Properties

Label 393216.ks
Order \( 2^{17} \cdot 3 \)
Exponent \( 2^{2} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{5} \)
$\card{Z(G)}$ 8
$\card{\Aut(G)}$ \( 2^{35} \cdot 3^{2} \cdot 7 \)
$\card{\mathrm{Out}(G)}$ \( 2^{21} \cdot 3 \cdot 7 \)
Perm deg. not computed
Trans deg. not computed
Rank $5$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (2,7)(4,40)(5,11)(8,14)(20,24)(22,28)(25,31)(27,34), (2,7)(4,40)(5,11)(8,14)(9,16)(12,17)(13,18)(15,19)(20,24)(22,28)(25,31)(27,34)(29,36)(32,37)(33,38)(35,39), (1,21)(2,28)(3,23)(4,20)(5,31)(6,26)(7,22)(8,34)(9,36)(10,30)(11,25)(12,37)(13,38)(14,27)(15,39)(16,29)(17,32)(18,33)(19,35)(24,40), (1,6)(2,7)(3,10)(4,40)(5,11)(8,14)(12,17)(15,19)(20,24)(21,26)(22,28)(23,30)(25,31)(27,34)(32,37)(35,39), (2,22)(4,24)(5,25)(7,28)(8,27)(11,31)(14,34)(20,40), (1,10)(2,4)(3,6)(5,14)(7,40)(8,11)(9,13)(12,19)(15,17)(16,18)(20,28)(21,30)(22,24)(23,26)(25,34)(27,31)(29,33)(32,39)(35,37)(36,38), (1,9)(3,13)(6,16)(10,18)(12,17)(15,19)(21,29)(23,33)(26,36)(30,38)(32,37)(35,39), (9,29)(12,32)(13,33)(15,35)(16,36)(17,37)(18,38)(19,39), (2,7)(4,40)(12,17)(15,19)(20,24)(22,28)(32,37)(35,39), (1,3)(5,8)(6,10)(11,14)(21,23)(25,27)(26,30)(31,34), (1,6)(2,7)(3,10)(4,40)(5,11)(8,14)(9,16)(12,17)(13,18)(15,19)(20,24)(21,26)(22,28)(23,30)(25,31)(27,34)(29,36)(32,37)(33,38)(35,39), (1,21)(3,23)(5,25)(6,26)(8,27)(10,30)(11,31)(14,34), (2,40)(4,7)(5,8)(11,14)(20,22)(24,28)(25,27)(31,34), (1,23)(2,7)(4,22)(5,39,11,35)(6,30)(8,19,14,15)(9,33)(12,27,17,34)(16,38)(20,24)(25,37,31,32)(28,40), (2,20)(4,28)(5,8)(7,24)(11,14)(12,32)(15,35)(17,37)(19,39)(22,40)(25,27)(31,34), (2,15)(4,17)(7,19)(12,40)(20,35)(21,23)(22,32)(24,39)(25,27)(26,30)(28,37)(29,33)(31,34)(36,38), (9,13)(12,15)(16,18)(17,19)(29,33)(32,35)(36,38)(37,39), (2,40)(4,7)(12,15)(17,19)(20,22)(24,28)(32,35)(37,39) >;
 
Copy content gap:G := Group( (2,7)(4,40)(5,11)(8,14)(20,24)(22,28)(25,31)(27,34), (2,7)(4,40)(5,11)(8,14)(9,16)(12,17)(13,18)(15,19)(20,24)(22,28)(25,31)(27,34)(29,36)(32,37)(33,38)(35,39), (1,21)(2,28)(3,23)(4,20)(5,31)(6,26)(7,22)(8,34)(9,36)(10,30)(11,25)(12,37)(13,38)(14,27)(15,39)(16,29)(17,32)(18,33)(19,35)(24,40), (1,6)(2,7)(3,10)(4,40)(5,11)(8,14)(12,17)(15,19)(20,24)(21,26)(22,28)(23,30)(25,31)(27,34)(32,37)(35,39), (2,22)(4,24)(5,25)(7,28)(8,27)(11,31)(14,34)(20,40), (1,10)(2,4)(3,6)(5,14)(7,40)(8,11)(9,13)(12,19)(15,17)(16,18)(20,28)(21,30)(22,24)(23,26)(25,34)(27,31)(29,33)(32,39)(35,37)(36,38), (1,9)(3,13)(6,16)(10,18)(12,17)(15,19)(21,29)(23,33)(26,36)(30,38)(32,37)(35,39), (9,29)(12,32)(13,33)(15,35)(16,36)(17,37)(18,38)(19,39), (2,7)(4,40)(12,17)(15,19)(20,24)(22,28)(32,37)(35,39), (1,3)(5,8)(6,10)(11,14)(21,23)(25,27)(26,30)(31,34), (1,6)(2,7)(3,10)(4,40)(5,11)(8,14)(9,16)(12,17)(13,18)(15,19)(20,24)(21,26)(22,28)(23,30)(25,31)(27,34)(29,36)(32,37)(33,38)(35,39), (1,21)(3,23)(5,25)(6,26)(8,27)(10,30)(11,31)(14,34), (2,40)(4,7)(5,8)(11,14)(20,22)(24,28)(25,27)(31,34), (1,23)(2,7)(4,22)(5,39,11,35)(6,30)(8,19,14,15)(9,33)(12,27,17,34)(16,38)(20,24)(25,37,31,32)(28,40), (2,20)(4,28)(5,8)(7,24)(11,14)(12,32)(15,35)(17,37)(19,39)(22,40)(25,27)(31,34), (2,15)(4,17)(7,19)(12,40)(20,35)(21,23)(22,32)(24,39)(25,27)(26,30)(28,37)(29,33)(31,34)(36,38), (9,13)(12,15)(16,18)(17,19)(29,33)(32,35)(36,38)(37,39), (2,40)(4,7)(12,15)(17,19)(20,22)(24,28)(32,35)(37,39) );
 
Copy content sage:G = PermutationGroup(['(2,7)(4,40)(5,11)(8,14)(20,24)(22,28)(25,31)(27,34)', '(2,7)(4,40)(5,11)(8,14)(9,16)(12,17)(13,18)(15,19)(20,24)(22,28)(25,31)(27,34)(29,36)(32,37)(33,38)(35,39)', '(1,21)(2,28)(3,23)(4,20)(5,31)(6,26)(7,22)(8,34)(9,36)(10,30)(11,25)(12,37)(13,38)(14,27)(15,39)(16,29)(17,32)(18,33)(19,35)(24,40)', '(1,6)(2,7)(3,10)(4,40)(5,11)(8,14)(12,17)(15,19)(20,24)(21,26)(22,28)(23,30)(25,31)(27,34)(32,37)(35,39)', '(2,22)(4,24)(5,25)(7,28)(8,27)(11,31)(14,34)(20,40)', '(1,10)(2,4)(3,6)(5,14)(7,40)(8,11)(9,13)(12,19)(15,17)(16,18)(20,28)(21,30)(22,24)(23,26)(25,34)(27,31)(29,33)(32,39)(35,37)(36,38)', '(1,9)(3,13)(6,16)(10,18)(12,17)(15,19)(21,29)(23,33)(26,36)(30,38)(32,37)(35,39)', '(9,29)(12,32)(13,33)(15,35)(16,36)(17,37)(18,38)(19,39)', '(2,7)(4,40)(12,17)(15,19)(20,24)(22,28)(32,37)(35,39)', '(1,3)(5,8)(6,10)(11,14)(21,23)(25,27)(26,30)(31,34)', '(1,6)(2,7)(3,10)(4,40)(5,11)(8,14)(9,16)(12,17)(13,18)(15,19)(20,24)(21,26)(22,28)(23,30)(25,31)(27,34)(29,36)(32,37)(33,38)(35,39)', '(1,21)(3,23)(5,25)(6,26)(8,27)(10,30)(11,31)(14,34)', '(2,40)(4,7)(5,8)(11,14)(20,22)(24,28)(25,27)(31,34)', '(1,23)(2,7)(4,22)(5,39,11,35)(6,30)(8,19,14,15)(9,33)(12,27,17,34)(16,38)(20,24)(25,37,31,32)(28,40)', '(2,20)(4,28)(5,8)(7,24)(11,14)(12,32)(15,35)(17,37)(19,39)(22,40)(25,27)(31,34)', '(2,15)(4,17)(7,19)(12,40)(20,35)(21,23)(22,32)(24,39)(25,27)(26,30)(28,37)(29,33)(31,34)(36,38)', '(9,13)(12,15)(16,18)(17,19)(29,33)(32,35)(36,38)(37,39)', '(2,40)(4,7)(12,15)(17,19)(20,22)(24,28)(32,35)(37,39)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(11012809097411167458080611219654908807282330832778074020130878299760995810020551577500469033128379474957470390971191666804250755188140697079715084093890211444576285067882230226855486668738762597974477984401554705766517141762034790573720116075778900561081038822665586020979292844338136381814330807256767091474070314570825237386626891776,393216)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.7; f = G.8; g = G.9; h = G.10; i = G.11; j = G.12; k = G.13; l = G.14; m = G.15; n = G.16; o = G.17; p = G.18;
 

Group information

Description:$C_2^{12}.(C_2^2\times S_4)$
Order: \(393216\)\(\medspace = 2^{17} \cdot 3 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(2164663517184\)\(\medspace = 2^{35} \cdot 3^{2} \cdot 7 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 17, $C_3$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 12
Elements 1 39167 2048 222976 96256 32768 393216
Conjugacy classes   1 3383 1 1152 31 8 4576
Divisions 1 3383 1 1152 23 6 4566

Minimal presentations

Permutation degree:not computed
Transitive degree:not computed
Rank: $5$
Inequivalent generating 5-tuples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible none not computed none
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p \mid b^{6}=c^{4}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([18, -2, -2, -3, -2, -2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2622672, 5245705, 91, 489026, 10491555, 325317, 2622927, 201, 8899656, 4446834, 15520903, 7746649, 3880267, 2610818, 1289888, 6542, 26071209, 2458107, 1194525, 13023, 52367050, 28053460, 14102794, 26992, 77360843, 29541053, 19293599, 85964124, 28838190, 14779956, 121746, 64012045, 34264975, 17903641, 2706547, 94420094, 35672432, 19491890, 2623388, 94652943, 47464737, 24325107, 4570053, 19810474, 9023992, 2509270, 107759825, 30827987, 26689229, 5311079]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p := Explode([G.1, G.2, G.4, G.6, G.7, G.8, G.9, G.10, G.11, G.12, G.13, G.14, G.15, G.16, G.17, G.18]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p"]);
 
Copy content gap:G := PcGroupCode(11012809097411167458080611219654908807282330832778074020130878299760995810020551577500469033128379474957470390971191666804250755188140697079715084093890211444576285067882230226855486668738762597974477984401554705766517141762034790573720116075778900561081038822665586020979292844338136381814330807256767091474070314570825237386626891776,393216); a := G.1; b := G.2; c := G.4; d := G.6; e := G.7; f := G.8; g := G.9; h := G.10; i := G.11; j := G.12; k := G.13; l := G.14; m := G.15; n := G.16; o := G.17; p := G.18;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(11012809097411167458080611219654908807282330832778074020130878299760995810020551577500469033128379474957470390971191666804250755188140697079715084093890211444576285067882230226855486668738762597974477984401554705766517141762034790573720116075778900561081038822665586020979292844338136381814330807256767091474070314570825237386626891776,393216)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.7; f = G.8; g = G.9; h = G.10; i = G.11; j = G.12; k = G.13; l = G.14; m = G.15; n = G.16; o = G.17; p = G.18;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(11012809097411167458080611219654908807282330832778074020130878299760995810020551577500469033128379474957470390971191666804250755188140697079715084093890211444576285067882230226855486668738762597974477984401554705766517141762034790573720116075778900561081038822665586020979292844338136381814330807256767091474070314570825237386626891776,393216)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.7; f = G.8; g = G.9; h = G.10; i = G.11; j = G.12; k = G.13; l = G.14; m = G.15; n = G.16; o = G.17; p = G.18;
 
Permutation group:Degree $40$ $\langle(2,7)(4,40)(5,11)(8,14)(20,24)(22,28)(25,31)(27,34), (2,7)(4,40)(5,11)(8,14) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (2,7)(4,40)(5,11)(8,14)(20,24)(22,28)(25,31)(27,34), (2,7)(4,40)(5,11)(8,14)(9,16)(12,17)(13,18)(15,19)(20,24)(22,28)(25,31)(27,34)(29,36)(32,37)(33,38)(35,39), (1,21)(2,28)(3,23)(4,20)(5,31)(6,26)(7,22)(8,34)(9,36)(10,30)(11,25)(12,37)(13,38)(14,27)(15,39)(16,29)(17,32)(18,33)(19,35)(24,40), (1,6)(2,7)(3,10)(4,40)(5,11)(8,14)(12,17)(15,19)(20,24)(21,26)(22,28)(23,30)(25,31)(27,34)(32,37)(35,39), (2,22)(4,24)(5,25)(7,28)(8,27)(11,31)(14,34)(20,40), (1,10)(2,4)(3,6)(5,14)(7,40)(8,11)(9,13)(12,19)(15,17)(16,18)(20,28)(21,30)(22,24)(23,26)(25,34)(27,31)(29,33)(32,39)(35,37)(36,38), (1,9)(3,13)(6,16)(10,18)(12,17)(15,19)(21,29)(23,33)(26,36)(30,38)(32,37)(35,39), (9,29)(12,32)(13,33)(15,35)(16,36)(17,37)(18,38)(19,39), (2,7)(4,40)(12,17)(15,19)(20,24)(22,28)(32,37)(35,39), (1,3)(5,8)(6,10)(11,14)(21,23)(25,27)(26,30)(31,34), (1,6)(2,7)(3,10)(4,40)(5,11)(8,14)(9,16)(12,17)(13,18)(15,19)(20,24)(21,26)(22,28)(23,30)(25,31)(27,34)(29,36)(32,37)(33,38)(35,39), (1,21)(3,23)(5,25)(6,26)(8,27)(10,30)(11,31)(14,34), (2,40)(4,7)(5,8)(11,14)(20,22)(24,28)(25,27)(31,34), (1,23)(2,7)(4,22)(5,39,11,35)(6,30)(8,19,14,15)(9,33)(12,27,17,34)(16,38)(20,24)(25,37,31,32)(28,40), (2,20)(4,28)(5,8)(7,24)(11,14)(12,32)(15,35)(17,37)(19,39)(22,40)(25,27)(31,34), (2,15)(4,17)(7,19)(12,40)(20,35)(21,23)(22,32)(24,39)(25,27)(26,30)(28,37)(29,33)(31,34)(36,38), (9,13)(12,15)(16,18)(17,19)(29,33)(32,35)(36,38)(37,39), (2,40)(4,7)(12,15)(17,19)(20,22)(24,28)(32,35)(37,39) >;
 
Copy content gap:G := Group( (2,7)(4,40)(5,11)(8,14)(20,24)(22,28)(25,31)(27,34), (2,7)(4,40)(5,11)(8,14)(9,16)(12,17)(13,18)(15,19)(20,24)(22,28)(25,31)(27,34)(29,36)(32,37)(33,38)(35,39), (1,21)(2,28)(3,23)(4,20)(5,31)(6,26)(7,22)(8,34)(9,36)(10,30)(11,25)(12,37)(13,38)(14,27)(15,39)(16,29)(17,32)(18,33)(19,35)(24,40), (1,6)(2,7)(3,10)(4,40)(5,11)(8,14)(12,17)(15,19)(20,24)(21,26)(22,28)(23,30)(25,31)(27,34)(32,37)(35,39), (2,22)(4,24)(5,25)(7,28)(8,27)(11,31)(14,34)(20,40), (1,10)(2,4)(3,6)(5,14)(7,40)(8,11)(9,13)(12,19)(15,17)(16,18)(20,28)(21,30)(22,24)(23,26)(25,34)(27,31)(29,33)(32,39)(35,37)(36,38), (1,9)(3,13)(6,16)(10,18)(12,17)(15,19)(21,29)(23,33)(26,36)(30,38)(32,37)(35,39), (9,29)(12,32)(13,33)(15,35)(16,36)(17,37)(18,38)(19,39), (2,7)(4,40)(12,17)(15,19)(20,24)(22,28)(32,37)(35,39), (1,3)(5,8)(6,10)(11,14)(21,23)(25,27)(26,30)(31,34), (1,6)(2,7)(3,10)(4,40)(5,11)(8,14)(9,16)(12,17)(13,18)(15,19)(20,24)(21,26)(22,28)(23,30)(25,31)(27,34)(29,36)(32,37)(33,38)(35,39), (1,21)(3,23)(5,25)(6,26)(8,27)(10,30)(11,31)(14,34), (2,40)(4,7)(5,8)(11,14)(20,22)(24,28)(25,27)(31,34), (1,23)(2,7)(4,22)(5,39,11,35)(6,30)(8,19,14,15)(9,33)(12,27,17,34)(16,38)(20,24)(25,37,31,32)(28,40), (2,20)(4,28)(5,8)(7,24)(11,14)(12,32)(15,35)(17,37)(19,39)(22,40)(25,27)(31,34), (2,15)(4,17)(7,19)(12,40)(20,35)(21,23)(22,32)(24,39)(25,27)(26,30)(28,37)(29,33)(31,34)(36,38), (9,13)(12,15)(16,18)(17,19)(29,33)(32,35)(36,38)(37,39), (2,40)(4,7)(12,15)(17,19)(20,22)(24,28)(32,35)(37,39) );
 
Copy content sage:G = PermutationGroup(['(2,7)(4,40)(5,11)(8,14)(20,24)(22,28)(25,31)(27,34)', '(2,7)(4,40)(5,11)(8,14)(9,16)(12,17)(13,18)(15,19)(20,24)(22,28)(25,31)(27,34)(29,36)(32,37)(33,38)(35,39)', '(1,21)(2,28)(3,23)(4,20)(5,31)(6,26)(7,22)(8,34)(9,36)(10,30)(11,25)(12,37)(13,38)(14,27)(15,39)(16,29)(17,32)(18,33)(19,35)(24,40)', '(1,6)(2,7)(3,10)(4,40)(5,11)(8,14)(12,17)(15,19)(20,24)(21,26)(22,28)(23,30)(25,31)(27,34)(32,37)(35,39)', '(2,22)(4,24)(5,25)(7,28)(8,27)(11,31)(14,34)(20,40)', '(1,10)(2,4)(3,6)(5,14)(7,40)(8,11)(9,13)(12,19)(15,17)(16,18)(20,28)(21,30)(22,24)(23,26)(25,34)(27,31)(29,33)(32,39)(35,37)(36,38)', '(1,9)(3,13)(6,16)(10,18)(12,17)(15,19)(21,29)(23,33)(26,36)(30,38)(32,37)(35,39)', '(9,29)(12,32)(13,33)(15,35)(16,36)(17,37)(18,38)(19,39)', '(2,7)(4,40)(12,17)(15,19)(20,24)(22,28)(32,37)(35,39)', '(1,3)(5,8)(6,10)(11,14)(21,23)(25,27)(26,30)(31,34)', '(1,6)(2,7)(3,10)(4,40)(5,11)(8,14)(9,16)(12,17)(13,18)(15,19)(20,24)(21,26)(22,28)(23,30)(25,31)(27,34)(29,36)(32,37)(33,38)(35,39)', '(1,21)(3,23)(5,25)(6,26)(8,27)(10,30)(11,31)(14,34)', '(2,40)(4,7)(5,8)(11,14)(20,22)(24,28)(25,27)(31,34)', '(1,23)(2,7)(4,22)(5,39,11,35)(6,30)(8,19,14,15)(9,33)(12,27,17,34)(16,38)(20,24)(25,37,31,32)(28,40)', '(2,20)(4,28)(5,8)(7,24)(11,14)(12,32)(15,35)(17,37)(19,39)(22,40)(25,27)(31,34)', '(2,15)(4,17)(7,19)(12,40)(20,35)(21,23)(22,32)(24,39)(25,27)(26,30)(28,37)(29,33)(31,34)(36,38)', '(9,13)(12,15)(16,18)(17,19)(29,33)(32,35)(36,38)(37,39)', '(2,40)(4,7)(12,15)(17,19)(20,22)(24,28)(32,35)(37,39)'])
 
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_2^{13}$ . $(S_3\times D_4)$ (4) $(C_2^{15}.C_2)$ . $S_3$ $(C_2^{13}.C_2)$ . $S_4$ (15) $C_2^{12}$ . $(D_4\times D_6)$ (6) all 53
Aut. group: $\Aut(C_2^3.C_2^5)$ $\Aut(C_2^3.C_2^5)$ $\Aut(C_2^3.C_2^5)$ $\Aut(C_2^3.C_2^5)$ all 6

Elements of the group are displayed as permutations of degree 40.

Homology

Abelianization: $C_{2}^{5} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{21}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $2$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 12009 normal subgroups (126 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_2^3$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_2^4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^{15}.C_2^2$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $4576 \times 4576$ character table is not available for this group.

Rational character table

The $4566 \times 4566$ rational character table is not available for this group.