/* Group 4032.fk downloaded from the LMFDB on 03 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([9, -2, -2, -3, -2, -2, -3, -7, -2, 2, 46, 103251, 3684, 4017, 102, 167404, 9193, 10012, 130, 129605, 22046, 10391, 212, 13623, 4560, 12130, 9115, 3076, 244952, 122489, 20447, 3446, 5156]); a,b,c,d,e := Explode([GPC.1, GPC.2, GPC.4, GPC.8, GPC.9]); AssignNames(~GPC, ["a", "b", "b2", "c", "c2", "c4", "c12", "d", "e"]); GPerm := PermutationGroup< 15 | (1,4)(2,3)(6,7,8)(10,12,15)(11,13,14), (1,3)(2,4)(5,7), (1,2,4,3), (7,8)(10,11)(12,13)(14,15), (1,4)(2,3), (1,4)(5,8,6,7)(9,12,15,11,10,14,13), (5,7,8), (5,6)(7,8), (5,8)(6,7) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_4032_fk := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := false, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := false>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, c^42>,< 2, 3, d>,< 2, 3, c^42*e>,< 2, 12, a*c^42>,< 2, 12, a*c^35*d>,< 2, 14, a*b^3*d>,< 2, 14, a*b^3*c^39*d>,< 2, 42, b^3>,< 2, 42, b^3*c^26>,< 2, 42, a*b^3>,< 2, 42, a*b^3*c^39>,< 3, 7, b^2>,< 3, 7, b^4>,< 3, 8, c^28>,< 3, 56, b^2*c^16>,< 3, 56, b^4*c^20>,< 4, 2, c^21>,< 4, 6, c^21*e>,< 4, 12, a*c^56*e>,< 4, 12, a*c^7>,< 4, 42, b^3*d*e>,< 4, 42, b^3*c^26*d*e>,< 4, 84, b^3*c^71*d>,< 4, 84, b^3*c^35>,< 6, 7, b^4*c^30>,< 6, 7, b^2*c^66>,< 6, 8, c^14>,< 6, 14, a*b*d>,< 6, 14, a*b^5*d>,< 6, 14, a*b*c^3*d>,< 6, 14, a*b^5*c^3*d>,< 6, 21, b^2*d>,< 6, 21, b^4*d>,< 6, 21, b^4*c^30*e>,< 6, 21, b^2*c^66*e>,< 6, 42, b>,< 6, 42, b^5>,< 6, 42, b*c^2>,< 6, 42, b^5*c^2>,< 6, 42, a*b>,< 6, 42, a*b^5>,< 6, 42, a*b*c^3>,< 6, 42, a*b^5*c^3>,< 6, 56, b^2*c^82*d>,< 6, 56, b^4*c^50*d*e>,< 6, 84, a*b^2*c^78>,< 6, 84, a*b^4*c^66>,< 6, 84, a*b^4*c^23*d>,< 6, 84, a*b^2*c^59*d>,< 6, 112, a*b^3*c^73>,< 6, 112, a*b^3*c^64*d>,< 6, 112, a*b*c^74*d*e>,< 6, 112, a*b^5*c^22*e>,< 6, 112, a*b^5*c^49*d*e>,< 6, 112, a*b*c^77>,< 7, 6, c^12>,< 12, 14, b^2*c^3>,< 12, 14, b^4*c^3>,< 12, 16, c^7>,< 12, 42, b*e>,< 12, 42, b^5*e>,< 12, 42, b*c^2*d>,< 12, 42, b^5*c^2*d>,< 12, 42, b^2*c^3*e>,< 12, 42, b^4*c^3*e>,< 12, 84, a*b^4*c^20>,< 12, 84, a*b^2*c^44*e>,< 12, 84, a*b^2*c^79*d*e>,< 12, 84, a*b^4*c^55>,< 12, 84, b^5*c^5*d*e>,< 12, 84, b*c^83*d>,< 12, 84, b*c^77>,< 12, 84, b^5*c^35>,< 12, 112, b^4*c^29*d*e>,< 12, 112, b^2*c^19*d>,< 14, 6, c^6>,< 14, 18, c^6*e>,< 14, 18, c^60*d*e>,< 14, 72, a*c^71*d>,< 14, 72, a*c^12>,< 21, 48, c^4>,< 28, 12, c^3>,< 28, 36, c^3*e>,< 28, 72, a*c^16>,< 28, 72, a*c^43>,< 42, 48, c^2>,< 84, 48, c>,< 84, 48, c^13>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,1,K.1^-1,K.1,1,1,1,1,1,1,1,1,K.1,K.1^-1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1^-1,K.1,1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,1,K.1,K.1^-1,1,1,1,1,1,1,1,1,K.1^-1,K.1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1,K.1^-1,1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,K.1^-1,K.1,1,K.1^-1,K.1,1,1,-1,-1,1,1,1,1,K.1,K.1^-1,1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,-1*K.1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,1,K.1^-1,K.1,1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,K.1,K.1^-1,-1*K.1,-1*K.1,K.1,K.1^-1,1,1,1,-1,-1,1,1,1,-1,-1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,K.1,K.1^-1,1,K.1,K.1^-1,1,1,-1,-1,1,1,1,1,K.1^-1,K.1,1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,1,K.1,K.1^-1,1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1,K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,1,1,1,-1,-1,1,1,1,-1,-1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,-1,-1,1,1,K.1^-1,K.1,1,K.1^-1,K.1,1,1,-1,-1,-1,-1,-1,-1,K.1,K.1^-1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,-1*K.1^-1,K.1,-1*K.1,K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1^-1,K.1,1,-1*K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,K.1^-1,1,1,1,-1,-1,1,1,1,-1,-1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,-1,-1,1,1,K.1,K.1^-1,1,K.1,K.1^-1,1,1,-1,-1,-1,-1,-1,-1,K.1^-1,K.1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,-1*K.1,K.1^-1,-1*K.1^-1,K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1,K.1^-1,1,-1*K.1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,1,1,1,-1,-1,1,1,1,-1,-1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,-1,1,-1,1,1,1,1,-1,K.1^-1,K.1,1,K.1^-1,K.1,-1,-1,-1,1,1,1,-1,-1,K.1,K.1^-1,1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,-1*K.1^-1,K.1^-1,-1*K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1,1,-1*K.1^-1,-1*K.1,-1,K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,K.1,-1*K.1,-1*K.1^-1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,-1,1,-1,1,1,1,1,-1,K.1,K.1^-1,1,K.1,K.1^-1,-1,-1,-1,1,1,1,-1,-1,K.1^-1,K.1,1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,-1*K.1,K.1,-1*K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1,1,-1*K.1,-1*K.1^-1,-1,K.1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1^-1,-1*K.1,-1*K.1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,-1,1,1,-1,-1,-1,-1,1,K.1^-1,K.1,1,K.1^-1,K.1,-1,-1,-1,1,-1,-1,1,1,K.1,K.1^-1,1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1^-1,-1*K.1^-1,K.1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,1,1,-1*K.1^-1,-1*K.1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,K.1^-1,-1*K.1^-1,K.1^-1,K.1,K.1,K.1^-1,-1*K.1,K.1,-1*K.1,-1*K.1^-1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,-1,1,1,-1,-1,-1,-1,1,K.1,K.1^-1,1,K.1,K.1^-1,-1,-1,-1,1,-1,-1,1,1,K.1^-1,K.1,1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,1,1,-1*K.1,-1*K.1^-1,-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1,K.1,K.1^-1,K.1^-1,K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,1,-1,-1,1,-1,K.1^-1,K.1,1,K.1^-1,K.1,-1,-1,1,-1,-1,-1,1,1,K.1,K.1^-1,1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1,K.1^-1,-1*K.1^-1,K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1,1,-1*K.1^-1,-1*K.1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,K.1^-1,K.1^-1,-1*K.1^-1,K.1,K.1,K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,1,-1,-1,1,-1,K.1,K.1^-1,1,K.1,K.1^-1,-1,-1,1,-1,-1,-1,1,1,K.1^-1,K.1,1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1^-1,K.1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1,1,-1*K.1,-1*K.1^-1,-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1,K.1,-1*K.1,K.1^-1,K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,-1,1,-1,1,1,-1,1,K.1^-1,K.1,1,K.1^-1,K.1,-1,-1,1,-1,1,1,-1,-1,K.1,K.1^-1,1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,-1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,1,1,-1*K.1^-1,-1*K.1,-1,K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,-1,1,-1,1,1,-1,1,K.1,K.1^-1,1,K.1,K.1^-1,-1,-1,1,-1,1,1,-1,-1,K.1^-1,K.1,1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,-1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,1,1,-1*K.1,-1*K.1^-1,-1,K.1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1^-1,-1*K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,K.1^-1,K.1,1,K.1^-1,K.1,1,1,1,1,-1,-1,-1,-1,K.1,K.1^-1,1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,1,K.1^-1,K.1,1,-1*K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1,K.1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,K.1,K.1^-1,1,K.1,K.1^-1,1,1,1,1,-1,-1,-1,-1,K.1^-1,K.1,1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,1,K.1,K.1^-1,1,-1*K.1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 2, 2, -1, -1, -1, 2, 2, 0, 0, 0, 0, 0, 0, 2, 2, -1, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 0, 2, 2, 2, 0, 0, -1, -1, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, 2, 2, 2, -1, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 2, 2, 2, 0, 0, -1, 2, 2, 0, 0, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, 0, 0, 0, 0, -2, 2, 0, 0, 2, 2, 2, 2, 2, 0, 0, 0, 0, 2, -2, 0, 0, -2, -2, -2, 0, 0, 0, 0, 2, 2, -2, -2, 2, 0, 2, 0, 0, 0, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, 0, 0, 2, 0, 0, 0, 0, -2, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, 0, 0, 0, 0, 2, -2, 0, 0, 2, 2, 2, 2, 2, 0, 0, 0, 0, -2, 2, 0, 0, -2, -2, -2, 0, 0, 0, 0, 2, 2, -2, -2, -2, 0, -2, 0, 0, 0, 2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, -2, 0, 0, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, 0, 0, 2, 0, 0, 0, 0, -2, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 0, 0, -2, -2, 0, 0, -2, -2, 2, 2, -1, -1, -1, 2, 2, 0, 0, 0, 0, 0, 0, 2, 2, -1, -2, -2, -2, -2, 2, 2, 2, 2, 0, -2, 0, -2, -2, -2, 0, 0, -1, -1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, -1, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 2, 2, 2, 0, 0, -1, 2, 2, 0, 0, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 0, 0, -2, 2, 0, 0, 2, -2, 2, 2, -1, -1, -1, -2, -2, 0, 0, 0, 0, 0, 0, 2, 2, -1, 2, 2, -2, -2, 2, 2, 2, 2, 0, 2, 0, -2, 2, -2, 0, 0, -1, -1, 0, 0, 0, 0, -1, -1, 1, 1, -1, 1, 2, -2, -2, 1, 0, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 0, 0, -1, -2, -2, 0, 0, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 0, 0, 2, -2, 0, 0, -2, 2, 2, 2, -1, -1, -1, -2, -2, 0, 0, 0, 0, 0, 0, 2, 2, -1, -2, -2, 2, 2, 2, 2, 2, 2, 0, -2, 0, 2, -2, 2, 0, 0, -1, -1, 0, 0, 0, 0, 1, 1, -1, -1, 1, -1, 2, -2, -2, 1, 0, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 0, 0, -1, -2, -2, 0, 0, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,2,2,0,0,2,2,0,0,2,2,2*K.1^-1,2*K.1,-1,-1*K.1^-1,-1*K.1,2,2,0,0,0,0,0,0,2*K.1,2*K.1^-1,-1,2*K.1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,0,2*K.1,0,2*K.1^-1,2*K.1^-1,2*K.1,0,0,-1*K.1^-1,-1*K.1,0,0,0,0,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,2,2*K.1^-1,2*K.1,-1,0,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,2,2,2,0,0,-1,2,2,0,0,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,2,2,0,0,2,2,0,0,2,2,2*K.1,2*K.1^-1,-1,-1*K.1,-1*K.1^-1,2,2,0,0,0,0,0,0,2*K.1^-1,2*K.1,-1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,0,2*K.1^-1,0,2*K.1,2*K.1,2*K.1^-1,0,0,-1*K.1,-1*K.1^-1,0,0,0,0,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,2,2*K.1,2*K.1^-1,-1,0,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,2,2,2,0,0,-1,2,2,0,0,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,-2,2,0,0,2*K.1^-1,2*K.1,2,2*K.1^-1,2*K.1,0,0,0,0,2,-2,0,0,-2*K.1,-2*K.1^-1,-2,0,0,0,0,2*K.1^-1,2*K.1,-2*K.1,-2*K.1^-1,2*K.1^-1,0,2*K.1,0,0,0,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,0,0,2,0,0,0,2*K.1^-1,0,0,-2*K.1^-1,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,-2,-2,2,0,0,2,0,0,0,0,-2,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,-2,2,0,0,2*K.1,2*K.1^-1,2,2*K.1,2*K.1^-1,0,0,0,0,2,-2,0,0,-2*K.1^-1,-2*K.1,-2,0,0,0,0,2*K.1,2*K.1^-1,-2*K.1^-1,-2*K.1,2*K.1,0,2*K.1^-1,0,0,0,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,2,0,0,0,2*K.1,0,0,-2*K.1,-2*K.1^-1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,-2,-2,2,0,0,2,0,0,0,0,-2,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,2,-2,0,0,2*K.1^-1,2*K.1,2,2*K.1^-1,2*K.1,0,0,0,0,-2,2,0,0,-2*K.1,-2*K.1^-1,-2,0,0,0,0,2*K.1^-1,2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^-1,0,-2*K.1,0,0,0,2*K.1,2*K.1^-1,-2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,0,0,2,0,0,0,-2*K.1^-1,0,0,2*K.1^-1,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,-2,-2,2,0,0,2,0,0,0,0,-2,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,2,-2,0,0,2*K.1,2*K.1^-1,2,2*K.1,2*K.1^-1,0,0,0,0,-2,2,0,0,-2*K.1^-1,-2*K.1,-2,0,0,0,0,2*K.1,2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1,0,-2*K.1^-1,0,0,0,2*K.1^-1,2*K.1,-2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,2,0,0,0,-2*K.1,0,0,2*K.1,2*K.1^-1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,-2,-2,2,0,0,2,0,0,0,0,-2,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,2,2,0,0,-2,-2,0,0,-2,-2,2*K.1^-1,2*K.1,-1,-1*K.1^-1,-1*K.1,2,2,0,0,0,0,0,0,2*K.1,2*K.1^-1,-1,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,0,-2*K.1,0,-2*K.1^-1,-2*K.1^-1,-2*K.1,0,0,-1*K.1^-1,-1*K.1,0,0,0,0,1,K.1,K.1^-1,K.1,K.1^-1,1,2,2*K.1^-1,2*K.1,-1,0,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,2,2,2,0,0,-1,2,2,0,0,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,2,2,0,0,-2,-2,0,0,-2,-2,2*K.1,2*K.1^-1,-1,-1*K.1,-1*K.1^-1,2,2,0,0,0,0,0,0,2*K.1^-1,2*K.1,-1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,0,-2*K.1^-1,0,-2*K.1,-2*K.1,-2*K.1^-1,0,0,-1*K.1,-1*K.1^-1,0,0,0,0,1,K.1^-1,K.1,K.1^-1,K.1,1,2,2*K.1,2*K.1^-1,-1,0,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,2,2,2,0,0,-1,2,2,0,0,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,2,2,0,0,-2,2,0,0,2,-2,2*K.1^-1,2*K.1,-1,-1*K.1^-1,-1*K.1,-2,-2,0,0,0,0,0,0,2*K.1,2*K.1^-1,-1,2*K.1,2*K.1^-1,-2*K.1,-2*K.1^-1,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,0,2*K.1,0,-2*K.1^-1,2*K.1^-1,-2*K.1,0,0,-1*K.1^-1,-1*K.1,0,0,0,0,-1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,1,2,-2*K.1^-1,-2*K.1,1,0,-2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,K.1,K.1^-1,2,2,2,0,0,-1,-2,-2,0,0,-1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,2,2,0,0,-2,2,0,0,2,-2,2*K.1,2*K.1^-1,-1,-1*K.1,-1*K.1^-1,-2,-2,0,0,0,0,0,0,2*K.1^-1,2*K.1,-1,2*K.1^-1,2*K.1,-2*K.1^-1,-2*K.1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,0,2*K.1^-1,0,-2*K.1,2*K.1,-2*K.1^-1,0,0,-1*K.1,-1*K.1^-1,0,0,0,0,-1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,1,2,-2*K.1,-2*K.1^-1,1,0,-2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,K.1^-1,K.1,2,2,2,0,0,-1,-2,-2,0,0,-1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,2,2,0,0,2,-2,0,0,-2,2,2*K.1^-1,2*K.1,-1,-1*K.1^-1,-1*K.1,-2,-2,0,0,0,0,0,0,2*K.1,2*K.1^-1,-1,-2*K.1,-2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,0,-2*K.1,0,2*K.1^-1,-2*K.1^-1,2*K.1,0,0,-1*K.1^-1,-1*K.1,0,0,0,0,1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1,2,-2*K.1^-1,-2*K.1,1,0,-2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,K.1,K.1^-1,2,2,2,0,0,-1,-2,-2,0,0,-1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,2,2,0,0,2,-2,0,0,-2,2,2*K.1,2*K.1^-1,-1,-1*K.1,-1*K.1^-1,-2,-2,0,0,0,0,0,0,2*K.1^-1,2*K.1,-1,-2*K.1^-1,-2*K.1,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,0,-2*K.1^-1,0,2*K.1,-2*K.1,2*K.1^-1,0,0,-1*K.1,-1*K.1^-1,0,0,0,0,1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1,2,-2*K.1,-2*K.1^-1,1,0,-2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,K.1^-1,K.1,2,2,2,0,0,-1,-2,-2,0,0,-1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[3, 3, -1, -1, 1, 1, 3, 3, 1, 1, -1, -1, 3, 3, 0, 0, 0, 3, -1, -1, -1, -1, -1, -1, 1, 3, 3, 0, 3, 3, 3, 3, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 3, 3, 3, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 0, 0, 3, -1, -1, 1, 1, 0, 3, -1, -1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -1, -1, -1, -1, 3, 3, -1, -1, -1, -1, 3, 3, 0, 0, 0, 3, -1, 1, 1, 1, 1, 1, -1, 3, 3, 0, 3, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 3, 3, 3, 0, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 0, 0, 3, -1, -1, -1, -1, 0, 3, -1, 1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -1, -1, -1, -1, -3, -3, 1, 1, 1, 1, 3, 3, 0, 0, 0, 3, -1, 1, 1, -1, -1, -1, 1, 3, 3, 0, -3, -3, -3, -3, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 3, 3, 3, 0, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 0, 0, 3, -1, -1, -1, -1, 0, 3, -1, 1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -1, -1, -1, 1, -3, 3, 1, 1, -1, 1, 3, 3, 0, 0, 0, -3, 1, 1, -1, -1, -1, 1, -1, 3, 3, 0, 3, 3, -3, -3, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, 0, 0, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 3, -3, -3, 0, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 0, 0, 3, -1, -1, 1, -1, 0, -3, 1, 1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -1, -1, -1, 1, 3, -3, -1, -1, 1, -1, 3, 3, 0, 0, 0, -3, 1, 1, -1, 1, 1, -1, 1, 3, 3, 0, -3, -3, 3, 3, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 3, -3, -3, 0, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, 0, 0, 3, -1, -1, 1, -1, 0, -3, 1, 1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -1, -1, 1, -1, -3, 3, -1, -1, -1, 1, 3, 3, 0, 0, 0, -3, 1, -1, 1, 1, 1, -1, 1, 3, 3, 0, 3, 3, -3, -3, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, 0, 0, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 3, -3, -3, 0, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 0, 0, 3, -1, -1, -1, 1, 0, -3, 1, -1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -1, -1, 1, -1, 3, -3, 1, 1, 1, -1, 3, 3, 0, 0, 0, -3, 1, -1, 1, -1, -1, 1, -1, 3, 3, 0, -3, -3, 3, 3, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 0, 0, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 3, -3, -3, 0, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 0, 0, 3, -1, -1, -1, 1, 0, -3, 1, -1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -1, -1, 1, 1, -3, -3, -1, -1, 1, 1, 3, 3, 0, 0, 0, 3, -1, -1, -1, 1, 1, 1, -1, 3, 3, 0, -3, -3, -3, -3, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 3, 3, 3, 0, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 0, 0, 3, -1, -1, 1, 1, 0, 3, -1, -1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,-1,-1,1,1,3,3,1,1,-1,-1,3*K.1^-1,3*K.1,0,0,0,3,-1,-1,-1,-1,-1,-1,1,3*K.1,3*K.1^-1,0,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,0,0,K.1^-1,K.1,K.1,K.1^-1,0,0,0,0,0,0,3,3*K.1^-1,3*K.1,0,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,-1*K.1,-1*K.1,0,0,3,-1,-1,1,1,0,3,-1,-1,-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,-1,-1,1,1,3,3,1,1,-1,-1,3*K.1,3*K.1^-1,0,0,0,3,-1,-1,-1,-1,-1,-1,1,3*K.1^-1,3*K.1,0,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,0,0,K.1,K.1^-1,K.1^-1,K.1,0,0,0,0,0,0,3,3*K.1,3*K.1^-1,0,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-1,0,0,3,-1,-1,1,1,0,3,-1,-1,-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,-1,-1,-1,-1,3,3,-1,-1,-1,-1,3*K.1^-1,3*K.1,0,0,0,3,-1,1,1,1,1,1,-1,3*K.1,3*K.1^-1,0,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,0,0,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,3,3*K.1^-1,3*K.1,0,K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,K.1,K.1,0,0,3,-1,-1,-1,-1,0,3,-1,1,1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,-1,-1,-1,-1,3,3,-1,-1,-1,-1,3*K.1,3*K.1^-1,0,0,0,3,-1,1,1,1,1,1,-1,3*K.1^-1,3*K.1,0,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,0,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,3,3*K.1,3*K.1^-1,0,K.1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,K.1^-1,0,0,3,-1,-1,-1,-1,0,3,-1,1,1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,-1,-1,-1,-1,-3,-3,1,1,1,1,3*K.1^-1,3*K.1,0,0,0,3,-1,1,1,-1,-1,-1,1,3*K.1,3*K.1^-1,0,-3*K.1,-3*K.1^-1,-3*K.1,-3*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,0,0,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,3,3*K.1^-1,3*K.1,0,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1,K.1,K.1^-1,K.1,K.1,0,0,3,-1,-1,-1,-1,0,3,-1,1,1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,-1,-1,-1,-1,-3,-3,1,1,1,1,3*K.1,3*K.1^-1,0,0,0,3,-1,1,1,-1,-1,-1,1,3*K.1^-1,3*K.1,0,-3*K.1^-1,-3*K.1,-3*K.1^-1,-3*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,0,0,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,3,3*K.1,3*K.1^-1,0,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,K.1,-1*K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,0,0,3,-1,-1,-1,-1,0,3,-1,1,1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,-1,-1,-1,1,-3,3,1,1,-1,1,3*K.1^-1,3*K.1,0,0,0,-3,1,1,-1,-1,-1,1,-1,3*K.1,3*K.1^-1,0,3*K.1,3*K.1^-1,-3*K.1,-3*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,K.1,K.1,K.1^-1,0,0,K.1^-1,K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,3,-3*K.1^-1,-3*K.1,0,-1*K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1,K.1^-1,K.1^-1,-1*K.1^-1,K.1,-1*K.1,-1*K.1^-1,K.1,-1*K.1,0,0,3,-1,-1,1,-1,0,-3,1,1,-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,-1,-1,-1,1,-3,3,1,1,-1,1,3*K.1,3*K.1^-1,0,0,0,-3,1,1,-1,-1,-1,1,-1,3*K.1^-1,3*K.1,0,3*K.1^-1,3*K.1,-3*K.1^-1,-3*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,K.1^-1,K.1^-1,K.1,0,0,K.1,K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,3,-3*K.1,-3*K.1^-1,0,-1*K.1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1,K.1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,0,0,3,-1,-1,1,-1,0,-3,1,1,-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,-1,-1,-1,1,3,-3,-1,-1,1,-1,3*K.1^-1,3*K.1,0,0,0,-3,1,1,-1,1,1,-1,1,3*K.1,3*K.1^-1,0,-3*K.1,-3*K.1^-1,3*K.1,3*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,0,0,K.1^-1,K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,3,-3*K.1^-1,-3*K.1,0,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1,-1*K.1,0,0,3,-1,-1,1,-1,0,-3,1,1,-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,-1,-1,-1,1,3,-3,-1,-1,1,-1,3*K.1,3*K.1^-1,0,0,0,-3,1,1,-1,1,1,-1,1,3*K.1^-1,3*K.1,0,-3*K.1^-1,-3*K.1,3*K.1^-1,3*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,0,K.1,K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,3,-3*K.1,-3*K.1^-1,0,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,-1*K.1,K.1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1^-1,-1*K.1^-1,0,0,3,-1,-1,1,-1,0,-3,1,1,-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,-1,-1,1,-1,-3,3,-1,-1,-1,1,3*K.1^-1,3*K.1,0,0,0,-3,1,-1,1,1,1,-1,1,3*K.1,3*K.1^-1,0,3*K.1,3*K.1^-1,-3*K.1,-3*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1^-1,-1*K.1^-1,K.1,-1*K.1,-1*K.1^-1,0,0,-1*K.1^-1,-1*K.1,K.1,K.1^-1,0,0,0,0,0,0,3,-3*K.1^-1,-3*K.1,0,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,K.1,K.1^-1,-1*K.1,K.1,0,0,3,-1,-1,-1,1,0,-3,1,-1,1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,-1,-1,1,-1,-3,3,-1,-1,-1,1,3*K.1,3*K.1^-1,0,0,0,-3,1,-1,1,1,1,-1,1,3*K.1^-1,3*K.1,0,3*K.1^-1,3*K.1,-3*K.1^-1,-3*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1,0,0,-1*K.1,-1*K.1^-1,K.1^-1,K.1,0,0,0,0,0,0,3,-3*K.1,-3*K.1^-1,0,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,-1*K.1,-1*K.1,K.1,-1*K.1^-1,K.1^-1,K.1,-1*K.1^-1,K.1^-1,0,0,3,-1,-1,-1,1,0,-3,1,-1,1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,-1,-1,1,-1,3,-3,1,1,1,-1,3*K.1^-1,3*K.1,0,0,0,-3,1,-1,1,-1,-1,1,-1,3*K.1,3*K.1^-1,0,-3*K.1,-3*K.1^-1,3*K.1,3*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1,-1*K.1^-1,K.1^-1,-1*K.1,K.1,K.1^-1,0,0,-1*K.1^-1,-1*K.1,K.1,K.1^-1,0,0,0,0,0,0,3,-3*K.1^-1,-3*K.1,0,-1*K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1,K.1^-1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,K.1,0,0,3,-1,-1,-1,1,0,-3,1,-1,1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,-1,-1,1,-1,3,-3,1,1,1,-1,3*K.1,3*K.1^-1,0,0,0,-3,1,-1,1,-1,-1,1,-1,3*K.1^-1,3*K.1,0,-3*K.1^-1,-3*K.1,3*K.1^-1,3*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1^-1,-1*K.1,K.1,-1*K.1^-1,K.1^-1,K.1,0,0,-1*K.1,-1*K.1^-1,K.1^-1,K.1,0,0,0,0,0,0,3,-3*K.1,-3*K.1^-1,0,-1*K.1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,0,0,3,-1,-1,-1,1,0,-3,1,-1,1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,-1,-1,1,1,-3,-3,-1,-1,1,1,3*K.1^-1,3*K.1,0,0,0,3,-1,-1,-1,1,1,1,-1,3*K.1,3*K.1^-1,0,-3*K.1,-3*K.1^-1,-3*K.1,-3*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1,K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,0,0,K.1^-1,K.1,K.1,K.1^-1,0,0,0,0,0,0,3,3*K.1^-1,3*K.1,0,K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,0,0,3,-1,-1,1,1,0,3,-1,-1,-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,-1,-1,1,1,-3,-3,-1,-1,1,1,3*K.1,3*K.1^-1,0,0,0,3,-1,-1,-1,1,1,1,-1,3*K.1^-1,3*K.1,0,-3*K.1^-1,-3*K.1,-3*K.1^-1,-3*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1^-1,-1*K.1^-1,K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,0,0,K.1,K.1^-1,K.1^-1,K.1,0,0,0,0,0,0,3,3*K.1,3*K.1^-1,0,K.1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,0,0,3,-1,-1,1,1,0,3,-1,-1,-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[4, -4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 2, 0, 0, 0, 0, 4, 4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 4, 0, 0, -2, 0, 0, 0, 0, 2, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,0,0,4*K.1^-1,4*K.1,-2,-2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,-4*K.1,-4*K.1^-1,2,0,0,0,0,4*K.1^-1,4*K.1,-4*K.1,-4*K.1^-1,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,-4,4,0,0,-2,0,0,0,0,2,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,0,0,4*K.1,4*K.1^-1,-2,-2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,-4*K.1^-1,-4*K.1,2,0,0,0,0,4*K.1,4*K.1^-1,-4*K.1^-1,-4*K.1,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,-4,4,0,0,-2,0,0,0,0,2,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[6, 6, 6, 6, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 6, 6, 6, 6, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -6, -2, 2, 0, 0, 0, 0, -2, 2, 0, 0, 6, 6, 0, 0, 0, 0, 0, 0, 0, -2, 2, 0, 0, -6, -6, 0, 0, 0, 0, 0, -2, -2, 2, 2, 2, 0, 2, 0, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, -2, 0, 0, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -6, -2, 2, 0, 0, 0, 0, 2, -2, 0, 0, 6, 6, 0, 0, 0, 0, 0, 0, 0, 2, -2, 0, 0, -6, -6, 0, 0, 0, 0, 0, -2, -2, 2, 2, -2, 0, -2, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 2, 0, 0, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 6, 6, -6, -6, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 6, 6, -6, -6, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 6, 6, -6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, -6, -6, -6, 6, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 6, 6, 6, -6, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, -6, -6, 6, -6, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |6,-6,-2,2,0,0,0,0,-2,2,0,0,6*K.1^-1,6*K.1,0,0,0,0,0,0,0,-2,2,0,0,-6*K.1,-6*K.1^-1,0,0,0,0,0,-2*K.1^-1,-2*K.1,2*K.1,2*K.1^-1,2*K.1^-1,0,2*K.1,0,0,0,-2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,-2*K.1^-1,0,0,2*K.1^-1,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,-6,2,-2,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |6,-6,-2,2,0,0,0,0,-2,2,0,0,6*K.1,6*K.1^-1,0,0,0,0,0,0,0,-2,2,0,0,-6*K.1^-1,-6*K.1,0,0,0,0,0,-2*K.1,-2*K.1^-1,2*K.1^-1,2*K.1,2*K.1,0,2*K.1^-1,0,0,0,-2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,-2*K.1,0,0,2*K.1,2*K.1^-1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,-6,2,-2,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |6,-6,-2,2,0,0,0,0,2,-2,0,0,6*K.1^-1,6*K.1,0,0,0,0,0,0,0,2,-2,0,0,-6*K.1,-6*K.1^-1,0,0,0,0,0,-2*K.1^-1,-2*K.1,2*K.1,2*K.1^-1,-2*K.1^-1,0,-2*K.1,0,0,0,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,2*K.1^-1,0,0,-2*K.1^-1,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,-6,2,-2,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |6,-6,-2,2,0,0,0,0,2,-2,0,0,6*K.1,6*K.1^-1,0,0,0,0,0,0,0,2,-2,0,0,-6*K.1^-1,-6*K.1,0,0,0,0,0,-2*K.1,-2*K.1^-1,2*K.1^-1,2*K.1,-2*K.1,0,-2*K.1^-1,0,0,0,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,2*K.1,0,0,-2*K.1,-2*K.1^-1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,-6,2,-2,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[12, 12, 12, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, 0, 0, 12, 12, 0, 0, 0, 0, 0, 0, 0, 0, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 0, 0, 1, -2, -2, 0, 0, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, -12, 12, -12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, 0, 0, -2, 0, 0, 0, 0, 2, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, 12, 12, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, 0, 0, -12, -12, 0, 0, 0, 0, 0, 0, 0, 0, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 0, 0, 1, 2, 2, 0, 0, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |12,-12,12,-12,0,0,0,0,0,0,0,0,0,0,-6,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,0,0,1,0,0,0,0,-1,-2*K.1+2*K.1^3-2*K.1^11+2*K.1^13+2*K.1^15-2*K.1^17-2*K.1^19-K.1^21-2*K.1^23,2*K.1-2*K.1^3+2*K.1^11-2*K.1^13-2*K.1^15+2*K.1^17+2*K.1^19+K.1^21+2*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |12,-12,12,-12,0,0,0,0,0,0,0,0,0,0,-6,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,0,0,1,0,0,0,0,-1,2*K.1-2*K.1^3+2*K.1^11-2*K.1^13-2*K.1^15+2*K.1^17+2*K.1^19+K.1^21+2*K.1^23,-2*K.1+2*K.1^3-2*K.1^11+2*K.1^13+2*K.1^15-2*K.1^17-2*K.1^19-K.1^21-2*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[18, 18, -6, -6, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, -6, -6, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 1, 1, -1, -1, 0, -3, 1, 1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[18, 18, -6, -6, -6, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, -6, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 1, 1, 1, 1, 0, -3, 1, -1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[18, 18, -6, -6, -6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -18, 6, 6, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 1, 1, -1, 1, 0, 3, -1, -1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[18, 18, -6, -6, 6, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -18, 6, -6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 1, 1, 1, -1, 0, 3, -1, 1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[36, -36, -12, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_4032_fk:= KnownIrreducibles(CR);