/* Group 3888.fl downloaded from the LMFDB on 22 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([9, 2, 3, 2, 3, 3, 2, 3, 2, 3, 18, 17506, 19280, 46262, 74, 4755, 2820, 138, 3244, 134141, 22379, 10724, 158, 27222, 4560, 22057, 7162, 214, 40850, 11699]); a,b,c,d := Explode([GPC.1, GPC.3, GPC.6, GPC.8]); AssignNames(~GPC, ["a", "a2", "b", "b2", "b6", "c", "c2", "d", "d2"]); GPerm := PermutationGroup< 22 | (1,2,3,5,8,4,7,6,9)(11,12,13)(14,15,16)(17,19,20,21,22,18), (2,4,8,3,6,9)(5,7)(10,11,12,13)(15,17,20,16,18,21)(19,22) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_3888_fl := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := false, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := false>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 3, d^3>,< 2, 9, b^9*d^4>,< 2, 27, b^9*c*d^5>,< 2, 54, a^3*c>,< 2, 54, a^3*b^17*c^5*d>,< 3, 2, b^12>,< 3, 2, c^4>,< 3, 3, a^4*b^12*d^4>,< 3, 3, a^2*b^6*d^5>,< 3, 4, b^12*c^2>,< 3, 6, c^4*d^2>,< 3, 6, a^4*c^2*d^4>,< 3, 6, a^2*c^4*d^5>,< 3, 6, a^4>,< 3, 6, a^2*d^3>,< 3, 12, b^12*d^2>,< 3, 12, a^4*c^4>,< 3, 12, a^2*c^2*d^3>,< 4, 54, a^3*d^3>,< 4, 54, a^3*b^7*c^4*d^3>,< 6, 3, a^2*d^2>,< 6, 3, a^4*d>,< 6, 6, b^6*d^3>,< 6, 6, d>,< 6, 6, c*d^3>,< 6, 6, a^2*b^6*d^2>,< 6, 6, a^4*b^6*d>,< 6, 6, a^4*b^12*c*d^2>,< 6, 6, a^2*b^6*c^5*d>,< 6, 6, a^4*b^12*c*d^4>,< 6, 6, a^2*b^6*c^5*d^5>,< 6, 12, c^2*d>,< 6, 12, b^6*d>,< 6, 12, b^6*c>,< 6, 12, a^2*c^2>,< 6, 12, a^4*b^12*c>,< 6, 12, a^2*c>,< 6, 12, a^4*c>,< 6, 12, a^2*b^6>,< 6, 12, a^4*c*d^2>,< 6, 12, b^6*c^2*d>,< 6, 12, b^6*c*d^2>,< 6, 12, a^2*c*d^2>,< 6, 12, a^4*c*d>,< 6, 12, a^2*c^3>,< 6, 12, a^4*c^3>,< 6, 18, b^3*c^2*d^2>,< 6, 27, a^4*b^3>,< 6, 27, a^2*b^3*d>,< 6, 27, a^2*b^3*c>,< 6, 27, a^4*b^3*c>,< 6, 54, b^3*d>,< 6, 54, a^2*b^3>,< 6, 54, a^4*b^3*d>,< 6, 54, a*c*d>,< 6, 54, a^5*c*d^2>,< 6, 54, a*b^5>,< 6, 54, a^5*b*d^3>,< 6, 108, a^3*c*d^5>,< 6, 108, a^3*b*c*d^5>,< 6, 108, a^5*b^6*c>,< 6, 108, a*b^6*c>,< 6, 108, a*b*d>,< 6, 108, a^5*b^13*c^4*d^3>,< 9, 72, b^2*c^4>,< 9, 72, a^4*b^2*c^5*d^4>,< 9, 72, a^2*b^10*c^2*d^5>,< 9, 144, b^10*c^3*d^2>,< 9, 144, a^2*b^14*c^5*d>,< 9, 144, a^4*b^10*c^4*d^2>,< 12, 54, a*d>,< 12, 54, a^5*d^2>,< 12, 54, a*b*d^2>,< 12, 54, a^5*b>,< 12, 108, a^3*c^4*d^5>,< 12, 108, a^3*b^13*c^4*d^5>,< 12, 108, a^5*b^14*c^5*d>,< 12, 108, a*b^8*c^2*d^5>,< 12, 108, a^5*b^5*c^2*d>,< 12, 108, a*b^17*c^3*d^5>,< 18, 216, b*d^2>,< 18, 216, a^2*b^13*c^2*d>,< 18, 216, a^4*b^17*c^5*d^2>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,K.1^-1,K.1,1,K.1^-1,K.1^-1,1,K.1,K.1,K.1^-1,K.1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1^-1,K.1,1,K.1,K.1^-1,K.1^-1,1,K.1^-1,K.1^-1,K.1,1,K.1,K.1^-1,1,K.1,K.1^-1,K.1,K.1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,1,K.1^-1,K.1,K.1^-1,1,K.1,1,K.1^-1,K.1,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1,1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,K.1,K.1^-1,1,K.1,K.1,1,K.1^-1,K.1^-1,K.1,K.1^-1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1,K.1^-1,1,K.1^-1,K.1,K.1,1,K.1,K.1,K.1^-1,1,K.1^-1,K.1,1,K.1^-1,K.1,K.1^-1,K.1^-1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,1,K.1,K.1,K.1,K.1^-1,K.1^-1,1,K.1,K.1^-1,K.1,1,K.1^-1,1,K.1,K.1^-1,1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1^-1,1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,-1,-1,1,1,1,K.1^-1,K.1,1,K.1^-1,K.1^-1,1,K.1,K.1,K.1^-1,K.1,1,-1,1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1^-1,K.1,1,K.1,K.1^-1,K.1^-1,1,K.1^-1,K.1^-1,K.1,1,K.1,K.1^-1,1,K.1,K.1^-1,K.1,K.1,1,1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1,1,K.1^-1,-1*K.1,-1*K.1^-1,-1,K.1,1,K.1^-1,K.1,1,K.1,K.1^-1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,K.1^-1,-1*K.1,-1*K.1^-1,1,-1,K.1,-1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,-1,-1,1,1,1,K.1,K.1^-1,1,K.1,K.1,1,K.1^-1,K.1^-1,K.1,K.1^-1,1,-1,1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1,K.1^-1,1,K.1^-1,K.1,K.1,1,K.1,K.1,K.1^-1,1,K.1^-1,K.1,1,K.1^-1,K.1,K.1^-1,K.1^-1,1,1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1,-1*K.1,-1*K.1,K.1,-1*K.1^-1,-1*K.1^-1,1,K.1,-1*K.1^-1,-1*K.1,-1,K.1^-1,1,K.1,K.1^-1,1,K.1^-1,K.1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,K.1,-1*K.1^-1,-1*K.1,1,-1,K.1^-1,-1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,-1,1,-1,1,1,K.1^-1,K.1,1,K.1^-1,K.1^-1,1,K.1,K.1,K.1^-1,K.1,1,1,-1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1^-1,K.1,1,K.1,K.1^-1,K.1^-1,1,K.1^-1,K.1^-1,K.1,1,K.1,K.1^-1,1,K.1,K.1^-1,K.1,K.1,1,1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1,-1*K.1^-1,K.1,K.1^-1,1,-1*K.1,1,K.1^-1,K.1,1,K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1*K.1^-1,K.1,K.1^-1,-1,1,-1*K.1,-1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,-1,1,-1,1,1,K.1,K.1^-1,1,K.1,K.1,1,K.1^-1,K.1^-1,K.1,K.1^-1,1,1,-1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1,K.1^-1,1,K.1^-1,K.1,K.1,1,K.1,K.1,K.1^-1,1,K.1^-1,K.1,1,K.1^-1,K.1,K.1^-1,K.1^-1,1,1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1,-1*K.1,K.1^-1,K.1,1,-1*K.1^-1,1,K.1,K.1^-1,1,K.1^-1,K.1,K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1,K.1^-1,K.1,-1,1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,K.1^-1,K.1,1,K.1^-1,K.1^-1,1,K.1,K.1,K.1^-1,K.1,1,-1,-1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1^-1,K.1,1,K.1,K.1^-1,K.1^-1,1,K.1^-1,K.1^-1,K.1,1,K.1,K.1^-1,1,K.1,K.1^-1,K.1,K.1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,-1*K.1,1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1*K.1,1,K.1^-1,K.1,1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1,1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,K.1,K.1^-1,1,K.1,K.1,1,K.1^-1,K.1^-1,K.1,K.1^-1,1,-1,-1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1,K.1^-1,1,K.1^-1,K.1,K.1,1,K.1,K.1,K.1^-1,1,K.1^-1,K.1,1,K.1^-1,K.1,K.1^-1,K.1^-1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,-1*K.1^-1,1,K.1,-1*K.1,-1*K.1,K.1^-1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1*K.1^-1,1,K.1,K.1^-1,1,K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1^-1,1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[2, 2, 0, 0, 2, 0, 2, 2, 2, 2, 2, -1, 2, -1, 2, -1, -1, -1, -1, 2, 0, 2, 2, -1, 2, -1, 2, 2, -1, 2, 2, 2, -1, 2, -1, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, -1, -1, -1, 0, 2, 2, 2, -1, -1, -1, 2, 0, 0, 2, 0, -1, -1, 0, -1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, 0, -2, -2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 0, 0, -2, 0, 2, 2, 2, 2, 2, -1, 2, -1, 2, -1, -1, -1, -1, -2, 0, 2, 2, -1, 2, -1, 2, 2, -1, 2, 2, 2, -1, 2, -1, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, -2, 0, 0, 1, 1, 1, 0, 2, 2, 2, -1, -1, -1, -2, 0, 0, -2, 0, 1, 1, 0, 1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,0,0,2,0,2,2,2*K.1^-1,2*K.1,2,-1*K.1^-1,2*K.1^-1,-1,2*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1,2,0,2*K.1,2*K.1^-1,-1*K.1^-1,2*K.1,-1,2,2*K.1^-1,-1*K.1,2,2*K.1,2*K.1^-1,-1*K.1^-1,2,-1*K.1^-1,2*K.1^-1,2*K.1,-1,-1*K.1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1,-1,0,0,0,0,0,0,0,0,2*K.1^-1,0,0,2*K.1,0,0,-1*K.1,-1*K.1^-1,-1,0,2,2*K.1^-1,2*K.1,-1,-1*K.1,-1*K.1^-1,2*K.1^-1,0,0,2*K.1,0,-1*K.1,-1*K.1^-1,0,-1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,0,0,2,0,2,2,2*K.1,2*K.1^-1,2,-1*K.1,2*K.1,-1,2*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,2,0,2*K.1^-1,2*K.1,-1*K.1,2*K.1^-1,-1,2,2*K.1,-1*K.1^-1,2,2*K.1^-1,2*K.1,-1*K.1,2,-1*K.1,2*K.1,2*K.1^-1,-1,-1*K.1^-1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1,-1,0,0,0,0,0,0,0,0,2*K.1,0,0,2*K.1^-1,0,0,-1*K.1^-1,-1*K.1,-1,0,2,2*K.1,2*K.1^-1,-1,-1*K.1^-1,-1*K.1,2*K.1,0,0,2*K.1^-1,0,-1*K.1^-1,-1*K.1,0,-1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,2,2,0,0,2,2,2*K.1^-1,2*K.1,2,2*K.1^-1,2*K.1^-1,2,2*K.1,2*K.1,2*K.1^-1,2*K.1,2,0,0,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,2,2,2*K.1^-1,2*K.1,2,2*K.1,2*K.1^-1,2*K.1^-1,2,2*K.1^-1,2*K.1^-1,2*K.1,2,2*K.1,2*K.1^-1,2,2*K.1,2*K.1^-1,2*K.1,2*K.1,2,2,2,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,0,2,2*K.1^-1,0,0,2*K.1,0,0,0,0,0,0,0,-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,-1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,2,2,0,0,2,2,2*K.1,2*K.1^-1,2,2*K.1,2*K.1,2,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^-1,2,0,0,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,2,2,2*K.1,2*K.1^-1,2,2*K.1^-1,2*K.1,2*K.1,2,2*K.1,2*K.1,2*K.1^-1,2,2*K.1^-1,2*K.1,2,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^-1,2,2,2,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,0,2,2*K.1,0,0,2*K.1^-1,0,0,0,0,0,0,0,-1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,-1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,2,2*K.1^-1,2*K.1,2,2*K.1^-1,2*K.1^-1,2,2*K.1,2*K.1,2*K.1^-1,2*K.1,2,0,0,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,2,2,2*K.1^-1,2*K.1,2,2*K.1,2*K.1^-1,2*K.1^-1,2,2*K.1^-1,2*K.1^-1,2*K.1,2,2*K.1,2*K.1^-1,2,2*K.1,2*K.1^-1,2*K.1,2*K.1,2,2,-2,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1,0,-2,-2*K.1^-1,0,0,-2*K.1,0,0,0,0,0,0,0,-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,2,2*K.1,2*K.1^-1,2,2*K.1,2*K.1,2,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^-1,2,0,0,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,2,2,2*K.1,2*K.1^-1,2,2*K.1^-1,2*K.1,2*K.1,2,2*K.1,2*K.1,2*K.1^-1,2,2*K.1^-1,2*K.1,2,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^-1,2,2,-2,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-1,0,-2,-2*K.1,0,0,-2*K.1^-1,0,0,0,0,0,0,0,-1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,0,0,-2,0,2,2,2*K.1^-1,2*K.1,2,-1*K.1^-1,2*K.1^-1,-1,2*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-2,0,2*K.1,2*K.1^-1,-1*K.1^-1,2*K.1,-1,2,2*K.1^-1,-1*K.1,2,2*K.1,2*K.1^-1,-1*K.1^-1,2,-1*K.1^-1,2*K.1^-1,2*K.1,-1,-1*K.1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1,-1,0,0,0,0,0,0,0,0,-2*K.1^-1,0,0,-2*K.1,0,0,K.1,K.1^-1,1,0,2,2*K.1^-1,2*K.1,-1,-1*K.1,-1*K.1^-1,-2*K.1^-1,0,0,-2*K.1,0,K.1,K.1^-1,0,1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,0,0,-2,0,2,2,2*K.1,2*K.1^-1,2,-1*K.1,2*K.1,-1,2*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-2,0,2*K.1^-1,2*K.1,-1*K.1,2*K.1^-1,-1,2,2*K.1,-1*K.1^-1,2,2*K.1^-1,2*K.1,-1*K.1,2,-1*K.1,2*K.1,2*K.1^-1,-1,-1*K.1^-1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1,-1,0,0,0,0,0,0,0,0,-2*K.1,0,0,-2*K.1^-1,0,0,K.1^-1,K.1,1,0,2,2*K.1,2*K.1^-1,-1,-1*K.1^-1,-1*K.1,-2*K.1,0,0,-2*K.1^-1,0,K.1^-1,K.1,0,1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[3, -1, 3, -1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 3, -1, -1, 3, 3, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -1, 3, -1, -1, -1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 3, -1, -1, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -1, -3, 1, -1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -3, 1, 1, -3, -3, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -1, -3, 1, 1, -1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -3, 1, 1, -3, -3, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,-1,3,-1,1,1,3,3,3*K.1^-1,3*K.1,3,3*K.1^-1,3*K.1^-1,3,3*K.1,3*K.1,3*K.1^-1,3*K.1,3,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1,-1,3,-1*K.1,-1*K.1^-1,3*K.1^-1,3*K.1,K.1,-1,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1,K.1,1,K.1^-1,K.1,K.1^-1,1,K.1,0,0,0,0,0,0,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,-1,3,-1,1,1,3,3,3*K.1,3*K.1^-1,3,3*K.1,3*K.1,3,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-1,3,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1,-1,3,-1*K.1^-1,-1*K.1,3*K.1,3*K.1^-1,K.1^-1,-1,-1*K.1,K.1,K.1,-1*K.1^-1,K.1^-1,1,K.1,K.1^-1,K.1,1,K.1^-1,0,0,0,0,0,0,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1^-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,-1,3,-1,-1,-1,3,3,3*K.1^-1,3*K.1,3,3*K.1^-1,3*K.1^-1,3,3*K.1,3*K.1,3*K.1^-1,3*K.1,3,1,1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1,-1,3,-1*K.1,-1*K.1^-1,3*K.1^-1,3*K.1,-1*K.1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1*K.1,0,0,0,0,0,0,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,-1,3,-1,-1,-1,3,3,3*K.1,3*K.1^-1,3,3*K.1,3*K.1,3,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-1,3,1,1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1,-1,3,-1*K.1^-1,-1*K.1,3*K.1,3*K.1^-1,-1*K.1^-1,-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1*K.1^-1,0,0,0,0,0,0,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1^-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,-1,-3,1,-1,1,3,3,3*K.1^-1,3*K.1,3,3*K.1^-1,3*K.1^-1,3,3*K.1,3*K.1,3*K.1^-1,3*K.1,3,1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1,-1,-3,K.1,K.1^-1,-3*K.1^-1,-3*K.1,K.1,1,K.1^-1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,1,K.1^-1,-1*K.1,-1*K.1^-1,-1,K.1,0,0,0,0,0,0,K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1*K.1^-1,K.1,K.1^-1,-1,1,-1*K.1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,-1,-3,1,-1,1,3,3,3*K.1,3*K.1^-1,3,3*K.1,3*K.1,3,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-1,3,1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1,-1,-3,K.1^-1,K.1,-3*K.1,-3*K.1^-1,K.1^-1,1,K.1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,1,K.1,-1*K.1^-1,-1*K.1,-1,K.1^-1,0,0,0,0,0,0,K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1,K.1^-1,K.1,-1,1,-1*K.1^-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,-1,-3,1,1,-1,3,3,3*K.1^-1,3*K.1,3,3*K.1^-1,3*K.1^-1,3,3*K.1,3*K.1,3*K.1^-1,3*K.1,3,-1,1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1,-1,-3,K.1,K.1^-1,-3*K.1^-1,-3*K.1,-1*K.1,1,K.1^-1,K.1^-1,-1*K.1^-1,K.1,K.1,-1,-1*K.1^-1,K.1,K.1^-1,1,-1*K.1,0,0,0,0,0,0,-1*K.1^-1,K.1^-1,K.1,-1*K.1,K.1^-1,-1*K.1,-1*K.1^-1,1,-1,K.1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,-1,-3,1,1,-1,3,3,3*K.1,3*K.1^-1,3,3*K.1,3*K.1,3,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-1,3,-1,1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1,-1,-3,K.1^-1,K.1,-3*K.1,-3*K.1^-1,-1*K.1^-1,1,K.1,K.1,-1*K.1,K.1^-1,K.1^-1,-1,-1*K.1,K.1^-1,K.1,1,-1*K.1^-1,0,0,0,0,0,0,-1*K.1,K.1,K.1^-1,-1*K.1^-1,K.1,-1*K.1^-1,-1*K.1,1,-1,K.1^-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[4, 4, 0, 0, 0, 0, 4, 4, 4, 4, 4, -2, 4, -2, 4, -2, -2, -2, -2, 0, 0, 4, 4, -2, 4, -2, 4, 4, -2, 4, 4, 4, -2, 4, -2, 4, 4, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4,4,0,0,0,0,4,4,4*K.1^-1,4*K.1,4,-2*K.1^-1,4*K.1^-1,-2,4*K.1,-2*K.1,-2*K.1^-1,-2*K.1,-2,0,0,4*K.1,4*K.1^-1,-2*K.1^-1,4*K.1,-2,4,4*K.1^-1,-2*K.1,4,4*K.1,4*K.1^-1,-2*K.1^-1,4,-2*K.1^-1,4*K.1^-1,4*K.1,-2,-2*K.1,-2*K.1^-1,-2,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2*K.1^-1,-2*K.1,1,K.1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4,4,0,0,0,0,4,4,4*K.1,4*K.1^-1,4,-2*K.1,4*K.1,-2,4*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2,0,0,4*K.1^-1,4*K.1,-2*K.1,4*K.1^-1,-2,4,4*K.1,-2*K.1^-1,4,4*K.1^-1,4*K.1,-2*K.1,4,-2*K.1,4*K.1,4*K.1^-1,-2,-2*K.1^-1,-2*K.1,-2,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2*K.1,-2*K.1^-1,1,K.1^-1,K.1,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[6, 6, 6, 6, 0, 0, -3, 6, 0, 0, -3, 0, 0, 6, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 6, 6, 0, 0, -3, 0, 0, 0, -3, 0, 0, 0, -3, 0, 0, 6, 0, 0, 0, 0, -3, -3, -3, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 0, 0, 0, 2, 6, -3, 6, 6, -3, 0, -3, 0, -3, 0, 0, 0, 0, 0, 2, 6, 6, 0, 6, 0, -3, -3, 0, 6, -3, 6, 0, -3, 0, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, -1, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, -1, 0, 0, -1, 0, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -2, 0, 0, 2, 0, 6, 6, 6, 6, 6, -3, 6, -3, 6, -3, -3, -3, -3, -2, 0, -2, -2, 1, -2, 1, -2, -2, 1, -2, -2, -2, 1, -2, 1, -2, -2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, -2, 0, 1, 1, 0, 1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, -6, -6, 0, 0, -3, 6, 0, 0, -3, 0, 0, 6, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 6, 6, 0, 0, -3, 0, 0, 0, -3, 0, 0, 0, -3, 0, 0, 6, 0, 0, 0, 0, -3, -3, 3, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 0, 0, 0, -2, 6, -3, 6, 6, -3, 0, -3, 0, -3, 0, 0, 0, 0, 0, -2, 6, 6, 0, 6, 0, -3, -3, 0, 6, -3, 6, 0, -3, 0, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, -2, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -2, -2, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -2, 0, 0, -2, 0, 6, 6, 6, 6, 6, -3, 6, -3, 6, -3, -3, -3, -3, 2, 0, -2, -2, 1, -2, 1, -2, -2, 1, -2, -2, -2, 1, -2, 1, -2, -2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, -2, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, -1, -1, 0, -1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -2, 6, -2, 0, 0, -3, 6, 0, 0, -3, 0, 0, 6, 0, 0, 0, 0, -3, 0, 0, 4, 4, 4, -2, -2, -2, 4, 4, 1, 4, -2, -2, 1, -2, -2, -2, 1, -2, -2, -2, -2, 4, -2, 4, 1, 1, -3, 4, 4, 0, 0, 0, 1, -2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -2, -6, 2, 0, 0, -3, 6, 0, 0, -3, 0, 0, 6, 0, 0, 0, 0, -3, 0, 0, 4, 4, 4, -2, -2, -2, 4, 4, 1, 4, -2, -2, 1, -2, -2, -2, 1, -2, -2, -2, -2, 4, -2, 4, 1, 1, 3, -4, -4, 0, 0, 0, -1, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -2, 0, 0, 0, -2, 6, -3, 6, 6, -3, 0, -3, 0, -3, 0, 0, 0, 0, 0, 2, -2, -2, 4, -2, 4, 1, 1, 4, -2, 1, -2, 4, 1, -2, 1, 1, -2, -2, -2, -2, 4, -2, -2, -2, 4, -2, 0, 0, 0, 0, 0, -2, 0, 0, 0, -2, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, -1, 0, 0, -1, 0, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -2, 0, 0, 0, 2, 6, -3, 6, 6, -3, 0, -3, 0, -3, 0, 0, 0, 0, 0, -2, -2, -2, 4, -2, 4, 1, 1, 4, -2, 1, -2, 4, 1, -2, 1, 1, -2, -2, -2, -2, 4, -2, -2, -2, 4, -2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, -1, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -2, -2, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |6,6,0,0,0,2,6,-3,6*K.1^-1,6*K.1,-3,0,-3*K.1^-1,0,-3*K.1,0,0,0,0,0,2,6*K.1,6*K.1^-1,0,6*K.1,0,-3,-3*K.1^-1,0,6,-3*K.1,6*K.1^-1,0,-3,0,-3*K.1^-1,-3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,0,0,0,2*K.1^-1,0,0,-1,-1*K.1^-1,0,0,0,-1*K.1,0,0,0,0,0,0,0,2*K.1^-1,2*K.1,0,-1*K.1^-1,0,0,-1,0,-1*K.1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |6,6,0,0,0,2,6,-3,6*K.1,6*K.1^-1,-3,0,-3*K.1,0,-3*K.1^-1,0,0,0,0,0,2,6*K.1^-1,6*K.1,0,6*K.1^-1,0,-3,-3*K.1,0,6,-3*K.1^-1,6*K.1,0,-3,0,-3*K.1,-3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,0,0,0,2*K.1,0,0,-1,-1*K.1,0,0,0,-1*K.1^-1,0,0,0,0,0,0,0,2*K.1,2*K.1^-1,0,-1*K.1,0,0,-1,0,-1*K.1^-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |6,-2,0,0,2,0,6,6,6*K.1^-1,6*K.1,6,-3*K.1^-1,6*K.1^-1,-3,6*K.1,-3*K.1,-3*K.1^-1,-3*K.1,-3,-2,0,-2*K.1,-2*K.1^-1,K.1^-1,-2*K.1,1,-2,-2*K.1^-1,K.1,-2,-2*K.1,-2*K.1^-1,K.1^-1,-2,K.1^-1,-2*K.1^-1,-2*K.1,1,K.1,K.1^-1,1,K.1,K.1^-1,K.1,K.1,1,1,0,0,0,0,0,0,0,0,2*K.1^-1,0,0,2*K.1,0,0,-1*K.1,-1*K.1^-1,-1,0,0,0,0,0,0,0,-2*K.1^-1,0,0,-2*K.1,0,K.1,K.1^-1,0,1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |6,-2,0,0,2,0,6,6,6*K.1,6*K.1^-1,6,-3*K.1,6*K.1,-3,6*K.1^-1,-3*K.1^-1,-3*K.1,-3*K.1^-1,-3,-2,0,-2*K.1^-1,-2*K.1,K.1,-2*K.1^-1,1,-2,-2*K.1,K.1^-1,-2,-2*K.1^-1,-2*K.1,K.1,-2,K.1,-2*K.1,-2*K.1^-1,1,K.1^-1,K.1,1,K.1^-1,K.1,K.1^-1,K.1^-1,1,1,0,0,0,0,0,0,0,0,2*K.1,0,0,2*K.1^-1,0,0,-1*K.1^-1,-1*K.1,-1,0,0,0,0,0,0,0,-2*K.1,0,0,-2*K.1^-1,0,K.1^-1,K.1,0,1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |6,-2,6,-2,0,0,-3,6,0,0,-3,0,0,6,0,0,0,0,-3,0,0,4*K.1^-1,4*K.1,4*K.1,-2*K.1^-1,-2,-2,4*K.1,4*K.1^-1,1,4*K.1^-1,-2*K.1,-2*K.1,1,-2*K.1,-2*K.1,-2*K.1^-1,1,-2*K.1^-1,-2*K.1,-2,-2*K.1^-1,4*K.1,-2*K.1^-1,4*K.1^-1,1,1,-3,4*K.1^-1,4*K.1,0,0,0,1,-2*K.1,0,0,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |6,-2,6,-2,0,0,-3,6,0,0,-3,0,0,6,0,0,0,0,-3,0,0,4*K.1,4*K.1^-1,4*K.1^-1,-2*K.1,-2,-2,4*K.1^-1,4*K.1,1,4*K.1,-2*K.1^-1,-2*K.1^-1,1,-2*K.1^-1,-2*K.1^-1,-2*K.1,1,-2*K.1,-2*K.1^-1,-2,-2*K.1,4*K.1^-1,-2*K.1,4*K.1,1,1,-3,4*K.1,4*K.1^-1,0,0,0,1,-2*K.1^-1,0,0,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |6,6,0,0,0,-2,6,-3,6*K.1^-1,6*K.1,-3,0,-3*K.1^-1,0,-3*K.1,0,0,0,0,0,-2,6*K.1,6*K.1^-1,0,6*K.1,0,-3,-3*K.1^-1,0,6,-3*K.1,6*K.1^-1,0,-3,0,-3*K.1^-1,-3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,0,0,0,-2*K.1^-1,0,0,1,K.1^-1,0,0,0,K.1,0,0,0,0,0,0,0,-2*K.1^-1,-2*K.1,0,K.1^-1,0,0,1,0,K.1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |6,6,0,0,0,-2,6,-3,6*K.1,6*K.1^-1,-3,0,-3*K.1,0,-3*K.1^-1,0,0,0,0,0,-2,6*K.1^-1,6*K.1,0,6*K.1^-1,0,-3,-3*K.1,0,6,-3*K.1^-1,6*K.1,0,-3,0,-3*K.1,-3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-1,0,0,0,-2*K.1,0,0,1,K.1,0,0,0,K.1^-1,0,0,0,0,0,0,0,-2*K.1,-2*K.1^-1,0,K.1,0,0,1,0,K.1^-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |6,-2,-6,2,0,0,-3,6,0,0,-3,0,0,6,0,0,0,0,-3,0,0,4*K.1^-1,4*K.1,4*K.1,-2*K.1^-1,-2,-2,4*K.1,4*K.1^-1,1,4*K.1^-1,-2*K.1,-2*K.1,1,-2*K.1,-2*K.1,-2*K.1^-1,1,-2*K.1^-1,-2*K.1,-2,-2*K.1^-1,4*K.1,-2*K.1^-1,4*K.1^-1,1,1,3,-4*K.1^-1,-4*K.1,0,0,0,-1,2*K.1,0,0,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |6,-2,-6,2,0,0,-3,6,0,0,-3,0,0,6,0,0,0,0,-3,0,0,4*K.1,4*K.1^-1,4*K.1^-1,-2*K.1,-2,-2,4*K.1^-1,4*K.1,1,4*K.1,-2*K.1^-1,-2*K.1^-1,1,-2*K.1^-1,-2*K.1^-1,-2*K.1,1,-2*K.1,-2*K.1^-1,-2,-2*K.1,4*K.1^-1,-2*K.1,4*K.1,1,1,3,-4*K.1,-4*K.1^-1,0,0,0,-1,2*K.1^-1,0,0,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |6,-2,0,0,-2,0,6,6,6*K.1^-1,6*K.1,6,-3*K.1^-1,6*K.1^-1,-3,6*K.1,-3*K.1,-3*K.1^-1,-3*K.1,-3,2,0,-2*K.1,-2*K.1^-1,K.1^-1,-2*K.1,1,-2,-2*K.1^-1,K.1,-2,-2*K.1,-2*K.1^-1,K.1^-1,-2,K.1^-1,-2*K.1^-1,-2*K.1,1,K.1,K.1^-1,1,K.1,K.1^-1,K.1,K.1,1,1,0,0,0,0,0,0,0,0,-2*K.1^-1,0,0,-2*K.1,0,0,K.1,K.1^-1,1,0,0,0,0,0,0,0,2*K.1^-1,0,0,2*K.1,0,-1*K.1,-1*K.1^-1,0,-1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |6,-2,0,0,-2,0,6,6,6*K.1,6*K.1^-1,6,-3*K.1,6*K.1,-3,6*K.1^-1,-3*K.1^-1,-3*K.1,-3*K.1^-1,-3,2,0,-2*K.1^-1,-2*K.1,K.1,-2*K.1^-1,1,-2,-2*K.1,K.1^-1,-2,-2*K.1^-1,-2*K.1,K.1,-2,K.1,-2*K.1,-2*K.1^-1,1,K.1^-1,K.1,1,K.1^-1,K.1,K.1^-1,K.1^-1,1,1,0,0,0,0,0,0,0,0,-2*K.1,0,0,-2*K.1^-1,0,0,K.1^-1,K.1,1,0,0,0,0,0,0,0,2*K.1,0,0,2*K.1^-1,0,-1*K.1^-1,-1*K.1,0,-1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |6,-2,0,0,0,2,6,-3,6*K.1^-1,6*K.1,-3,0,-3*K.1^-1,0,-3*K.1,0,0,0,0,0,-2,-2*K.1,-2*K.1^-1,4*K.1^-1,-2*K.1,4,1,K.1^-1,4*K.1,-2,K.1,-2*K.1^-1,4*K.1^-1,1,-2*K.1^-1,K.1^-1,K.1,-2,-2*K.1,-2*K.1^-1,-2,4*K.1,-2*K.1^-1,-2*K.1,-2*K.1,4,-2,0,0,0,0,0,2*K.1,0,0,0,2*K.1^-1,0,0,-1,-1*K.1^-1,0,0,0,-1*K.1,0,0,0,0,0,0,0,-2*K.1^-1,-2*K.1,0,K.1^-1,0,0,1,0,K.1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |6,-2,0,0,0,2,6,-3,6*K.1,6*K.1^-1,-3,0,-3*K.1,0,-3*K.1^-1,0,0,0,0,0,-2,-2*K.1^-1,-2*K.1,4*K.1,-2*K.1^-1,4,1,K.1,4*K.1^-1,-2,K.1^-1,-2*K.1,4*K.1,1,-2*K.1,K.1,K.1^-1,-2,-2*K.1^-1,-2*K.1,-2,4*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^-1,4,-2,0,0,0,0,0,2*K.1^-1,0,0,0,2*K.1,0,0,-1,-1*K.1,0,0,0,-1*K.1^-1,0,0,0,0,0,0,0,-2*K.1,-2*K.1^-1,0,K.1,0,0,1,0,K.1^-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |6,-2,0,0,0,-2,6,-3,6*K.1^-1,6*K.1,-3,0,-3*K.1^-1,0,-3*K.1,0,0,0,0,0,2,-2*K.1,-2*K.1^-1,4*K.1^-1,-2*K.1,4,1,K.1^-1,4*K.1,-2,K.1,-2*K.1^-1,4*K.1^-1,1,-2*K.1^-1,K.1^-1,K.1,-2,-2*K.1,-2*K.1^-1,-2,4*K.1,-2*K.1^-1,-2*K.1,-2*K.1,4,-2,0,0,0,0,0,-2*K.1,0,0,0,-2*K.1^-1,0,0,1,K.1^-1,0,0,0,K.1,0,0,0,0,0,0,0,2*K.1^-1,2*K.1,0,-1*K.1^-1,0,0,-1,0,-1*K.1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |6,-2,0,0,0,-2,6,-3,6*K.1,6*K.1^-1,-3,0,-3*K.1,0,-3*K.1^-1,0,0,0,0,0,2,-2*K.1^-1,-2*K.1,4*K.1,-2*K.1^-1,4,1,K.1,4*K.1^-1,-2,K.1^-1,-2*K.1,4*K.1,1,-2*K.1,K.1,K.1^-1,-2,-2*K.1^-1,-2*K.1,-2,4*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^-1,4,-2,0,0,0,0,0,-2*K.1^-1,0,0,0,-2*K.1,0,0,1,K.1,0,0,0,K.1^-1,0,0,0,0,0,0,0,2*K.1,2*K.1^-1,0,-1*K.1,0,0,-1,0,-1*K.1^-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[12, 12, 0, 0, 0, 0, -6, 12, 0, 0, -6, 0, 0, -6, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, -6, 12, 0, 0, -6, 0, 0, 0, -6, 0, 0, 0, 3, 0, 0, -6, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, 12, 0, 0, 0, 0, -6, -6, 0, 0, 3, 6, 0, 0, 0, 6, -3, -3, 0, 0, 0, 0, 0, 6, 0, 0, -6, 0, 6, -6, 0, 0, -3, 3, -3, 0, 0, 0, 6, 6, 0, -3, -3, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, -4, 0, 0, 0, 0, 12, -6, 12, 12, -6, 0, -6, 0, -6, 0, 0, 0, 0, 0, 0, -4, -4, -4, -4, -4, 2, 2, -4, -4, 2, -4, -4, 2, 2, 2, 2, 2, 2, 2, 2, -4, 2, 2, 2, -4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, -4, 0, 0, 0, 0, -6, 12, 0, 0, -6, 0, 0, -6, 0, 0, 0, 0, 3, 0, 0, 8, 8, -4, -4, 2, -4, 8, -4, 2, 8, -4, 2, 2, 2, -4, -4, -1, 2, 2, 2, 2, -4, 2, -4, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, -4, 0, 0, 0, 0, -6, -6, 0, 0, 3, 6, 0, 0, 0, 6, -3, -3, 0, 0, 0, 8, 8, 2, -4, 8, 2, -4, 2, 2, -4, -4, -1, -1, 5, 2, 2, 2, -4, -4, -4, -1, -1, 5, -1, -4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |12,12,0,0,0,0,-6,-6,0,0,3,6*K.1^-1,0,0,0,6*K.1,-3*K.1^-1,-3*K.1,0,0,0,0,0,6*K.1^-1,0,0,-6,0,6*K.1,-6,0,0,-3*K.1^-1,3,-3*K.1^-1,0,0,0,6*K.1,6*K.1^-1,0,-3*K.1,-3*K.1^-1,-3*K.1,-3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |12,12,0,0,0,0,-6,-6,0,0,3,6*K.1,0,0,0,6*K.1^-1,-3*K.1,-3*K.1^-1,0,0,0,0,0,6*K.1,0,0,-6,0,6*K.1^-1,-6,0,0,-3*K.1,3,-3*K.1,0,0,0,6*K.1^-1,6*K.1,0,-3*K.1^-1,-3*K.1,-3*K.1^-1,-3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |12,-4,0,0,0,0,-6,-6,0,0,3,6*K.1^-1,0,0,0,6*K.1,-3*K.1^-1,-3*K.1,0,0,0,8*K.1,8*K.1^-1,2*K.1^-1,-4*K.1,8,2,-4*K.1^-1,2*K.1,2,-4*K.1,-4*K.1^-1,-1*K.1^-1,-1,5*K.1^-1,2*K.1^-1,2*K.1,2,-4*K.1,-4*K.1^-1,-4,-1*K.1,-1*K.1^-1,5*K.1,-1*K.1,-4,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |12,-4,0,0,0,0,-6,-6,0,0,3,6*K.1,0,0,0,6*K.1^-1,-3*K.1,-3*K.1^-1,0,0,0,8*K.1^-1,8*K.1,2*K.1,-4*K.1^-1,8,2,-4*K.1,2*K.1^-1,2,-4*K.1^-1,-4*K.1,-1*K.1,-1,5*K.1,2*K.1,2*K.1^-1,2,-4*K.1^-1,-4*K.1,-4,-1*K.1^-1,-1*K.1,5*K.1^-1,-1*K.1^-1,-4,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |12,-4,0,0,0,0,-6,-6,0,0,3,6*K.1^-1,0,0,0,6*K.1,-3*K.1^-1,-3*K.1,0,0,0,8*K.1^-1,8*K.1,6+2*K.1,-4*K.1^-1,-4,2,-4*K.1,4-2*K.1,2,-4*K.1^-1,-4*K.1,-3-K.1,-1,3-K.1,2*K.1,2*K.1^-1,-4-6*K.1,2*K.1^-1,2*K.1,2,-2+K.1,-3-K.1,4+K.1,-2+K.1,2,2+6*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |12,-4,0,0,0,0,-6,-6,0,0,3,6*K.1,0,0,0,6*K.1^-1,-3*K.1,-3*K.1^-1,0,0,0,8*K.1,8*K.1^-1,4-2*K.1,-4*K.1,-4,2,-4*K.1^-1,6+2*K.1,2,-4*K.1,-4*K.1^-1,-2+K.1,-1,4+K.1,2*K.1^-1,2*K.1,2+6*K.1,2*K.1,2*K.1^-1,2,-3-K.1,-2+K.1,3-K.1,-3-K.1,2,-4-6*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |12,-4,0,0,0,0,-6,-6,0,0,3,6*K.1^-1,0,0,0,6*K.1,-3*K.1^-1,-3*K.1,0,0,0,8,8,2+6*K.1,-4,-4,2,-4,-4-6*K.1,2,-4,-4,-1-3*K.1,-1,-1+3*K.1,2,2,2+6*K.1,2,2,2,2+3*K.1,-1-3*K.1,-4-3*K.1,2+3*K.1,2,-4-6*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |12,-4,0,0,0,0,-6,-6,0,0,3,6*K.1,0,0,0,6*K.1^-1,-3*K.1,-3*K.1^-1,0,0,0,8,8,-4-6*K.1,-4,-4,2,-4,2+6*K.1,2,-4,-4,2+3*K.1,-1,-4-3*K.1,2,2,-4-6*K.1,2,2,2,-1-3*K.1,2+3*K.1,-1+3*K.1,-1-3*K.1,2,2+6*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |12,-4,0,0,0,0,-6,-6,0,0,3,6,0,0,0,6,-3,-3,0,0,0,8*K.1^-1,8*K.1,-6-4*K.1,-4*K.1^-1,-4,2,-4*K.1,-2+4*K.1,2,-4*K.1^-1,-4*K.1,3+2*K.1,-1,-3-4*K.1,2*K.1,2*K.1^-1,2+6*K.1,2*K.1^-1,2*K.1,2,1-2*K.1,3+2*K.1,1+4*K.1,1-2*K.1,2,-4-6*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |12,-4,0,0,0,0,-6,-6,0,0,3,6,0,0,0,6,-3,-3,0,0,0,8*K.1,8*K.1^-1,-2+4*K.1,-4*K.1,-4,2,-4*K.1^-1,-6-4*K.1,2,-4*K.1,-4*K.1^-1,1-2*K.1,-1,1+4*K.1,2*K.1^-1,2*K.1,-4-6*K.1,2*K.1,2*K.1^-1,2,3+2*K.1,1-2*K.1,-3-4*K.1,3+2*K.1,2,2+6*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |12,-4,0,0,0,0,-6,12,0,0,-6,0,0,-6,0,0,0,0,3,0,0,8*K.1^-1,8*K.1,-4*K.1,-4*K.1^-1,2,-4,8*K.1,-4*K.1^-1,2,8*K.1^-1,-4*K.1,2*K.1,2,2*K.1,-4*K.1,-4*K.1^-1,-1,2*K.1^-1,2*K.1,2,2*K.1^-1,-4*K.1,2*K.1^-1,-4*K.1^-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |12,-4,0,0,0,0,-6,12,0,0,-6,0,0,-6,0,0,0,0,3,0,0,8*K.1,8*K.1^-1,-4*K.1^-1,-4*K.1,2,-4,8*K.1^-1,-4*K.1,2,8*K.1,-4*K.1^-1,2*K.1^-1,2,2*K.1^-1,-4*K.1^-1,-4*K.1,-1,2*K.1,2*K.1^-1,2,2*K.1,-4*K.1^-1,2*K.1,-4*K.1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |12,-4,0,0,0,0,12,-6,12*K.1^-1,12*K.1,-6,0,-6*K.1^-1,0,-6*K.1,0,0,0,0,0,0,-4*K.1,-4*K.1^-1,-4*K.1^-1,-4*K.1,-4,2,2*K.1^-1,-4*K.1,-4,2*K.1,-4*K.1^-1,-4*K.1^-1,2,2*K.1^-1,2*K.1^-1,2*K.1,2,2*K.1,2*K.1^-1,2,-4*K.1,2*K.1^-1,2*K.1,2*K.1,-4,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |12,-4,0,0,0,0,12,-6,12*K.1,12*K.1^-1,-6,0,-6*K.1,0,-6*K.1^-1,0,0,0,0,0,0,-4*K.1^-1,-4*K.1,-4*K.1,-4*K.1^-1,-4,2,2*K.1,-4*K.1^-1,-4,2*K.1^-1,-4*K.1,-4*K.1,2,2*K.1,2*K.1,2*K.1^-1,2,2*K.1^-1,2*K.1,2,-4*K.1^-1,2*K.1,2*K.1^-1,2*K.1^-1,-4,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_3888_fl:= KnownIrreducibles(CR);