351455734996913197519228874386322663838446971747076178965898197568575872771699848064233085412317935462073566156328256597738983371313839895713793855113376173078068409700622933133364027453060474026949785169604976485890681144482470679484374773471775402919346217122663695965486234434444893171227430912054533721031882108438703039875295969768570015175758499043722301886136891812388311171794044338547190732001470518154844636658850652342950784943738653258471299181696029061266702671249301166893307362230149745658618498573715843782144794619798856742721435175576152166533282552397231438538091324357970022331227269849200035812531237638431658917335937349040632438604124719061840006968072451305601826343265179459926653673156038552514757522971276216578249855214322972364398802902217564211210881750777043849404957967014514103998791042727031226589566912673714347055251408017381253900728674402271626731811142441879667308440479048423554694835840744634295326176930811721472640243045399898474598347481817298801404577774025628348676208846401822150393223241759736610750768903862447716512662082464843292060021862894005745292785814896156333668843576526564726243737389505962822189703439341055,408146688); a := G.1; b := G.2; c := G.4; d := G.6; e := G.8; f := G.10; g := G.12; h := G.14; i := G.15; j := G.16; k := G.17; l := G.18; m := G.19; n := G.20; o := G.21;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(486363852143766450649420939263231253873540183984735895027157017382358668498456980690396058101851575085814702986556927481555467247978090351455734996913197519228874386322663838446971747076178965898197568575872771699848064233085412317935462073566156328256597738983371313839895713793855113376173078068409700622933133364027453060474026949785169604976485890681144482470679484374773471775402919346217122663695965486234434444893171227430912054533721031882108438703039875295969768570015175758499043722301886136891812388311171794044338547190732001470518154844636658850652342950784943738653258471299181696029061266702671249301166893307362230149745658618498573715843782144794619798856742721435175576152166533282552397231438538091324357970022331227269849200035812531237638431658917335937349040632438604124719061840006968072451305601826343265179459926653673156038552514757522971276216578249855214322972364398802902217564211210881750777043849404957967014514103998791042727031226589566912673714347055251408017381253900728674402271626731811142441879667308440479048423554694835840744634295326176930811721472640243045399898474598347481817298801404577774025628348676208846401822150393223241759736610750768903862447716512662082464843292060021862894005745292785814896156333668843576526564726243737389505962822189703439341055,408146688)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.21;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(486363852143766450649420939263231253873540183984735895027157017382358668498456980690396058101851575085814702986556927481555467247978090351455734996913197519228874386322663838446971747076178965898197568575872771699848064233085412317935462073566156328256597738983371313839895713793855113376173078068409700622933133364027453060474026949785169604976485890681144482470679484374773471775402919346217122663695965486234434444893171227430912054533721031882108438703039875295969768570015175758499043722301886136891812388311171794044338547190732001470518154844636658850652342950784943738653258471299181696029061266702671249301166893307362230149745658618498573715843782144794619798856742721435175576152166533282552397231438538091324357970022331227269849200035812531237638431658917335937349040632438604124719061840006968072451305601826343265179459926653673156038552514757522971276216578249855214322972364398802902217564211210881750777043849404957967014514103998791042727031226589566912673714347055251408017381253900728674402271626731811142441879667308440479048423554694835840744634295326176930811721472640243045399898474598347481817298801404577774025628348676208846401822150393223241759736610750768903862447716512662082464843292060021862894005745292785814896156333668843576526564726243737389505962822189703439341055,408146688)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.21;
 
Permutation group:Degree $36$ $\langle(1,8,2,9)(3,7)(4,36)(5,34,6,35)(10,32,13,30,11,33,15,29,12,31,14,28)(16,26,20,23,18,25,19,24,17,27,21,22) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,8,2,9)(3,7)(4,36)(5,34,6,35)(10,32,13,30,11,33,15,29,12,31,14,28)(16,26,20,23,18,25,19,24,17,27,21,22), (1,35)(2,36)(3,34)(4,33,8,28)(5,31,9,29)(6,32,7,30)(10,23,11,22,12,24)(13,25,14,27,15,26)(16,18)(19,20), (1,31,26,18,10,8,3,33,27,16,11,9,2,32,25,17,12,7)(4,35,28,22,20,14,5,36,30,23,19,15,6,34,29,24,21,13) >;
 
Copy content gap:G := Group( (1,8,2,9)(3,7)(4,36)(5,34,6,35)(10,32,13,30,11,33,15,29,12,31,14,28)(16,26,20,23,18,25,19,24,17,27,21,22), (1,35)(2,36)(3,34)(4,33,8,28)(5,31,9,29)(6,32,7,30)(10,23,11,22,12,24)(13,25,14,27,15,26)(16,18)(19,20), (1,31,26,18,10,8,3,33,27,16,11,9,2,32,25,17,12,7)(4,35,28,22,20,14,5,36,30,23,19,15,6,34,29,24,21,13) );
 
Copy content sage:G = PermutationGroup(['(1,8,2,9)(3,7)(4,36)(5,34,6,35)(10,32,13,30,11,33,15,29,12,31,14,28)(16,26,20,23,18,25,19,24,17,27,21,22)', '(1,35)(2,36)(3,34)(4,33,8,28)(5,31,9,29)(6,32,7,30)(10,23,11,22,12,24)(13,25,14,27,15,26)(16,18)(19,20)', '(1,31,26,18,10,8,3,33,27,16,11,9,2,32,25,17,12,7)(4,35,28,22,20,14,5,36,30,23,19,15,6,34,29,24,21,13)'])
 
Transitive group: 36T87352 36T87490 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_3^{12}$ . $(C_2\wr D_6)$ $(C_3^{12}.C_2^6)$ . $D_6$ (3) $(C_3^{12}.C_2^6.C_2)$ . $S_3$ $(C_3^{12}.C_2.C_2^4)$ . $S_4$ all 40

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{3} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{5}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 49 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_3^4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 4 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $5391 \times 5391$ character table is not available for this group.

Rational character table

The $5257 \times 5257$ rational character table is not available for this group.