# Group 384.171 downloaded from the LMFDB on 01 November 2025. ## Various presentations of this group are stored in this file: # GPC is polycyclic presentation GPerm is permutation group # GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups # Many characteristics of the group are stored as booleans in a record: # Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, # metacyclic, monomial, nilpotent, perfect, quasisimple, rational, # solvable, supersolvable # The character table is stored as a record chartbl_n_i where n is the order # of the group and i is which group of that order it is. The record is # converted to a character table using ConvertToLibraryCharacterTableNC # Constructions GPC := PcGroupCode(4245334616610792201160171975728641,384); a := GPC.1; b := GPC.2; c := GPC.7; GPerm := Group( (1,2,5,11,6,12,24,37,7,13,25,38,27,40,52,60,8,14,26,39,28,41,53,61,4,10,21,34,22,35,49,58)(3,15,17,42,18,43,46,62,16,32,44,36,45,56,63,59,19,33,23,50,47,57,51,64,20,9,29,30,48,31,54,55), (1,3)(2,9)(4,20)(5,23)(6,18)(7,16)(8,19)(10,33)(11,36)(12,31)(13,15)(14,32)(17,26)(21,44)(22,48)(24,51)(25,29)(27,45)(28,47)(30,39)(34,42)(35,57)(37,59)(38,50)(40,43)(41,56)(46,53)(49,63)(52,54)(55,61)(58,62)(60,64)(66,67), (1,4,8,7)(2,10,14,13)(3,16,19,20)(5,21,26,25)(6,22,28,27)(9,15,32,33)(11,34,39,38)(12,35,41,40)(17,44,23,29)(18,45,47,48)(24,49,53,52)(30,42,36,50)(31,43,56,57)(37,58,61,60)(46,63,51,54)(55,62,59,64), (1,5,6,24,7,25,27,52,8,26,28,53,4,21,22,49)(2,11,12,37,13,38,40,60,14,39,41,61,10,34,35,58)(3,17,18,46,16,44,45,63,19,23,47,51,20,29,48,54)(9,30,31,55,15,42,43,62,32,36,56,59,33,50,57,64), (1,6,7,27,8,28,4,22)(2,12,13,40,14,41,10,35)(3,18,16,45,19,47,20,48)(5,24,25,52,26,53,21,49)(9,31,15,43,32,56,33,57)(11,37,38,60,39,61,34,58)(17,46,44,63,23,51,29,54)(30,55,42,62,36,59,50,64), (1,7,8,4)(2,13,14,10)(3,16,19,20)(5,25,26,21)(6,27,28,22)(9,15,32,33)(11,38,39,34)(12,40,41,35)(17,44,23,29)(18,45,47,48)(24,52,53,49)(30,42,36,50)(31,43,56,57)(37,60,61,58)(46,63,51,54)(55,62,59,64), (1,8)(2,14)(3,19)(4,7)(5,26)(6,28)(9,32)(10,13)(11,39)(12,41)(15,33)(16,20)(17,23)(18,47)(21,25)(22,27)(24,53)(29,44)(30,36)(31,56)(34,38)(35,40)(37,61)(42,50)(43,57)(45,48)(46,51)(49,52)(54,63)(55,59)(58,60)(62,64), (65,66,67) ); GLFp := Group([[[ Z(97)^8, 0*Z(97) ], [ 0*Z(97), Z(97)^88 ]], [[ Z(97)^7, 0*Z(97) ], [ 0*Z(97), Z(97)^95 ]], [[ 0*Z(97), Z(97)^0 ], [ Z(97)^0, 0*Z(97) ]]]); # Booleans booleans_384_171 := rec( Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true); # Character Table chartbl_384_171:=rec(); chartbl_384_171.IsFinite:= true; chartbl_384_171.UnderlyingCharacteristic:= 0; chartbl_384_171.UnderlyingGroup:= GLFp; chartbl_384_171.Size:= 384; chartbl_384_171.InfoText:= "Character table for group 384.171 downloaded from the LMFDB."; chartbl_384_171.Identifier:= " C16.D12 "; chartbl_384_171.NrConjugacyClasses:= 120; chartbl_384_171.ConjugacyClasses:= [[1, 0, 0, 1], [96, 0, 0, 96], [1, 0, 0, 96], [0, 1, 1, 0], [61, 0, 0, 35], [75, 0, 0, 75], [22, 0, 0, 22], [22, 0, 0, 75], [0, 1, 96, 0], [36, 0, 0, 62], [35, 0, 0, 36], [61, 0, 0, 62], [50, 0, 0, 50], [33, 0, 0, 33], [64, 0, 0, 64], [47, 0, 0, 47], [64, 0, 0, 33], [47, 0, 0, 50], [0, 4, 43, 0], [0, 4, 54, 0], [6, 0, 0, 81], [16, 0, 0, 91], [16, 0, 0, 6], [91, 0, 0, 81], [85, 0, 0, 85], [8, 0, 0, 8], [18, 0, 0, 18], [27, 0, 0, 27], [70, 0, 0, 70], [79, 0, 0, 79], [89, 0, 0, 89], [12, 0, 0, 12], [8, 0, 0, 89], [85, 0, 0, 12], [27, 0, 0, 70], [18, 0, 0, 79], [0, 2, 25, 0], [0, 3, 11, 0], [0, 3, 86, 0], [0, 2, 72, 0], [4, 0, 0, 54], [9, 0, 0, 73], [24, 0, 0, 88], [43, 0, 0, 93], [4, 0, 0, 43], [73, 0, 0, 88], [54, 0, 0, 93], [9, 0, 0, 24], [28, 0, 0, 63], [52, 0, 0, 77], [30, 0, 0, 78], [55, 0, 0, 51], [46, 0, 0, 55], [19, 0, 0, 30], [77, 0, 0, 45], [63, 0, 0, 69], [34, 0, 0, 28], [20, 0, 0, 52], [78, 0, 0, 67], [51, 0, 0, 42], [42, 0, 0, 46], [67, 0, 0, 19], [45, 0, 0, 20], [69, 0, 0, 34], [0, 5, 17, 0], [0, 7, 15, 0], [0, 10, 60, 0], [0, 20, 45, 0], [0, 20, 52, 0], [0, 10, 37, 0], [0, 7, 82, 0], [0, 5, 80, 0], [2, 0, 0, 25], [49, 0, 0, 66], [32, 0, 0, 53], [11, 0, 0, 94], [31, 0, 0, 48], [72, 0, 0, 95], [44, 0, 0, 65], [3, 0, 0, 86], [25, 0, 0, 95], [66, 0, 0, 48], [53, 0, 0, 65], [11, 0, 0, 3], [94, 0, 0, 86], [32, 0, 0, 44], [2, 0, 0, 72], [49, 0, 0, 31], [5, 0, 0, 17], [39, 0, 0, 40], [21, 0, 0, 68], [10, 0, 0, 37], [40, 0, 0, 58], [17, 0, 0, 92], [38, 0, 0, 71], [23, 0, 0, 41], [21, 0, 0, 29], [37, 0, 0, 87], [83, 0, 0, 84], [82, 0, 0, 90], [26, 0, 0, 38], [23, 0, 0, 56], [7, 0, 0, 82], [14, 0, 0, 84], [13, 0, 0, 83], [15, 0, 0, 90], [41, 0, 0, 74], [59, 0, 0, 71], [7, 0, 0, 15], [13, 0, 0, 14], [10, 0, 0, 60], [68, 0, 0, 76], [56, 0, 0, 74], [26, 0, 0, 59], [5, 0, 0, 80], [39, 0, 0, 57], [60, 0, 0, 87], [29, 0, 0, 76], [57, 0, 0, 58], [80, 0, 0, 92]]; chartbl_384_171.IdentificationOfConjugacyClasses:= [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120]; chartbl_384_171.ComputedPowerMaps:= [ , [1, 1, 1, 1, 5, 2, 2, 2, 2, 5, 5, 5, 6, 7, 7, 6, 7, 6, 6, 7, 10, 10, 10, 10, 16, 15, 14, 13, 13, 14, 15, 16, 15, 16, 13, 14, 13, 14, 15, 16, 23, 24, 24, 23, 23, 24, 23, 24, 33, 34, 35, 36, 36, 35, 34, 33, 33, 34, 35, 36, 36, 35, 34, 33, 25, 26, 27, 28, 29, 30, 31, 32, 45, 46, 47, 48, 46, 45, 47, 48, 45, 46, 47, 48, 48, 47, 45, 46, 81, 82, 83, 84, 82, 81, 85, 86, 83, 84, 87, 88, 85, 86, 88, 87, 87, 88, 86, 85, 88, 87, 84, 83, 86, 85, 81, 82, 84, 83, 82, 81], [1, 2, 3, 4, 1, 7, 6, 8, 9, 2, 3, 3, 15, 16, 13, 14, 18, 17, 20, 19, 8, 8, 7, 6, 27, 28, 32, 31, 26, 25, 29, 30, 35, 36, 33, 34, 39, 40, 37, 38, 17, 18, 18, 17, 15, 16, 14, 13, 51, 52, 57, 58, 63, 64, 60, 59, 54, 53, 49, 50, 55, 56, 61, 62, 67, 68, 72, 71, 66, 65, 69, 70, 26, 25, 30, 29, 32, 31, 27, 28, 33, 34, 36, 35, 35, 36, 33, 34, 49, 50, 53, 54, 55, 56, 59, 60, 61, 62, 64, 63, 62, 61, 58, 57, 56, 55, 52, 51, 50, 49, 51, 52, 53, 54, 57, 58, 59, 60, 63, 64]]; chartbl_384_171.SizesCentralizers:= [384, 384, 192, 32, 192, 384, 384, 192, 32, 192, 192, 192, 384, 384, 384, 384, 192, 192, 32, 32, 192, 192, 192, 192, 384, 384, 384, 384, 384, 384, 384, 384, 192, 192, 192, 192, 32, 32, 32, 32, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 32, 32, 32, 32, 32, 32, 32, 32, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192]; chartbl_384_171.ClassNames:= ["1A", "2A", "2B", "2C", "3A", "4A1", "4A-1", "4B", "4C", "6A", "6B1", "6B-1", "8A1", "8A-1", "8A3", "8A-3", "8B1", "8B-1", "8C1", "8C-1", "12A1", "12A5", "12B1", "12B-1", "16A1", "16A-1", "16A3", "16A-3", "16A5", "16A-5", "16A7", "16A-7", "16B1", "16B-1", "16B3", "16B-3", "16C1", "16C-1", "16C3", "16C-3", "24A1", "24A-1", "24A7", "24A-7", "24B1", "24B-1", "24B5", "24B-5", "32A1", "32A-1", "32A3", "32A-3", "32A5", "32A-5", "32A7", "32A-7", "32A9", "32A-9", "32A11", "32A-11", "32A13", "32A-13", "32A15", "32A-15", "32B1", "32B-1", "32B3", "32B-3", "32B5", "32B-5", "32B7", "32B-7", "48A1", "48A-1", "48A5", "48A-5", "48A7", "48A-7", "48A13", "48A-13", "48B1", "48B-1", "48B5", "48B-5", "48B11", "48B-11", "48B17", "48B-17", "96A1", "96A-1", "96A5", "96A-5", "96A7", "96A-7", "96A11", "96A-11", "96A13", "96A-13", "96A17", "96A-17", "96A19", "96A-19", "96A23", "96A-23", "96A25", "96A-25", "96A29", "96A-29", "96A31", "96A-31", "96A35", "96A-35", "96A37", "96A-37", "96A41", "96A-41", "96A43", "96A-43", "96A47", "96A-47"]; chartbl_384_171.OrderClassRepresentatives:= [1, 2, 2, 2, 3, 4, 4, 4, 4, 6, 6, 6, 8, 8, 8, 8, 8, 8, 8, 8, 12, 12, 12, 12, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 24, 24, 24, 24, 24, 24, 24, 24, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96]; chartbl_384_171.Irr:= [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1*E(4), -1*E(4), E(4), -1*E(4), E(4), E(4), E(4), -1*E(4), -1*E(4), E(4), -1*E(4), E(4), -1*E(4), -1*E(4), E(4), E(4), E(4), -1*E(4), E(4), E(4), -1*E(4), -1*E(4), -1*E(4), E(4), -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1*E(4), -1*E(4), -1*E(4), E(4), E(4), E(4), E(4), E(4), -1*E(4), -1*E(4), E(4), E(4), E(4), -1*E(4), -1*E(4), E(4), E(4), E(4), E(4), -1*E(4), -1*E(4), -1*E(4), E(4), -1*E(4), -1*E(4), -1*E(4), E(4), E(4), E(4), -1*E(4), -1*E(4), -1*E(4)], [1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, E(4), E(4), -1*E(4), E(4), -1*E(4), -1*E(4), -1*E(4), E(4), E(4), -1*E(4), E(4), -1*E(4), E(4), E(4), -1*E(4), -1*E(4), -1*E(4), E(4), -1*E(4), -1*E(4), E(4), E(4), E(4), -1*E(4), -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, E(4), E(4), E(4), -1*E(4), -1*E(4), -1*E(4), -1*E(4), -1*E(4), E(4), E(4), -1*E(4), -1*E(4), -1*E(4), E(4), E(4), -1*E(4), -1*E(4), -1*E(4), -1*E(4), E(4), E(4), E(4), -1*E(4), E(4), E(4), E(4), -1*E(4), -1*E(4), -1*E(4), E(4), E(4), E(4)], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1*E(4), -1*E(4), E(4), -1*E(4), E(4), E(4), E(4), -1*E(4), -1*E(4), E(4), -1*E(4), E(4), -1*E(4), -1*E(4), E(4), E(4), -1*E(4), E(4), -1*E(4), -1*E(4), E(4), E(4), E(4), -1*E(4), -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1*E(4), -1*E(4), -1*E(4), E(4), E(4), E(4), E(4), E(4), -1*E(4), -1*E(4), E(4), E(4), E(4), -1*E(4), -1*E(4), E(4), E(4), E(4), E(4), -1*E(4), -1*E(4), -1*E(4), E(4), -1*E(4), -1*E(4), -1*E(4), E(4), E(4), E(4), -1*E(4), -1*E(4), -1*E(4)], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, E(4), E(4), -1*E(4), E(4), -1*E(4), -1*E(4), -1*E(4), E(4), E(4), -1*E(4), E(4), -1*E(4), E(4), E(4), -1*E(4), -1*E(4), E(4), -1*E(4), E(4), E(4), -1*E(4), -1*E(4), -1*E(4), E(4), -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, E(4), E(4), E(4), -1*E(4), -1*E(4), -1*E(4), -1*E(4), -1*E(4), E(4), E(4), -1*E(4), -1*E(4), -1*E(4), E(4), E(4), -1*E(4), -1*E(4), -1*E(4), -1*E(4), E(4), E(4), E(4), -1*E(4), E(4), E(4), E(4), -1*E(4), -1*E(4), -1*E(4), E(4), E(4), E(4)], [1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1, -1, -1, -1, -1, -1, -1, -1, E(8)^3, E(8)^3, E(8), E(8)^3, E(8), -1*E(8), -1*E(8), -1*E(8)^3, -1*E(8)^3, E(8), -1*E(8)^3, -1*E(8), E(8)^3, -1*E(8)^3, E(8), -1*E(8), E(8)^3, -1*E(8), -1*E(8)^3, -1*E(8)^3, -1*E(8), E(8), E(8), E(8)^3, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^3, -1*E(8)^3, -1*E(8)^3, E(8), -1*E(8), E(8), E(8), E(8), -1*E(8)^3, E(8)^3, -1*E(8), E(8), -1*E(8), -1*E(8)^3, -1*E(8)^3, -1*E(8), -1*E(8), -1*E(8), E(8), E(8)^3, E(8)^3, E(8)^3, E(8), E(8)^3, -1*E(8)^3, -1*E(8)^3, E(8), -1*E(8), -1*E(8), E(8)^3, E(8)^3, -1*E(8)^3], [1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1, -1, -1, -1, -1, -1, -1, -1, -1*E(8), -1*E(8), -1*E(8)^3, -1*E(8), -1*E(8)^3, E(8)^3, E(8)^3, E(8), E(8), -1*E(8)^3, E(8), E(8)^3, -1*E(8), E(8), -1*E(8)^3, E(8)^3, -1*E(8), E(8)^3, E(8), E(8), E(8)^3, -1*E(8)^3, -1*E(8)^3, -1*E(8), E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8), E(8), E(8), -1*E(8)^3, E(8)^3, -1*E(8)^3, -1*E(8)^3, -1*E(8)^3, E(8), -1*E(8), E(8)^3, -1*E(8)^3, E(8)^3, E(8), E(8), E(8)^3, E(8)^3, E(8)^3, -1*E(8)^3, -1*E(8), -1*E(8), -1*E(8), -1*E(8)^3, -1*E(8), E(8), E(8), -1*E(8)^3, E(8)^3, E(8)^3, -1*E(8), -1*E(8), E(8)], [1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1, -1, -1, -1, -1, -1, -1, -1, -1*E(8)^3, -1*E(8)^3, -1*E(8), -1*E(8)^3, -1*E(8), E(8), E(8), E(8)^3, E(8)^3, -1*E(8), E(8)^3, E(8), -1*E(8)^3, E(8)^3, -1*E(8), E(8), -1*E(8)^3, E(8), E(8)^3, E(8)^3, E(8), -1*E(8), -1*E(8), -1*E(8)^3, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^3, E(8)^3, E(8)^3, -1*E(8), E(8), -1*E(8), -1*E(8), -1*E(8), E(8)^3, -1*E(8)^3, E(8), -1*E(8), E(8), E(8)^3, E(8)^3, E(8), E(8), E(8), -1*E(8), -1*E(8)^3, -1*E(8)^3, -1*E(8)^3, -1*E(8), -1*E(8)^3, E(8)^3, E(8)^3, -1*E(8), E(8), E(8), -1*E(8)^3, -1*E(8)^3, E(8)^3], [1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1, -1, -1, -1, -1, -1, -1, -1, E(8), E(8), E(8)^3, E(8), E(8)^3, -1*E(8)^3, -1*E(8)^3, -1*E(8), -1*E(8), E(8)^3, -1*E(8), -1*E(8)^3, E(8), -1*E(8), E(8)^3, -1*E(8)^3, E(8), -1*E(8)^3, -1*E(8), -1*E(8), -1*E(8)^3, E(8)^3, E(8)^3, E(8), E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, E(8), -1*E(8), -1*E(8), E(8)^3, -1*E(8)^3, E(8)^3, E(8)^3, E(8)^3, -1*E(8), E(8), -1*E(8)^3, E(8)^3, -1*E(8)^3, -1*E(8), -1*E(8), -1*E(8)^3, -1*E(8)^3, -1*E(8)^3, E(8)^3, E(8), E(8), E(8), E(8)^3, E(8), -1*E(8), -1*E(8), E(8)^3, -1*E(8)^3, -1*E(8)^3, E(8), E(8), -1*E(8)], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1, -1, -1, -1, -1, -1, -1, -1, E(8)^3, E(8)^3, E(8), E(8)^3, E(8), -1*E(8), -1*E(8), -1*E(8)^3, -1*E(8)^3, E(8), -1*E(8)^3, -1*E(8), E(8)^3, -1*E(8)^3, E(8), -1*E(8), -1*E(8)^3, E(8), E(8)^3, E(8)^3, E(8), -1*E(8), -1*E(8), -1*E(8)^3, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^3, -1*E(8)^3, -1*E(8)^3, E(8), -1*E(8), E(8), E(8), E(8), -1*E(8)^3, E(8)^3, -1*E(8), E(8), -1*E(8), -1*E(8)^3, -1*E(8)^3, -1*E(8), -1*E(8), -1*E(8), E(8), E(8)^3, E(8)^3, E(8)^3, E(8), E(8)^3, -1*E(8)^3, -1*E(8)^3, E(8), -1*E(8), -1*E(8), E(8)^3, E(8)^3, -1*E(8)^3], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1, -1, -1, -1, -1, -1, -1, -1, -1*E(8), -1*E(8), -1*E(8)^3, -1*E(8), -1*E(8)^3, E(8)^3, E(8)^3, E(8), E(8), -1*E(8)^3, E(8), E(8)^3, -1*E(8), E(8), -1*E(8)^3, E(8)^3, E(8), -1*E(8)^3, -1*E(8), -1*E(8), -1*E(8)^3, E(8)^3, E(8)^3, E(8), E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8), E(8), E(8), -1*E(8)^3, E(8)^3, -1*E(8)^3, -1*E(8)^3, -1*E(8)^3, E(8), -1*E(8), E(8)^3, -1*E(8)^3, E(8)^3, E(8), E(8), E(8)^3, E(8)^3, E(8)^3, -1*E(8)^3, -1*E(8), -1*E(8), -1*E(8), -1*E(8)^3, -1*E(8), E(8), E(8), -1*E(8)^3, E(8)^3, E(8)^3, -1*E(8), -1*E(8), E(8)], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1, -1, -1, -1, -1, -1, -1, -1, -1*E(8)^3, -1*E(8)^3, -1*E(8), -1*E(8)^3, -1*E(8), E(8), E(8), E(8)^3, E(8)^3, -1*E(8), E(8)^3, E(8), -1*E(8)^3, E(8)^3, -1*E(8), E(8), E(8)^3, -1*E(8), -1*E(8)^3, -1*E(8)^3, -1*E(8), E(8), E(8), E(8)^3, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^3, E(8)^3, E(8)^3, -1*E(8), E(8), -1*E(8), -1*E(8), -1*E(8), E(8)^3, -1*E(8)^3, E(8), -1*E(8), E(8), E(8)^3, E(8)^3, E(8), E(8), E(8), -1*E(8), -1*E(8)^3, -1*E(8)^3, -1*E(8)^3, -1*E(8), -1*E(8)^3, E(8)^3, E(8)^3, -1*E(8), E(8), E(8), -1*E(8)^3, -1*E(8)^3, E(8)^3], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1, -1, -1, -1, -1, -1, -1, -1, E(8), E(8), E(8)^3, E(8), E(8)^3, -1*E(8)^3, -1*E(8)^3, -1*E(8), -1*E(8), E(8)^3, -1*E(8), -1*E(8)^3, E(8), -1*E(8), E(8)^3, -1*E(8)^3, -1*E(8), E(8)^3, E(8), E(8), E(8)^3, -1*E(8)^3, -1*E(8)^3, -1*E(8), E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, E(8), -1*E(8), -1*E(8), E(8)^3, -1*E(8)^3, E(8)^3, E(8)^3, E(8)^3, -1*E(8), E(8), -1*E(8)^3, E(8)^3, -1*E(8)^3, -1*E(8), -1*E(8), -1*E(8)^3, -1*E(8)^3, -1*E(8)^3, E(8)^3, E(8), E(8), E(8), E(8)^3, E(8), -1*E(8), -1*E(8), E(8)^3, -1*E(8)^3, -1*E(8)^3, E(8), E(8), -1*E(8)], [1, 1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1*E(16)^4, E(16)^4, -1*E(16)^4, E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^4, E(16)^4, 1, 1, -1, -1, -1*E(16)^2, E(16)^6, -1*E(16)^6, E(16)^2, E(16)^2, -1*E(16)^6, -1*E(16)^2, E(16)^6, -1*E(16)^2, E(16)^2, E(16)^6, -1*E(16)^6, -1*E(16)^2, E(16)^6, -1*E(16)^6, E(16)^2, -1*E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^4, E(16)^4, E(16)^4, -1*E(16)^4, E(16)^4, -1*E(16), E(16), -1*E(16)^3, E(16), -1*E(16)^3, E(16)^7, E(16)^7, -1*E(16)^5, -1*E(16)^5, E(16)^3, E(16)^5, -1*E(16)^7, -1*E(16), E(16)^5, E(16)^3, -1*E(16)^7, E(16)^5, -1*E(16)^3, -1*E(16), E(16), E(16)^3, E(16)^7, -1*E(16)^7, -1*E(16)^5, E(16)^2, E(16)^6, -1*E(16)^2, -1*E(16)^6, -1*E(16)^6, E(16)^2, E(16)^2, -1*E(16)^6, -1*E(16)^2, E(16)^6, E(16)^2, -1*E(16)^6, E(16)^6, -1*E(16)^2, -1*E(16)^2, E(16)^6, E(16), -1*E(16)^5, -1*E(16)^5, -1*E(16)^3, E(16)^7, -1*E(16)^3, E(16)^3, -1*E(16)^3, E(16)^5, -1*E(16), E(16)^7, E(16)^3, -1*E(16)^7, -1*E(16)^5, E(16)^5, -1*E(16)^7, E(16)^7, -1*E(16)^7, -1*E(16)^3, -1*E(16), E(16), -1*E(16), E(16)^3, E(16), E(16)^5, -1*E(16)^5, E(16)^3, -1*E(16)^7, E(16)^7, -1*E(16), E(16), E(16)^5], [1, 1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, E(16)^4, -1*E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^4, E(16)^4, E(16)^4, -1*E(16)^4, 1, 1, -1, -1, E(16)^6, -1*E(16)^2, E(16)^2, -1*E(16)^6, -1*E(16)^6, E(16)^2, E(16)^6, -1*E(16)^2, E(16)^6, -1*E(16)^6, -1*E(16)^2, E(16)^2, E(16)^6, -1*E(16)^2, E(16)^2, -1*E(16)^6, E(16)^4, -1*E(16)^4, E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^4, E(16)^4, -1*E(16)^4, E(16)^7, -1*E(16)^7, E(16)^5, -1*E(16)^7, E(16)^5, -1*E(16), -1*E(16), E(16)^3, E(16)^3, -1*E(16)^5, -1*E(16)^3, E(16), E(16)^7, -1*E(16)^3, -1*E(16)^5, E(16), -1*E(16)^3, E(16)^5, E(16)^7, -1*E(16)^7, -1*E(16)^5, -1*E(16), E(16), E(16)^3, -1*E(16)^6, -1*E(16)^2, E(16)^6, E(16)^2, E(16)^2, -1*E(16)^6, -1*E(16)^6, E(16)^2, E(16)^6, -1*E(16)^2, -1*E(16)^6, E(16)^2, -1*E(16)^2, E(16)^6, E(16)^6, -1*E(16)^2, -1*E(16)^7, E(16)^3, E(16)^3, E(16)^5, -1*E(16), E(16)^5, -1*E(16)^5, E(16)^5, -1*E(16)^3, E(16)^7, -1*E(16), -1*E(16)^5, E(16), E(16)^3, -1*E(16)^3, E(16), -1*E(16), E(16), E(16)^5, E(16)^7, -1*E(16)^7, E(16)^7, -1*E(16)^5, -1*E(16)^7, -1*E(16)^3, E(16)^3, -1*E(16)^5, E(16), -1*E(16), E(16)^7, -1*E(16)^7, -1*E(16)^3], [1, 1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1*E(16)^4, E(16)^4, -1*E(16)^4, E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^4, E(16)^4, 1, 1, -1, -1, -1*E(16)^2, E(16)^6, -1*E(16)^6, E(16)^2, E(16)^2, -1*E(16)^6, -1*E(16)^2, E(16)^6, -1*E(16)^2, E(16)^2, E(16)^6, -1*E(16)^6, -1*E(16)^2, E(16)^6, -1*E(16)^6, E(16)^2, -1*E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^4, E(16)^4, E(16)^4, -1*E(16)^4, E(16)^4, E(16), -1*E(16), E(16)^3, -1*E(16), E(16)^3, -1*E(16)^7, -1*E(16)^7, E(16)^5, E(16)^5, -1*E(16)^3, -1*E(16)^5, E(16)^7, E(16), -1*E(16)^5, -1*E(16)^3, E(16)^7, -1*E(16)^5, E(16)^3, E(16), -1*E(16), -1*E(16)^3, -1*E(16)^7, E(16)^7, E(16)^5, E(16)^2, E(16)^6, -1*E(16)^2, -1*E(16)^6, -1*E(16)^6, E(16)^2, E(16)^2, -1*E(16)^6, -1*E(16)^2, E(16)^6, E(16)^2, -1*E(16)^6, E(16)^6, -1*E(16)^2, -1*E(16)^2, E(16)^6, -1*E(16), E(16)^5, E(16)^5, E(16)^3, -1*E(16)^7, E(16)^3, -1*E(16)^3, E(16)^3, -1*E(16)^5, E(16), -1*E(16)^7, -1*E(16)^3, E(16)^7, E(16)^5, -1*E(16)^5, E(16)^7, -1*E(16)^7, E(16)^7, E(16)^3, E(16), -1*E(16), E(16), -1*E(16)^3, -1*E(16), -1*E(16)^5, E(16)^5, -1*E(16)^3, E(16)^7, -1*E(16)^7, E(16), -1*E(16), -1*E(16)^5], [1, 1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, E(16)^4, -1*E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^4, E(16)^4, E(16)^4, -1*E(16)^4, 1, 1, -1, -1, E(16)^6, -1*E(16)^2, E(16)^2, -1*E(16)^6, -1*E(16)^6, E(16)^2, E(16)^6, -1*E(16)^2, E(16)^6, -1*E(16)^6, -1*E(16)^2, E(16)^2, E(16)^6, -1*E(16)^2, E(16)^2, -1*E(16)^6, E(16)^4, -1*E(16)^4, E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^7, E(16)^7, -1*E(16)^5, E(16)^7, -1*E(16)^5, E(16), E(16), -1*E(16)^3, -1*E(16)^3, E(16)^5, E(16)^3, -1*E(16), -1*E(16)^7, E(16)^3, E(16)^5, -1*E(16), E(16)^3, -1*E(16)^5, -1*E(16)^7, E(16)^7, E(16)^5, E(16), -1*E(16), -1*E(16)^3, -1*E(16)^6, -1*E(16)^2, E(16)^6, E(16)^2, E(16)^2, -1*E(16)^6, -1*E(16)^6, E(16)^2, E(16)^6, -1*E(16)^2, -1*E(16)^6, E(16)^2, -1*E(16)^2, E(16)^6, E(16)^6, -1*E(16)^2, E(16)^7, -1*E(16)^3, -1*E(16)^3, -1*E(16)^5, E(16), -1*E(16)^5, E(16)^5, -1*E(16)^5, E(16)^3, -1*E(16)^7, E(16), E(16)^5, -1*E(16), -1*E(16)^3, E(16)^3, -1*E(16), E(16), -1*E(16), -1*E(16)^5, -1*E(16)^7, E(16)^7, -1*E(16)^7, E(16)^5, E(16)^7, E(16)^3, -1*E(16)^3, E(16)^5, -1*E(16), E(16), -1*E(16)^7, E(16)^7, E(16)^3], [1, 1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1*E(16)^4, E(16)^4, -1*E(16)^4, E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^4, E(16)^4, 1, 1, -1, -1, E(16)^2, -1*E(16)^6, E(16)^6, -1*E(16)^2, -1*E(16)^2, E(16)^6, E(16)^2, -1*E(16)^6, E(16)^2, -1*E(16)^2, -1*E(16)^6, E(16)^6, E(16)^2, -1*E(16)^6, E(16)^6, -1*E(16)^2, -1*E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^4, E(16)^4, E(16)^4, -1*E(16)^4, E(16)^4, E(16)^5, -1*E(16)^5, -1*E(16)^7, -1*E(16)^5, -1*E(16)^7, -1*E(16)^3, -1*E(16)^3, -1*E(16), -1*E(16), E(16)^7, E(16), E(16)^3, E(16)^5, E(16), E(16)^7, E(16)^3, E(16), -1*E(16)^7, E(16)^5, -1*E(16)^5, E(16)^7, -1*E(16)^3, E(16)^3, -1*E(16), -1*E(16)^2, -1*E(16)^6, E(16)^2, E(16)^6, E(16)^6, -1*E(16)^2, -1*E(16)^2, E(16)^6, E(16)^2, -1*E(16)^6, -1*E(16)^2, E(16)^6, -1*E(16)^6, E(16)^2, E(16)^2, -1*E(16)^6, -1*E(16)^5, -1*E(16), -1*E(16), -1*E(16)^7, -1*E(16)^3, -1*E(16)^7, E(16)^7, -1*E(16)^7, E(16), E(16)^5, -1*E(16)^3, E(16)^7, E(16)^3, -1*E(16), E(16), E(16)^3, -1*E(16)^3, E(16)^3, -1*E(16)^7, E(16)^5, -1*E(16)^5, E(16)^5, E(16)^7, -1*E(16)^5, E(16), -1*E(16), E(16)^7, E(16)^3, -1*E(16)^3, E(16)^5, -1*E(16)^5, E(16)], [1, 1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, E(16)^4, -1*E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^4, E(16)^4, E(16)^4, -1*E(16)^4, 1, 1, -1, -1, -1*E(16)^6, E(16)^2, -1*E(16)^2, E(16)^6, E(16)^6, -1*E(16)^2, -1*E(16)^6, E(16)^2, -1*E(16)^6, E(16)^6, E(16)^2, -1*E(16)^2, -1*E(16)^6, E(16)^2, -1*E(16)^2, E(16)^6, E(16)^4, -1*E(16)^4, E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^3, E(16)^3, E(16), E(16)^3, E(16), E(16)^5, E(16)^5, E(16)^7, E(16)^7, -1*E(16), -1*E(16)^7, -1*E(16)^5, -1*E(16)^3, -1*E(16)^7, -1*E(16), -1*E(16)^5, -1*E(16)^7, E(16), -1*E(16)^3, E(16)^3, -1*E(16), E(16)^5, -1*E(16)^5, E(16)^7, E(16)^6, E(16)^2, -1*E(16)^6, -1*E(16)^2, -1*E(16)^2, E(16)^6, E(16)^6, -1*E(16)^2, -1*E(16)^6, E(16)^2, E(16)^6, -1*E(16)^2, E(16)^2, -1*E(16)^6, -1*E(16)^6, E(16)^2, E(16)^3, E(16)^7, E(16)^7, E(16), E(16)^5, E(16), -1*E(16), E(16), -1*E(16)^7, -1*E(16)^3, E(16)^5, -1*E(16), -1*E(16)^5, E(16)^7, -1*E(16)^7, -1*E(16)^5, E(16)^5, -1*E(16)^5, E(16), -1*E(16)^3, E(16)^3, -1*E(16)^3, -1*E(16), E(16)^3, -1*E(16)^7, E(16)^7, -1*E(16), -1*E(16)^5, E(16)^5, -1*E(16)^3, E(16)^3, -1*E(16)^7], [1, 1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1*E(16)^4, E(16)^4, -1*E(16)^4, E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^4, E(16)^4, 1, 1, -1, -1, E(16)^2, -1*E(16)^6, E(16)^6, -1*E(16)^2, -1*E(16)^2, E(16)^6, E(16)^2, -1*E(16)^6, E(16)^2, -1*E(16)^2, -1*E(16)^6, E(16)^6, E(16)^2, -1*E(16)^6, E(16)^6, -1*E(16)^2, -1*E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^4, E(16)^4, E(16)^4, -1*E(16)^4, E(16)^4, -1*E(16)^5, E(16)^5, E(16)^7, E(16)^5, E(16)^7, E(16)^3, E(16)^3, E(16), E(16), -1*E(16)^7, -1*E(16), -1*E(16)^3, -1*E(16)^5, -1*E(16), -1*E(16)^7, -1*E(16)^3, -1*E(16), E(16)^7, -1*E(16)^5, E(16)^5, -1*E(16)^7, E(16)^3, -1*E(16)^3, E(16), -1*E(16)^2, -1*E(16)^6, E(16)^2, E(16)^6, E(16)^6, -1*E(16)^2, -1*E(16)^2, E(16)^6, E(16)^2, -1*E(16)^6, -1*E(16)^2, E(16)^6, -1*E(16)^6, E(16)^2, E(16)^2, -1*E(16)^6, E(16)^5, E(16), E(16), E(16)^7, E(16)^3, E(16)^7, -1*E(16)^7, E(16)^7, -1*E(16), -1*E(16)^5, E(16)^3, -1*E(16)^7, -1*E(16)^3, E(16), -1*E(16), -1*E(16)^3, E(16)^3, -1*E(16)^3, E(16)^7, -1*E(16)^5, E(16)^5, -1*E(16)^5, -1*E(16)^7, E(16)^5, -1*E(16), E(16), -1*E(16)^7, -1*E(16)^3, E(16)^3, -1*E(16)^5, E(16)^5, -1*E(16)], [1, 1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, E(16)^4, -1*E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^4, E(16)^4, E(16)^4, -1*E(16)^4, 1, 1, -1, -1, -1*E(16)^6, E(16)^2, -1*E(16)^2, E(16)^6, E(16)^6, -1*E(16)^2, -1*E(16)^6, E(16)^2, -1*E(16)^6, E(16)^6, E(16)^2, -1*E(16)^2, -1*E(16)^6, E(16)^2, -1*E(16)^2, E(16)^6, E(16)^4, -1*E(16)^4, E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^4, E(16)^4, -1*E(16)^4, E(16)^3, -1*E(16)^3, -1*E(16), -1*E(16)^3, -1*E(16), -1*E(16)^5, -1*E(16)^5, -1*E(16)^7, -1*E(16)^7, E(16), E(16)^7, E(16)^5, E(16)^3, E(16)^7, E(16), E(16)^5, E(16)^7, -1*E(16), E(16)^3, -1*E(16)^3, E(16), -1*E(16)^5, E(16)^5, -1*E(16)^7, E(16)^6, E(16)^2, -1*E(16)^6, -1*E(16)^2, -1*E(16)^2, E(16)^6, E(16)^6, -1*E(16)^2, -1*E(16)^6, E(16)^2, E(16)^6, -1*E(16)^2, E(16)^2, -1*E(16)^6, -1*E(16)^6, E(16)^2, -1*E(16)^3, -1*E(16)^7, -1*E(16)^7, -1*E(16), -1*E(16)^5, -1*E(16), E(16), -1*E(16), E(16)^7, E(16)^3, -1*E(16)^5, E(16), E(16)^5, -1*E(16)^7, E(16)^7, E(16)^5, -1*E(16)^5, E(16)^5, -1*E(16), E(16)^3, -1*E(16)^3, E(16)^3, E(16), -1*E(16)^3, E(16)^7, -1*E(16)^7, E(16), E(16)^5, -1*E(16)^5, E(16)^3, -1*E(16)^3, E(16)^7], [1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, -1, -1*E(16)^4, E(16)^4, -1*E(16)^4, E(16)^4, E(16)^4, -1*E(16)^4, E(16)^4, -1*E(16)^4, 1, 1, -1, -1, -1*E(16)^2, E(16)^6, -1*E(16)^6, E(16)^2, E(16)^2, -1*E(16)^6, -1*E(16)^2, E(16)^6, -1*E(16)^2, E(16)^2, E(16)^6, -1*E(16)^6, E(16)^2, -1*E(16)^6, E(16)^6, -1*E(16)^2, -1*E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^4, E(16)^4, E(16)^4, -1*E(16)^4, E(16)^4, -1*E(16), E(16), -1*E(16)^3, E(16), -1*E(16)^3, E(16)^7, E(16)^7, -1*E(16)^5, -1*E(16)^5, E(16)^3, E(16)^5, -1*E(16)^7, -1*E(16), E(16)^5, E(16)^3, -1*E(16)^7, -1*E(16)^5, E(16)^3, E(16), -1*E(16), -1*E(16)^3, -1*E(16)^7, E(16)^7, E(16)^5, E(16)^2, E(16)^6, -1*E(16)^2, -1*E(16)^6, -1*E(16)^6, E(16)^2, E(16)^2, -1*E(16)^6, -1*E(16)^2, E(16)^6, E(16)^2, -1*E(16)^6, E(16)^6, -1*E(16)^2, -1*E(16)^2, E(16)^6, E(16), -1*E(16)^5, -1*E(16)^5, -1*E(16)^3, E(16)^7, -1*E(16)^3, E(16)^3, -1*E(16)^3, E(16)^5, -1*E(16), E(16)^7, E(16)^3, -1*E(16)^7, -1*E(16)^5, E(16)^5, -1*E(16)^7, E(16)^7, -1*E(16)^7, -1*E(16)^3, -1*E(16), E(16), -1*E(16), E(16)^3, E(16), E(16)^5, -1*E(16)^5, E(16)^3, -1*E(16)^7, E(16)^7, -1*E(16), E(16), E(16)^5], [1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, -1, E(16)^4, -1*E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^4, E(16)^4, -1*E(16)^4, E(16)^4, 1, 1, -1, -1, E(16)^6, -1*E(16)^2, E(16)^2, -1*E(16)^6, -1*E(16)^6, E(16)^2, E(16)^6, -1*E(16)^2, E(16)^6, -1*E(16)^6, -1*E(16)^2, E(16)^2, -1*E(16)^6, E(16)^2, -1*E(16)^2, E(16)^6, E(16)^4, -1*E(16)^4, E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^4, E(16)^4, -1*E(16)^4, E(16)^7, -1*E(16)^7, E(16)^5, -1*E(16)^7, E(16)^5, -1*E(16), -1*E(16), E(16)^3, E(16)^3, -1*E(16)^5, -1*E(16)^3, E(16), E(16)^7, -1*E(16)^3, -1*E(16)^5, E(16), E(16)^3, -1*E(16)^5, -1*E(16)^7, E(16)^7, E(16)^5, E(16), -1*E(16), -1*E(16)^3, -1*E(16)^6, -1*E(16)^2, E(16)^6, E(16)^2, E(16)^2, -1*E(16)^6, -1*E(16)^6, E(16)^2, E(16)^6, -1*E(16)^2, -1*E(16)^6, E(16)^2, -1*E(16)^2, E(16)^6, E(16)^6, -1*E(16)^2, -1*E(16)^7, E(16)^3, E(16)^3, E(16)^5, -1*E(16), E(16)^5, -1*E(16)^5, E(16)^5, -1*E(16)^3, E(16)^7, -1*E(16), -1*E(16)^5, E(16), E(16)^3, -1*E(16)^3, E(16), -1*E(16), E(16), E(16)^5, E(16)^7, -1*E(16)^7, E(16)^7, -1*E(16)^5, -1*E(16)^7, -1*E(16)^3, E(16)^3, -1*E(16)^5, E(16), -1*E(16), E(16)^7, -1*E(16)^7, -1*E(16)^3], [1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, -1, -1*E(16)^4, E(16)^4, -1*E(16)^4, E(16)^4, E(16)^4, -1*E(16)^4, E(16)^4, -1*E(16)^4, 1, 1, -1, -1, -1*E(16)^2, E(16)^6, -1*E(16)^6, E(16)^2, E(16)^2, -1*E(16)^6, -1*E(16)^2, E(16)^6, -1*E(16)^2, E(16)^2, E(16)^6, -1*E(16)^6, E(16)^2, -1*E(16)^6, E(16)^6, -1*E(16)^2, -1*E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^4, E(16)^4, E(16)^4, -1*E(16)^4, E(16)^4, E(16), -1*E(16), E(16)^3, -1*E(16), E(16)^3, -1*E(16)^7, -1*E(16)^7, E(16)^5, E(16)^5, -1*E(16)^3, -1*E(16)^5, E(16)^7, E(16), -1*E(16)^5, -1*E(16)^3, E(16)^7, E(16)^5, -1*E(16)^3, -1*E(16), E(16), E(16)^3, E(16)^7, -1*E(16)^7, -1*E(16)^5, E(16)^2, E(16)^6, -1*E(16)^2, -1*E(16)^6, -1*E(16)^6, E(16)^2, E(16)^2, -1*E(16)^6, -1*E(16)^2, E(16)^6, E(16)^2, -1*E(16)^6, E(16)^6, -1*E(16)^2, -1*E(16)^2, E(16)^6, -1*E(16), E(16)^5, E(16)^5, E(16)^3, -1*E(16)^7, E(16)^3, -1*E(16)^3, E(16)^3, -1*E(16)^5, E(16), -1*E(16)^7, -1*E(16)^3, E(16)^7, E(16)^5, -1*E(16)^5, E(16)^7, -1*E(16)^7, E(16)^7, E(16)^3, E(16), -1*E(16), E(16), -1*E(16)^3, -1*E(16), -1*E(16)^5, E(16)^5, -1*E(16)^3, E(16)^7, -1*E(16)^7, E(16), -1*E(16), -1*E(16)^5], [1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, -1, E(16)^4, -1*E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^4, E(16)^4, -1*E(16)^4, E(16)^4, 1, 1, -1, -1, E(16)^6, -1*E(16)^2, E(16)^2, -1*E(16)^6, -1*E(16)^6, E(16)^2, E(16)^6, -1*E(16)^2, E(16)^6, -1*E(16)^6, -1*E(16)^2, E(16)^2, -1*E(16)^6, E(16)^2, -1*E(16)^2, E(16)^6, E(16)^4, -1*E(16)^4, E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^7, E(16)^7, -1*E(16)^5, E(16)^7, -1*E(16)^5, E(16), E(16), -1*E(16)^3, -1*E(16)^3, E(16)^5, E(16)^3, -1*E(16), -1*E(16)^7, E(16)^3, E(16)^5, -1*E(16), -1*E(16)^3, E(16)^5, E(16)^7, -1*E(16)^7, -1*E(16)^5, -1*E(16), E(16), E(16)^3, -1*E(16)^6, -1*E(16)^2, E(16)^6, E(16)^2, E(16)^2, -1*E(16)^6, -1*E(16)^6, E(16)^2, E(16)^6, -1*E(16)^2, -1*E(16)^6, E(16)^2, -1*E(16)^2, E(16)^6, E(16)^6, -1*E(16)^2, E(16)^7, -1*E(16)^3, -1*E(16)^3, -1*E(16)^5, E(16), -1*E(16)^5, E(16)^5, -1*E(16)^5, E(16)^3, -1*E(16)^7, E(16), E(16)^5, -1*E(16), -1*E(16)^3, E(16)^3, -1*E(16), E(16), -1*E(16), -1*E(16)^5, -1*E(16)^7, E(16)^7, -1*E(16)^7, E(16)^5, E(16)^7, E(16)^3, -1*E(16)^3, E(16)^5, -1*E(16), E(16), -1*E(16)^7, E(16)^7, E(16)^3], [1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, -1, -1*E(16)^4, E(16)^4, -1*E(16)^4, E(16)^4, E(16)^4, -1*E(16)^4, E(16)^4, -1*E(16)^4, 1, 1, -1, -1, E(16)^2, -1*E(16)^6, E(16)^6, -1*E(16)^2, -1*E(16)^2, E(16)^6, E(16)^2, -1*E(16)^6, E(16)^2, -1*E(16)^2, -1*E(16)^6, E(16)^6, -1*E(16)^2, E(16)^6, -1*E(16)^6, E(16)^2, -1*E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^4, E(16)^4, E(16)^4, -1*E(16)^4, E(16)^4, E(16)^5, -1*E(16)^5, -1*E(16)^7, -1*E(16)^5, -1*E(16)^7, -1*E(16)^3, -1*E(16)^3, -1*E(16), -1*E(16), E(16)^7, E(16), E(16)^3, E(16)^5, E(16), E(16)^7, E(16)^3, -1*E(16), E(16)^7, -1*E(16)^5, E(16)^5, -1*E(16)^7, E(16)^3, -1*E(16)^3, E(16), -1*E(16)^2, -1*E(16)^6, E(16)^2, E(16)^6, E(16)^6, -1*E(16)^2, -1*E(16)^2, E(16)^6, E(16)^2, -1*E(16)^6, -1*E(16)^2, E(16)^6, -1*E(16)^6, E(16)^2, E(16)^2, -1*E(16)^6, -1*E(16)^5, -1*E(16), -1*E(16), -1*E(16)^7, -1*E(16)^3, -1*E(16)^7, E(16)^7, -1*E(16)^7, E(16), E(16)^5, -1*E(16)^3, E(16)^7, E(16)^3, -1*E(16), E(16), E(16)^3, -1*E(16)^3, E(16)^3, -1*E(16)^7, E(16)^5, -1*E(16)^5, E(16)^5, E(16)^7, -1*E(16)^5, E(16), -1*E(16), E(16)^7, E(16)^3, -1*E(16)^3, E(16)^5, -1*E(16)^5, E(16)], [1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, -1, E(16)^4, -1*E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^4, E(16)^4, -1*E(16)^4, E(16)^4, 1, 1, -1, -1, -1*E(16)^6, E(16)^2, -1*E(16)^2, E(16)^6, E(16)^6, -1*E(16)^2, -1*E(16)^6, E(16)^2, -1*E(16)^6, E(16)^6, E(16)^2, -1*E(16)^2, E(16)^6, -1*E(16)^2, E(16)^2, -1*E(16)^6, E(16)^4, -1*E(16)^4, E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^3, E(16)^3, E(16), E(16)^3, E(16), E(16)^5, E(16)^5, E(16)^7, E(16)^7, -1*E(16), -1*E(16)^7, -1*E(16)^5, -1*E(16)^3, -1*E(16)^7, -1*E(16), -1*E(16)^5, E(16)^7, -1*E(16), E(16)^3, -1*E(16)^3, E(16), -1*E(16)^5, E(16)^5, -1*E(16)^7, E(16)^6, E(16)^2, -1*E(16)^6, -1*E(16)^2, -1*E(16)^2, E(16)^6, E(16)^6, -1*E(16)^2, -1*E(16)^6, E(16)^2, E(16)^6, -1*E(16)^2, E(16)^2, -1*E(16)^6, -1*E(16)^6, E(16)^2, E(16)^3, E(16)^7, E(16)^7, E(16), E(16)^5, E(16), -1*E(16), E(16), -1*E(16)^7, -1*E(16)^3, E(16)^5, -1*E(16), -1*E(16)^5, E(16)^7, -1*E(16)^7, -1*E(16)^5, E(16)^5, -1*E(16)^5, E(16), -1*E(16)^3, E(16)^3, -1*E(16)^3, -1*E(16), E(16)^3, -1*E(16)^7, E(16)^7, -1*E(16), -1*E(16)^5, E(16)^5, -1*E(16)^3, E(16)^3, -1*E(16)^7], [1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, -1, -1*E(16)^4, E(16)^4, -1*E(16)^4, E(16)^4, E(16)^4, -1*E(16)^4, E(16)^4, -1*E(16)^4, 1, 1, -1, -1, E(16)^2, -1*E(16)^6, E(16)^6, -1*E(16)^2, -1*E(16)^2, E(16)^6, E(16)^2, -1*E(16)^6, E(16)^2, -1*E(16)^2, -1*E(16)^6, E(16)^6, -1*E(16)^2, E(16)^6, -1*E(16)^6, E(16)^2, -1*E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^4, E(16)^4, E(16)^4, -1*E(16)^4, E(16)^4, -1*E(16)^5, E(16)^5, E(16)^7, E(16)^5, E(16)^7, E(16)^3, E(16)^3, E(16), E(16), -1*E(16)^7, -1*E(16), -1*E(16)^3, -1*E(16)^5, -1*E(16), -1*E(16)^7, -1*E(16)^3, E(16), -1*E(16)^7, E(16)^5, -1*E(16)^5, E(16)^7, -1*E(16)^3, E(16)^3, -1*E(16), -1*E(16)^2, -1*E(16)^6, E(16)^2, E(16)^6, E(16)^6, -1*E(16)^2, -1*E(16)^2, E(16)^6, E(16)^2, -1*E(16)^6, -1*E(16)^2, E(16)^6, -1*E(16)^6, E(16)^2, E(16)^2, -1*E(16)^6, E(16)^5, E(16), E(16), E(16)^7, E(16)^3, E(16)^7, -1*E(16)^7, E(16)^7, -1*E(16), -1*E(16)^5, E(16)^3, -1*E(16)^7, -1*E(16)^3, E(16), -1*E(16), -1*E(16)^3, E(16)^3, -1*E(16)^3, E(16)^7, -1*E(16)^5, E(16)^5, -1*E(16)^5, -1*E(16)^7, E(16)^5, -1*E(16), E(16), -1*E(16)^7, -1*E(16)^3, E(16)^3, -1*E(16)^5, E(16)^5, -1*E(16)], [1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, -1, E(16)^4, -1*E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^4, E(16)^4, -1*E(16)^4, E(16)^4, 1, 1, -1, -1, -1*E(16)^6, E(16)^2, -1*E(16)^2, E(16)^6, E(16)^6, -1*E(16)^2, -1*E(16)^6, E(16)^2, -1*E(16)^6, E(16)^6, E(16)^2, -1*E(16)^2, E(16)^6, -1*E(16)^2, E(16)^2, -1*E(16)^6, E(16)^4, -1*E(16)^4, E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^4, E(16)^4, -1*E(16)^4, E(16)^3, -1*E(16)^3, -1*E(16), -1*E(16)^3, -1*E(16), -1*E(16)^5, -1*E(16)^5, -1*E(16)^7, -1*E(16)^7, E(16), E(16)^7, E(16)^5, E(16)^3, E(16)^7, E(16), E(16)^5, -1*E(16)^7, E(16), -1*E(16)^3, E(16)^3, -1*E(16), E(16)^5, -1*E(16)^5, E(16)^7, E(16)^6, E(16)^2, -1*E(16)^6, -1*E(16)^2, -1*E(16)^2, E(16)^6, E(16)^6, -1*E(16)^2, -1*E(16)^6, E(16)^2, E(16)^6, -1*E(16)^2, E(16)^2, -1*E(16)^6, -1*E(16)^6, E(16)^2, -1*E(16)^3, -1*E(16)^7, -1*E(16)^7, -1*E(16), -1*E(16)^5, -1*E(16), E(16), -1*E(16), E(16)^7, E(16)^3, -1*E(16)^5, E(16), E(16)^5, -1*E(16)^7, E(16)^7, E(16)^5, -1*E(16)^5, E(16)^5, -1*E(16), E(16)^3, -1*E(16)^3, E(16)^3, E(16), -1*E(16)^3, E(16)^7, -1*E(16)^7, E(16), E(16)^5, -1*E(16)^5, E(16)^3, -1*E(16)^3, E(16)^7], [2, 2, 2, 0, -1, 2, 2, 2, 0, -1, -1, -1, 2, 2, 2, 2, 2, 2, 0, 0, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [2, 2, -2, 0, 2, 2, 2, -2, 0, -2, 2, -2, 2, 2, 2, 2, -2, -2, 0, 0, -2, -2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 0, 0, 0, 0, 2, -2, -2, 2, 2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, -2, -2, -2, -2, 2, 2, 2, 2, 2, 2, -2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, -2, 0, 2, 2, 2, -2, 0, -2, 2, -2, 2, 2, 2, 2, -2, -2, 0, 0, -2, -2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, 0, 0, 0, 0, 2, -2, -2, 2, 2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, 2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, 2, 0, -1, 2, 2, 2, 0, -1, -1, -1, 2, 2, 2, 2, 2, 2, 0, 0, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2, 2, -2, 0, 2, 2, 2, -2, 0, -2, 2, -2, -2, -2, -2, -2, 2, 2, 0, 0, -2, -2, 2, 2, -2*E(4), 2*E(4), 2*E(4), -2*E(4), -2*E(4), 2*E(4), -2*E(4), 2*E(4), 2*E(4), 2*E(4), -2*E(4), -2*E(4), 0, 0, 0, 0, -2, 2, 2, -2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(4), -2*E(4), -2*E(4), 2*E(4), 2*E(4), -2*E(4), 2*E(4), -2*E(4), 2*E(4), -2*E(4), 2*E(4), -2*E(4), 2*E(4), -2*E(4), 2*E(4), 2*E(4), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, -2, 0, 2, 2, 2, -2, 0, -2, 2, -2, -2, -2, -2, -2, 2, 2, 0, 0, -2, -2, 2, 2, 2*E(4), -2*E(4), -2*E(4), 2*E(4), 2*E(4), -2*E(4), 2*E(4), -2*E(4), -2*E(4), -2*E(4), 2*E(4), 2*E(4), 0, 0, 0, 0, -2, 2, 2, -2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(4), 2*E(4), 2*E(4), -2*E(4), -2*E(4), 2*E(4), -2*E(4), 2*E(4), -2*E(4), 2*E(4), -2*E(4), 2*E(4), -2*E(4), 2*E(4), -2*E(4), -2*E(4), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, 2, 0, -1, 2, 2, 2, 0, -1, -1, -1, 2, 2, 2, 2, 2, 2, 0, 0, -1, -1, -1, -1, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -2*E(4), -2*E(4), 2*E(4), -2*E(4), 2*E(4), 2*E(4), 2*E(4), -2*E(4), -2*E(4), 2*E(4), -2*E(4), 2*E(4), -2*E(4), -2*E(4), 2*E(4), 2*E(4), 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, E(4), E(4), E(4), -1*E(4), -1*E(4), -1*E(4), -1*E(4), -1*E(4), E(4), E(4), -1*E(4), -1*E(4), -1*E(4), E(4), E(4), -1*E(4), -1*E(4), -1*E(4), -1*E(4), E(4), E(4), E(4), -1*E(4), E(4), E(4), E(4), -1*E(4), -1*E(4), -1*E(4), E(4), E(4), E(4)], [2, 2, 2, 0, -1, 2, 2, 2, 0, -1, -1, -1, 2, 2, 2, 2, 2, 2, 0, 0, -1, -1, -1, -1, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, 2*E(4), 2*E(4), -2*E(4), 2*E(4), -2*E(4), -2*E(4), -2*E(4), 2*E(4), 2*E(4), -2*E(4), 2*E(4), -2*E(4), 2*E(4), 2*E(4), -2*E(4), -2*E(4), 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1*E(4), -1*E(4), -1*E(4), E(4), E(4), E(4), E(4), E(4), -1*E(4), -1*E(4), E(4), E(4), E(4), -1*E(4), -1*E(4), E(4), E(4), E(4), E(4), -1*E(4), -1*E(4), -1*E(4), E(4), -1*E(4), -1*E(4), -1*E(4), E(4), E(4), E(4), -1*E(4), -1*E(4), -1*E(4)], [2, 2, -2, 0, -1, 2, 2, -2, 0, 1, -1, 1, 2, 2, 2, 2, -2, -2, 0, 0, 1, 1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, 0, 0, 0, 0, -1, 1, 1, -1, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1*E(12)-E(12)^-1, E(12)+E(12)^-1, E(12)+E(12)^-1, E(12)+E(12)^-1, E(12)+E(12)^-1, -1*E(12)-E(12)^-1, -1*E(12)-E(12)^-1, -1*E(12)-E(12)^-1, -1*E(12)-E(12)^-1, -1*E(12)-E(12)^-1, -1*E(12)-E(12)^-1, E(12)+E(12)^-1, E(12)+E(12)^-1, -1*E(12)-E(12)^-1, E(12)+E(12)^-1, -1*E(12)-E(12)^-1, -1*E(12)-E(12)^-1, E(12)+E(12)^-1, E(12)+E(12)^-1, E(12)+E(12)^-1, E(12)+E(12)^-1, E(12)+E(12)^-1, E(12)+E(12)^-1, E(12)+E(12)^-1, -1*E(12)-E(12)^-1, -1*E(12)-E(12)^-1, -1*E(12)-E(12)^-1, -1*E(12)-E(12)^-1, E(12)+E(12)^-1, -1*E(12)-E(12)^-1, -1*E(12)-E(12)^-1, E(12)+E(12)^-1], [2, 2, -2, 0, -1, 2, 2, -2, 0, 1, -1, 1, 2, 2, 2, 2, -2, -2, 0, 0, 1, 1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, 0, 0, 0, 0, -1, 1, 1, -1, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, E(12)+E(12)^-1, -1*E(12)-E(12)^-1, -1*E(12)-E(12)^-1, -1*E(12)-E(12)^-1, -1*E(12)-E(12)^-1, E(12)+E(12)^-1, E(12)+E(12)^-1, E(12)+E(12)^-1, E(12)+E(12)^-1, E(12)+E(12)^-1, E(12)+E(12)^-1, -1*E(12)-E(12)^-1, -1*E(12)-E(12)^-1, E(12)+E(12)^-1, -1*E(12)-E(12)^-1, E(12)+E(12)^-1, E(12)+E(12)^-1, -1*E(12)-E(12)^-1, -1*E(12)-E(12)^-1, -1*E(12)-E(12)^-1, -1*E(12)-E(12)^-1, -1*E(12)-E(12)^-1, -1*E(12)-E(12)^-1, -1*E(12)-E(12)^-1, E(12)+E(12)^-1, E(12)+E(12)^-1, E(12)+E(12)^-1, E(12)+E(12)^-1, -1*E(12)-E(12)^-1, E(12)+E(12)^-1, E(12)+E(12)^-1, -1*E(12)-E(12)^-1], [2, 2, -2, 0, -1, 2, 2, -2, 0, 1, -1, 1, 2, 2, 2, 2, -2, -2, 0, 0, 1, 1, -1, -1, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 0, 0, 0, 0, -1, 1, 1, -1, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1-2*E(3), 1+2*E(3), 1+2*E(3), -1-2*E(3), -1-2*E(3), 1+2*E(3), 1+2*E(3), 1+2*E(3), -1-2*E(3), -1-2*E(3), 1+2*E(3), -1-2*E(3), -1-2*E(3), -1-2*E(3), 1+2*E(3), 1+2*E(3), 1+2*E(3), -1-2*E(3), -1-2*E(3), 1+2*E(3), 1+2*E(3), 1+2*E(3), -1-2*E(3), 1+2*E(3), -1-2*E(3), -1-2*E(3), 1+2*E(3), 1+2*E(3), -1-2*E(3), -1-2*E(3), -1-2*E(3), 1+2*E(3)], [2, 2, -2, 0, -1, 2, 2, -2, 0, 1, -1, 1, 2, 2, 2, 2, -2, -2, 0, 0, 1, 1, -1, -1, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 0, 0, 0, 0, -1, 1, 1, -1, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1+2*E(3), -1-2*E(3), -1-2*E(3), 1+2*E(3), 1+2*E(3), -1-2*E(3), -1-2*E(3), -1-2*E(3), 1+2*E(3), 1+2*E(3), -1-2*E(3), 1+2*E(3), 1+2*E(3), 1+2*E(3), -1-2*E(3), -1-2*E(3), -1-2*E(3), 1+2*E(3), 1+2*E(3), -1-2*E(3), -1-2*E(3), -1-2*E(3), 1+2*E(3), -1-2*E(3), 1+2*E(3), 1+2*E(3), -1-2*E(3), -1-2*E(3), 1+2*E(3), 1+2*E(3), 1+2*E(3), -1-2*E(3)], [2, 2, 2, 0, 2, -2, -2, -2, 0, 2, 2, 2, -2*E(8)^2, 2*E(8)^2, -2*E(8)^2, 2*E(8)^2, -2*E(8)^2, 2*E(8)^2, 0, 0, -2, -2, -2, -2, -2*E(8), 2*E(8)^3, -2*E(8)^3, 2*E(8), 2*E(8), -2*E(8)^3, -2*E(8), 2*E(8)^3, 2*E(8), -2*E(8), -2*E(8)^3, 2*E(8)^3, 0, 0, 0, 0, -2*E(8)^2, -2*E(8)^2, 2*E(8)^2, -2*E(8)^2, 2*E(8)^2, 2*E(8)^2, 2*E(8)^2, -2*E(8)^2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(8), -2*E(8)^3, -2*E(8), -2*E(8)^3, -2*E(8)^3, 2*E(8), -2*E(8), 2*E(8)^3, 2*E(8), -2*E(8)^3, -2*E(8), 2*E(8)^3, 2*E(8)^3, -2*E(8), 2*E(8), 2*E(8)^3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, 2, 0, 2, -2, -2, -2, 0, 2, 2, 2, 2*E(8)^2, -2*E(8)^2, 2*E(8)^2, -2*E(8)^2, 2*E(8)^2, -2*E(8)^2, 0, 0, -2, -2, -2, -2, 2*E(8)^3, -2*E(8), 2*E(8), -2*E(8)^3, -2*E(8)^3, 2*E(8), 2*E(8)^3, -2*E(8), -2*E(8)^3, 2*E(8)^3, 2*E(8), -2*E(8), 0, 0, 0, 0, 2*E(8)^2, 2*E(8)^2, -2*E(8)^2, 2*E(8)^2, -2*E(8)^2, -2*E(8)^2, -2*E(8)^2, 2*E(8)^2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(8)^3, 2*E(8), 2*E(8)^3, 2*E(8), 2*E(8), -2*E(8)^3, 2*E(8)^3, -2*E(8), -2*E(8)^3, 2*E(8), 2*E(8)^3, -2*E(8), -2*E(8), 2*E(8)^3, -2*E(8)^3, -2*E(8), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, 2, 0, 2, -2, -2, -2, 0, 2, 2, 2, -2*E(8)^2, 2*E(8)^2, -2*E(8)^2, 2*E(8)^2, -2*E(8)^2, 2*E(8)^2, 0, 0, -2, -2, -2, -2, 2*E(8), -2*E(8)^3, 2*E(8)^3, -2*E(8), -2*E(8), 2*E(8)^3, 2*E(8), -2*E(8)^3, -2*E(8), 2*E(8), 2*E(8)^3, -2*E(8)^3, 0, 0, 0, 0, -2*E(8)^2, -2*E(8)^2, 2*E(8)^2, -2*E(8)^2, 2*E(8)^2, 2*E(8)^2, 2*E(8)^2, -2*E(8)^2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(8), 2*E(8)^3, 2*E(8), 2*E(8)^3, 2*E(8)^3, -2*E(8), 2*E(8), -2*E(8)^3, -2*E(8), 2*E(8)^3, 2*E(8), -2*E(8)^3, -2*E(8)^3, 2*E(8), -2*E(8), -2*E(8)^3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, 2, 0, 2, -2, -2, -2, 0, 2, 2, 2, 2*E(8)^2, -2*E(8)^2, 2*E(8)^2, -2*E(8)^2, 2*E(8)^2, -2*E(8)^2, 0, 0, -2, -2, -2, -2, -2*E(8)^3, 2*E(8), -2*E(8), 2*E(8)^3, 2*E(8)^3, -2*E(8), -2*E(8)^3, 2*E(8), 2*E(8)^3, -2*E(8)^3, -2*E(8), 2*E(8), 0, 0, 0, 0, 2*E(8)^2, 2*E(8)^2, -2*E(8)^2, 2*E(8)^2, -2*E(8)^2, -2*E(8)^2, -2*E(8)^2, 2*E(8)^2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(8)^3, -2*E(8), -2*E(8)^3, -2*E(8), -2*E(8), 2*E(8)^3, -2*E(8)^3, 2*E(8), 2*E(8)^3, -2*E(8), -2*E(8)^3, 2*E(8), 2*E(8), -2*E(8)^3, 2*E(8)^3, 2*E(8), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, -2, 0, -1, 2, 2, -2, 0, 1, -1, 1, -2, -2, -2, -2, 2, 2, 0, 0, 1, 1, -1, -1, -2*E(24)^6, 2*E(24)^6, 2*E(24)^6, -2*E(24)^6, -2*E(24)^6, 2*E(24)^6, -2*E(24)^6, 2*E(24)^6, 2*E(24)^6, 2*E(24)^6, -2*E(24)^6, -2*E(24)^6, 0, 0, 0, 0, 1, -1, -1, 1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(24)^6, E(24)^6, E(24)^6, -1*E(24)^6, -1*E(24)^6, E(24)^6, -1*E(24)^6, E(24)^6, -1*E(24)^6, E(24)^6, -1*E(24)^6, E(24)^6, -1*E(24)^6, E(24)^6, -1*E(24)^6, -1*E(24)^6, -1*E(24)^3+2*E(24)^7, -1*E(24)^3+2*E(24)^7, -1*E(24)^3+2*E(24)^7, -1*E(24)-E(24)^5, E(24)+E(24)^5, E(24)+E(24)^5, E(24)+E(24)^5, E(24)+E(24)^5, E(24)^3-2*E(24)^7, -1*E(24)^3+2*E(24)^7, -1*E(24)-E(24)^5, -1*E(24)-E(24)^5, E(24)+E(24)^5, E(24)^3-2*E(24)^7, -1*E(24)^3+2*E(24)^7, -1*E(24)-E(24)^5, -1*E(24)-E(24)^5, E(24)+E(24)^5, -1*E(24)-E(24)^5, E(24)^3-2*E(24)^7, E(24)^3-2*E(24)^7, E(24)^3-2*E(24)^7, -1*E(24)-E(24)^5, E(24)^3-2*E(24)^7, E(24)^3-2*E(24)^7, E(24)^3-2*E(24)^7, E(24)+E(24)^5, -1*E(24)-E(24)^5, E(24)+E(24)^5, -1*E(24)^3+2*E(24)^7, -1*E(24)^3+2*E(24)^7, -1*E(24)^3+2*E(24)^7], [2, 2, -2, 0, -1, 2, 2, -2, 0, 1, -1, 1, -2, -2, -2, -2, 2, 2, 0, 0, 1, 1, -1, -1, 2*E(24)^6, -2*E(24)^6, -2*E(24)^6, 2*E(24)^6, 2*E(24)^6, -2*E(24)^6, 2*E(24)^6, -2*E(24)^6, -2*E(24)^6, -2*E(24)^6, 2*E(24)^6, 2*E(24)^6, 0, 0, 0, 0, 1, -1, -1, 1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(24)^6, -1*E(24)^6, -1*E(24)^6, E(24)^6, E(24)^6, -1*E(24)^6, E(24)^6, -1*E(24)^6, E(24)^6, -1*E(24)^6, E(24)^6, -1*E(24)^6, E(24)^6, -1*E(24)^6, E(24)^6, E(24)^6, -1*E(24)-E(24)^5, -1*E(24)-E(24)^5, -1*E(24)-E(24)^5, -1*E(24)^3+2*E(24)^7, E(24)^3-2*E(24)^7, E(24)^3-2*E(24)^7, E(24)^3-2*E(24)^7, E(24)^3-2*E(24)^7, E(24)+E(24)^5, -1*E(24)-E(24)^5, -1*E(24)^3+2*E(24)^7, -1*E(24)^3+2*E(24)^7, E(24)^3-2*E(24)^7, E(24)+E(24)^5, -1*E(24)-E(24)^5, -1*E(24)^3+2*E(24)^7, -1*E(24)^3+2*E(24)^7, E(24)^3-2*E(24)^7, -1*E(24)^3+2*E(24)^7, E(24)+E(24)^5, E(24)+E(24)^5, E(24)+E(24)^5, -1*E(24)^3+2*E(24)^7, E(24)+E(24)^5, E(24)+E(24)^5, E(24)+E(24)^5, E(24)^3-2*E(24)^7, -1*E(24)^3+2*E(24)^7, E(24)^3-2*E(24)^7, -1*E(24)-E(24)^5, -1*E(24)-E(24)^5, -1*E(24)-E(24)^5], [2, 2, -2, 0, -1, 2, 2, -2, 0, 1, -1, 1, -2, -2, -2, -2, 2, 2, 0, 0, 1, 1, -1, -1, -2*E(24)^6, 2*E(24)^6, 2*E(24)^6, -2*E(24)^6, -2*E(24)^6, 2*E(24)^6, -2*E(24)^6, 2*E(24)^6, 2*E(24)^6, 2*E(24)^6, -2*E(24)^6, -2*E(24)^6, 0, 0, 0, 0, 1, -1, -1, 1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(24)^6, E(24)^6, E(24)^6, -1*E(24)^6, -1*E(24)^6, E(24)^6, -1*E(24)^6, E(24)^6, -1*E(24)^6, E(24)^6, -1*E(24)^6, E(24)^6, -1*E(24)^6, E(24)^6, -1*E(24)^6, -1*E(24)^6, E(24)^3-2*E(24)^7, E(24)^3-2*E(24)^7, E(24)^3-2*E(24)^7, E(24)+E(24)^5, -1*E(24)-E(24)^5, -1*E(24)-E(24)^5, -1*E(24)-E(24)^5, -1*E(24)-E(24)^5, -1*E(24)^3+2*E(24)^7, E(24)^3-2*E(24)^7, E(24)+E(24)^5, E(24)+E(24)^5, -1*E(24)-E(24)^5, -1*E(24)^3+2*E(24)^7, E(24)^3-2*E(24)^7, E(24)+E(24)^5, E(24)+E(24)^5, -1*E(24)-E(24)^5, E(24)+E(24)^5, -1*E(24)^3+2*E(24)^7, -1*E(24)^3+2*E(24)^7, -1*E(24)^3+2*E(24)^7, E(24)+E(24)^5, -1*E(24)^3+2*E(24)^7, -1*E(24)^3+2*E(24)^7, -1*E(24)^3+2*E(24)^7, -1*E(24)-E(24)^5, E(24)+E(24)^5, -1*E(24)-E(24)^5, E(24)^3-2*E(24)^7, E(24)^3-2*E(24)^7, E(24)^3-2*E(24)^7], [2, 2, -2, 0, -1, 2, 2, -2, 0, 1, -1, 1, -2, -2, -2, -2, 2, 2, 0, 0, 1, 1, -1, -1, 2*E(24)^6, -2*E(24)^6, -2*E(24)^6, 2*E(24)^6, 2*E(24)^6, -2*E(24)^6, 2*E(24)^6, -2*E(24)^6, -2*E(24)^6, -2*E(24)^6, 2*E(24)^6, 2*E(24)^6, 0, 0, 0, 0, 1, -1, -1, 1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(24)^6, -1*E(24)^6, -1*E(24)^6, E(24)^6, E(24)^6, -1*E(24)^6, E(24)^6, -1*E(24)^6, E(24)^6, -1*E(24)^6, E(24)^6, -1*E(24)^6, E(24)^6, -1*E(24)^6, E(24)^6, E(24)^6, E(24)+E(24)^5, E(24)+E(24)^5, E(24)+E(24)^5, E(24)^3-2*E(24)^7, -1*E(24)^3+2*E(24)^7, -1*E(24)^3+2*E(24)^7, -1*E(24)^3+2*E(24)^7, -1*E(24)^3+2*E(24)^7, -1*E(24)-E(24)^5, E(24)+E(24)^5, E(24)^3-2*E(24)^7, E(24)^3-2*E(24)^7, -1*E(24)^3+2*E(24)^7, -1*E(24)-E(24)^5, E(24)+E(24)^5, E(24)^3-2*E(24)^7, E(24)^3-2*E(24)^7, -1*E(24)^3+2*E(24)^7, E(24)^3-2*E(24)^7, -1*E(24)-E(24)^5, -1*E(24)-E(24)^5, -1*E(24)-E(24)^5, E(24)^3-2*E(24)^7, -1*E(24)-E(24)^5, -1*E(24)-E(24)^5, -1*E(24)-E(24)^5, -1*E(24)^3+2*E(24)^7, E(24)^3-2*E(24)^7, -1*E(24)^3+2*E(24)^7, E(24)+E(24)^5, E(24)+E(24)^5, E(24)+E(24)^5], [2, 2, 2, 0, -1, 2, 2, 2, 0, -1, -1, -1, -2, -2, -2, -2, -2, -2, 0, 0, -1, -1, -1, -1, -2*E(8)^2, 2*E(8)^2, 2*E(8)^2, -2*E(8)^2, -2*E(8)^2, 2*E(8)^2, -2*E(8)^2, 2*E(8)^2, -2*E(8)^2, -2*E(8)^2, 2*E(8)^2, 2*E(8)^2, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2*E(8)^3, 2*E(8)^3, 2*E(8), 2*E(8)^3, 2*E(8), -2*E(8), -2*E(8), -2*E(8)^3, -2*E(8)^3, 2*E(8), -2*E(8)^3, -2*E(8), 2*E(8)^3, -2*E(8)^3, 2*E(8), -2*E(8), 0, 0, 0, 0, 0, 0, 0, 0, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^3, E(8)^3, E(8)^3, -1*E(8), E(8), -1*E(8), -1*E(8), -1*E(8), E(8)^3, -1*E(8)^3, E(8), -1*E(8), E(8), E(8)^3, E(8)^3, E(8), E(8), E(8), -1*E(8), -1*E(8)^3, -1*E(8)^3, -1*E(8)^3, -1*E(8), -1*E(8)^3, E(8)^3, E(8)^3, -1*E(8), E(8), E(8), -1*E(8)^3, -1*E(8)^3, E(8)^3], [2, 2, 2, 0, -1, 2, 2, 2, 0, -1, -1, -1, -2, -2, -2, -2, -2, -2, 0, 0, -1, -1, -1, -1, 2*E(8)^2, -2*E(8)^2, -2*E(8)^2, 2*E(8)^2, 2*E(8)^2, -2*E(8)^2, 2*E(8)^2, -2*E(8)^2, 2*E(8)^2, 2*E(8)^2, -2*E(8)^2, -2*E(8)^2, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, -2*E(8), -2*E(8), -2*E(8)^3, -2*E(8), -2*E(8)^3, 2*E(8)^3, 2*E(8)^3, 2*E(8), 2*E(8), -2*E(8)^3, 2*E(8), 2*E(8)^3, -2*E(8), 2*E(8), -2*E(8)^3, 2*E(8)^3, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8), -1*E(8), -1*E(8), E(8)^3, -1*E(8)^3, E(8)^3, E(8)^3, E(8)^3, -1*E(8), E(8), -1*E(8)^3, E(8)^3, -1*E(8)^3, -1*E(8), -1*E(8), -1*E(8)^3, -1*E(8)^3, -1*E(8)^3, E(8)^3, E(8), E(8), E(8), E(8)^3, E(8), -1*E(8), -1*E(8), E(8)^3, -1*E(8)^3, -1*E(8)^3, E(8), E(8), -1*E(8)], [2, 2, 2, 0, -1, 2, 2, 2, 0, -1, -1, -1, -2, -2, -2, -2, -2, -2, 0, 0, -1, -1, -1, -1, -2*E(8)^2, 2*E(8)^2, 2*E(8)^2, -2*E(8)^2, -2*E(8)^2, 2*E(8)^2, -2*E(8)^2, 2*E(8)^2, -2*E(8)^2, -2*E(8)^2, 2*E(8)^2, 2*E(8)^2, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, -2*E(8)^3, -2*E(8)^3, -2*E(8), -2*E(8)^3, -2*E(8), 2*E(8), 2*E(8), 2*E(8)^3, 2*E(8)^3, -2*E(8), 2*E(8)^3, 2*E(8), -2*E(8)^3, 2*E(8)^3, -2*E(8), 2*E(8), 0, 0, 0, 0, 0, 0, 0, 0, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, E(8)^3, -1*E(8)^3, -1*E(8)^3, E(8), -1*E(8), E(8), E(8), E(8), -1*E(8)^3, E(8)^3, -1*E(8), E(8), -1*E(8), -1*E(8)^3, -1*E(8)^3, -1*E(8), -1*E(8), -1*E(8), E(8), E(8)^3, E(8)^3, E(8)^3, E(8), E(8)^3, -1*E(8)^3, -1*E(8)^3, E(8), -1*E(8), -1*E(8), E(8)^3, E(8)^3, -1*E(8)^3], [2, 2, 2, 0, -1, 2, 2, 2, 0, -1, -1, -1, -2, -2, -2, -2, -2, -2, 0, 0, -1, -1, -1, -1, 2*E(8)^2, -2*E(8)^2, -2*E(8)^2, 2*E(8)^2, 2*E(8)^2, -2*E(8)^2, 2*E(8)^2, -2*E(8)^2, 2*E(8)^2, 2*E(8)^2, -2*E(8)^2, -2*E(8)^2, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2*E(8), 2*E(8), 2*E(8)^3, 2*E(8), 2*E(8)^3, -2*E(8)^3, -2*E(8)^3, -2*E(8), -2*E(8), 2*E(8)^3, -2*E(8), -2*E(8)^3, 2*E(8), -2*E(8), 2*E(8)^3, -2*E(8)^3, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8), E(8), E(8), -1*E(8)^3, E(8)^3, -1*E(8)^3, -1*E(8)^3, -1*E(8)^3, E(8), -1*E(8), E(8)^3, -1*E(8)^3, E(8)^3, E(8), E(8), E(8)^3, E(8)^3, E(8)^3, -1*E(8)^3, -1*E(8), -1*E(8), -1*E(8), -1*E(8)^3, -1*E(8), E(8), E(8), -1*E(8)^3, E(8)^3, E(8)^3, -1*E(8), -1*E(8), E(8)], [2, 2, -2, 0, -1, -2, -2, 2, 0, 1, -1, 1, -2*E(16)^4, 2*E(16)^4, -2*E(16)^4, 2*E(16)^4, 2*E(16)^4, -2*E(16)^4, 0, 0, -1, -1, 1, 1, -2*E(16)^2, 2*E(16)^6, -2*E(16)^6, 2*E(16)^2, 2*E(16)^2, -2*E(16)^6, -2*E(16)^2, 2*E(16)^6, -2*E(16)^2, 2*E(16)^2, 2*E(16)^6, -2*E(16)^6, 0, 0, 0, 0, E(16)^4, -1*E(16)^4, E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^4, E(16)^4, -1*E(16)^4, -2*E(16), 2*E(16), -2*E(16)^3, 2*E(16), -2*E(16)^3, 2*E(16)^7, 2*E(16)^7, -2*E(16)^5, -2*E(16)^5, 2*E(16)^3, 2*E(16)^5, -2*E(16)^7, -2*E(16), 2*E(16)^5, 2*E(16)^3, -2*E(16)^7, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(16)^2, -1*E(16)^6, E(16)^2, E(16)^6, E(16)^6, -1*E(16)^2, -1*E(16)^2, E(16)^6, E(16)^2, -1*E(16)^6, -1*E(16)^2, E(16)^6, -1*E(16)^6, E(16)^2, E(16)^2, -1*E(16)^6, -1*E(16), E(16)^5, E(16)^5, E(16)^3, -1*E(16)^7, E(16)^3, -1*E(16)^3, E(16)^3, -1*E(16)^5, E(16), -1*E(16)^7, -1*E(16)^3, E(16)^7, E(16)^5, -1*E(16)^5, E(16)^7, -1*E(16)^7, E(16)^7, E(16)^3, E(16), -1*E(16), E(16), -1*E(16)^3, -1*E(16), -1*E(16)^5, E(16)^5, -1*E(16)^3, E(16)^7, -1*E(16)^7, E(16), -1*E(16), -1*E(16)^5], [2, 2, -2, 0, -1, -2, -2, 2, 0, 1, -1, 1, 2*E(16)^4, -2*E(16)^4, 2*E(16)^4, -2*E(16)^4, -2*E(16)^4, 2*E(16)^4, 0, 0, -1, -1, 1, 1, 2*E(16)^6, -2*E(16)^2, 2*E(16)^2, -2*E(16)^6, -2*E(16)^6, 2*E(16)^2, 2*E(16)^6, -2*E(16)^2, 2*E(16)^6, -2*E(16)^6, -2*E(16)^2, 2*E(16)^2, 0, 0, 0, 0, -1*E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^4, E(16)^4, E(16)^4, -1*E(16)^4, E(16)^4, 2*E(16)^7, -2*E(16)^7, 2*E(16)^5, -2*E(16)^7, 2*E(16)^5, -2*E(16), -2*E(16), 2*E(16)^3, 2*E(16)^3, -2*E(16)^5, -2*E(16)^3, 2*E(16), 2*E(16)^7, -2*E(16)^3, -2*E(16)^5, 2*E(16), 0, 0, 0, 0, 0, 0, 0, 0, E(16)^6, E(16)^2, -1*E(16)^6, -1*E(16)^2, -1*E(16)^2, E(16)^6, E(16)^6, -1*E(16)^2, -1*E(16)^6, E(16)^2, E(16)^6, -1*E(16)^2, E(16)^2, -1*E(16)^6, -1*E(16)^6, E(16)^2, E(16)^7, -1*E(16)^3, -1*E(16)^3, -1*E(16)^5, E(16), -1*E(16)^5, E(16)^5, -1*E(16)^5, E(16)^3, -1*E(16)^7, E(16), E(16)^5, -1*E(16), -1*E(16)^3, E(16)^3, -1*E(16), E(16), -1*E(16), -1*E(16)^5, -1*E(16)^7, E(16)^7, -1*E(16)^7, E(16)^5, E(16)^7, E(16)^3, -1*E(16)^3, E(16)^5, -1*E(16), E(16), -1*E(16)^7, E(16)^7, E(16)^3], [2, 2, -2, 0, -1, -2, -2, 2, 0, 1, -1, 1, -2*E(16)^4, 2*E(16)^4, -2*E(16)^4, 2*E(16)^4, 2*E(16)^4, -2*E(16)^4, 0, 0, -1, -1, 1, 1, -2*E(16)^2, 2*E(16)^6, -2*E(16)^6, 2*E(16)^2, 2*E(16)^2, -2*E(16)^6, -2*E(16)^2, 2*E(16)^6, -2*E(16)^2, 2*E(16)^2, 2*E(16)^6, -2*E(16)^6, 0, 0, 0, 0, E(16)^4, -1*E(16)^4, E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^4, E(16)^4, -1*E(16)^4, 2*E(16), -2*E(16), 2*E(16)^3, -2*E(16), 2*E(16)^3, -2*E(16)^7, -2*E(16)^7, 2*E(16)^5, 2*E(16)^5, -2*E(16)^3, -2*E(16)^5, 2*E(16)^7, 2*E(16), -2*E(16)^5, -2*E(16)^3, 2*E(16)^7, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(16)^2, -1*E(16)^6, E(16)^2, E(16)^6, E(16)^6, -1*E(16)^2, -1*E(16)^2, E(16)^6, E(16)^2, -1*E(16)^6, -1*E(16)^2, E(16)^6, -1*E(16)^6, E(16)^2, E(16)^2, -1*E(16)^6, E(16), -1*E(16)^5, -1*E(16)^5, -1*E(16)^3, E(16)^7, -1*E(16)^3, E(16)^3, -1*E(16)^3, E(16)^5, -1*E(16), E(16)^7, E(16)^3, -1*E(16)^7, -1*E(16)^5, E(16)^5, -1*E(16)^7, E(16)^7, -1*E(16)^7, -1*E(16)^3, -1*E(16), E(16), -1*E(16), E(16)^3, E(16), E(16)^5, -1*E(16)^5, E(16)^3, -1*E(16)^7, E(16)^7, -1*E(16), E(16), E(16)^5], [2, 2, -2, 0, -1, -2, -2, 2, 0, 1, -1, 1, 2*E(16)^4, -2*E(16)^4, 2*E(16)^4, -2*E(16)^4, -2*E(16)^4, 2*E(16)^4, 0, 0, -1, -1, 1, 1, 2*E(16)^6, -2*E(16)^2, 2*E(16)^2, -2*E(16)^6, -2*E(16)^6, 2*E(16)^2, 2*E(16)^6, -2*E(16)^2, 2*E(16)^6, -2*E(16)^6, -2*E(16)^2, 2*E(16)^2, 0, 0, 0, 0, -1*E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^4, E(16)^4, E(16)^4, -1*E(16)^4, E(16)^4, -2*E(16)^7, 2*E(16)^7, -2*E(16)^5, 2*E(16)^7, -2*E(16)^5, 2*E(16), 2*E(16), -2*E(16)^3, -2*E(16)^3, 2*E(16)^5, 2*E(16)^3, -2*E(16), -2*E(16)^7, 2*E(16)^3, 2*E(16)^5, -2*E(16), 0, 0, 0, 0, 0, 0, 0, 0, E(16)^6, E(16)^2, -1*E(16)^6, -1*E(16)^2, -1*E(16)^2, E(16)^6, E(16)^6, -1*E(16)^2, -1*E(16)^6, E(16)^2, E(16)^6, -1*E(16)^2, E(16)^2, -1*E(16)^6, -1*E(16)^6, E(16)^2, -1*E(16)^7, E(16)^3, E(16)^3, E(16)^5, -1*E(16), E(16)^5, -1*E(16)^5, E(16)^5, -1*E(16)^3, E(16)^7, -1*E(16), -1*E(16)^5, E(16), E(16)^3, -1*E(16)^3, E(16), -1*E(16), E(16), E(16)^5, E(16)^7, -1*E(16)^7, E(16)^7, -1*E(16)^5, -1*E(16)^7, -1*E(16)^3, E(16)^3, -1*E(16)^5, E(16), -1*E(16), E(16)^7, -1*E(16)^7, -1*E(16)^3], [2, 2, -2, 0, -1, -2, -2, 2, 0, 1, -1, 1, -2*E(16)^4, 2*E(16)^4, -2*E(16)^4, 2*E(16)^4, 2*E(16)^4, -2*E(16)^4, 0, 0, -1, -1, 1, 1, 2*E(16)^2, -2*E(16)^6, 2*E(16)^6, -2*E(16)^2, -2*E(16)^2, 2*E(16)^6, 2*E(16)^2, -2*E(16)^6, 2*E(16)^2, -2*E(16)^2, -2*E(16)^6, 2*E(16)^6, 0, 0, 0, 0, E(16)^4, -1*E(16)^4, E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^4, E(16)^4, -1*E(16)^4, 2*E(16)^5, -2*E(16)^5, -2*E(16)^7, -2*E(16)^5, -2*E(16)^7, -2*E(16)^3, -2*E(16)^3, -2*E(16), -2*E(16), 2*E(16)^7, 2*E(16), 2*E(16)^3, 2*E(16)^5, 2*E(16), 2*E(16)^7, 2*E(16)^3, 0, 0, 0, 0, 0, 0, 0, 0, E(16)^2, E(16)^6, -1*E(16)^2, -1*E(16)^6, -1*E(16)^6, E(16)^2, E(16)^2, -1*E(16)^6, -1*E(16)^2, E(16)^6, E(16)^2, -1*E(16)^6, E(16)^6, -1*E(16)^2, -1*E(16)^2, E(16)^6, E(16)^5, E(16), E(16), E(16)^7, E(16)^3, E(16)^7, -1*E(16)^7, E(16)^7, -1*E(16), -1*E(16)^5, E(16)^3, -1*E(16)^7, -1*E(16)^3, E(16), -1*E(16), -1*E(16)^3, E(16)^3, -1*E(16)^3, E(16)^7, -1*E(16)^5, E(16)^5, -1*E(16)^5, -1*E(16)^7, E(16)^5, -1*E(16), E(16), -1*E(16)^7, -1*E(16)^3, E(16)^3, -1*E(16)^5, E(16)^5, -1*E(16)], [2, 2, -2, 0, -1, -2, -2, 2, 0, 1, -1, 1, 2*E(16)^4, -2*E(16)^4, 2*E(16)^4, -2*E(16)^4, -2*E(16)^4, 2*E(16)^4, 0, 0, -1, -1, 1, 1, -2*E(16)^6, 2*E(16)^2, -2*E(16)^2, 2*E(16)^6, 2*E(16)^6, -2*E(16)^2, -2*E(16)^6, 2*E(16)^2, -2*E(16)^6, 2*E(16)^6, 2*E(16)^2, -2*E(16)^2, 0, 0, 0, 0, -1*E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^4, E(16)^4, E(16)^4, -1*E(16)^4, E(16)^4, -2*E(16)^3, 2*E(16)^3, 2*E(16), 2*E(16)^3, 2*E(16), 2*E(16)^5, 2*E(16)^5, 2*E(16)^7, 2*E(16)^7, -2*E(16), -2*E(16)^7, -2*E(16)^5, -2*E(16)^3, -2*E(16)^7, -2*E(16), -2*E(16)^5, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(16)^6, -1*E(16)^2, E(16)^6, E(16)^2, E(16)^2, -1*E(16)^6, -1*E(16)^6, E(16)^2, E(16)^6, -1*E(16)^2, -1*E(16)^6, E(16)^2, -1*E(16)^2, E(16)^6, E(16)^6, -1*E(16)^2, -1*E(16)^3, -1*E(16)^7, -1*E(16)^7, -1*E(16), -1*E(16)^5, -1*E(16), E(16), -1*E(16), E(16)^7, E(16)^3, -1*E(16)^5, E(16), E(16)^5, -1*E(16)^7, E(16)^7, E(16)^5, -1*E(16)^5, E(16)^5, -1*E(16), E(16)^3, -1*E(16)^3, E(16)^3, E(16), -1*E(16)^3, E(16)^7, -1*E(16)^7, E(16), E(16)^5, -1*E(16)^5, E(16)^3, -1*E(16)^3, E(16)^7], [2, 2, -2, 0, -1, -2, -2, 2, 0, 1, -1, 1, -2*E(16)^4, 2*E(16)^4, -2*E(16)^4, 2*E(16)^4, 2*E(16)^4, -2*E(16)^4, 0, 0, -1, -1, 1, 1, 2*E(16)^2, -2*E(16)^6, 2*E(16)^6, -2*E(16)^2, -2*E(16)^2, 2*E(16)^6, 2*E(16)^2, -2*E(16)^6, 2*E(16)^2, -2*E(16)^2, -2*E(16)^6, 2*E(16)^6, 0, 0, 0, 0, E(16)^4, -1*E(16)^4, E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^4, E(16)^4, -1*E(16)^4, -2*E(16)^5, 2*E(16)^5, 2*E(16)^7, 2*E(16)^5, 2*E(16)^7, 2*E(16)^3, 2*E(16)^3, 2*E(16), 2*E(16), -2*E(16)^7, -2*E(16), -2*E(16)^3, -2*E(16)^5, -2*E(16), -2*E(16)^7, -2*E(16)^3, 0, 0, 0, 0, 0, 0, 0, 0, E(16)^2, E(16)^6, -1*E(16)^2, -1*E(16)^6, -1*E(16)^6, E(16)^2, E(16)^2, -1*E(16)^6, -1*E(16)^2, E(16)^6, E(16)^2, -1*E(16)^6, E(16)^6, -1*E(16)^2, -1*E(16)^2, E(16)^6, -1*E(16)^5, -1*E(16), -1*E(16), -1*E(16)^7, -1*E(16)^3, -1*E(16)^7, E(16)^7, -1*E(16)^7, E(16), E(16)^5, -1*E(16)^3, E(16)^7, E(16)^3, -1*E(16), E(16), E(16)^3, -1*E(16)^3, E(16)^3, -1*E(16)^7, E(16)^5, -1*E(16)^5, E(16)^5, E(16)^7, -1*E(16)^5, E(16), -1*E(16), E(16)^7, E(16)^3, -1*E(16)^3, E(16)^5, -1*E(16)^5, E(16)], [2, 2, -2, 0, -1, -2, -2, 2, 0, 1, -1, 1, 2*E(16)^4, -2*E(16)^4, 2*E(16)^4, -2*E(16)^4, -2*E(16)^4, 2*E(16)^4, 0, 0, -1, -1, 1, 1, -2*E(16)^6, 2*E(16)^2, -2*E(16)^2, 2*E(16)^6, 2*E(16)^6, -2*E(16)^2, -2*E(16)^6, 2*E(16)^2, -2*E(16)^6, 2*E(16)^6, 2*E(16)^2, -2*E(16)^2, 0, 0, 0, 0, -1*E(16)^4, E(16)^4, -1*E(16)^4, -1*E(16)^4, E(16)^4, E(16)^4, -1*E(16)^4, E(16)^4, 2*E(16)^3, -2*E(16)^3, -2*E(16), -2*E(16)^3, -2*E(16), -2*E(16)^5, -2*E(16)^5, -2*E(16)^7, -2*E(16)^7, 2*E(16), 2*E(16)^7, 2*E(16)^5, 2*E(16)^3, 2*E(16)^7, 2*E(16), 2*E(16)^5, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(16)^6, -1*E(16)^2, E(16)^6, E(16)^2, E(16)^2, -1*E(16)^6, -1*E(16)^6, E(16)^2, E(16)^6, -1*E(16)^2, -1*E(16)^6, E(16)^2, -1*E(16)^2, E(16)^6, E(16)^6, -1*E(16)^2, E(16)^3, E(16)^7, E(16)^7, E(16), E(16)^5, E(16), -1*E(16), E(16), -1*E(16)^7, -1*E(16)^3, E(16)^5, -1*E(16), -1*E(16)^5, E(16)^7, -1*E(16)^7, -1*E(16)^5, E(16)^5, -1*E(16)^5, E(16), -1*E(16)^3, E(16)^3, -1*E(16)^3, -1*E(16), E(16)^3, -1*E(16)^7, E(16)^7, -1*E(16), -1*E(16)^5, E(16)^5, -1*E(16)^3, E(16)^3, -1*E(16)^7], [2, 2, 2, 0, -1, -2, -2, -2, 0, -1, -1, -1, -2*E(48)^12, 2*E(48)^12, -2*E(48)^12, 2*E(48)^12, -2*E(48)^12, 2*E(48)^12, 0, 0, 1, 1, 1, 1, -2*E(48)^6, 2*E(48)^18, -2*E(48)^18, 2*E(48)^6, 2*E(48)^6, -2*E(48)^18, -2*E(48)^6, 2*E(48)^18, 2*E(48)^6, -2*E(48)^6, -2*E(48)^18, 2*E(48)^18, 0, 0, 0, 0, E(48)^12, E(48)^12, -1*E(48)^12, E(48)^12, -1*E(48)^12, -1*E(48)^12, -1*E(48)^12, E(48)^12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(48)^6, E(48)^18, E(48)^6, E(48)^18, E(48)^18, -1*E(48)^6, E(48)^6, -1*E(48)^18, -1*E(48)^6, E(48)^18, E(48)^6, -1*E(48)^18, -1*E(48)^18, E(48)^6, -1*E(48)^6, -1*E(48)^18, -2*E(48)^7+E(48)^15, E(48)^3-2*E(48)^11, E(48)^3-2*E(48)^11, -1*E(48)^5-E(48)^13, -2*E(48)+E(48)^9, E(48)^5+E(48)^13, -1*E(48)^5-E(48)^13, E(48)^5+E(48)^13, E(48)^3-2*E(48)^11, 2*E(48)^7-E(48)^15, 2*E(48)-E(48)^9, E(48)^5+E(48)^13, 2*E(48)-E(48)^9, -1*E(48)^3+2*E(48)^11, -1*E(48)^3+2*E(48)^11, -2*E(48)+E(48)^9, 2*E(48)-E(48)^9, 2*E(48)-E(48)^9, -1*E(48)^5-E(48)^13, -2*E(48)^7+E(48)^15, 2*E(48)^7-E(48)^15, -2*E(48)^7+E(48)^15, E(48)^5+E(48)^13, 2*E(48)^7-E(48)^15, E(48)^3-2*E(48)^11, -1*E(48)^3+2*E(48)^11, -1*E(48)^5-E(48)^13, -2*E(48)+E(48)^9, -2*E(48)+E(48)^9, 2*E(48)^7-E(48)^15, -2*E(48)^7+E(48)^15, -1*E(48)^3+2*E(48)^11], [2, 2, 2, 0, -1, -2, -2, -2, 0, -1, -1, -1, 2*E(48)^12, -2*E(48)^12, 2*E(48)^12, -2*E(48)^12, 2*E(48)^12, -2*E(48)^12, 0, 0, 1, 1, 1, 1, 2*E(48)^18, -2*E(48)^6, 2*E(48)^6, -2*E(48)^18, -2*E(48)^18, 2*E(48)^6, 2*E(48)^18, -2*E(48)^6, -2*E(48)^18, 2*E(48)^18, 2*E(48)^6, -2*E(48)^6, 0, 0, 0, 0, -1*E(48)^12, -1*E(48)^12, E(48)^12, -1*E(48)^12, E(48)^12, E(48)^12, E(48)^12, -1*E(48)^12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(48)^18, -1*E(48)^6, -1*E(48)^18, -1*E(48)^6, -1*E(48)^6, E(48)^18, -1*E(48)^18, E(48)^6, E(48)^18, -1*E(48)^6, -1*E(48)^18, E(48)^6, E(48)^6, -1*E(48)^18, E(48)^18, E(48)^6, -2*E(48)+E(48)^9, E(48)^5+E(48)^13, E(48)^5+E(48)^13, -1*E(48)^3+2*E(48)^11, -2*E(48)^7+E(48)^15, E(48)^3-2*E(48)^11, -1*E(48)^3+2*E(48)^11, E(48)^3-2*E(48)^11, E(48)^5+E(48)^13, 2*E(48)-E(48)^9, 2*E(48)^7-E(48)^15, E(48)^3-2*E(48)^11, 2*E(48)^7-E(48)^15, -1*E(48)^5-E(48)^13, -1*E(48)^5-E(48)^13, -2*E(48)^7+E(48)^15, 2*E(48)^7-E(48)^15, 2*E(48)^7-E(48)^15, -1*E(48)^3+2*E(48)^11, -2*E(48)+E(48)^9, 2*E(48)-E(48)^9, -2*E(48)+E(48)^9, E(48)^3-2*E(48)^11, 2*E(48)-E(48)^9, E(48)^5+E(48)^13, -1*E(48)^5-E(48)^13, -1*E(48)^3+2*E(48)^11, -2*E(48)^7+E(48)^15, -2*E(48)^7+E(48)^15, 2*E(48)-E(48)^9, -2*E(48)+E(48)^9, -1*E(48)^5-E(48)^13], [2, 2, 2, 0, -1, -2, -2, -2, 0, -1, -1, -1, -2*E(48)^12, 2*E(48)^12, -2*E(48)^12, 2*E(48)^12, -2*E(48)^12, 2*E(48)^12, 0, 0, 1, 1, 1, 1, -2*E(48)^6, 2*E(48)^18, -2*E(48)^18, 2*E(48)^6, 2*E(48)^6, -2*E(48)^18, -2*E(48)^6, 2*E(48)^18, 2*E(48)^6, -2*E(48)^6, -2*E(48)^18, 2*E(48)^18, 0, 0, 0, 0, E(48)^12, E(48)^12, -1*E(48)^12, E(48)^12, -1*E(48)^12, -1*E(48)^12, -1*E(48)^12, E(48)^12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(48)^6, E(48)^18, E(48)^6, E(48)^18, E(48)^18, -1*E(48)^6, E(48)^6, -1*E(48)^18, -1*E(48)^6, E(48)^18, E(48)^6, -1*E(48)^18, -1*E(48)^18, E(48)^6, -1*E(48)^6, -1*E(48)^18, 2*E(48)^7-E(48)^15, -1*E(48)^3+2*E(48)^11, -1*E(48)^3+2*E(48)^11, E(48)^5+E(48)^13, 2*E(48)-E(48)^9, -1*E(48)^5-E(48)^13, E(48)^5+E(48)^13, -1*E(48)^5-E(48)^13, -1*E(48)^3+2*E(48)^11, -2*E(48)^7+E(48)^15, -2*E(48)+E(48)^9, -1*E(48)^5-E(48)^13, -2*E(48)+E(48)^9, E(48)^3-2*E(48)^11, E(48)^3-2*E(48)^11, 2*E(48)-E(48)^9, -2*E(48)+E(48)^9, -2*E(48)+E(48)^9, E(48)^5+E(48)^13, 2*E(48)^7-E(48)^15, -2*E(48)^7+E(48)^15, 2*E(48)^7-E(48)^15, -1*E(48)^5-E(48)^13, -2*E(48)^7+E(48)^15, -1*E(48)^3+2*E(48)^11, E(48)^3-2*E(48)^11, E(48)^5+E(48)^13, 2*E(48)-E(48)^9, 2*E(48)-E(48)^9, -2*E(48)^7+E(48)^15, 2*E(48)^7-E(48)^15, E(48)^3-2*E(48)^11], [2, 2, 2, 0, -1, -2, -2, -2, 0, -1, -1, -1, 2*E(48)^12, -2*E(48)^12, 2*E(48)^12, -2*E(48)^12, 2*E(48)^12, -2*E(48)^12, 0, 0, 1, 1, 1, 1, 2*E(48)^18, -2*E(48)^6, 2*E(48)^6, -2*E(48)^18, -2*E(48)^18, 2*E(48)^6, 2*E(48)^18, -2*E(48)^6, -2*E(48)^18, 2*E(48)^18, 2*E(48)^6, -2*E(48)^6, 0, 0, 0, 0, -1*E(48)^12, -1*E(48)^12, E(48)^12, -1*E(48)^12, E(48)^12, E(48)^12, E(48)^12, -1*E(48)^12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(48)^18, -1*E(48)^6, -1*E(48)^18, -1*E(48)^6, -1*E(48)^6, E(48)^18, -1*E(48)^18, E(48)^6, E(48)^18, -1*E(48)^6, -1*E(48)^18, E(48)^6, E(48)^6, -1*E(48)^18, E(48)^18, E(48)^6, 2*E(48)-E(48)^9, -1*E(48)^5-E(48)^13, -1*E(48)^5-E(48)^13, E(48)^3-2*E(48)^11, 2*E(48)^7-E(48)^15, -1*E(48)^3+2*E(48)^11, E(48)^3-2*E(48)^11, -1*E(48)^3+2*E(48)^11, -1*E(48)^5-E(48)^13, -2*E(48)+E(48)^9, -2*E(48)^7+E(48)^15, -1*E(48)^3+2*E(48)^11, -2*E(48)^7+E(48)^15, E(48)^5+E(48)^13, E(48)^5+E(48)^13, 2*E(48)^7-E(48)^15, -2*E(48)^7+E(48)^15, -2*E(48)^7+E(48)^15, E(48)^3-2*E(48)^11, 2*E(48)-E(48)^9, -2*E(48)+E(48)^9, 2*E(48)-E(48)^9, -1*E(48)^3+2*E(48)^11, -2*E(48)+E(48)^9, -1*E(48)^5-E(48)^13, E(48)^5+E(48)^13, E(48)^3-2*E(48)^11, 2*E(48)^7-E(48)^15, 2*E(48)^7-E(48)^15, -2*E(48)+E(48)^9, 2*E(48)-E(48)^9, E(48)^5+E(48)^13], [2, 2, 2, 0, -1, -2, -2, -2, 0, -1, -1, -1, -2*E(48)^12, 2*E(48)^12, -2*E(48)^12, 2*E(48)^12, -2*E(48)^12, 2*E(48)^12, 0, 0, 1, 1, 1, 1, 2*E(48)^6, -2*E(48)^18, 2*E(48)^18, -2*E(48)^6, -2*E(48)^6, 2*E(48)^18, 2*E(48)^6, -2*E(48)^18, -2*E(48)^6, 2*E(48)^6, 2*E(48)^18, -2*E(48)^18, 0, 0, 0, 0, E(48)^12, E(48)^12, -1*E(48)^12, E(48)^12, -1*E(48)^12, -1*E(48)^12, -1*E(48)^12, E(48)^12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(48)^6, -1*E(48)^18, -1*E(48)^6, -1*E(48)^18, -1*E(48)^18, E(48)^6, -1*E(48)^6, E(48)^18, E(48)^6, -1*E(48)^18, -1*E(48)^6, E(48)^18, E(48)^18, -1*E(48)^6, E(48)^6, E(48)^18, -1*E(48)^3+2*E(48)^11, -2*E(48)^7+E(48)^15, -2*E(48)^7+E(48)^15, 2*E(48)-E(48)^9, -1*E(48)^5-E(48)^13, -2*E(48)+E(48)^9, 2*E(48)-E(48)^9, -2*E(48)+E(48)^9, -2*E(48)^7+E(48)^15, E(48)^3-2*E(48)^11, E(48)^5+E(48)^13, -2*E(48)+E(48)^9, E(48)^5+E(48)^13, 2*E(48)^7-E(48)^15, 2*E(48)^7-E(48)^15, -1*E(48)^5-E(48)^13, E(48)^5+E(48)^13, E(48)^5+E(48)^13, 2*E(48)-E(48)^9, -1*E(48)^3+2*E(48)^11, E(48)^3-2*E(48)^11, -1*E(48)^3+2*E(48)^11, -2*E(48)+E(48)^9, E(48)^3-2*E(48)^11, -2*E(48)^7+E(48)^15, 2*E(48)^7-E(48)^15, 2*E(48)-E(48)^9, -1*E(48)^5-E(48)^13, -1*E(48)^5-E(48)^13, E(48)^3-2*E(48)^11, -1*E(48)^3+2*E(48)^11, 2*E(48)^7-E(48)^15], [2, 2, 2, 0, -1, -2, -2, -2, 0, -1, -1, -1, 2*E(48)^12, -2*E(48)^12, 2*E(48)^12, -2*E(48)^12, 2*E(48)^12, -2*E(48)^12, 0, 0, 1, 1, 1, 1, -2*E(48)^18, 2*E(48)^6, -2*E(48)^6, 2*E(48)^18, 2*E(48)^18, -2*E(48)^6, -2*E(48)^18, 2*E(48)^6, 2*E(48)^18, -2*E(48)^18, -2*E(48)^6, 2*E(48)^6, 0, 0, 0, 0, -1*E(48)^12, -1*E(48)^12, E(48)^12, -1*E(48)^12, E(48)^12, E(48)^12, E(48)^12, -1*E(48)^12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(48)^18, E(48)^6, E(48)^18, E(48)^6, E(48)^6, -1*E(48)^18, E(48)^18, -1*E(48)^6, -1*E(48)^18, E(48)^6, E(48)^18, -1*E(48)^6, -1*E(48)^6, E(48)^18, -1*E(48)^18, -1*E(48)^6, -1*E(48)^5-E(48)^13, -2*E(48)+E(48)^9, -2*E(48)+E(48)^9, 2*E(48)^7-E(48)^15, -1*E(48)^3+2*E(48)^11, -2*E(48)^7+E(48)^15, 2*E(48)^7-E(48)^15, -2*E(48)^7+E(48)^15, -2*E(48)+E(48)^9, E(48)^5+E(48)^13, E(48)^3-2*E(48)^11, -2*E(48)^7+E(48)^15, E(48)^3-2*E(48)^11, 2*E(48)-E(48)^9, 2*E(48)-E(48)^9, -1*E(48)^3+2*E(48)^11, E(48)^3-2*E(48)^11, E(48)^3-2*E(48)^11, 2*E(48)^7-E(48)^15, -1*E(48)^5-E(48)^13, E(48)^5+E(48)^13, -1*E(48)^5-E(48)^13, -2*E(48)^7+E(48)^15, E(48)^5+E(48)^13, -2*E(48)+E(48)^9, 2*E(48)-E(48)^9, 2*E(48)^7-E(48)^15, -1*E(48)^3+2*E(48)^11, -1*E(48)^3+2*E(48)^11, E(48)^5+E(48)^13, -1*E(48)^5-E(48)^13, 2*E(48)-E(48)^9], [2, 2, 2, 0, -1, -2, -2, -2, 0, -1, -1, -1, -2*E(48)^12, 2*E(48)^12, -2*E(48)^12, 2*E(48)^12, -2*E(48)^12, 2*E(48)^12, 0, 0, 1, 1, 1, 1, 2*E(48)^6, -2*E(48)^18, 2*E(48)^18, -2*E(48)^6, -2*E(48)^6, 2*E(48)^18, 2*E(48)^6, -2*E(48)^18, -2*E(48)^6, 2*E(48)^6, 2*E(48)^18, -2*E(48)^18, 0, 0, 0, 0, E(48)^12, E(48)^12, -1*E(48)^12, E(48)^12, -1*E(48)^12, -1*E(48)^12, -1*E(48)^12, E(48)^12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(48)^6, -1*E(48)^18, -1*E(48)^6, -1*E(48)^18, -1*E(48)^18, E(48)^6, -1*E(48)^6, E(48)^18, E(48)^6, -1*E(48)^18, -1*E(48)^6, E(48)^18, E(48)^18, -1*E(48)^6, E(48)^6, E(48)^18, E(48)^3-2*E(48)^11, 2*E(48)^7-E(48)^15, 2*E(48)^7-E(48)^15, -2*E(48)+E(48)^9, E(48)^5+E(48)^13, 2*E(48)-E(48)^9, -2*E(48)+E(48)^9, 2*E(48)-E(48)^9, 2*E(48)^7-E(48)^15, -1*E(48)^3+2*E(48)^11, -1*E(48)^5-E(48)^13, 2*E(48)-E(48)^9, -1*E(48)^5-E(48)^13, -2*E(48)^7+E(48)^15, -2*E(48)^7+E(48)^15, E(48)^5+E(48)^13, -1*E(48)^5-E(48)^13, -1*E(48)^5-E(48)^13, -2*E(48)+E(48)^9, E(48)^3-2*E(48)^11, -1*E(48)^3+2*E(48)^11, E(48)^3-2*E(48)^11, 2*E(48)-E(48)^9, -1*E(48)^3+2*E(48)^11, 2*E(48)^7-E(48)^15, -2*E(48)^7+E(48)^15, -2*E(48)+E(48)^9, E(48)^5+E(48)^13, E(48)^5+E(48)^13, -1*E(48)^3+2*E(48)^11, E(48)^3-2*E(48)^11, -2*E(48)^7+E(48)^15], [2, 2, 2, 0, -1, -2, -2, -2, 0, -1, -1, -1, 2*E(48)^12, -2*E(48)^12, 2*E(48)^12, -2*E(48)^12, 2*E(48)^12, -2*E(48)^12, 0, 0, 1, 1, 1, 1, -2*E(48)^18, 2*E(48)^6, -2*E(48)^6, 2*E(48)^18, 2*E(48)^18, -2*E(48)^6, -2*E(48)^18, 2*E(48)^6, 2*E(48)^18, -2*E(48)^18, -2*E(48)^6, 2*E(48)^6, 0, 0, 0, 0, -1*E(48)^12, -1*E(48)^12, E(48)^12, -1*E(48)^12, E(48)^12, E(48)^12, E(48)^12, -1*E(48)^12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(48)^18, E(48)^6, E(48)^18, E(48)^6, E(48)^6, -1*E(48)^18, E(48)^18, -1*E(48)^6, -1*E(48)^18, E(48)^6, E(48)^18, -1*E(48)^6, -1*E(48)^6, E(48)^18, -1*E(48)^18, -1*E(48)^6, E(48)^5+E(48)^13, 2*E(48)-E(48)^9, 2*E(48)-E(48)^9, -2*E(48)^7+E(48)^15, E(48)^3-2*E(48)^11, 2*E(48)^7-E(48)^15, -2*E(48)^7+E(48)^15, 2*E(48)^7-E(48)^15, 2*E(48)-E(48)^9, -1*E(48)^5-E(48)^13, -1*E(48)^3+2*E(48)^11, 2*E(48)^7-E(48)^15, -1*E(48)^3+2*E(48)^11, -2*E(48)+E(48)^9, -2*E(48)+E(48)^9, E(48)^3-2*E(48)^11, -1*E(48)^3+2*E(48)^11, -1*E(48)^3+2*E(48)^11, -2*E(48)^7+E(48)^15, E(48)^5+E(48)^13, -1*E(48)^5-E(48)^13, E(48)^5+E(48)^13, 2*E(48)^7-E(48)^15, -1*E(48)^5-E(48)^13, 2*E(48)-E(48)^9, -2*E(48)+E(48)^9, -2*E(48)^7+E(48)^15, E(48)^3-2*E(48)^11, E(48)^3-2*E(48)^11, -1*E(48)^5-E(48)^13, E(48)^5+E(48)^13, -2*E(48)+E(48)^9], [2, -2, 0, 0, 2, -2*E(32)^8, 2*E(32)^8, 0, 0, 0, -2, 0, -2*E(32)^4, -2*E(32)^12, 2*E(32)^4, 2*E(32)^12, 0, 0, 0, 0, 0, 0, 2*E(32)^8, -2*E(32)^8, 2*E(32)^14, -2*E(32)^2, -2*E(32)^10, -2*E(32)^6, 2*E(32)^6, 2*E(32)^10, -2*E(32)^14, 2*E(32)^2, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(32)^4, 0, 0, 2*E(32)^4, 2*E(32)^12, -2*E(32)^12, 0, 0, E(32)^7+E(32)^15, E(32)^7-E(32)^15, E(32)^5-E(32)^13, -1*E(32)^7+E(32)^15, -1*E(32)^5+E(32)^13, -1*E(32)-E(32)^9, E(32)+E(32)^9, E(32)^3+E(32)^11, -1*E(32)^3-E(32)^11, -1*E(32)^5-E(32)^13, E(32)^3-E(32)^11, E(32)-E(32)^9, -1*E(32)^7-E(32)^15, -1*E(32)^3+E(32)^11, E(32)^5+E(32)^13, -1*E(32)+E(32)^9, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(32)^6, 0, -2*E(32)^14, -2*E(32)^10, 2*E(32)^10, 2*E(32)^6, 0, 0, 0, 0, 0, 0, -2*E(32)^2, 2*E(32)^14, 0, 2*E(32)^2, E(32)^7-E(32)^15, E(32)^3+E(32)^11, -1*E(32)^3-E(32)^11, -1*E(32)^5+E(32)^13, E(32)+E(32)^9, E(32)^5-E(32)^13, E(32)^5+E(32)^13, -1*E(32)^5+E(32)^13, E(32)^3-E(32)^11, -1*E(32)^7-E(32)^15, -1*E(32)-E(32)^9, E(32)^5+E(32)^13, E(32)-E(32)^9, E(32)^3+E(32)^11, E(32)^3-E(32)^11, -1*E(32)+E(32)^9, E(32)+E(32)^9, -1*E(32)+E(32)^9, E(32)^5-E(32)^13, E(32)^7+E(32)^15, -1*E(32)^7+E(32)^15, -1*E(32)^7-E(32)^15, -1*E(32)^5-E(32)^13, E(32)^7-E(32)^15, -1*E(32)^3+E(32)^11, -1*E(32)^3-E(32)^11, -1*E(32)^5-E(32)^13, E(32)-E(32)^9, -1*E(32)-E(32)^9, E(32)^7+E(32)^15, -1*E(32)^7+E(32)^15, -1*E(32)^3+E(32)^11], [2, -2, 0, 0, 2, 2*E(32)^8, -2*E(32)^8, 0, 0, 0, -2, 0, 2*E(32)^12, 2*E(32)^4, -2*E(32)^12, -2*E(32)^4, 0, 0, 0, 0, 0, 0, -2*E(32)^8, 2*E(32)^8, -2*E(32)^2, 2*E(32)^14, 2*E(32)^6, 2*E(32)^10, -2*E(32)^10, -2*E(32)^6, 2*E(32)^2, -2*E(32)^14, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(32)^12, 0, 0, -2*E(32)^12, -2*E(32)^4, 2*E(32)^4, 0, 0, -1*E(32)-E(32)^9, E(32)-E(32)^9, E(32)^3-E(32)^11, -1*E(32)+E(32)^9, -1*E(32)^3+E(32)^11, E(32)^7+E(32)^15, -1*E(32)^7-E(32)^15, -1*E(32)^5-E(32)^13, E(32)^5+E(32)^13, E(32)^3+E(32)^11, E(32)^5-E(32)^13, E(32)^7-E(32)^15, E(32)+E(32)^9, -1*E(32)^5+E(32)^13, -1*E(32)^3-E(32)^11, -1*E(32)^7+E(32)^15, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(32)^10, 0, 2*E(32)^2, 2*E(32)^6, -2*E(32)^6, -2*E(32)^10, 0, 0, 0, 0, 0, 0, 2*E(32)^14, -2*E(32)^2, 0, -2*E(32)^14, E(32)-E(32)^9, -1*E(32)^5-E(32)^13, E(32)^5+E(32)^13, -1*E(32)^3+E(32)^11, -1*E(32)^7-E(32)^15, E(32)^3-E(32)^11, -1*E(32)^3-E(32)^11, -1*E(32)^3+E(32)^11, E(32)^5-E(32)^13, E(32)+E(32)^9, E(32)^7+E(32)^15, -1*E(32)^3-E(32)^11, E(32)^7-E(32)^15, -1*E(32)^5-E(32)^13, E(32)^5-E(32)^13, -1*E(32)^7+E(32)^15, -1*E(32)^7-E(32)^15, -1*E(32)^7+E(32)^15, E(32)^3-E(32)^11, -1*E(32)-E(32)^9, -1*E(32)+E(32)^9, E(32)+E(32)^9, E(32)^3+E(32)^11, E(32)-E(32)^9, -1*E(32)^5+E(32)^13, E(32)^5+E(32)^13, E(32)^3+E(32)^11, E(32)^7-E(32)^15, E(32)^7+E(32)^15, -1*E(32)-E(32)^9, -1*E(32)+E(32)^9, -1*E(32)^5+E(32)^13], [2, -2, 0, 0, 2, -2*E(32)^8, 2*E(32)^8, 0, 0, 0, -2, 0, -2*E(32)^4, -2*E(32)^12, 2*E(32)^4, 2*E(32)^12, 0, 0, 0, 0, 0, 0, 2*E(32)^8, -2*E(32)^8, 2*E(32)^14, -2*E(32)^2, -2*E(32)^10, -2*E(32)^6, 2*E(32)^6, 2*E(32)^10, -2*E(32)^14, 2*E(32)^2, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(32)^4, 0, 0, 2*E(32)^4, 2*E(32)^12, -2*E(32)^12, 0, 0, -1*E(32)^7-E(32)^15, -1*E(32)^7+E(32)^15, -1*E(32)^5+E(32)^13, E(32)^7-E(32)^15, E(32)^5-E(32)^13, E(32)+E(32)^9, -1*E(32)-E(32)^9, -1*E(32)^3-E(32)^11, E(32)^3+E(32)^11, E(32)^5+E(32)^13, -1*E(32)^3+E(32)^11, -1*E(32)+E(32)^9, E(32)^7+E(32)^15, E(32)^3-E(32)^11, -1*E(32)^5-E(32)^13, E(32)-E(32)^9, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(32)^6, 0, -2*E(32)^14, -2*E(32)^10, 2*E(32)^10, 2*E(32)^6, 0, 0, 0, 0, 0, 0, -2*E(32)^2, 2*E(32)^14, 0, 2*E(32)^2, -1*E(32)^7+E(32)^15, -1*E(32)^3-E(32)^11, E(32)^3+E(32)^11, E(32)^5-E(32)^13, -1*E(32)-E(32)^9, -1*E(32)^5+E(32)^13, -1*E(32)^5-E(32)^13, E(32)^5-E(32)^13, -1*E(32)^3+E(32)^11, E(32)^7+E(32)^15, E(32)+E(32)^9, -1*E(32)^5-E(32)^13, -1*E(32)+E(32)^9, -1*E(32)^3-E(32)^11, -1*E(32)^3+E(32)^11, E(32)-E(32)^9, -1*E(32)-E(32)^9, E(32)-E(32)^9, -1*E(32)^5+E(32)^13, -1*E(32)^7-E(32)^15, E(32)^7-E(32)^15, E(32)^7+E(32)^15, E(32)^5+E(32)^13, -1*E(32)^7+E(32)^15, E(32)^3-E(32)^11, E(32)^3+E(32)^11, E(32)^5+E(32)^13, -1*E(32)+E(32)^9, E(32)+E(32)^9, -1*E(32)^7-E(32)^15, E(32)^7-E(32)^15, E(32)^3-E(32)^11], [2, -2, 0, 0, 2, 2*E(32)^8, -2*E(32)^8, 0, 0, 0, -2, 0, 2*E(32)^12, 2*E(32)^4, -2*E(32)^12, -2*E(32)^4, 0, 0, 0, 0, 0, 0, -2*E(32)^8, 2*E(32)^8, -2*E(32)^2, 2*E(32)^14, 2*E(32)^6, 2*E(32)^10, -2*E(32)^10, -2*E(32)^6, 2*E(32)^2, -2*E(32)^14, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(32)^12, 0, 0, -2*E(32)^12, -2*E(32)^4, 2*E(32)^4, 0, 0, E(32)+E(32)^9, -1*E(32)+E(32)^9, -1*E(32)^3+E(32)^11, E(32)-E(32)^9, E(32)^3-E(32)^11, -1*E(32)^7-E(32)^15, E(32)^7+E(32)^15, E(32)^5+E(32)^13, -1*E(32)^5-E(32)^13, -1*E(32)^3-E(32)^11, -1*E(32)^5+E(32)^13, -1*E(32)^7+E(32)^15, -1*E(32)-E(32)^9, E(32)^5-E(32)^13, E(32)^3+E(32)^11, E(32)^7-E(32)^15, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(32)^10, 0, 2*E(32)^2, 2*E(32)^6, -2*E(32)^6, -2*E(32)^10, 0, 0, 0, 0, 0, 0, 2*E(32)^14, -2*E(32)^2, 0, -2*E(32)^14, -1*E(32)+E(32)^9, E(32)^5+E(32)^13, -1*E(32)^5-E(32)^13, E(32)^3-E(32)^11, E(32)^7+E(32)^15, -1*E(32)^3+E(32)^11, E(32)^3+E(32)^11, E(32)^3-E(32)^11, -1*E(32)^5+E(32)^13, -1*E(32)-E(32)^9, -1*E(32)^7-E(32)^15, E(32)^3+E(32)^11, -1*E(32)^7+E(32)^15, E(32)^5+E(32)^13, -1*E(32)^5+E(32)^13, E(32)^7-E(32)^15, E(32)^7+E(32)^15, E(32)^7-E(32)^15, -1*E(32)^3+E(32)^11, E(32)+E(32)^9, E(32)-E(32)^9, -1*E(32)-E(32)^9, -1*E(32)^3-E(32)^11, -1*E(32)+E(32)^9, E(32)^5-E(32)^13, -1*E(32)^5-E(32)^13, -1*E(32)^3-E(32)^11, -1*E(32)^7+E(32)^15, -1*E(32)^7-E(32)^15, E(32)+E(32)^9, E(32)-E(32)^9, E(32)^5-E(32)^13], [2, -2, 0, 0, 2, -2*E(32)^8, 2*E(32)^8, 0, 0, 0, -2, 0, -2*E(32)^4, -2*E(32)^12, 2*E(32)^4, 2*E(32)^12, 0, 0, 0, 0, 0, 0, 2*E(32)^8, -2*E(32)^8, -2*E(32)^14, 2*E(32)^2, 2*E(32)^10, 2*E(32)^6, -2*E(32)^6, -2*E(32)^10, 2*E(32)^14, -2*E(32)^2, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(32)^4, 0, 0, 2*E(32)^4, 2*E(32)^12, -2*E(32)^12, 0, 0, -1*E(32)^7+E(32)^15, E(32)^7+E(32)^15, -1*E(32)^5-E(32)^13, -1*E(32)^7-E(32)^15, E(32)^5+E(32)^13, -1*E(32)+E(32)^9, E(32)-E(32)^9, -1*E(32)^3+E(32)^11, E(32)^3-E(32)^11, -1*E(32)^5+E(32)^13, E(32)^3+E(32)^11, -1*E(32)-E(32)^9, E(32)^7-E(32)^15, -1*E(32)^3-E(32)^11, E(32)^5-E(32)^13, E(32)+E(32)^9, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(32)^6, 0, 2*E(32)^14, 2*E(32)^10, -2*E(32)^10, -2*E(32)^6, 0, 0, 0, 0, 0, 0, 2*E(32)^2, -2*E(32)^14, 0, -2*E(32)^2, E(32)^7+E(32)^15, -1*E(32)^3+E(32)^11, E(32)^3-E(32)^11, E(32)^5+E(32)^13, E(32)-E(32)^9, -1*E(32)^5-E(32)^13, E(32)^5-E(32)^13, E(32)^5+E(32)^13, E(32)^3+E(32)^11, E(32)^7-E(32)^15, -1*E(32)+E(32)^9, E(32)^5-E(32)^13, -1*E(32)-E(32)^9, -1*E(32)^3+E(32)^11, E(32)^3+E(32)^11, E(32)+E(32)^9, E(32)-E(32)^9, E(32)+E(32)^9, -1*E(32)^5-E(32)^13, -1*E(32)^7+E(32)^15, -1*E(32)^7-E(32)^15, E(32)^7-E(32)^15, -1*E(32)^5+E(32)^13, E(32)^7+E(32)^15, -1*E(32)^3-E(32)^11, E(32)^3-E(32)^11, -1*E(32)^5+E(32)^13, -1*E(32)-E(32)^9, -1*E(32)+E(32)^9, -1*E(32)^7+E(32)^15, -1*E(32)^7-E(32)^15, -1*E(32)^3-E(32)^11], [2, -2, 0, 0, 2, 2*E(32)^8, -2*E(32)^8, 0, 0, 0, -2, 0, 2*E(32)^12, 2*E(32)^4, -2*E(32)^12, -2*E(32)^4, 0, 0, 0, 0, 0, 0, -2*E(32)^8, 2*E(32)^8, 2*E(32)^2, -2*E(32)^14, -2*E(32)^6, -2*E(32)^10, 2*E(32)^10, 2*E(32)^6, -2*E(32)^2, 2*E(32)^14, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(32)^12, 0, 0, -2*E(32)^12, -2*E(32)^4, 2*E(32)^4, 0, 0, -1*E(32)+E(32)^9, -1*E(32)-E(32)^9, E(32)^3+E(32)^11, E(32)+E(32)^9, -1*E(32)^3-E(32)^11, -1*E(32)^7+E(32)^15, E(32)^7-E(32)^15, -1*E(32)^5+E(32)^13, E(32)^5-E(32)^13, -1*E(32)^3+E(32)^11, -1*E(32)^5-E(32)^13, E(32)^7+E(32)^15, E(32)-E(32)^9, E(32)^5+E(32)^13, E(32)^3-E(32)^11, -1*E(32)^7-E(32)^15, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(32)^10, 0, -2*E(32)^2, -2*E(32)^6, 2*E(32)^6, 2*E(32)^10, 0, 0, 0, 0, 0, 0, -2*E(32)^14, 2*E(32)^2, 0, 2*E(32)^14, -1*E(32)-E(32)^9, -1*E(32)^5+E(32)^13, E(32)^5-E(32)^13, -1*E(32)^3-E(32)^11, E(32)^7-E(32)^15, E(32)^3+E(32)^11, E(32)^3-E(32)^11, -1*E(32)^3-E(32)^11, -1*E(32)^5-E(32)^13, E(32)-E(32)^9, -1*E(32)^7+E(32)^15, E(32)^3-E(32)^11, E(32)^7+E(32)^15, -1*E(32)^5+E(32)^13, -1*E(32)^5-E(32)^13, -1*E(32)^7-E(32)^15, E(32)^7-E(32)^15, -1*E(32)^7-E(32)^15, E(32)^3+E(32)^11, -1*E(32)+E(32)^9, E(32)+E(32)^9, E(32)-E(32)^9, -1*E(32)^3+E(32)^11, -1*E(32)-E(32)^9, E(32)^5+E(32)^13, E(32)^5-E(32)^13, -1*E(32)^3+E(32)^11, E(32)^7+E(32)^15, -1*E(32)^7+E(32)^15, -1*E(32)+E(32)^9, E(32)+E(32)^9, E(32)^5+E(32)^13], [2, -2, 0, 0, 2, -2*E(32)^8, 2*E(32)^8, 0, 0, 0, -2, 0, -2*E(32)^4, -2*E(32)^12, 2*E(32)^4, 2*E(32)^12, 0, 0, 0, 0, 0, 0, 2*E(32)^8, -2*E(32)^8, -2*E(32)^14, 2*E(32)^2, 2*E(32)^10, 2*E(32)^6, -2*E(32)^6, -2*E(32)^10, 2*E(32)^14, -2*E(32)^2, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(32)^4, 0, 0, 2*E(32)^4, 2*E(32)^12, -2*E(32)^12, 0, 0, E(32)^7-E(32)^15, -1*E(32)^7-E(32)^15, E(32)^5+E(32)^13, E(32)^7+E(32)^15, -1*E(32)^5-E(32)^13, E(32)-E(32)^9, -1*E(32)+E(32)^9, E(32)^3-E(32)^11, -1*E(32)^3+E(32)^11, E(32)^5-E(32)^13, -1*E(32)^3-E(32)^11, E(32)+E(32)^9, -1*E(32)^7+E(32)^15, E(32)^3+E(32)^11, -1*E(32)^5+E(32)^13, -1*E(32)-E(32)^9, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(32)^6, 0, 2*E(32)^14, 2*E(32)^10, -2*E(32)^10, -2*E(32)^6, 0, 0, 0, 0, 0, 0, 2*E(32)^2, -2*E(32)^14, 0, -2*E(32)^2, -1*E(32)^7-E(32)^15, E(32)^3-E(32)^11, -1*E(32)^3+E(32)^11, -1*E(32)^5-E(32)^13, -1*E(32)+E(32)^9, E(32)^5+E(32)^13, -1*E(32)^5+E(32)^13, -1*E(32)^5-E(32)^13, -1*E(32)^3-E(32)^11, -1*E(32)^7+E(32)^15, E(32)-E(32)^9, -1*E(32)^5+E(32)^13, E(32)+E(32)^9, E(32)^3-E(32)^11, -1*E(32)^3-E(32)^11, -1*E(32)-E(32)^9, -1*E(32)+E(32)^9, -1*E(32)-E(32)^9, E(32)^5+E(32)^13, E(32)^7-E(32)^15, E(32)^7+E(32)^15, -1*E(32)^7+E(32)^15, E(32)^5-E(32)^13, -1*E(32)^7-E(32)^15, E(32)^3+E(32)^11, -1*E(32)^3+E(32)^11, E(32)^5-E(32)^13, E(32)+E(32)^9, E(32)-E(32)^9, E(32)^7-E(32)^15, E(32)^7+E(32)^15, E(32)^3+E(32)^11], [2, -2, 0, 0, 2, 2*E(32)^8, -2*E(32)^8, 0, 0, 0, -2, 0, 2*E(32)^12, 2*E(32)^4, -2*E(32)^12, -2*E(32)^4, 0, 0, 0, 0, 0, 0, -2*E(32)^8, 2*E(32)^8, 2*E(32)^2, -2*E(32)^14, -2*E(32)^6, -2*E(32)^10, 2*E(32)^10, 2*E(32)^6, -2*E(32)^2, 2*E(32)^14, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(32)^12, 0, 0, -2*E(32)^12, -2*E(32)^4, 2*E(32)^4, 0, 0, E(32)-E(32)^9, E(32)+E(32)^9, -1*E(32)^3-E(32)^11, -1*E(32)-E(32)^9, E(32)^3+E(32)^11, E(32)^7-E(32)^15, -1*E(32)^7+E(32)^15, E(32)^5-E(32)^13, -1*E(32)^5+E(32)^13, E(32)^3-E(32)^11, E(32)^5+E(32)^13, -1*E(32)^7-E(32)^15, -1*E(32)+E(32)^9, -1*E(32)^5-E(32)^13, -1*E(32)^3+E(32)^11, E(32)^7+E(32)^15, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(32)^10, 0, -2*E(32)^2, -2*E(32)^6, 2*E(32)^6, 2*E(32)^10, 0, 0, 0, 0, 0, 0, -2*E(32)^14, 2*E(32)^2, 0, 2*E(32)^14, E(32)+E(32)^9, E(32)^5-E(32)^13, -1*E(32)^5+E(32)^13, E(32)^3+E(32)^11, -1*E(32)^7+E(32)^15, -1*E(32)^3-E(32)^11, -1*E(32)^3+E(32)^11, E(32)^3+E(32)^11, E(32)^5+E(32)^13, -1*E(32)+E(32)^9, E(32)^7-E(32)^15, -1*E(32)^3+E(32)^11, -1*E(32)^7-E(32)^15, E(32)^5-E(32)^13, E(32)^5+E(32)^13, E(32)^7+E(32)^15, -1*E(32)^7+E(32)^15, E(32)^7+E(32)^15, -1*E(32)^3-E(32)^11, E(32)-E(32)^9, -1*E(32)-E(32)^9, -1*E(32)+E(32)^9, E(32)^3-E(32)^11, E(32)+E(32)^9, -1*E(32)^5-E(32)^13, -1*E(32)^5+E(32)^13, E(32)^3-E(32)^11, -1*E(32)^7-E(32)^15, E(32)^7-E(32)^15, E(32)-E(32)^9, -1*E(32)-E(32)^9, -1*E(32)^5-E(32)^13], [2, -2, 0, 0, 2, -2*E(32)^8, 2*E(32)^8, 0, 0, 0, -2, 0, 2*E(32)^4, 2*E(32)^12, -2*E(32)^4, -2*E(32)^12, 0, 0, 0, 0, 0, 0, 2*E(32)^8, -2*E(32)^8, -2*E(32)^6, 2*E(32)^10, -2*E(32)^2, -2*E(32)^14, 2*E(32)^14, 2*E(32)^2, 2*E(32)^6, -2*E(32)^10, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(32)^4, 0, 0, -2*E(32)^4, -2*E(32)^12, 2*E(32)^12, 0, 0, -1*E(32)^3+E(32)^11, E(32)^3+E(32)^11, -1*E(32)+E(32)^9, -1*E(32)^3-E(32)^11, E(32)-E(32)^9, -1*E(32)^5+E(32)^13, E(32)^5-E(32)^13, -1*E(32)^7-E(32)^15, E(32)^7+E(32)^15, E(32)+E(32)^9, -1*E(32)^7+E(32)^15, -1*E(32)^5-E(32)^13, E(32)^3-E(32)^11, E(32)^7-E(32)^15, -1*E(32)-E(32)^9, E(32)^5+E(32)^13, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(32)^14, 0, 2*E(32)^6, -2*E(32)^2, 2*E(32)^2, 2*E(32)^14, 0, 0, 0, 0, 0, 0, 2*E(32)^10, -2*E(32)^6, 0, -2*E(32)^10, E(32)^3+E(32)^11, -1*E(32)^7-E(32)^15, E(32)^7+E(32)^15, E(32)-E(32)^9, E(32)^5-E(32)^13, -1*E(32)+E(32)^9, -1*E(32)-E(32)^9, E(32)-E(32)^9, -1*E(32)^7+E(32)^15, E(32)^3-E(32)^11, -1*E(32)^5+E(32)^13, -1*E(32)-E(32)^9, -1*E(32)^5-E(32)^13, -1*E(32)^7-E(32)^15, -1*E(32)^7+E(32)^15, E(32)^5+E(32)^13, E(32)^5-E(32)^13, E(32)^5+E(32)^13, -1*E(32)+E(32)^9, -1*E(32)^3+E(32)^11, -1*E(32)^3-E(32)^11, E(32)^3-E(32)^11, E(32)+E(32)^9, E(32)^3+E(32)^11, E(32)^7-E(32)^15, E(32)^7+E(32)^15, E(32)+E(32)^9, -1*E(32)^5-E(32)^13, -1*E(32)^5+E(32)^13, -1*E(32)^3+E(32)^11, -1*E(32)^3-E(32)^11, E(32)^7-E(32)^15], [2, -2, 0, 0, 2, 2*E(32)^8, -2*E(32)^8, 0, 0, 0, -2, 0, -2*E(32)^12, -2*E(32)^4, 2*E(32)^12, 2*E(32)^4, 0, 0, 0, 0, 0, 0, -2*E(32)^8, 2*E(32)^8, 2*E(32)^10, -2*E(32)^6, 2*E(32)^14, 2*E(32)^2, -2*E(32)^2, -2*E(32)^14, -2*E(32)^10, 2*E(32)^6, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(32)^12, 0, 0, 2*E(32)^12, 2*E(32)^4, -2*E(32)^4, 0, 0, -1*E(32)^5+E(32)^13, -1*E(32)^5-E(32)^13, -1*E(32)^7+E(32)^15, E(32)^5+E(32)^13, E(32)^7-E(32)^15, -1*E(32)^3+E(32)^11, E(32)^3-E(32)^11, E(32)+E(32)^9, -1*E(32)-E(32)^9, -1*E(32)^7-E(32)^15, -1*E(32)+E(32)^9, E(32)^3+E(32)^11, E(32)^5-E(32)^13, E(32)-E(32)^9, E(32)^7+E(32)^15, -1*E(32)^3-E(32)^11, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(32)^2, 0, -2*E(32)^10, 2*E(32)^14, -2*E(32)^14, -2*E(32)^2, 0, 0, 0, 0, 0, 0, -2*E(32)^6, 2*E(32)^10, 0, 2*E(32)^6, -1*E(32)^5-E(32)^13, E(32)+E(32)^9, -1*E(32)-E(32)^9, E(32)^7-E(32)^15, E(32)^3-E(32)^11, -1*E(32)^7+E(32)^15, E(32)^7+E(32)^15, E(32)^7-E(32)^15, -1*E(32)+E(32)^9, E(32)^5-E(32)^13, -1*E(32)^3+E(32)^11, E(32)^7+E(32)^15, E(32)^3+E(32)^11, E(32)+E(32)^9, -1*E(32)+E(32)^9, -1*E(32)^3-E(32)^11, E(32)^3-E(32)^11, -1*E(32)^3-E(32)^11, -1*E(32)^7+E(32)^15, -1*E(32)^5+E(32)^13, E(32)^5+E(32)^13, E(32)^5-E(32)^13, -1*E(32)^7-E(32)^15, -1*E(32)^5-E(32)^13, E(32)-E(32)^9, -1*E(32)-E(32)^9, -1*E(32)^7-E(32)^15, E(32)^3+E(32)^11, -1*E(32)^3+E(32)^11, -1*E(32)^5+E(32)^13, E(32)^5+E(32)^13, E(32)-E(32)^9], [2, -2, 0, 0, 2, -2*E(32)^8, 2*E(32)^8, 0, 0, 0, -2, 0, 2*E(32)^4, 2*E(32)^12, -2*E(32)^4, -2*E(32)^12, 0, 0, 0, 0, 0, 0, 2*E(32)^8, -2*E(32)^8, -2*E(32)^6, 2*E(32)^10, -2*E(32)^2, -2*E(32)^14, 2*E(32)^14, 2*E(32)^2, 2*E(32)^6, -2*E(32)^10, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(32)^4, 0, 0, -2*E(32)^4, -2*E(32)^12, 2*E(32)^12, 0, 0, E(32)^3-E(32)^11, -1*E(32)^3-E(32)^11, E(32)-E(32)^9, E(32)^3+E(32)^11, -1*E(32)+E(32)^9, E(32)^5-E(32)^13, -1*E(32)^5+E(32)^13, E(32)^7+E(32)^15, -1*E(32)^7-E(32)^15, -1*E(32)-E(32)^9, E(32)^7-E(32)^15, E(32)^5+E(32)^13, -1*E(32)^3+E(32)^11, -1*E(32)^7+E(32)^15, E(32)+E(32)^9, -1*E(32)^5-E(32)^13, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(32)^14, 0, 2*E(32)^6, -2*E(32)^2, 2*E(32)^2, 2*E(32)^14, 0, 0, 0, 0, 0, 0, 2*E(32)^10, -2*E(32)^6, 0, -2*E(32)^10, -1*E(32)^3-E(32)^11, E(32)^7+E(32)^15, -1*E(32)^7-E(32)^15, -1*E(32)+E(32)^9, -1*E(32)^5+E(32)^13, E(32)-E(32)^9, E(32)+E(32)^9, -1*E(32)+E(32)^9, E(32)^7-E(32)^15, -1*E(32)^3+E(32)^11, E(32)^5-E(32)^13, E(32)+E(32)^9, E(32)^5+E(32)^13, E(32)^7+E(32)^15, E(32)^7-E(32)^15, -1*E(32)^5-E(32)^13, -1*E(32)^5+E(32)^13, -1*E(32)^5-E(32)^13, E(32)-E(32)^9, E(32)^3-E(32)^11, E(32)^3+E(32)^11, -1*E(32)^3+E(32)^11, -1*E(32)-E(32)^9, -1*E(32)^3-E(32)^11, -1*E(32)^7+E(32)^15, -1*E(32)^7-E(32)^15, -1*E(32)-E(32)^9, E(32)^5+E(32)^13, E(32)^5-E(32)^13, E(32)^3-E(32)^11, E(32)^3+E(32)^11, -1*E(32)^7+E(32)^15], [2, -2, 0, 0, 2, 2*E(32)^8, -2*E(32)^8, 0, 0, 0, -2, 0, -2*E(32)^12, -2*E(32)^4, 2*E(32)^12, 2*E(32)^4, 0, 0, 0, 0, 0, 0, -2*E(32)^8, 2*E(32)^8, 2*E(32)^10, -2*E(32)^6, 2*E(32)^14, 2*E(32)^2, -2*E(32)^2, -2*E(32)^14, -2*E(32)^10, 2*E(32)^6, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(32)^12, 0, 0, 2*E(32)^12, 2*E(32)^4, -2*E(32)^4, 0, 0, E(32)^5-E(32)^13, E(32)^5+E(32)^13, E(32)^7-E(32)^15, -1*E(32)^5-E(32)^13, -1*E(32)^7+E(32)^15, E(32)^3-E(32)^11, -1*E(32)^3+E(32)^11, -1*E(32)-E(32)^9, E(32)+E(32)^9, E(32)^7+E(32)^15, E(32)-E(32)^9, -1*E(32)^3-E(32)^11, -1*E(32)^5+E(32)^13, -1*E(32)+E(32)^9, -1*E(32)^7-E(32)^15, E(32)^3+E(32)^11, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(32)^2, 0, -2*E(32)^10, 2*E(32)^14, -2*E(32)^14, -2*E(32)^2, 0, 0, 0, 0, 0, 0, -2*E(32)^6, 2*E(32)^10, 0, 2*E(32)^6, E(32)^5+E(32)^13, -1*E(32)-E(32)^9, E(32)+E(32)^9, -1*E(32)^7+E(32)^15, -1*E(32)^3+E(32)^11, E(32)^7-E(32)^15, -1*E(32)^7-E(32)^15, -1*E(32)^7+E(32)^15, E(32)-E(32)^9, -1*E(32)^5+E(32)^13, E(32)^3-E(32)^11, -1*E(32)^7-E(32)^15, -1*E(32)^3-E(32)^11, -1*E(32)-E(32)^9, E(32)-E(32)^9, E(32)^3+E(32)^11, -1*E(32)^3+E(32)^11, E(32)^3+E(32)^11, E(32)^7-E(32)^15, E(32)^5-E(32)^13, -1*E(32)^5-E(32)^13, -1*E(32)^5+E(32)^13, E(32)^7+E(32)^15, E(32)^5+E(32)^13, -1*E(32)+E(32)^9, E(32)+E(32)^9, E(32)^7+E(32)^15, -1*E(32)^3-E(32)^11, E(32)^3-E(32)^11, E(32)^5-E(32)^13, -1*E(32)^5-E(32)^13, -1*E(32)+E(32)^9], [2, -2, 0, 0, 2, -2*E(32)^8, 2*E(32)^8, 0, 0, 0, -2, 0, 2*E(32)^4, 2*E(32)^12, -2*E(32)^4, -2*E(32)^12, 0, 0, 0, 0, 0, 0, 2*E(32)^8, -2*E(32)^8, 2*E(32)^6, -2*E(32)^10, 2*E(32)^2, 2*E(32)^14, -2*E(32)^14, -2*E(32)^2, -2*E(32)^6, 2*E(32)^10, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(32)^4, 0, 0, -2*E(32)^4, -2*E(32)^12, 2*E(32)^12, 0, 0, -1*E(32)^3-E(32)^11, -1*E(32)^3+E(32)^11, E(32)+E(32)^9, E(32)^3-E(32)^11, -1*E(32)-E(32)^9, E(32)^5+E(32)^13, -1*E(32)^5-E(32)^13, E(32)^7-E(32)^15, -1*E(32)^7+E(32)^15, E(32)-E(32)^9, -1*E(32)^7-E(32)^15, -1*E(32)^5+E(32)^13, E(32)^3+E(32)^11, E(32)^7+E(32)^15, -1*E(32)+E(32)^9, E(32)^5-E(32)^13, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(32)^14, 0, -2*E(32)^6, 2*E(32)^2, -2*E(32)^2, -2*E(32)^14, 0, 0, 0, 0, 0, 0, -2*E(32)^10, 2*E(32)^6, 0, 2*E(32)^10, -1*E(32)^3+E(32)^11, E(32)^7-E(32)^15, -1*E(32)^7+E(32)^15, -1*E(32)-E(32)^9, -1*E(32)^5-E(32)^13, E(32)+E(32)^9, -1*E(32)+E(32)^9, -1*E(32)-E(32)^9, -1*E(32)^7-E(32)^15, E(32)^3+E(32)^11, E(32)^5+E(32)^13, -1*E(32)+E(32)^9, -1*E(32)^5+E(32)^13, E(32)^7-E(32)^15, -1*E(32)^7-E(32)^15, E(32)^5-E(32)^13, -1*E(32)^5-E(32)^13, E(32)^5-E(32)^13, E(32)+E(32)^9, -1*E(32)^3-E(32)^11, E(32)^3-E(32)^11, E(32)^3+E(32)^11, E(32)-E(32)^9, -1*E(32)^3+E(32)^11, E(32)^7+E(32)^15, -1*E(32)^7+E(32)^15, E(32)-E(32)^9, -1*E(32)^5+E(32)^13, E(32)^5+E(32)^13, -1*E(32)^3-E(32)^11, E(32)^3-E(32)^11, E(32)^7+E(32)^15], [2, -2, 0, 0, 2, 2*E(32)^8, -2*E(32)^8, 0, 0, 0, -2, 0, -2*E(32)^12, -2*E(32)^4, 2*E(32)^12, 2*E(32)^4, 0, 0, 0, 0, 0, 0, -2*E(32)^8, 2*E(32)^8, -2*E(32)^10, 2*E(32)^6, -2*E(32)^14, -2*E(32)^2, 2*E(32)^2, 2*E(32)^14, 2*E(32)^10, -2*E(32)^6, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(32)^12, 0, 0, 2*E(32)^12, 2*E(32)^4, -2*E(32)^4, 0, 0, E(32)^5+E(32)^13, -1*E(32)^5+E(32)^13, -1*E(32)^7-E(32)^15, E(32)^5-E(32)^13, E(32)^7+E(32)^15, -1*E(32)^3-E(32)^11, E(32)^3+E(32)^11, E(32)-E(32)^9, -1*E(32)+E(32)^9, E(32)^7-E(32)^15, E(32)+E(32)^9, -1*E(32)^3+E(32)^11, -1*E(32)^5-E(32)^13, -1*E(32)-E(32)^9, -1*E(32)^7+E(32)^15, E(32)^3-E(32)^11, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(32)^2, 0, 2*E(32)^10, -2*E(32)^14, 2*E(32)^14, 2*E(32)^2, 0, 0, 0, 0, 0, 0, 2*E(32)^6, -2*E(32)^10, 0, -2*E(32)^6, -1*E(32)^5+E(32)^13, E(32)-E(32)^9, -1*E(32)+E(32)^9, E(32)^7+E(32)^15, E(32)^3+E(32)^11, -1*E(32)^7-E(32)^15, -1*E(32)^7+E(32)^15, E(32)^7+E(32)^15, E(32)+E(32)^9, -1*E(32)^5-E(32)^13, -1*E(32)^3-E(32)^11, -1*E(32)^7+E(32)^15, -1*E(32)^3+E(32)^11, E(32)-E(32)^9, E(32)+E(32)^9, E(32)^3-E(32)^11, E(32)^3+E(32)^11, E(32)^3-E(32)^11, -1*E(32)^7-E(32)^15, E(32)^5+E(32)^13, E(32)^5-E(32)^13, -1*E(32)^5-E(32)^13, E(32)^7-E(32)^15, -1*E(32)^5+E(32)^13, -1*E(32)-E(32)^9, -1*E(32)+E(32)^9, E(32)^7-E(32)^15, -1*E(32)^3+E(32)^11, -1*E(32)^3-E(32)^11, E(32)^5+E(32)^13, E(32)^5-E(32)^13, -1*E(32)-E(32)^9], [2, -2, 0, 0, 2, -2*E(32)^8, 2*E(32)^8, 0, 0, 0, -2, 0, 2*E(32)^4, 2*E(32)^12, -2*E(32)^4, -2*E(32)^12, 0, 0, 0, 0, 0, 0, 2*E(32)^8, -2*E(32)^8, 2*E(32)^6, -2*E(32)^10, 2*E(32)^2, 2*E(32)^14, -2*E(32)^14, -2*E(32)^2, -2*E(32)^6, 2*E(32)^10, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(32)^4, 0, 0, -2*E(32)^4, -2*E(32)^12, 2*E(32)^12, 0, 0, E(32)^3+E(32)^11, E(32)^3-E(32)^11, -1*E(32)-E(32)^9, -1*E(32)^3+E(32)^11, E(32)+E(32)^9, -1*E(32)^5-E(32)^13, E(32)^5+E(32)^13, -1*E(32)^7+E(32)^15, E(32)^7-E(32)^15, -1*E(32)+E(32)^9, E(32)^7+E(32)^15, E(32)^5-E(32)^13, -1*E(32)^3-E(32)^11, -1*E(32)^7-E(32)^15, E(32)-E(32)^9, -1*E(32)^5+E(32)^13, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(32)^14, 0, -2*E(32)^6, 2*E(32)^2, -2*E(32)^2, -2*E(32)^14, 0, 0, 0, 0, 0, 0, -2*E(32)^10, 2*E(32)^6, 0, 2*E(32)^10, E(32)^3-E(32)^11, -1*E(32)^7+E(32)^15, E(32)^7-E(32)^15, E(32)+E(32)^9, E(32)^5+E(32)^13, -1*E(32)-E(32)^9, E(32)-E(32)^9, E(32)+E(32)^9, E(32)^7+E(32)^15, -1*E(32)^3-E(32)^11, -1*E(32)^5-E(32)^13, E(32)-E(32)^9, E(32)^5-E(32)^13, -1*E(32)^7+E(32)^15, E(32)^7+E(32)^15, -1*E(32)^5+E(32)^13, E(32)^5+E(32)^13, -1*E(32)^5+E(32)^13, -1*E(32)-E(32)^9, E(32)^3+E(32)^11, -1*E(32)^3+E(32)^11, -1*E(32)^3-E(32)^11, -1*E(32)+E(32)^9, E(32)^3-E(32)^11, -1*E(32)^7-E(32)^15, E(32)^7-E(32)^15, -1*E(32)+E(32)^9, E(32)^5-E(32)^13, -1*E(32)^5-E(32)^13, E(32)^3+E(32)^11, -1*E(32)^3+E(32)^11, -1*E(32)^7-E(32)^15], [2, -2, 0, 0, 2, 2*E(32)^8, -2*E(32)^8, 0, 0, 0, -2, 0, -2*E(32)^12, -2*E(32)^4, 2*E(32)^12, 2*E(32)^4, 0, 0, 0, 0, 0, 0, -2*E(32)^8, 2*E(32)^8, -2*E(32)^10, 2*E(32)^6, -2*E(32)^14, -2*E(32)^2, 2*E(32)^2, 2*E(32)^14, 2*E(32)^10, -2*E(32)^6, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(32)^12, 0, 0, 2*E(32)^12, 2*E(32)^4, -2*E(32)^4, 0, 0, -1*E(32)^5-E(32)^13, E(32)^5-E(32)^13, E(32)^7+E(32)^15, -1*E(32)^5+E(32)^13, -1*E(32)^7-E(32)^15, E(32)^3+E(32)^11, -1*E(32)^3-E(32)^11, -1*E(32)+E(32)^9, E(32)-E(32)^9, -1*E(32)^7+E(32)^15, -1*E(32)-E(32)^9, E(32)^3-E(32)^11, E(32)^5+E(32)^13, E(32)+E(32)^9, E(32)^7-E(32)^15, -1*E(32)^3+E(32)^11, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(32)^2, 0, 2*E(32)^10, -2*E(32)^14, 2*E(32)^14, 2*E(32)^2, 0, 0, 0, 0, 0, 0, 2*E(32)^6, -2*E(32)^10, 0, -2*E(32)^6, E(32)^5-E(32)^13, -1*E(32)+E(32)^9, E(32)-E(32)^9, -1*E(32)^7-E(32)^15, -1*E(32)^3-E(32)^11, E(32)^7+E(32)^15, E(32)^7-E(32)^15, -1*E(32)^7-E(32)^15, -1*E(32)-E(32)^9, E(32)^5+E(32)^13, E(32)^3+E(32)^11, E(32)^7-E(32)^15, E(32)^3-E(32)^11, -1*E(32)+E(32)^9, -1*E(32)-E(32)^9, -1*E(32)^3+E(32)^11, -1*E(32)^3-E(32)^11, -1*E(32)^3+E(32)^11, E(32)^7+E(32)^15, -1*E(32)^5-E(32)^13, -1*E(32)^5+E(32)^13, E(32)^5+E(32)^13, -1*E(32)^7+E(32)^15, E(32)^5-E(32)^13, E(32)+E(32)^9, E(32)-E(32)^9, -1*E(32)^7+E(32)^15, E(32)^3-E(32)^11, E(32)^3+E(32)^11, -1*E(32)^5-E(32)^13, -1*E(32)^5+E(32)^13, E(32)+E(32)^9], [2, -2, 0, 0, -1, -2*E(96)^24, 2*E(96)^24, 0, 0, 1-2*E(96)^16, 1, -1+2*E(96)^16, -2*E(96)^12, -2*E(96)^36, 2*E(96)^12, 2*E(96)^36, 0, 0, 0, 0, -1*E(96)^8-E(96)^-8, E(96)^8+E(96)^-8, -1*E(96)^24, E(96)^24, 2*E(96)^42, -2*E(96)^6, -2*E(96)^30, -2*E(96)^18, 2*E(96)^18, 2*E(96)^30, -2*E(96)^42, 2*E(96)^6, 0, 0, 0, 0, 0, 0, 0, 0, E(96)^12, -1*E(96)^12+2*E(96)^28, E(96)^4+E(96)^20, -1*E(96)^12, -1*E(96)^36, E(96)^36, -1*E(96)^4-E(96)^20, E(96)^12-2*E(96)^28, -1*E(96)^13+E(96)^21+E(96)^29, E(96)^13+E(96)^21-E(96)^29, E(96)^7+E(96)^15-E(96)^23, -1*E(96)^13-E(96)^21+E(96)^29, -1*E(96)^7-E(96)^15+E(96)^23, -1*E(96)^3-E(96)^27, E(96)^3+E(96)^27, -1*E(96)+E(96)^9+E(96)^17, E(96)-E(96)^9-E(96)^17, E(96)^7-E(96)^15-E(96)^23, E(96)+E(96)^9-E(96)^17, E(96)^3-E(96)^27, E(96)^13-E(96)^21-E(96)^29, -1*E(96)-E(96)^9+E(96)^17, -1*E(96)^7+E(96)^15+E(96)^23, -1*E(96)^3+E(96)^27, 0, 0, 0, 0, 0, 0, 0, 0, E(96)^18, 2*E(96)^14-E(96)^30, E(96)^42, E(96)^30, -1*E(96)^30, -1*E(96)^18, -1*E(96)^10-E(96)^26, E(96)^6-2*E(96)^22, -2*E(96)^2+E(96)^18, -2*E(96)^14+E(96)^30, E(96)^10+E(96)^26, -1*E(96)^6+2*E(96)^22, E(96)^6, -1*E(96)^42, 2*E(96)^2-E(96)^18, -1*E(96)^6, E(96)^5-E(96)^21+E(96)^29, -1*E(96)^17-E(96)^25, E(96)^17+E(96)^25, E(96)^7+E(96)^15-E(96)^31, -1*E(96)^11-E(96)^19, E(96)^23-E(96)^31, E(96)^7-E(96)^15+E(96)^31, -1*E(96)^23+E(96)^31, E(96)^17-E(96)^25, E(96)^5-E(96)^13, E(96)^3-E(96)^11-E(96)^19+E(96)^27, -1*E(96)^23-E(96)^31, -1*E(96)^3-E(96)^11+E(96)^19+E(96)^27, E(96)-E(96)^9+E(96)^25, -1*E(96)-E(96)^9+E(96)^25, -1*E(96)^11+E(96)^19, -1*E(96)^3+E(96)^11+E(96)^19-E(96)^27, E(96)^3+E(96)^11-E(96)^19-E(96)^27, -1*E(96)^7-E(96)^15+E(96)^31, E(96)^5-E(96)^21-E(96)^29, E(96)^5+E(96)^13, -1*E(96)^5+E(96)^21+E(96)^29, E(96)^23+E(96)^31, -1*E(96)^5-E(96)^13, -1*E(96)^17+E(96)^25, -1*E(96)+E(96)^9-E(96)^25, -1*E(96)^7+E(96)^15-E(96)^31, E(96)^11-E(96)^19, E(96)^11+E(96)^19, -1*E(96)^5+E(96)^13, -1*E(96)^5+E(96)^21-E(96)^29, E(96)+E(96)^9-E(96)^25], [2, -2, 0, 0, -1, 2*E(96)^24, -2*E(96)^24, 0, 0, -1+2*E(96)^16, 1, 1-2*E(96)^16, 2*E(96)^36, 2*E(96)^12, -2*E(96)^36, -2*E(96)^12, 0, 0, 0, 0, -1*E(96)^8-E(96)^-8, E(96)^8+E(96)^-8, E(96)^24, -1*E(96)^24, -2*E(96)^6, 2*E(96)^42, 2*E(96)^18, 2*E(96)^30, -2*E(96)^30, -2*E(96)^18, 2*E(96)^6, -2*E(96)^42, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(96)^36, -1*E(96)^4-E(96)^20, E(96)^12-2*E(96)^28, E(96)^36, E(96)^12, -1*E(96)^12, -1*E(96)^12+2*E(96)^28, E(96)^4+E(96)^20, -1*E(96)^3-E(96)^27, E(96)^3-E(96)^27, E(96)+E(96)^9-E(96)^17, -1*E(96)^3+E(96)^27, -1*E(96)-E(96)^9+E(96)^17, -1*E(96)^13+E(96)^21+E(96)^29, E(96)^13-E(96)^21-E(96)^29, E(96)^7-E(96)^15-E(96)^23, -1*E(96)^7+E(96)^15+E(96)^23, -1*E(96)+E(96)^9+E(96)^17, E(96)^7+E(96)^15-E(96)^23, E(96)^13+E(96)^21-E(96)^29, E(96)^3+E(96)^27, -1*E(96)^7-E(96)^15+E(96)^23, E(96)-E(96)^9-E(96)^17, -1*E(96)^13-E(96)^21+E(96)^29, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(96)^30, 2*E(96)^2-E(96)^18, -1*E(96)^6, -1*E(96)^18, E(96)^18, E(96)^30, -1*E(96)^6+2*E(96)^22, E(96)^10+E(96)^26, -2*E(96)^14+E(96)^30, -2*E(96)^2+E(96)^18, E(96)^6-2*E(96)^22, -1*E(96)^10-E(96)^26, -1*E(96)^42, E(96)^6, 2*E(96)^14-E(96)^30, E(96)^42, E(96)^11-E(96)^19, E(96)^23+E(96)^31, -1*E(96)^23-E(96)^31, E(96)+E(96)^9-E(96)^25, -1*E(96)^5+E(96)^21+E(96)^29, E(96)^17-E(96)^25, -1*E(96)+E(96)^9-E(96)^25, -1*E(96)^17+E(96)^25, E(96)^23-E(96)^31, -1*E(96)^3+E(96)^11+E(96)^19-E(96)^27, -1*E(96)^5+E(96)^13, E(96)^17+E(96)^25, -1*E(96)^5-E(96)^13, -1*E(96)^7+E(96)^15-E(96)^31, -1*E(96)^7-E(96)^15+E(96)^31, -1*E(96)^5+E(96)^21-E(96)^29, E(96)^5-E(96)^13, E(96)^5+E(96)^13, -1*E(96)-E(96)^9+E(96)^25, E(96)^11+E(96)^19, E(96)^3+E(96)^11-E(96)^19-E(96)^27, -1*E(96)^11-E(96)^19, -1*E(96)^17-E(96)^25, -1*E(96)^3-E(96)^11+E(96)^19+E(96)^27, -1*E(96)^23+E(96)^31, E(96)^7-E(96)^15+E(96)^31, E(96)-E(96)^9+E(96)^25, E(96)^5-E(96)^21+E(96)^29, E(96)^5-E(96)^21-E(96)^29, E(96)^3-E(96)^11-E(96)^19+E(96)^27, -1*E(96)^11+E(96)^19, E(96)^7+E(96)^15-E(96)^31], [2, -2, 0, 0, -1, -2*E(96)^24, 2*E(96)^24, 0, 0, 1-2*E(96)^16, 1, -1+2*E(96)^16, -2*E(96)^12, -2*E(96)^36, 2*E(96)^12, 2*E(96)^36, 0, 0, 0, 0, -1*E(96)^8-E(96)^-8, E(96)^8+E(96)^-8, -1*E(96)^24, E(96)^24, 2*E(96)^42, -2*E(96)^6, -2*E(96)^30, -2*E(96)^18, 2*E(96)^18, 2*E(96)^30, -2*E(96)^42, 2*E(96)^6, 0, 0, 0, 0, 0, 0, 0, 0, E(96)^12, -1*E(96)^12+2*E(96)^28, E(96)^4+E(96)^20, -1*E(96)^12, -1*E(96)^36, E(96)^36, -1*E(96)^4-E(96)^20, E(96)^12-2*E(96)^28, E(96)^13-E(96)^21-E(96)^29, -1*E(96)^13-E(96)^21+E(96)^29, -1*E(96)^7-E(96)^15+E(96)^23, E(96)^13+E(96)^21-E(96)^29, E(96)^7+E(96)^15-E(96)^23, E(96)^3+E(96)^27, -1*E(96)^3-E(96)^27, E(96)-E(96)^9-E(96)^17, -1*E(96)+E(96)^9+E(96)^17, -1*E(96)^7+E(96)^15+E(96)^23, -1*E(96)-E(96)^9+E(96)^17, -1*E(96)^3+E(96)^27, -1*E(96)^13+E(96)^21+E(96)^29, E(96)+E(96)^9-E(96)^17, E(96)^7-E(96)^15-E(96)^23, E(96)^3-E(96)^27, 0, 0, 0, 0, 0, 0, 0, 0, E(96)^18, 2*E(96)^14-E(96)^30, E(96)^42, E(96)^30, -1*E(96)^30, -1*E(96)^18, -1*E(96)^10-E(96)^26, E(96)^6-2*E(96)^22, -2*E(96)^2+E(96)^18, -2*E(96)^14+E(96)^30, E(96)^10+E(96)^26, -1*E(96)^6+2*E(96)^22, E(96)^6, -1*E(96)^42, 2*E(96)^2-E(96)^18, -1*E(96)^6, -1*E(96)^5+E(96)^21-E(96)^29, E(96)^17+E(96)^25, -1*E(96)^17-E(96)^25, -1*E(96)^7-E(96)^15+E(96)^31, E(96)^11+E(96)^19, -1*E(96)^23+E(96)^31, -1*E(96)^7+E(96)^15-E(96)^31, E(96)^23-E(96)^31, -1*E(96)^17+E(96)^25, -1*E(96)^5+E(96)^13, -1*E(96)^3+E(96)^11+E(96)^19-E(96)^27, E(96)^23+E(96)^31, E(96)^3+E(96)^11-E(96)^19-E(96)^27, -1*E(96)+E(96)^9-E(96)^25, E(96)+E(96)^9-E(96)^25, E(96)^11-E(96)^19, E(96)^3-E(96)^11-E(96)^19+E(96)^27, -1*E(96)^3-E(96)^11+E(96)^19+E(96)^27, E(96)^7+E(96)^15-E(96)^31, -1*E(96)^5+E(96)^21+E(96)^29, -1*E(96)^5-E(96)^13, E(96)^5-E(96)^21-E(96)^29, -1*E(96)^23-E(96)^31, E(96)^5+E(96)^13, E(96)^17-E(96)^25, E(96)-E(96)^9+E(96)^25, E(96)^7-E(96)^15+E(96)^31, -1*E(96)^11+E(96)^19, -1*E(96)^11-E(96)^19, E(96)^5-E(96)^13, E(96)^5-E(96)^21+E(96)^29, -1*E(96)-E(96)^9+E(96)^25], [2, -2, 0, 0, -1, 2*E(96)^24, -2*E(96)^24, 0, 0, -1+2*E(96)^16, 1, 1-2*E(96)^16, 2*E(96)^36, 2*E(96)^12, -2*E(96)^36, -2*E(96)^12, 0, 0, 0, 0, -1*E(96)^8-E(96)^-8, E(96)^8+E(96)^-8, E(96)^24, -1*E(96)^24, -2*E(96)^6, 2*E(96)^42, 2*E(96)^18, 2*E(96)^30, -2*E(96)^30, -2*E(96)^18, 2*E(96)^6, -2*E(96)^42, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(96)^36, -1*E(96)^4-E(96)^20, E(96)^12-2*E(96)^28, E(96)^36, E(96)^12, -1*E(96)^12, -1*E(96)^12+2*E(96)^28, E(96)^4+E(96)^20, E(96)^3+E(96)^27, -1*E(96)^3+E(96)^27, -1*E(96)-E(96)^9+E(96)^17, E(96)^3-E(96)^27, E(96)+E(96)^9-E(96)^17, E(96)^13-E(96)^21-E(96)^29, -1*E(96)^13+E(96)^21+E(96)^29, -1*E(96)^7+E(96)^15+E(96)^23, E(96)^7-E(96)^15-E(96)^23, E(96)-E(96)^9-E(96)^17, -1*E(96)^7-E(96)^15+E(96)^23, -1*E(96)^13-E(96)^21+E(96)^29, -1*E(96)^3-E(96)^27, E(96)^7+E(96)^15-E(96)^23, -1*E(96)+E(96)^9+E(96)^17, E(96)^13+E(96)^21-E(96)^29, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(96)^30, 2*E(96)^2-E(96)^18, -1*E(96)^6, -1*E(96)^18, E(96)^18, E(96)^30, -1*E(96)^6+2*E(96)^22, E(96)^10+E(96)^26, -2*E(96)^14+E(96)^30, -2*E(96)^2+E(96)^18, E(96)^6-2*E(96)^22, -1*E(96)^10-E(96)^26, -1*E(96)^42, E(96)^6, 2*E(96)^14-E(96)^30, E(96)^42, -1*E(96)^11+E(96)^19, -1*E(96)^23-E(96)^31, E(96)^23+E(96)^31, -1*E(96)-E(96)^9+E(96)^25, E(96)^5-E(96)^21-E(96)^29, -1*E(96)^17+E(96)^25, E(96)-E(96)^9+E(96)^25, E(96)^17-E(96)^25, -1*E(96)^23+E(96)^31, E(96)^3-E(96)^11-E(96)^19+E(96)^27, E(96)^5-E(96)^13, -1*E(96)^17-E(96)^25, E(96)^5+E(96)^13, E(96)^7-E(96)^15+E(96)^31, E(96)^7+E(96)^15-E(96)^31, E(96)^5-E(96)^21+E(96)^29, -1*E(96)^5+E(96)^13, -1*E(96)^5-E(96)^13, E(96)+E(96)^9-E(96)^25, -1*E(96)^11-E(96)^19, -1*E(96)^3-E(96)^11+E(96)^19+E(96)^27, E(96)^11+E(96)^19, E(96)^17+E(96)^25, E(96)^3+E(96)^11-E(96)^19-E(96)^27, E(96)^23-E(96)^31, -1*E(96)^7+E(96)^15-E(96)^31, -1*E(96)+E(96)^9-E(96)^25, -1*E(96)^5+E(96)^21-E(96)^29, -1*E(96)^5+E(96)^21+E(96)^29, -1*E(96)^3+E(96)^11+E(96)^19-E(96)^27, E(96)^11-E(96)^19, -1*E(96)^7-E(96)^15+E(96)^31], [2, -2, 0, 0, -1, -2*E(96)^24, 2*E(96)^24, 0, 0, 1-2*E(96)^16, 1, -1+2*E(96)^16, -2*E(96)^12, -2*E(96)^36, 2*E(96)^12, 2*E(96)^36, 0, 0, 0, 0, -1*E(96)^8-E(96)^-8, E(96)^8+E(96)^-8, -1*E(96)^24, E(96)^24, -2*E(96)^42, 2*E(96)^6, 2*E(96)^30, 2*E(96)^18, -2*E(96)^18, -2*E(96)^30, 2*E(96)^42, -2*E(96)^6, 0, 0, 0, 0, 0, 0, 0, 0, E(96)^12, -1*E(96)^12+2*E(96)^28, E(96)^4+E(96)^20, -1*E(96)^12, -1*E(96)^36, E(96)^36, -1*E(96)^4-E(96)^20, E(96)^12-2*E(96)^28, -1*E(96)^13-E(96)^21+E(96)^29, -1*E(96)^13+E(96)^21+E(96)^29, E(96)^7-E(96)^15-E(96)^23, E(96)^13-E(96)^21-E(96)^29, -1*E(96)^7+E(96)^15+E(96)^23, -1*E(96)^3+E(96)^27, E(96)^3-E(96)^27, -1*E(96)-E(96)^9+E(96)^17, E(96)+E(96)^9-E(96)^17, -1*E(96)^7-E(96)^15+E(96)^23, -1*E(96)+E(96)^9+E(96)^17, -1*E(96)^3-E(96)^27, E(96)^13+E(96)^21-E(96)^29, E(96)-E(96)^9-E(96)^17, E(96)^7+E(96)^15-E(96)^23, E(96)^3+E(96)^27, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(96)^18, -2*E(96)^14+E(96)^30, -1*E(96)^42, -1*E(96)^30, E(96)^30, E(96)^18, E(96)^10+E(96)^26, -1*E(96)^6+2*E(96)^22, 2*E(96)^2-E(96)^18, 2*E(96)^14-E(96)^30, -1*E(96)^10-E(96)^26, E(96)^6-2*E(96)^22, -1*E(96)^6, E(96)^42, -2*E(96)^2+E(96)^18, E(96)^6, -1*E(96)^5+E(96)^13, E(96)+E(96)^9-E(96)^25, -1*E(96)-E(96)^9+E(96)^25, -1*E(96)^23-E(96)^31, -1*E(96)^3-E(96)^11+E(96)^19+E(96)^27, -1*E(96)^7+E(96)^15-E(96)^31, E(96)^23-E(96)^31, E(96)^7-E(96)^15+E(96)^31, E(96)-E(96)^9+E(96)^25, E(96)^5-E(96)^21+E(96)^29, -1*E(96)^11+E(96)^19, -1*E(96)^7-E(96)^15+E(96)^31, E(96)^11+E(96)^19, -1*E(96)^17+E(96)^25, -1*E(96)^17-E(96)^25, -1*E(96)^3+E(96)^11+E(96)^19-E(96)^27, E(96)^11-E(96)^19, -1*E(96)^11-E(96)^19, E(96)^23+E(96)^31, E(96)^5+E(96)^13, -1*E(96)^5+E(96)^21+E(96)^29, -1*E(96)^5-E(96)^13, E(96)^7+E(96)^15-E(96)^31, E(96)^5-E(96)^21-E(96)^29, -1*E(96)+E(96)^9-E(96)^25, E(96)^17-E(96)^25, -1*E(96)^23+E(96)^31, E(96)^3-E(96)^11-E(96)^19+E(96)^27, E(96)^3+E(96)^11-E(96)^19-E(96)^27, -1*E(96)^5+E(96)^21-E(96)^29, E(96)^5-E(96)^13, E(96)^17+E(96)^25], [2, -2, 0, 0, -1, 2*E(96)^24, -2*E(96)^24, 0, 0, -1+2*E(96)^16, 1, 1-2*E(96)^16, 2*E(96)^36, 2*E(96)^12, -2*E(96)^36, -2*E(96)^12, 0, 0, 0, 0, -1*E(96)^8-E(96)^-8, E(96)^8+E(96)^-8, E(96)^24, -1*E(96)^24, 2*E(96)^6, -2*E(96)^42, -2*E(96)^18, -2*E(96)^30, 2*E(96)^30, 2*E(96)^18, -2*E(96)^6, 2*E(96)^42, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(96)^36, -1*E(96)^4-E(96)^20, E(96)^12-2*E(96)^28, E(96)^36, E(96)^12, -1*E(96)^12, -1*E(96)^12+2*E(96)^28, E(96)^4+E(96)^20, -1*E(96)^3+E(96)^27, -1*E(96)^3-E(96)^27, -1*E(96)+E(96)^9+E(96)^17, E(96)^3+E(96)^27, E(96)-E(96)^9-E(96)^17, -1*E(96)^13-E(96)^21+E(96)^29, E(96)^13+E(96)^21-E(96)^29, -1*E(96)^7-E(96)^15+E(96)^23, E(96)^7+E(96)^15-E(96)^23, -1*E(96)-E(96)^9+E(96)^17, E(96)^7-E(96)^15-E(96)^23, -1*E(96)^13+E(96)^21+E(96)^29, E(96)^3-E(96)^27, -1*E(96)^7+E(96)^15+E(96)^23, E(96)+E(96)^9-E(96)^17, E(96)^13-E(96)^21-E(96)^29, 0, 0, 0, 0, 0, 0, 0, 0, E(96)^30, -2*E(96)^2+E(96)^18, E(96)^6, E(96)^18, -1*E(96)^18, -1*E(96)^30, E(96)^6-2*E(96)^22, -1*E(96)^10-E(96)^26, 2*E(96)^14-E(96)^30, 2*E(96)^2-E(96)^18, -1*E(96)^6+2*E(96)^22, E(96)^10+E(96)^26, E(96)^42, -1*E(96)^6, -2*E(96)^14+E(96)^30, -1*E(96)^42, E(96)^3-E(96)^11-E(96)^19+E(96)^27, E(96)^7+E(96)^15-E(96)^31, -1*E(96)^7-E(96)^15+E(96)^31, E(96)^17+E(96)^25, -1*E(96)^5-E(96)^13, E(96)-E(96)^9+E(96)^25, E(96)^17-E(96)^25, -1*E(96)+E(96)^9-E(96)^25, -1*E(96)^7+E(96)^15-E(96)^31, E(96)^11-E(96)^19, -1*E(96)^5+E(96)^21-E(96)^29, -1*E(96)-E(96)^9+E(96)^25, E(96)^5-E(96)^21-E(96)^29, -1*E(96)^23+E(96)^31, E(96)^23+E(96)^31, E(96)^5-E(96)^13, E(96)^5-E(96)^21+E(96)^29, -1*E(96)^5+E(96)^21+E(96)^29, -1*E(96)^17-E(96)^25, E(96)^3+E(96)^11-E(96)^19-E(96)^27, -1*E(96)^11-E(96)^19, -1*E(96)^3-E(96)^11+E(96)^19+E(96)^27, E(96)+E(96)^9-E(96)^25, E(96)^11+E(96)^19, E(96)^7-E(96)^15+E(96)^31, E(96)^23-E(96)^31, -1*E(96)^17+E(96)^25, -1*E(96)^5+E(96)^13, E(96)^5+E(96)^13, -1*E(96)^11+E(96)^19, -1*E(96)^3+E(96)^11+E(96)^19-E(96)^27, -1*E(96)^23-E(96)^31], [2, -2, 0, 0, -1, -2*E(96)^24, 2*E(96)^24, 0, 0, 1-2*E(96)^16, 1, -1+2*E(96)^16, -2*E(96)^12, -2*E(96)^36, 2*E(96)^12, 2*E(96)^36, 0, 0, 0, 0, -1*E(96)^8-E(96)^-8, E(96)^8+E(96)^-8, -1*E(96)^24, E(96)^24, -2*E(96)^42, 2*E(96)^6, 2*E(96)^30, 2*E(96)^18, -2*E(96)^18, -2*E(96)^30, 2*E(96)^42, -2*E(96)^6, 0, 0, 0, 0, 0, 0, 0, 0, E(96)^12, -1*E(96)^12+2*E(96)^28, E(96)^4+E(96)^20, -1*E(96)^12, -1*E(96)^36, E(96)^36, -1*E(96)^4-E(96)^20, E(96)^12-2*E(96)^28, E(96)^13+E(96)^21-E(96)^29, E(96)^13-E(96)^21-E(96)^29, -1*E(96)^7+E(96)^15+E(96)^23, -1*E(96)^13+E(96)^21+E(96)^29, E(96)^7-E(96)^15-E(96)^23, E(96)^3-E(96)^27, -1*E(96)^3+E(96)^27, E(96)+E(96)^9-E(96)^17, -1*E(96)-E(96)^9+E(96)^17, E(96)^7+E(96)^15-E(96)^23, E(96)-E(96)^9-E(96)^17, E(96)^3+E(96)^27, -1*E(96)^13-E(96)^21+E(96)^29, -1*E(96)+E(96)^9+E(96)^17, -1*E(96)^7-E(96)^15+E(96)^23, -1*E(96)^3-E(96)^27, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(96)^18, -2*E(96)^14+E(96)^30, -1*E(96)^42, -1*E(96)^30, E(96)^30, E(96)^18, E(96)^10+E(96)^26, -1*E(96)^6+2*E(96)^22, 2*E(96)^2-E(96)^18, 2*E(96)^14-E(96)^30, -1*E(96)^10-E(96)^26, E(96)^6-2*E(96)^22, -1*E(96)^6, E(96)^42, -2*E(96)^2+E(96)^18, E(96)^6, E(96)^5-E(96)^13, -1*E(96)-E(96)^9+E(96)^25, E(96)+E(96)^9-E(96)^25, E(96)^23+E(96)^31, E(96)^3+E(96)^11-E(96)^19-E(96)^27, E(96)^7-E(96)^15+E(96)^31, -1*E(96)^23+E(96)^31, -1*E(96)^7+E(96)^15-E(96)^31, -1*E(96)+E(96)^9-E(96)^25, -1*E(96)^5+E(96)^21-E(96)^29, E(96)^11-E(96)^19, E(96)^7+E(96)^15-E(96)^31, -1*E(96)^11-E(96)^19, E(96)^17-E(96)^25, E(96)^17+E(96)^25, E(96)^3-E(96)^11-E(96)^19+E(96)^27, -1*E(96)^11+E(96)^19, E(96)^11+E(96)^19, -1*E(96)^23-E(96)^31, -1*E(96)^5-E(96)^13, E(96)^5-E(96)^21-E(96)^29, E(96)^5+E(96)^13, -1*E(96)^7-E(96)^15+E(96)^31, -1*E(96)^5+E(96)^21+E(96)^29, E(96)-E(96)^9+E(96)^25, -1*E(96)^17+E(96)^25, E(96)^23-E(96)^31, -1*E(96)^3+E(96)^11+E(96)^19-E(96)^27, -1*E(96)^3-E(96)^11+E(96)^19+E(96)^27, E(96)^5-E(96)^21+E(96)^29, -1*E(96)^5+E(96)^13, -1*E(96)^17-E(96)^25], [2, -2, 0, 0, -1, 2*E(96)^24, -2*E(96)^24, 0, 0, -1+2*E(96)^16, 1, 1-2*E(96)^16, 2*E(96)^36, 2*E(96)^12, -2*E(96)^36, -2*E(96)^12, 0, 0, 0, 0, -1*E(96)^8-E(96)^-8, E(96)^8+E(96)^-8, E(96)^24, -1*E(96)^24, 2*E(96)^6, -2*E(96)^42, -2*E(96)^18, -2*E(96)^30, 2*E(96)^30, 2*E(96)^18, -2*E(96)^6, 2*E(96)^42, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(96)^36, -1*E(96)^4-E(96)^20, E(96)^12-2*E(96)^28, E(96)^36, E(96)^12, -1*E(96)^12, -1*E(96)^12+2*E(96)^28, E(96)^4+E(96)^20, E(96)^3-E(96)^27, E(96)^3+E(96)^27, E(96)-E(96)^9-E(96)^17, -1*E(96)^3-E(96)^27, -1*E(96)+E(96)^9+E(96)^17, E(96)^13+E(96)^21-E(96)^29, -1*E(96)^13-E(96)^21+E(96)^29, E(96)^7+E(96)^15-E(96)^23, -1*E(96)^7-E(96)^15+E(96)^23, E(96)+E(96)^9-E(96)^17, -1*E(96)^7+E(96)^15+E(96)^23, E(96)^13-E(96)^21-E(96)^29, -1*E(96)^3+E(96)^27, E(96)^7-E(96)^15-E(96)^23, -1*E(96)-E(96)^9+E(96)^17, -1*E(96)^13+E(96)^21+E(96)^29, 0, 0, 0, 0, 0, 0, 0, 0, E(96)^30, -2*E(96)^2+E(96)^18, E(96)^6, E(96)^18, -1*E(96)^18, -1*E(96)^30, E(96)^6-2*E(96)^22, -1*E(96)^10-E(96)^26, 2*E(96)^14-E(96)^30, 2*E(96)^2-E(96)^18, -1*E(96)^6+2*E(96)^22, E(96)^10+E(96)^26, E(96)^42, -1*E(96)^6, -2*E(96)^14+E(96)^30, -1*E(96)^42, -1*E(96)^3+E(96)^11+E(96)^19-E(96)^27, -1*E(96)^7-E(96)^15+E(96)^31, E(96)^7+E(96)^15-E(96)^31, -1*E(96)^17-E(96)^25, E(96)^5+E(96)^13, -1*E(96)+E(96)^9-E(96)^25, -1*E(96)^17+E(96)^25, E(96)-E(96)^9+E(96)^25, E(96)^7-E(96)^15+E(96)^31, -1*E(96)^11+E(96)^19, E(96)^5-E(96)^21+E(96)^29, E(96)+E(96)^9-E(96)^25, -1*E(96)^5+E(96)^21+E(96)^29, E(96)^23-E(96)^31, -1*E(96)^23-E(96)^31, -1*E(96)^5+E(96)^13, -1*E(96)^5+E(96)^21-E(96)^29, E(96)^5-E(96)^21-E(96)^29, E(96)^17+E(96)^25, -1*E(96)^3-E(96)^11+E(96)^19+E(96)^27, E(96)^11+E(96)^19, E(96)^3+E(96)^11-E(96)^19-E(96)^27, -1*E(96)-E(96)^9+E(96)^25, -1*E(96)^11-E(96)^19, -1*E(96)^7+E(96)^15-E(96)^31, -1*E(96)^23+E(96)^31, E(96)^17-E(96)^25, E(96)^5-E(96)^13, -1*E(96)^5-E(96)^13, E(96)^11-E(96)^19, E(96)^3-E(96)^11-E(96)^19+E(96)^27, E(96)^23+E(96)^31], [2, -2, 0, 0, -1, -2*E(96)^24, 2*E(96)^24, 0, 0, 1-2*E(96)^16, 1, -1+2*E(96)^16, 2*E(96)^12, 2*E(96)^36, -2*E(96)^12, -2*E(96)^36, 0, 0, 0, 0, -1*E(96)^8-E(96)^-8, E(96)^8+E(96)^-8, -1*E(96)^24, E(96)^24, -2*E(96)^18, 2*E(96)^30, -2*E(96)^6, -2*E(96)^42, 2*E(96)^42, 2*E(96)^6, 2*E(96)^18, -2*E(96)^30, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(96)^12, E(96)^12-2*E(96)^28, -1*E(96)^4-E(96)^20, E(96)^12, E(96)^36, -1*E(96)^36, E(96)^4+E(96)^20, -1*E(96)^12+2*E(96)^28, -1*E(96)-E(96)^9+E(96)^17, -1*E(96)+E(96)^9+E(96)^17, -1*E(96)^3+E(96)^27, E(96)-E(96)^9-E(96)^17, E(96)^3-E(96)^27, -1*E(96)^7-E(96)^15+E(96)^23, E(96)^7+E(96)^15-E(96)^23, E(96)^13-E(96)^21-E(96)^29, -1*E(96)^13+E(96)^21+E(96)^29, E(96)^3+E(96)^27, -1*E(96)^13-E(96)^21+E(96)^29, E(96)^7-E(96)^15-E(96)^23, E(96)+E(96)^9-E(96)^17, E(96)^13+E(96)^21-E(96)^29, -1*E(96)^3-E(96)^27, -1*E(96)^7+E(96)^15+E(96)^23, 0, 0, 0, 0, 0, 0, 0, 0, E(96)^42, E(96)^6-2*E(96)^22, -1*E(96)^18, E(96)^6, -1*E(96)^6, -1*E(96)^42, 2*E(96)^2-E(96)^18, -2*E(96)^14+E(96)^30, -1*E(96)^10-E(96)^26, -1*E(96)^6+2*E(96)^22, -2*E(96)^2+E(96)^18, 2*E(96)^14-E(96)^30, -1*E(96)^30, E(96)^18, E(96)^10+E(96)^26, E(96)^30, E(96)-E(96)^9+E(96)^25, -1*E(96)^5+E(96)^21+E(96)^29, E(96)^5-E(96)^21-E(96)^29, -1*E(96)^3-E(96)^11+E(96)^19+E(96)^27, -1*E(96)^7-E(96)^15+E(96)^31, -1*E(96)^11+E(96)^19, E(96)^3-E(96)^11-E(96)^19+E(96)^27, E(96)^11-E(96)^19, -1*E(96)^5+E(96)^21-E(96)^29, E(96)^17-E(96)^25, -1*E(96)^23+E(96)^31, E(96)^11+E(96)^19, E(96)^23+E(96)^31, E(96)^5-E(96)^13, E(96)^5+E(96)^13, E(96)^7-E(96)^15+E(96)^31, E(96)^23-E(96)^31, -1*E(96)^23-E(96)^31, E(96)^3+E(96)^11-E(96)^19-E(96)^27, E(96)+E(96)^9-E(96)^25, E(96)^17+E(96)^25, -1*E(96)-E(96)^9+E(96)^25, -1*E(96)^11-E(96)^19, -1*E(96)^17-E(96)^25, E(96)^5-E(96)^21+E(96)^29, -1*E(96)^5+E(96)^13, -1*E(96)^3+E(96)^11+E(96)^19-E(96)^27, -1*E(96)^7+E(96)^15-E(96)^31, E(96)^7+E(96)^15-E(96)^31, -1*E(96)^17+E(96)^25, -1*E(96)+E(96)^9-E(96)^25, -1*E(96)^5-E(96)^13], [2, -2, 0, 0, -1, 2*E(96)^24, -2*E(96)^24, 0, 0, -1+2*E(96)^16, 1, 1-2*E(96)^16, -2*E(96)^36, -2*E(96)^12, 2*E(96)^36, 2*E(96)^12, 0, 0, 0, 0, -1*E(96)^8-E(96)^-8, E(96)^8+E(96)^-8, E(96)^24, -1*E(96)^24, 2*E(96)^30, -2*E(96)^18, 2*E(96)^42, 2*E(96)^6, -2*E(96)^6, -2*E(96)^42, -2*E(96)^30, 2*E(96)^18, 0, 0, 0, 0, 0, 0, 0, 0, E(96)^36, E(96)^4+E(96)^20, -1*E(96)^12+2*E(96)^28, -1*E(96)^36, -1*E(96)^12, E(96)^12, E(96)^12-2*E(96)^28, -1*E(96)^4-E(96)^20, -1*E(96)^7-E(96)^15+E(96)^23, E(96)^7-E(96)^15-E(96)^23, -1*E(96)^13-E(96)^21+E(96)^29, -1*E(96)^7+E(96)^15+E(96)^23, E(96)^13+E(96)^21-E(96)^29, -1*E(96)-E(96)^9+E(96)^17, E(96)+E(96)^9-E(96)^17, E(96)^3+E(96)^27, -1*E(96)^3-E(96)^27, E(96)^13-E(96)^21-E(96)^29, -1*E(96)^3+E(96)^27, -1*E(96)+E(96)^9+E(96)^17, E(96)^7+E(96)^15-E(96)^23, E(96)^3-E(96)^27, -1*E(96)^13+E(96)^21+E(96)^29, E(96)-E(96)^9-E(96)^17, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(96)^6, E(96)^10+E(96)^26, E(96)^30, -1*E(96)^42, E(96)^42, E(96)^6, 2*E(96)^14-E(96)^30, -2*E(96)^2+E(96)^18, -1*E(96)^6+2*E(96)^22, -1*E(96)^10-E(96)^26, -2*E(96)^14+E(96)^30, 2*E(96)^2-E(96)^18, E(96)^18, -1*E(96)^30, E(96)^6-2*E(96)^22, -1*E(96)^18, -1*E(96)^7+E(96)^15-E(96)^31, -1*E(96)^11-E(96)^19, E(96)^11+E(96)^19, -1*E(96)^5-E(96)^13, -1*E(96)-E(96)^9+E(96)^25, -1*E(96)^5+E(96)^21-E(96)^29, -1*E(96)^5+E(96)^13, E(96)^5-E(96)^21+E(96)^29, -1*E(96)^11+E(96)^19, E(96)^23-E(96)^31, -1*E(96)^17+E(96)^25, E(96)^5-E(96)^21-E(96)^29, -1*E(96)^17-E(96)^25, -1*E(96)^3+E(96)^11+E(96)^19-E(96)^27, E(96)^3+E(96)^11-E(96)^19-E(96)^27, -1*E(96)+E(96)^9-E(96)^25, E(96)^17-E(96)^25, E(96)^17+E(96)^25, E(96)^5+E(96)^13, E(96)^7+E(96)^15-E(96)^31, -1*E(96)^23-E(96)^31, -1*E(96)^7-E(96)^15+E(96)^31, -1*E(96)^5+E(96)^21+E(96)^29, E(96)^23+E(96)^31, E(96)^11-E(96)^19, E(96)^3-E(96)^11-E(96)^19+E(96)^27, E(96)^5-E(96)^13, E(96)-E(96)^9+E(96)^25, E(96)+E(96)^9-E(96)^25, -1*E(96)^23+E(96)^31, E(96)^7-E(96)^15+E(96)^31, -1*E(96)^3-E(96)^11+E(96)^19+E(96)^27], [2, -2, 0, 0, -1, -2*E(96)^24, 2*E(96)^24, 0, 0, 1-2*E(96)^16, 1, -1+2*E(96)^16, 2*E(96)^12, 2*E(96)^36, -2*E(96)^12, -2*E(96)^36, 0, 0, 0, 0, -1*E(96)^8-E(96)^-8, E(96)^8+E(96)^-8, -1*E(96)^24, E(96)^24, -2*E(96)^18, 2*E(96)^30, -2*E(96)^6, -2*E(96)^42, 2*E(96)^42, 2*E(96)^6, 2*E(96)^18, -2*E(96)^30, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(96)^12, E(96)^12-2*E(96)^28, -1*E(96)^4-E(96)^20, E(96)^12, E(96)^36, -1*E(96)^36, E(96)^4+E(96)^20, -1*E(96)^12+2*E(96)^28, E(96)+E(96)^9-E(96)^17, E(96)-E(96)^9-E(96)^17, E(96)^3-E(96)^27, -1*E(96)+E(96)^9+E(96)^17, -1*E(96)^3+E(96)^27, E(96)^7+E(96)^15-E(96)^23, -1*E(96)^7-E(96)^15+E(96)^23, -1*E(96)^13+E(96)^21+E(96)^29, E(96)^13-E(96)^21-E(96)^29, -1*E(96)^3-E(96)^27, E(96)^13+E(96)^21-E(96)^29, -1*E(96)^7+E(96)^15+E(96)^23, -1*E(96)-E(96)^9+E(96)^17, -1*E(96)^13-E(96)^21+E(96)^29, E(96)^3+E(96)^27, E(96)^7-E(96)^15-E(96)^23, 0, 0, 0, 0, 0, 0, 0, 0, E(96)^42, E(96)^6-2*E(96)^22, -1*E(96)^18, E(96)^6, -1*E(96)^6, -1*E(96)^42, 2*E(96)^2-E(96)^18, -2*E(96)^14+E(96)^30, -1*E(96)^10-E(96)^26, -1*E(96)^6+2*E(96)^22, -2*E(96)^2+E(96)^18, 2*E(96)^14-E(96)^30, -1*E(96)^30, E(96)^18, E(96)^10+E(96)^26, E(96)^30, -1*E(96)+E(96)^9-E(96)^25, E(96)^5-E(96)^21-E(96)^29, -1*E(96)^5+E(96)^21+E(96)^29, E(96)^3+E(96)^11-E(96)^19-E(96)^27, E(96)^7+E(96)^15-E(96)^31, E(96)^11-E(96)^19, -1*E(96)^3+E(96)^11+E(96)^19-E(96)^27, -1*E(96)^11+E(96)^19, E(96)^5-E(96)^21+E(96)^29, -1*E(96)^17+E(96)^25, E(96)^23-E(96)^31, -1*E(96)^11-E(96)^19, -1*E(96)^23-E(96)^31, -1*E(96)^5+E(96)^13, -1*E(96)^5-E(96)^13, -1*E(96)^7+E(96)^15-E(96)^31, -1*E(96)^23+E(96)^31, E(96)^23+E(96)^31, -1*E(96)^3-E(96)^11+E(96)^19+E(96)^27, -1*E(96)-E(96)^9+E(96)^25, -1*E(96)^17-E(96)^25, E(96)+E(96)^9-E(96)^25, E(96)^11+E(96)^19, E(96)^17+E(96)^25, -1*E(96)^5+E(96)^21-E(96)^29, E(96)^5-E(96)^13, E(96)^3-E(96)^11-E(96)^19+E(96)^27, E(96)^7-E(96)^15+E(96)^31, -1*E(96)^7-E(96)^15+E(96)^31, E(96)^17-E(96)^25, E(96)-E(96)^9+E(96)^25, E(96)^5+E(96)^13], [2, -2, 0, 0, -1, 2*E(96)^24, -2*E(96)^24, 0, 0, -1+2*E(96)^16, 1, 1-2*E(96)^16, -2*E(96)^36, -2*E(96)^12, 2*E(96)^36, 2*E(96)^12, 0, 0, 0, 0, -1*E(96)^8-E(96)^-8, E(96)^8+E(96)^-8, E(96)^24, -1*E(96)^24, 2*E(96)^30, -2*E(96)^18, 2*E(96)^42, 2*E(96)^6, -2*E(96)^6, -2*E(96)^42, -2*E(96)^30, 2*E(96)^18, 0, 0, 0, 0, 0, 0, 0, 0, E(96)^36, E(96)^4+E(96)^20, -1*E(96)^12+2*E(96)^28, -1*E(96)^36, -1*E(96)^12, E(96)^12, E(96)^12-2*E(96)^28, -1*E(96)^4-E(96)^20, E(96)^7+E(96)^15-E(96)^23, -1*E(96)^7+E(96)^15+E(96)^23, E(96)^13+E(96)^21-E(96)^29, E(96)^7-E(96)^15-E(96)^23, -1*E(96)^13-E(96)^21+E(96)^29, E(96)+E(96)^9-E(96)^17, -1*E(96)-E(96)^9+E(96)^17, -1*E(96)^3-E(96)^27, E(96)^3+E(96)^27, -1*E(96)^13+E(96)^21+E(96)^29, E(96)^3-E(96)^27, E(96)-E(96)^9-E(96)^17, -1*E(96)^7-E(96)^15+E(96)^23, -1*E(96)^3+E(96)^27, E(96)^13-E(96)^21-E(96)^29, -1*E(96)+E(96)^9+E(96)^17, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(96)^6, E(96)^10+E(96)^26, E(96)^30, -1*E(96)^42, E(96)^42, E(96)^6, 2*E(96)^14-E(96)^30, -2*E(96)^2+E(96)^18, -1*E(96)^6+2*E(96)^22, -1*E(96)^10-E(96)^26, -2*E(96)^14+E(96)^30, 2*E(96)^2-E(96)^18, E(96)^18, -1*E(96)^30, E(96)^6-2*E(96)^22, -1*E(96)^18, E(96)^7-E(96)^15+E(96)^31, E(96)^11+E(96)^19, -1*E(96)^11-E(96)^19, E(96)^5+E(96)^13, E(96)+E(96)^9-E(96)^25, E(96)^5-E(96)^21+E(96)^29, E(96)^5-E(96)^13, -1*E(96)^5+E(96)^21-E(96)^29, E(96)^11-E(96)^19, -1*E(96)^23+E(96)^31, E(96)^17-E(96)^25, -1*E(96)^5+E(96)^21+E(96)^29, E(96)^17+E(96)^25, E(96)^3-E(96)^11-E(96)^19+E(96)^27, -1*E(96)^3-E(96)^11+E(96)^19+E(96)^27, E(96)-E(96)^9+E(96)^25, -1*E(96)^17+E(96)^25, -1*E(96)^17-E(96)^25, -1*E(96)^5-E(96)^13, -1*E(96)^7-E(96)^15+E(96)^31, E(96)^23+E(96)^31, E(96)^7+E(96)^15-E(96)^31, E(96)^5-E(96)^21-E(96)^29, -1*E(96)^23-E(96)^31, -1*E(96)^11+E(96)^19, -1*E(96)^3+E(96)^11+E(96)^19-E(96)^27, -1*E(96)^5+E(96)^13, -1*E(96)+E(96)^9-E(96)^25, -1*E(96)-E(96)^9+E(96)^25, E(96)^23-E(96)^31, -1*E(96)^7+E(96)^15-E(96)^31, E(96)^3+E(96)^11-E(96)^19-E(96)^27], [2, -2, 0, 0, -1, -2*E(96)^24, 2*E(96)^24, 0, 0, 1-2*E(96)^16, 1, -1+2*E(96)^16, 2*E(96)^12, 2*E(96)^36, -2*E(96)^12, -2*E(96)^36, 0, 0, 0, 0, -1*E(96)^8-E(96)^-8, E(96)^8+E(96)^-8, -1*E(96)^24, E(96)^24, 2*E(96)^18, -2*E(96)^30, 2*E(96)^6, 2*E(96)^42, -2*E(96)^42, -2*E(96)^6, -2*E(96)^18, 2*E(96)^30, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(96)^12, E(96)^12-2*E(96)^28, -1*E(96)^4-E(96)^20, E(96)^12, E(96)^36, -1*E(96)^36, E(96)^4+E(96)^20, -1*E(96)^12+2*E(96)^28, E(96)-E(96)^9-E(96)^17, -1*E(96)-E(96)^9+E(96)^17, E(96)^3+E(96)^27, E(96)+E(96)^9-E(96)^17, -1*E(96)^3-E(96)^27, -1*E(96)^7+E(96)^15+E(96)^23, E(96)^7-E(96)^15-E(96)^23, E(96)^13+E(96)^21-E(96)^29, -1*E(96)^13-E(96)^21+E(96)^29, E(96)^3-E(96)^27, E(96)^13-E(96)^21-E(96)^29, -1*E(96)^7-E(96)^15+E(96)^23, -1*E(96)+E(96)^9+E(96)^17, -1*E(96)^13+E(96)^21+E(96)^29, -1*E(96)^3+E(96)^27, E(96)^7+E(96)^15-E(96)^23, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(96)^42, -1*E(96)^6+2*E(96)^22, E(96)^18, -1*E(96)^6, E(96)^6, E(96)^42, -2*E(96)^2+E(96)^18, 2*E(96)^14-E(96)^30, E(96)^10+E(96)^26, E(96)^6-2*E(96)^22, 2*E(96)^2-E(96)^18, -2*E(96)^14+E(96)^30, E(96)^30, -1*E(96)^18, -1*E(96)^10-E(96)^26, -1*E(96)^30, -1*E(96)^17+E(96)^25, -1*E(96)^5-E(96)^13, E(96)^5+E(96)^13, E(96)^11+E(96)^19, E(96)^23+E(96)^31, -1*E(96)^3+E(96)^11+E(96)^19-E(96)^27, -1*E(96)^11+E(96)^19, E(96)^3-E(96)^11-E(96)^19+E(96)^27, E(96)^5-E(96)^13, E(96)-E(96)^9+E(96)^25, E(96)^7-E(96)^15+E(96)^31, E(96)^3+E(96)^11-E(96)^19-E(96)^27, E(96)^7+E(96)^15-E(96)^31, E(96)^5-E(96)^21+E(96)^29, -1*E(96)^5+E(96)^21+E(96)^29, E(96)^23-E(96)^31, -1*E(96)^7+E(96)^15-E(96)^31, -1*E(96)^7-E(96)^15+E(96)^31, -1*E(96)^11-E(96)^19, E(96)^17+E(96)^25, -1*E(96)-E(96)^9+E(96)^25, -1*E(96)^17-E(96)^25, -1*E(96)^3-E(96)^11+E(96)^19+E(96)^27, E(96)+E(96)^9-E(96)^25, -1*E(96)^5+E(96)^13, -1*E(96)^5+E(96)^21-E(96)^29, E(96)^11-E(96)^19, -1*E(96)^23+E(96)^31, -1*E(96)^23-E(96)^31, -1*E(96)+E(96)^9-E(96)^25, E(96)^17-E(96)^25, E(96)^5-E(96)^21-E(96)^29], [2, -2, 0, 0, -1, 2*E(96)^24, -2*E(96)^24, 0, 0, -1+2*E(96)^16, 1, 1-2*E(96)^16, -2*E(96)^36, -2*E(96)^12, 2*E(96)^36, 2*E(96)^12, 0, 0, 0, 0, -1*E(96)^8-E(96)^-8, E(96)^8+E(96)^-8, E(96)^24, -1*E(96)^24, -2*E(96)^30, 2*E(96)^18, -2*E(96)^42, -2*E(96)^6, 2*E(96)^6, 2*E(96)^42, 2*E(96)^30, -2*E(96)^18, 0, 0, 0, 0, 0, 0, 0, 0, E(96)^36, E(96)^4+E(96)^20, -1*E(96)^12+2*E(96)^28, -1*E(96)^36, -1*E(96)^12, E(96)^12, E(96)^12-2*E(96)^28, -1*E(96)^4-E(96)^20, -1*E(96)^7+E(96)^15+E(96)^23, -1*E(96)^7-E(96)^15+E(96)^23, E(96)^13-E(96)^21-E(96)^29, E(96)^7+E(96)^15-E(96)^23, -1*E(96)^13+E(96)^21+E(96)^29, E(96)-E(96)^9-E(96)^17, -1*E(96)+E(96)^9+E(96)^17, E(96)^3-E(96)^27, -1*E(96)^3+E(96)^27, E(96)^13+E(96)^21-E(96)^29, E(96)^3+E(96)^27, -1*E(96)-E(96)^9+E(96)^17, E(96)^7-E(96)^15-E(96)^23, -1*E(96)^3-E(96)^27, -1*E(96)^13-E(96)^21+E(96)^29, E(96)+E(96)^9-E(96)^17, 0, 0, 0, 0, 0, 0, 0, 0, E(96)^6, -1*E(96)^10-E(96)^26, -1*E(96)^30, E(96)^42, -1*E(96)^42, -1*E(96)^6, -2*E(96)^14+E(96)^30, 2*E(96)^2-E(96)^18, E(96)^6-2*E(96)^22, E(96)^10+E(96)^26, 2*E(96)^14-E(96)^30, -2*E(96)^2+E(96)^18, -1*E(96)^18, E(96)^30, -1*E(96)^6+2*E(96)^22, E(96)^18, -1*E(96)^23+E(96)^31, -1*E(96)^3-E(96)^11+E(96)^19+E(96)^27, E(96)^3+E(96)^11-E(96)^19-E(96)^27, E(96)^5-E(96)^21-E(96)^29, -1*E(96)^17-E(96)^25, E(96)^5-E(96)^13, -1*E(96)^5+E(96)^21-E(96)^29, -1*E(96)^5+E(96)^13, -1*E(96)^3+E(96)^11+E(96)^19-E(96)^27, -1*E(96)^7+E(96)^15-E(96)^31, -1*E(96)+E(96)^9-E(96)^25, E(96)^5+E(96)^13, E(96)+E(96)^9-E(96)^25, E(96)^11-E(96)^19, -1*E(96)^11-E(96)^19, E(96)^17-E(96)^25, E(96)-E(96)^9+E(96)^25, -1*E(96)-E(96)^9+E(96)^25, -1*E(96)^5+E(96)^21+E(96)^29, -1*E(96)^23-E(96)^31, -1*E(96)^7-E(96)^15+E(96)^31, E(96)^23+E(96)^31, -1*E(96)^5-E(96)^13, E(96)^7+E(96)^15-E(96)^31, E(96)^3-E(96)^11-E(96)^19+E(96)^27, -1*E(96)^11+E(96)^19, E(96)^5-E(96)^21+E(96)^29, -1*E(96)^17+E(96)^25, E(96)^17+E(96)^25, E(96)^7-E(96)^15+E(96)^31, E(96)^23-E(96)^31, E(96)^11+E(96)^19], [2, -2, 0, 0, -1, -2*E(96)^24, 2*E(96)^24, 0, 0, 1-2*E(96)^16, 1, -1+2*E(96)^16, 2*E(96)^12, 2*E(96)^36, -2*E(96)^12, -2*E(96)^36, 0, 0, 0, 0, -1*E(96)^8-E(96)^-8, E(96)^8+E(96)^-8, -1*E(96)^24, E(96)^24, 2*E(96)^18, -2*E(96)^30, 2*E(96)^6, 2*E(96)^42, -2*E(96)^42, -2*E(96)^6, -2*E(96)^18, 2*E(96)^30, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(96)^12, E(96)^12-2*E(96)^28, -1*E(96)^4-E(96)^20, E(96)^12, E(96)^36, -1*E(96)^36, E(96)^4+E(96)^20, -1*E(96)^12+2*E(96)^28, -1*E(96)+E(96)^9+E(96)^17, E(96)+E(96)^9-E(96)^17, -1*E(96)^3-E(96)^27, -1*E(96)-E(96)^9+E(96)^17, E(96)^3+E(96)^27, E(96)^7-E(96)^15-E(96)^23, -1*E(96)^7+E(96)^15+E(96)^23, -1*E(96)^13-E(96)^21+E(96)^29, E(96)^13+E(96)^21-E(96)^29, -1*E(96)^3+E(96)^27, -1*E(96)^13+E(96)^21+E(96)^29, E(96)^7+E(96)^15-E(96)^23, E(96)-E(96)^9-E(96)^17, E(96)^13-E(96)^21-E(96)^29, E(96)^3-E(96)^27, -1*E(96)^7-E(96)^15+E(96)^23, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(96)^42, -1*E(96)^6+2*E(96)^22, E(96)^18, -1*E(96)^6, E(96)^6, E(96)^42, -2*E(96)^2+E(96)^18, 2*E(96)^14-E(96)^30, E(96)^10+E(96)^26, E(96)^6-2*E(96)^22, 2*E(96)^2-E(96)^18, -2*E(96)^14+E(96)^30, E(96)^30, -1*E(96)^18, -1*E(96)^10-E(96)^26, -1*E(96)^30, E(96)^17-E(96)^25, E(96)^5+E(96)^13, -1*E(96)^5-E(96)^13, -1*E(96)^11-E(96)^19, -1*E(96)^23-E(96)^31, E(96)^3-E(96)^11-E(96)^19+E(96)^27, E(96)^11-E(96)^19, -1*E(96)^3+E(96)^11+E(96)^19-E(96)^27, -1*E(96)^5+E(96)^13, -1*E(96)+E(96)^9-E(96)^25, -1*E(96)^7+E(96)^15-E(96)^31, -1*E(96)^3-E(96)^11+E(96)^19+E(96)^27, -1*E(96)^7-E(96)^15+E(96)^31, -1*E(96)^5+E(96)^21-E(96)^29, E(96)^5-E(96)^21-E(96)^29, -1*E(96)^23+E(96)^31, E(96)^7-E(96)^15+E(96)^31, E(96)^7+E(96)^15-E(96)^31, E(96)^11+E(96)^19, -1*E(96)^17-E(96)^25, E(96)+E(96)^9-E(96)^25, E(96)^17+E(96)^25, E(96)^3+E(96)^11-E(96)^19-E(96)^27, -1*E(96)-E(96)^9+E(96)^25, E(96)^5-E(96)^13, E(96)^5-E(96)^21+E(96)^29, -1*E(96)^11+E(96)^19, E(96)^23-E(96)^31, E(96)^23+E(96)^31, E(96)-E(96)^9+E(96)^25, -1*E(96)^17+E(96)^25, -1*E(96)^5+E(96)^21+E(96)^29], [2, -2, 0, 0, -1, 2*E(96)^24, -2*E(96)^24, 0, 0, -1+2*E(96)^16, 1, 1-2*E(96)^16, -2*E(96)^36, -2*E(96)^12, 2*E(96)^36, 2*E(96)^12, 0, 0, 0, 0, -1*E(96)^8-E(96)^-8, E(96)^8+E(96)^-8, E(96)^24, -1*E(96)^24, -2*E(96)^30, 2*E(96)^18, -2*E(96)^42, -2*E(96)^6, 2*E(96)^6, 2*E(96)^42, 2*E(96)^30, -2*E(96)^18, 0, 0, 0, 0, 0, 0, 0, 0, E(96)^36, E(96)^4+E(96)^20, -1*E(96)^12+2*E(96)^28, -1*E(96)^36, -1*E(96)^12, E(96)^12, E(96)^12-2*E(96)^28, -1*E(96)^4-E(96)^20, E(96)^7-E(96)^15-E(96)^23, E(96)^7+E(96)^15-E(96)^23, -1*E(96)^13+E(96)^21+E(96)^29, -1*E(96)^7-E(96)^15+E(96)^23, E(96)^13-E(96)^21-E(96)^29, -1*E(96)+E(96)^9+E(96)^17, E(96)-E(96)^9-E(96)^17, -1*E(96)^3+E(96)^27, E(96)^3-E(96)^27, -1*E(96)^13-E(96)^21+E(96)^29, -1*E(96)^3-E(96)^27, E(96)+E(96)^9-E(96)^17, -1*E(96)^7+E(96)^15+E(96)^23, E(96)^3+E(96)^27, E(96)^13+E(96)^21-E(96)^29, -1*E(96)-E(96)^9+E(96)^17, 0, 0, 0, 0, 0, 0, 0, 0, E(96)^6, -1*E(96)^10-E(96)^26, -1*E(96)^30, E(96)^42, -1*E(96)^42, -1*E(96)^6, -2*E(96)^14+E(96)^30, 2*E(96)^2-E(96)^18, E(96)^6-2*E(96)^22, E(96)^10+E(96)^26, 2*E(96)^14-E(96)^30, -2*E(96)^2+E(96)^18, -1*E(96)^18, E(96)^30, -1*E(96)^6+2*E(96)^22, E(96)^18, E(96)^23-E(96)^31, E(96)^3+E(96)^11-E(96)^19-E(96)^27, -1*E(96)^3-E(96)^11+E(96)^19+E(96)^27, -1*E(96)^5+E(96)^21+E(96)^29, E(96)^17+E(96)^25, -1*E(96)^5+E(96)^13, E(96)^5-E(96)^21+E(96)^29, E(96)^5-E(96)^13, E(96)^3-E(96)^11-E(96)^19+E(96)^27, E(96)^7-E(96)^15+E(96)^31, E(96)-E(96)^9+E(96)^25, -1*E(96)^5-E(96)^13, -1*E(96)-E(96)^9+E(96)^25, -1*E(96)^11+E(96)^19, E(96)^11+E(96)^19, -1*E(96)^17+E(96)^25, -1*E(96)+E(96)^9-E(96)^25, E(96)+E(96)^9-E(96)^25, E(96)^5-E(96)^21-E(96)^29, E(96)^23+E(96)^31, E(96)^7+E(96)^15-E(96)^31, -1*E(96)^23-E(96)^31, E(96)^5+E(96)^13, -1*E(96)^7-E(96)^15+E(96)^31, -1*E(96)^3+E(96)^11+E(96)^19-E(96)^27, E(96)^11-E(96)^19, -1*E(96)^5+E(96)^21-E(96)^29, E(96)^17-E(96)^25, -1*E(96)^17-E(96)^25, -1*E(96)^7+E(96)^15-E(96)^31, -1*E(96)^23+E(96)^31, -1*E(96)^11-E(96)^19], [2, -2, 0, 0, -1, -2*E(96)^24, 2*E(96)^24, 0, 0, -1+2*E(96)^16, 1, 1-2*E(96)^16, -2*E(96)^12, -2*E(96)^36, 2*E(96)^12, 2*E(96)^36, 0, 0, 0, 0, E(96)^8+E(96)^-8, -1*E(96)^8-E(96)^-8, -1*E(96)^24, E(96)^24, 2*E(96)^42, -2*E(96)^6, -2*E(96)^30, -2*E(96)^18, 2*E(96)^18, 2*E(96)^30, -2*E(96)^42, 2*E(96)^6, 0, 0, 0, 0, 0, 0, 0, 0, E(96)^12, E(96)^12-2*E(96)^28, -1*E(96)^4-E(96)^20, -1*E(96)^12, -1*E(96)^36, E(96)^36, E(96)^4+E(96)^20, -1*E(96)^12+2*E(96)^28, -1*E(96)^13+E(96)^21+E(96)^29, E(96)^13+E(96)^21-E(96)^29, E(96)^7+E(96)^15-E(96)^23, -1*E(96)^13-E(96)^21+E(96)^29, -1*E(96)^7-E(96)^15+E(96)^23, -1*E(96)^3-E(96)^27, E(96)^3+E(96)^27, -1*E(96)+E(96)^9+E(96)^17, E(96)-E(96)^9-E(96)^17, E(96)^7-E(96)^15-E(96)^23, E(96)+E(96)^9-E(96)^17, E(96)^3-E(96)^27, E(96)^13-E(96)^21-E(96)^29, -1*E(96)-E(96)^9+E(96)^17, -1*E(96)^7+E(96)^15+E(96)^23, -1*E(96)^3+E(96)^27, 0, 0, 0, 0, 0, 0, 0, 0, E(96)^18, -2*E(96)^14+E(96)^30, E(96)^42, E(96)^30, -1*E(96)^30, -1*E(96)^18, E(96)^10+E(96)^26, -1*E(96)^6+2*E(96)^22, 2*E(96)^2-E(96)^18, 2*E(96)^14-E(96)^30, -1*E(96)^10-E(96)^26, E(96)^6-2*E(96)^22, E(96)^6, -1*E(96)^42, -2*E(96)^2+E(96)^18, -1*E(96)^6, -1*E(96)^5-E(96)^13, E(96)-E(96)^9+E(96)^25, -1*E(96)+E(96)^9-E(96)^25, -1*E(96)^23+E(96)^31, -1*E(96)^3+E(96)^11+E(96)^19-E(96)^27, -1*E(96)^7-E(96)^15+E(96)^31, -1*E(96)^23-E(96)^31, E(96)^7+E(96)^15-E(96)^31, -1*E(96)-E(96)^9+E(96)^25, -1*E(96)^5+E(96)^21+E(96)^29, E(96)^11+E(96)^19, E(96)^7-E(96)^15+E(96)^31, E(96)^11-E(96)^19, -1*E(96)^17-E(96)^25, E(96)^17-E(96)^25, E(96)^3+E(96)^11-E(96)^19-E(96)^27, -1*E(96)^11-E(96)^19, -1*E(96)^11+E(96)^19, E(96)^23-E(96)^31, -1*E(96)^5+E(96)^13, -1*E(96)^5+E(96)^21-E(96)^29, E(96)^5-E(96)^13, -1*E(96)^7+E(96)^15-E(96)^31, E(96)^5-E(96)^21+E(96)^29, E(96)+E(96)^9-E(96)^25, E(96)^17+E(96)^25, E(96)^23+E(96)^31, -1*E(96)^3-E(96)^11+E(96)^19+E(96)^27, E(96)^3-E(96)^11-E(96)^19+E(96)^27, E(96)^5-E(96)^21-E(96)^29, E(96)^5+E(96)^13, -1*E(96)^17+E(96)^25], [2, -2, 0, 0, -1, 2*E(96)^24, -2*E(96)^24, 0, 0, 1-2*E(96)^16, 1, -1+2*E(96)^16, 2*E(96)^36, 2*E(96)^12, -2*E(96)^36, -2*E(96)^12, 0, 0, 0, 0, E(96)^8+E(96)^-8, -1*E(96)^8-E(96)^-8, E(96)^24, -1*E(96)^24, -2*E(96)^6, 2*E(96)^42, 2*E(96)^18, 2*E(96)^30, -2*E(96)^30, -2*E(96)^18, 2*E(96)^6, -2*E(96)^42, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(96)^36, E(96)^4+E(96)^20, -1*E(96)^12+2*E(96)^28, E(96)^36, E(96)^12, -1*E(96)^12, E(96)^12-2*E(96)^28, -1*E(96)^4-E(96)^20, -1*E(96)^3-E(96)^27, E(96)^3-E(96)^27, E(96)+E(96)^9-E(96)^17, -1*E(96)^3+E(96)^27, -1*E(96)-E(96)^9+E(96)^17, -1*E(96)^13+E(96)^21+E(96)^29, E(96)^13-E(96)^21-E(96)^29, E(96)^7-E(96)^15-E(96)^23, -1*E(96)^7+E(96)^15+E(96)^23, -1*E(96)+E(96)^9+E(96)^17, E(96)^7+E(96)^15-E(96)^23, E(96)^13+E(96)^21-E(96)^29, E(96)^3+E(96)^27, -1*E(96)^7-E(96)^15+E(96)^23, E(96)-E(96)^9-E(96)^17, -1*E(96)^13-E(96)^21+E(96)^29, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(96)^30, -2*E(96)^2+E(96)^18, -1*E(96)^6, -1*E(96)^18, E(96)^18, E(96)^30, E(96)^6-2*E(96)^22, -1*E(96)^10-E(96)^26, 2*E(96)^14-E(96)^30, 2*E(96)^2-E(96)^18, -1*E(96)^6+2*E(96)^22, E(96)^10+E(96)^26, -1*E(96)^42, E(96)^6, -2*E(96)^14+E(96)^30, E(96)^42, -1*E(96)^3-E(96)^11+E(96)^19+E(96)^27, -1*E(96)^7+E(96)^15-E(96)^31, E(96)^7-E(96)^15+E(96)^31, -1*E(96)^17+E(96)^25, E(96)^5-E(96)^13, -1*E(96)-E(96)^9+E(96)^25, E(96)^17+E(96)^25, E(96)+E(96)^9-E(96)^25, -1*E(96)^7-E(96)^15+E(96)^31, -1*E(96)^11-E(96)^19, E(96)^5-E(96)^21-E(96)^29, -1*E(96)+E(96)^9-E(96)^25, E(96)^5-E(96)^21+E(96)^29, E(96)^23+E(96)^31, E(96)^23-E(96)^31, E(96)^5+E(96)^13, -1*E(96)^5+E(96)^21+E(96)^29, -1*E(96)^5+E(96)^21-E(96)^29, E(96)^17-E(96)^25, E(96)^3-E(96)^11-E(96)^19+E(96)^27, -1*E(96)^11+E(96)^19, -1*E(96)^3+E(96)^11+E(96)^19-E(96)^27, E(96)-E(96)^9+E(96)^25, E(96)^11-E(96)^19, E(96)^7+E(96)^15-E(96)^31, -1*E(96)^23-E(96)^31, -1*E(96)^17-E(96)^25, -1*E(96)^5-E(96)^13, -1*E(96)^5+E(96)^13, E(96)^11+E(96)^19, E(96)^3+E(96)^11-E(96)^19-E(96)^27, -1*E(96)^23+E(96)^31], [2, -2, 0, 0, -1, -2*E(96)^24, 2*E(96)^24, 0, 0, -1+2*E(96)^16, 1, 1-2*E(96)^16, -2*E(96)^12, -2*E(96)^36, 2*E(96)^12, 2*E(96)^36, 0, 0, 0, 0, E(96)^8+E(96)^-8, -1*E(96)^8-E(96)^-8, -1*E(96)^24, E(96)^24, 2*E(96)^42, -2*E(96)^6, -2*E(96)^30, -2*E(96)^18, 2*E(96)^18, 2*E(96)^30, -2*E(96)^42, 2*E(96)^6, 0, 0, 0, 0, 0, 0, 0, 0, E(96)^12, E(96)^12-2*E(96)^28, -1*E(96)^4-E(96)^20, -1*E(96)^12, -1*E(96)^36, E(96)^36, E(96)^4+E(96)^20, -1*E(96)^12+2*E(96)^28, E(96)^13-E(96)^21-E(96)^29, -1*E(96)^13-E(96)^21+E(96)^29, -1*E(96)^7-E(96)^15+E(96)^23, E(96)^13+E(96)^21-E(96)^29, E(96)^7+E(96)^15-E(96)^23, E(96)^3+E(96)^27, -1*E(96)^3-E(96)^27, E(96)-E(96)^9-E(96)^17, -1*E(96)+E(96)^9+E(96)^17, -1*E(96)^7+E(96)^15+E(96)^23, -1*E(96)-E(96)^9+E(96)^17, -1*E(96)^3+E(96)^27, -1*E(96)^13+E(96)^21+E(96)^29, E(96)+E(96)^9-E(96)^17, E(96)^7-E(96)^15-E(96)^23, E(96)^3-E(96)^27, 0, 0, 0, 0, 0, 0, 0, 0, E(96)^18, -2*E(96)^14+E(96)^30, E(96)^42, E(96)^30, -1*E(96)^30, -1*E(96)^18, E(96)^10+E(96)^26, -1*E(96)^6+2*E(96)^22, 2*E(96)^2-E(96)^18, 2*E(96)^14-E(96)^30, -1*E(96)^10-E(96)^26, E(96)^6-2*E(96)^22, E(96)^6, -1*E(96)^42, -2*E(96)^2+E(96)^18, -1*E(96)^6, E(96)^5+E(96)^13, -1*E(96)+E(96)^9-E(96)^25, E(96)-E(96)^9+E(96)^25, E(96)^23-E(96)^31, E(96)^3-E(96)^11-E(96)^19+E(96)^27, E(96)^7+E(96)^15-E(96)^31, E(96)^23+E(96)^31, -1*E(96)^7-E(96)^15+E(96)^31, E(96)+E(96)^9-E(96)^25, E(96)^5-E(96)^21-E(96)^29, -1*E(96)^11-E(96)^19, -1*E(96)^7+E(96)^15-E(96)^31, -1*E(96)^11+E(96)^19, E(96)^17+E(96)^25, -1*E(96)^17+E(96)^25, -1*E(96)^3-E(96)^11+E(96)^19+E(96)^27, E(96)^11+E(96)^19, E(96)^11-E(96)^19, -1*E(96)^23+E(96)^31, E(96)^5-E(96)^13, E(96)^5-E(96)^21+E(96)^29, -1*E(96)^5+E(96)^13, E(96)^7-E(96)^15+E(96)^31, -1*E(96)^5+E(96)^21-E(96)^29, -1*E(96)-E(96)^9+E(96)^25, -1*E(96)^17-E(96)^25, -1*E(96)^23-E(96)^31, E(96)^3+E(96)^11-E(96)^19-E(96)^27, -1*E(96)^3+E(96)^11+E(96)^19-E(96)^27, -1*E(96)^5+E(96)^21+E(96)^29, -1*E(96)^5-E(96)^13, E(96)^17-E(96)^25], [2, -2, 0, 0, -1, 2*E(96)^24, -2*E(96)^24, 0, 0, 1-2*E(96)^16, 1, -1+2*E(96)^16, 2*E(96)^36, 2*E(96)^12, -2*E(96)^36, -2*E(96)^12, 0, 0, 0, 0, E(96)^8+E(96)^-8, -1*E(96)^8-E(96)^-8, E(96)^24, -1*E(96)^24, -2*E(96)^6, 2*E(96)^42, 2*E(96)^18, 2*E(96)^30, -2*E(96)^30, -2*E(96)^18, 2*E(96)^6, -2*E(96)^42, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(96)^36, E(96)^4+E(96)^20, -1*E(96)^12+2*E(96)^28, E(96)^36, E(96)^12, -1*E(96)^12, E(96)^12-2*E(96)^28, -1*E(96)^4-E(96)^20, E(96)^3+E(96)^27, -1*E(96)^3+E(96)^27, -1*E(96)-E(96)^9+E(96)^17, E(96)^3-E(96)^27, E(96)+E(96)^9-E(96)^17, E(96)^13-E(96)^21-E(96)^29, -1*E(96)^13+E(96)^21+E(96)^29, -1*E(96)^7+E(96)^15+E(96)^23, E(96)^7-E(96)^15-E(96)^23, E(96)-E(96)^9-E(96)^17, -1*E(96)^7-E(96)^15+E(96)^23, -1*E(96)^13-E(96)^21+E(96)^29, -1*E(96)^3-E(96)^27, E(96)^7+E(96)^15-E(96)^23, -1*E(96)+E(96)^9+E(96)^17, E(96)^13+E(96)^21-E(96)^29, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(96)^30, -2*E(96)^2+E(96)^18, -1*E(96)^6, -1*E(96)^18, E(96)^18, E(96)^30, E(96)^6-2*E(96)^22, -1*E(96)^10-E(96)^26, 2*E(96)^14-E(96)^30, 2*E(96)^2-E(96)^18, -1*E(96)^6+2*E(96)^22, E(96)^10+E(96)^26, -1*E(96)^42, E(96)^6, -2*E(96)^14+E(96)^30, E(96)^42, E(96)^3+E(96)^11-E(96)^19-E(96)^27, E(96)^7-E(96)^15+E(96)^31, -1*E(96)^7+E(96)^15-E(96)^31, E(96)^17-E(96)^25, -1*E(96)^5+E(96)^13, E(96)+E(96)^9-E(96)^25, -1*E(96)^17-E(96)^25, -1*E(96)-E(96)^9+E(96)^25, E(96)^7+E(96)^15-E(96)^31, E(96)^11+E(96)^19, -1*E(96)^5+E(96)^21+E(96)^29, E(96)-E(96)^9+E(96)^25, -1*E(96)^5+E(96)^21-E(96)^29, -1*E(96)^23-E(96)^31, -1*E(96)^23+E(96)^31, -1*E(96)^5-E(96)^13, E(96)^5-E(96)^21-E(96)^29, E(96)^5-E(96)^21+E(96)^29, -1*E(96)^17+E(96)^25, -1*E(96)^3+E(96)^11+E(96)^19-E(96)^27, E(96)^11-E(96)^19, E(96)^3-E(96)^11-E(96)^19+E(96)^27, -1*E(96)+E(96)^9-E(96)^25, -1*E(96)^11+E(96)^19, -1*E(96)^7-E(96)^15+E(96)^31, E(96)^23+E(96)^31, E(96)^17+E(96)^25, E(96)^5+E(96)^13, E(96)^5-E(96)^13, -1*E(96)^11-E(96)^19, -1*E(96)^3-E(96)^11+E(96)^19+E(96)^27, E(96)^23-E(96)^31], [2, -2, 0, 0, -1, -2*E(96)^24, 2*E(96)^24, 0, 0, -1+2*E(96)^16, 1, 1-2*E(96)^16, -2*E(96)^12, -2*E(96)^36, 2*E(96)^12, 2*E(96)^36, 0, 0, 0, 0, E(96)^8+E(96)^-8, -1*E(96)^8-E(96)^-8, -1*E(96)^24, E(96)^24, -2*E(96)^42, 2*E(96)^6, 2*E(96)^30, 2*E(96)^18, -2*E(96)^18, -2*E(96)^30, 2*E(96)^42, -2*E(96)^6, 0, 0, 0, 0, 0, 0, 0, 0, E(96)^12, E(96)^12-2*E(96)^28, -1*E(96)^4-E(96)^20, -1*E(96)^12, -1*E(96)^36, E(96)^36, E(96)^4+E(96)^20, -1*E(96)^12+2*E(96)^28, -1*E(96)^13-E(96)^21+E(96)^29, -1*E(96)^13+E(96)^21+E(96)^29, E(96)^7-E(96)^15-E(96)^23, E(96)^13-E(96)^21-E(96)^29, -1*E(96)^7+E(96)^15+E(96)^23, -1*E(96)^3+E(96)^27, E(96)^3-E(96)^27, -1*E(96)-E(96)^9+E(96)^17, E(96)+E(96)^9-E(96)^17, -1*E(96)^7-E(96)^15+E(96)^23, -1*E(96)+E(96)^9+E(96)^17, -1*E(96)^3-E(96)^27, E(96)^13+E(96)^21-E(96)^29, E(96)-E(96)^9-E(96)^17, E(96)^7+E(96)^15-E(96)^23, E(96)^3+E(96)^27, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(96)^18, 2*E(96)^14-E(96)^30, -1*E(96)^42, -1*E(96)^30, E(96)^30, E(96)^18, -1*E(96)^10-E(96)^26, E(96)^6-2*E(96)^22, -2*E(96)^2+E(96)^18, -2*E(96)^14+E(96)^30, E(96)^10+E(96)^26, -1*E(96)^6+2*E(96)^22, -1*E(96)^6, E(96)^42, 2*E(96)^2-E(96)^18, E(96)^6, E(96)^5-E(96)^21-E(96)^29, -1*E(96)^17+E(96)^25, E(96)^17-E(96)^25, E(96)^7-E(96)^15+E(96)^31, E(96)^11-E(96)^19, E(96)^23+E(96)^31, -1*E(96)^7-E(96)^15+E(96)^31, -1*E(96)^23-E(96)^31, -1*E(96)^17-E(96)^25, -1*E(96)^5-E(96)^13, E(96)^3+E(96)^11-E(96)^19-E(96)^27, E(96)^23-E(96)^31, E(96)^3-E(96)^11-E(96)^19+E(96)^27, E(96)+E(96)^9-E(96)^25, E(96)-E(96)^9+E(96)^25, -1*E(96)^11-E(96)^19, -1*E(96)^3-E(96)^11+E(96)^19+E(96)^27, -1*E(96)^3+E(96)^11+E(96)^19-E(96)^27, -1*E(96)^7+E(96)^15-E(96)^31, -1*E(96)^5+E(96)^21-E(96)^29, E(96)^5-E(96)^13, E(96)^5-E(96)^21+E(96)^29, -1*E(96)^23+E(96)^31, -1*E(96)^5+E(96)^13, E(96)^17+E(96)^25, -1*E(96)-E(96)^9+E(96)^25, E(96)^7+E(96)^15-E(96)^31, E(96)^11+E(96)^19, -1*E(96)^11+E(96)^19, E(96)^5+E(96)^13, -1*E(96)^5+E(96)^21+E(96)^29, -1*E(96)+E(96)^9-E(96)^25], [2, -2, 0, 0, -1, 2*E(96)^24, -2*E(96)^24, 0, 0, 1-2*E(96)^16, 1, -1+2*E(96)^16, 2*E(96)^36, 2*E(96)^12, -2*E(96)^36, -2*E(96)^12, 0, 0, 0, 0, E(96)^8+E(96)^-8, -1*E(96)^8-E(96)^-8, E(96)^24, -1*E(96)^24, 2*E(96)^6, -2*E(96)^42, -2*E(96)^18, -2*E(96)^30, 2*E(96)^30, 2*E(96)^18, -2*E(96)^6, 2*E(96)^42, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(96)^36, E(96)^4+E(96)^20, -1*E(96)^12+2*E(96)^28, E(96)^36, E(96)^12, -1*E(96)^12, E(96)^12-2*E(96)^28, -1*E(96)^4-E(96)^20, -1*E(96)^3+E(96)^27, -1*E(96)^3-E(96)^27, -1*E(96)+E(96)^9+E(96)^17, E(96)^3+E(96)^27, E(96)-E(96)^9-E(96)^17, -1*E(96)^13-E(96)^21+E(96)^29, E(96)^13+E(96)^21-E(96)^29, -1*E(96)^7-E(96)^15+E(96)^23, E(96)^7+E(96)^15-E(96)^23, -1*E(96)-E(96)^9+E(96)^17, E(96)^7-E(96)^15-E(96)^23, -1*E(96)^13+E(96)^21+E(96)^29, E(96)^3-E(96)^27, -1*E(96)^7+E(96)^15+E(96)^23, E(96)+E(96)^9-E(96)^17, E(96)^13-E(96)^21-E(96)^29, 0, 0, 0, 0, 0, 0, 0, 0, E(96)^30, 2*E(96)^2-E(96)^18, E(96)^6, E(96)^18, -1*E(96)^18, -1*E(96)^30, -1*E(96)^6+2*E(96)^22, E(96)^10+E(96)^26, -2*E(96)^14+E(96)^30, -2*E(96)^2+E(96)^18, E(96)^6-2*E(96)^22, -1*E(96)^10-E(96)^26, E(96)^42, -1*E(96)^6, 2*E(96)^14-E(96)^30, -1*E(96)^42, E(96)^11+E(96)^19, -1*E(96)^23+E(96)^31, E(96)^23-E(96)^31, -1*E(96)+E(96)^9-E(96)^25, E(96)^5-E(96)^21+E(96)^29, -1*E(96)^17-E(96)^25, -1*E(96)-E(96)^9+E(96)^25, E(96)^17+E(96)^25, E(96)^23+E(96)^31, -1*E(96)^3-E(96)^11+E(96)^19+E(96)^27, E(96)^5+E(96)^13, E(96)^17-E(96)^25, -1*E(96)^5+E(96)^13, E(96)^7+E(96)^15-E(96)^31, -1*E(96)^7+E(96)^15-E(96)^31, -1*E(96)^5+E(96)^21+E(96)^29, -1*E(96)^5-E(96)^13, E(96)^5-E(96)^13, E(96)-E(96)^9+E(96)^25, -1*E(96)^11+E(96)^19, -1*E(96)^3+E(96)^11+E(96)^19-E(96)^27, E(96)^11-E(96)^19, -1*E(96)^17+E(96)^25, E(96)^3-E(96)^11-E(96)^19+E(96)^27, -1*E(96)^23-E(96)^31, -1*E(96)^7-E(96)^15+E(96)^31, E(96)+E(96)^9-E(96)^25, E(96)^5-E(96)^21-E(96)^29, -1*E(96)^5+E(96)^21-E(96)^29, E(96)^3+E(96)^11-E(96)^19-E(96)^27, -1*E(96)^11-E(96)^19, E(96)^7-E(96)^15+E(96)^31], [2, -2, 0, 0, -1, -2*E(96)^24, 2*E(96)^24, 0, 0, -1+2*E(96)^16, 1, 1-2*E(96)^16, -2*E(96)^12, -2*E(96)^36, 2*E(96)^12, 2*E(96)^36, 0, 0, 0, 0, E(96)^8+E(96)^-8, -1*E(96)^8-E(96)^-8, -1*E(96)^24, E(96)^24, -2*E(96)^42, 2*E(96)^6, 2*E(96)^30, 2*E(96)^18, -2*E(96)^18, -2*E(96)^30, 2*E(96)^42, -2*E(96)^6, 0, 0, 0, 0, 0, 0, 0, 0, E(96)^12, E(96)^12-2*E(96)^28, -1*E(96)^4-E(96)^20, -1*E(96)^12, -1*E(96)^36, E(96)^36, E(96)^4+E(96)^20, -1*E(96)^12+2*E(96)^28, E(96)^13+E(96)^21-E(96)^29, E(96)^13-E(96)^21-E(96)^29, -1*E(96)^7+E(96)^15+E(96)^23, -1*E(96)^13+E(96)^21+E(96)^29, E(96)^7-E(96)^15-E(96)^23, E(96)^3-E(96)^27, -1*E(96)^3+E(96)^27, E(96)+E(96)^9-E(96)^17, -1*E(96)-E(96)^9+E(96)^17, E(96)^7+E(96)^15-E(96)^23, E(96)-E(96)^9-E(96)^17, E(96)^3+E(96)^27, -1*E(96)^13-E(96)^21+E(96)^29, -1*E(96)+E(96)^9+E(96)^17, -1*E(96)^7-E(96)^15+E(96)^23, -1*E(96)^3-E(96)^27, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(96)^18, 2*E(96)^14-E(96)^30, -1*E(96)^42, -1*E(96)^30, E(96)^30, E(96)^18, -1*E(96)^10-E(96)^26, E(96)^6-2*E(96)^22, -2*E(96)^2+E(96)^18, -2*E(96)^14+E(96)^30, E(96)^10+E(96)^26, -1*E(96)^6+2*E(96)^22, -1*E(96)^6, E(96)^42, 2*E(96)^2-E(96)^18, E(96)^6, -1*E(96)^5+E(96)^21+E(96)^29, E(96)^17-E(96)^25, -1*E(96)^17+E(96)^25, -1*E(96)^7+E(96)^15-E(96)^31, -1*E(96)^11+E(96)^19, -1*E(96)^23-E(96)^31, E(96)^7+E(96)^15-E(96)^31, E(96)^23+E(96)^31, E(96)^17+E(96)^25, E(96)^5+E(96)^13, -1*E(96)^3-E(96)^11+E(96)^19+E(96)^27, -1*E(96)^23+E(96)^31, -1*E(96)^3+E(96)^11+E(96)^19-E(96)^27, -1*E(96)-E(96)^9+E(96)^25, -1*E(96)+E(96)^9-E(96)^25, E(96)^11+E(96)^19, E(96)^3+E(96)^11-E(96)^19-E(96)^27, E(96)^3-E(96)^11-E(96)^19+E(96)^27, E(96)^7-E(96)^15+E(96)^31, E(96)^5-E(96)^21+E(96)^29, -1*E(96)^5+E(96)^13, -1*E(96)^5+E(96)^21-E(96)^29, E(96)^23-E(96)^31, E(96)^5-E(96)^13, -1*E(96)^17-E(96)^25, E(96)+E(96)^9-E(96)^25, -1*E(96)^7-E(96)^15+E(96)^31, -1*E(96)^11-E(96)^19, E(96)^11-E(96)^19, -1*E(96)^5-E(96)^13, E(96)^5-E(96)^21-E(96)^29, E(96)-E(96)^9+E(96)^25], [2, -2, 0, 0, -1, 2*E(96)^24, -2*E(96)^24, 0, 0, 1-2*E(96)^16, 1, -1+2*E(96)^16, 2*E(96)^36, 2*E(96)^12, -2*E(96)^36, -2*E(96)^12, 0, 0, 0, 0, E(96)^8+E(96)^-8, -1*E(96)^8-E(96)^-8, E(96)^24, -1*E(96)^24, 2*E(96)^6, -2*E(96)^42, -2*E(96)^18, -2*E(96)^30, 2*E(96)^30, 2*E(96)^18, -2*E(96)^6, 2*E(96)^42, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(96)^36, E(96)^4+E(96)^20, -1*E(96)^12+2*E(96)^28, E(96)^36, E(96)^12, -1*E(96)^12, E(96)^12-2*E(96)^28, -1*E(96)^4-E(96)^20, E(96)^3-E(96)^27, E(96)^3+E(96)^27, E(96)-E(96)^9-E(96)^17, -1*E(96)^3-E(96)^27, -1*E(96)+E(96)^9+E(96)^17, E(96)^13+E(96)^21-E(96)^29, -1*E(96)^13-E(96)^21+E(96)^29, E(96)^7+E(96)^15-E(96)^23, -1*E(96)^7-E(96)^15+E(96)^23, E(96)+E(96)^9-E(96)^17, -1*E(96)^7+E(96)^15+E(96)^23, E(96)^13-E(96)^21-E(96)^29, -1*E(96)^3+E(96)^27, E(96)^7-E(96)^15-E(96)^23, -1*E(96)-E(96)^9+E(96)^17, -1*E(96)^13+E(96)^21+E(96)^29, 0, 0, 0, 0, 0, 0, 0, 0, E(96)^30, 2*E(96)^2-E(96)^18, E(96)^6, E(96)^18, -1*E(96)^18, -1*E(96)^30, -1*E(96)^6+2*E(96)^22, E(96)^10+E(96)^26, -2*E(96)^14+E(96)^30, -2*E(96)^2+E(96)^18, E(96)^6-2*E(96)^22, -1*E(96)^10-E(96)^26, E(96)^42, -1*E(96)^6, 2*E(96)^14-E(96)^30, -1*E(96)^42, -1*E(96)^11-E(96)^19, E(96)^23-E(96)^31, -1*E(96)^23+E(96)^31, E(96)-E(96)^9+E(96)^25, -1*E(96)^5+E(96)^21-E(96)^29, E(96)^17+E(96)^25, E(96)+E(96)^9-E(96)^25, -1*E(96)^17-E(96)^25, -1*E(96)^23-E(96)^31, E(96)^3+E(96)^11-E(96)^19-E(96)^27, -1*E(96)^5-E(96)^13, -1*E(96)^17+E(96)^25, E(96)^5-E(96)^13, -1*E(96)^7-E(96)^15+E(96)^31, E(96)^7-E(96)^15+E(96)^31, E(96)^5-E(96)^21-E(96)^29, E(96)^5+E(96)^13, -1*E(96)^5+E(96)^13, -1*E(96)+E(96)^9-E(96)^25, E(96)^11-E(96)^19, E(96)^3-E(96)^11-E(96)^19+E(96)^27, -1*E(96)^11+E(96)^19, E(96)^17-E(96)^25, -1*E(96)^3+E(96)^11+E(96)^19-E(96)^27, E(96)^23+E(96)^31, E(96)^7+E(96)^15-E(96)^31, -1*E(96)-E(96)^9+E(96)^25, -1*E(96)^5+E(96)^21+E(96)^29, E(96)^5-E(96)^21+E(96)^29, -1*E(96)^3-E(96)^11+E(96)^19+E(96)^27, E(96)^11+E(96)^19, -1*E(96)^7+E(96)^15-E(96)^31], [2, -2, 0, 0, -1, -2*E(96)^24, 2*E(96)^24, 0, 0, -1+2*E(96)^16, 1, 1-2*E(96)^16, 2*E(96)^12, 2*E(96)^36, -2*E(96)^12, -2*E(96)^36, 0, 0, 0, 0, E(96)^8+E(96)^-8, -1*E(96)^8-E(96)^-8, -1*E(96)^24, E(96)^24, -2*E(96)^18, 2*E(96)^30, -2*E(96)^6, -2*E(96)^42, 2*E(96)^42, 2*E(96)^6, 2*E(96)^18, -2*E(96)^30, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(96)^12, -1*E(96)^12+2*E(96)^28, E(96)^4+E(96)^20, E(96)^12, E(96)^36, -1*E(96)^36, -1*E(96)^4-E(96)^20, E(96)^12-2*E(96)^28, -1*E(96)-E(96)^9+E(96)^17, -1*E(96)+E(96)^9+E(96)^17, -1*E(96)^3+E(96)^27, E(96)-E(96)^9-E(96)^17, E(96)^3-E(96)^27, -1*E(96)^7-E(96)^15+E(96)^23, E(96)^7+E(96)^15-E(96)^23, E(96)^13-E(96)^21-E(96)^29, -1*E(96)^13+E(96)^21+E(96)^29, E(96)^3+E(96)^27, -1*E(96)^13-E(96)^21+E(96)^29, E(96)^7-E(96)^15-E(96)^23, E(96)+E(96)^9-E(96)^17, E(96)^13+E(96)^21-E(96)^29, -1*E(96)^3-E(96)^27, -1*E(96)^7+E(96)^15+E(96)^23, 0, 0, 0, 0, 0, 0, 0, 0, E(96)^42, -1*E(96)^6+2*E(96)^22, -1*E(96)^18, E(96)^6, -1*E(96)^6, -1*E(96)^42, -2*E(96)^2+E(96)^18, 2*E(96)^14-E(96)^30, E(96)^10+E(96)^26, E(96)^6-2*E(96)^22, 2*E(96)^2-E(96)^18, -2*E(96)^14+E(96)^30, -1*E(96)^30, E(96)^18, -1*E(96)^10-E(96)^26, E(96)^30, -1*E(96)^17-E(96)^25, E(96)^5-E(96)^13, -1*E(96)^5+E(96)^13, E(96)^11-E(96)^19, E(96)^23-E(96)^31, E(96)^3+E(96)^11-E(96)^19-E(96)^27, E(96)^11+E(96)^19, -1*E(96)^3-E(96)^11+E(96)^19+E(96)^27, E(96)^5+E(96)^13, -1*E(96)-E(96)^9+E(96)^25, E(96)^7+E(96)^15-E(96)^31, E(96)^3-E(96)^11-E(96)^19+E(96)^27, -1*E(96)^7+E(96)^15-E(96)^31, -1*E(96)^5+E(96)^21+E(96)^29, -1*E(96)^5+E(96)^21-E(96)^29, -1*E(96)^23-E(96)^31, -1*E(96)^7-E(96)^15+E(96)^31, E(96)^7-E(96)^15+E(96)^31, -1*E(96)^11+E(96)^19, -1*E(96)^17+E(96)^25, -1*E(96)+E(96)^9-E(96)^25, E(96)^17-E(96)^25, -1*E(96)^3+E(96)^11+E(96)^19-E(96)^27, E(96)-E(96)^9+E(96)^25, -1*E(96)^5-E(96)^13, E(96)^5-E(96)^21-E(96)^29, -1*E(96)^11-E(96)^19, E(96)^23+E(96)^31, -1*E(96)^23+E(96)^31, E(96)+E(96)^9-E(96)^25, E(96)^17+E(96)^25, E(96)^5-E(96)^21+E(96)^29], [2, -2, 0, 0, -1, 2*E(96)^24, -2*E(96)^24, 0, 0, 1-2*E(96)^16, 1, -1+2*E(96)^16, -2*E(96)^36, -2*E(96)^12, 2*E(96)^36, 2*E(96)^12, 0, 0, 0, 0, E(96)^8+E(96)^-8, -1*E(96)^8-E(96)^-8, E(96)^24, -1*E(96)^24, 2*E(96)^30, -2*E(96)^18, 2*E(96)^42, 2*E(96)^6, -2*E(96)^6, -2*E(96)^42, -2*E(96)^30, 2*E(96)^18, 0, 0, 0, 0, 0, 0, 0, 0, E(96)^36, -1*E(96)^4-E(96)^20, E(96)^12-2*E(96)^28, -1*E(96)^36, -1*E(96)^12, E(96)^12, -1*E(96)^12+2*E(96)^28, E(96)^4+E(96)^20, -1*E(96)^7-E(96)^15+E(96)^23, E(96)^7-E(96)^15-E(96)^23, -1*E(96)^13-E(96)^21+E(96)^29, -1*E(96)^7+E(96)^15+E(96)^23, E(96)^13+E(96)^21-E(96)^29, -1*E(96)-E(96)^9+E(96)^17, E(96)+E(96)^9-E(96)^17, E(96)^3+E(96)^27, -1*E(96)^3-E(96)^27, E(96)^13-E(96)^21-E(96)^29, -1*E(96)^3+E(96)^27, -1*E(96)+E(96)^9+E(96)^17, E(96)^7+E(96)^15-E(96)^23, E(96)^3-E(96)^27, -1*E(96)^13+E(96)^21+E(96)^29, E(96)-E(96)^9-E(96)^17, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(96)^6, -1*E(96)^10-E(96)^26, E(96)^30, -1*E(96)^42, E(96)^42, E(96)^6, -2*E(96)^14+E(96)^30, 2*E(96)^2-E(96)^18, E(96)^6-2*E(96)^22, E(96)^10+E(96)^26, 2*E(96)^14-E(96)^30, -2*E(96)^2+E(96)^18, E(96)^18, -1*E(96)^30, -1*E(96)^6+2*E(96)^22, -1*E(96)^18, E(96)^23+E(96)^31, -1*E(96)^3+E(96)^11+E(96)^19-E(96)^27, E(96)^3-E(96)^11-E(96)^19+E(96)^27, E(96)^5-E(96)^21+E(96)^29, E(96)^17-E(96)^25, E(96)^5+E(96)^13, E(96)^5-E(96)^21-E(96)^29, -1*E(96)^5-E(96)^13, E(96)^3+E(96)^11-E(96)^19-E(96)^27, -1*E(96)^7-E(96)^15+E(96)^31, E(96)+E(96)^9-E(96)^25, -1*E(96)^5+E(96)^13, E(96)-E(96)^9+E(96)^25, -1*E(96)^11-E(96)^19, -1*E(96)^11+E(96)^19, E(96)^17+E(96)^25, -1*E(96)-E(96)^9+E(96)^25, -1*E(96)+E(96)^9-E(96)^25, -1*E(96)^5+E(96)^21-E(96)^29, -1*E(96)^23+E(96)^31, E(96)^7-E(96)^15+E(96)^31, E(96)^23-E(96)^31, E(96)^5-E(96)^13, -1*E(96)^7+E(96)^15-E(96)^31, -1*E(96)^3-E(96)^11+E(96)^19+E(96)^27, E(96)^11+E(96)^19, -1*E(96)^5+E(96)^21+E(96)^29, -1*E(96)^17-E(96)^25, -1*E(96)^17+E(96)^25, E(96)^7+E(96)^15-E(96)^31, -1*E(96)^23-E(96)^31, E(96)^11-E(96)^19], [2, -2, 0, 0, -1, -2*E(96)^24, 2*E(96)^24, 0, 0, -1+2*E(96)^16, 1, 1-2*E(96)^16, 2*E(96)^12, 2*E(96)^36, -2*E(96)^12, -2*E(96)^36, 0, 0, 0, 0, E(96)^8+E(96)^-8, -1*E(96)^8-E(96)^-8, -1*E(96)^24, E(96)^24, -2*E(96)^18, 2*E(96)^30, -2*E(96)^6, -2*E(96)^42, 2*E(96)^42, 2*E(96)^6, 2*E(96)^18, -2*E(96)^30, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(96)^12, -1*E(96)^12+2*E(96)^28, E(96)^4+E(96)^20, E(96)^12, E(96)^36, -1*E(96)^36, -1*E(96)^4-E(96)^20, E(96)^12-2*E(96)^28, E(96)+E(96)^9-E(96)^17, E(96)-E(96)^9-E(96)^17, E(96)^3-E(96)^27, -1*E(96)+E(96)^9+E(96)^17, -1*E(96)^3+E(96)^27, E(96)^7+E(96)^15-E(96)^23, -1*E(96)^7-E(96)^15+E(96)^23, -1*E(96)^13+E(96)^21+E(96)^29, E(96)^13-E(96)^21-E(96)^29, -1*E(96)^3-E(96)^27, E(96)^13+E(96)^21-E(96)^29, -1*E(96)^7+E(96)^15+E(96)^23, -1*E(96)-E(96)^9+E(96)^17, -1*E(96)^13-E(96)^21+E(96)^29, E(96)^3+E(96)^27, E(96)^7-E(96)^15-E(96)^23, 0, 0, 0, 0, 0, 0, 0, 0, E(96)^42, -1*E(96)^6+2*E(96)^22, -1*E(96)^18, E(96)^6, -1*E(96)^6, -1*E(96)^42, -2*E(96)^2+E(96)^18, 2*E(96)^14-E(96)^30, E(96)^10+E(96)^26, E(96)^6-2*E(96)^22, 2*E(96)^2-E(96)^18, -2*E(96)^14+E(96)^30, -1*E(96)^30, E(96)^18, -1*E(96)^10-E(96)^26, E(96)^30, E(96)^17+E(96)^25, -1*E(96)^5+E(96)^13, E(96)^5-E(96)^13, -1*E(96)^11+E(96)^19, -1*E(96)^23+E(96)^31, -1*E(96)^3-E(96)^11+E(96)^19+E(96)^27, -1*E(96)^11-E(96)^19, E(96)^3+E(96)^11-E(96)^19-E(96)^27, -1*E(96)^5-E(96)^13, E(96)+E(96)^9-E(96)^25, -1*E(96)^7-E(96)^15+E(96)^31, -1*E(96)^3+E(96)^11+E(96)^19-E(96)^27, E(96)^7-E(96)^15+E(96)^31, E(96)^5-E(96)^21-E(96)^29, E(96)^5-E(96)^21+E(96)^29, E(96)^23+E(96)^31, E(96)^7+E(96)^15-E(96)^31, -1*E(96)^7+E(96)^15-E(96)^31, E(96)^11-E(96)^19, E(96)^17-E(96)^25, E(96)-E(96)^9+E(96)^25, -1*E(96)^17+E(96)^25, E(96)^3-E(96)^11-E(96)^19+E(96)^27, -1*E(96)+E(96)^9-E(96)^25, E(96)^5+E(96)^13, -1*E(96)^5+E(96)^21+E(96)^29, E(96)^11+E(96)^19, -1*E(96)^23-E(96)^31, E(96)^23-E(96)^31, -1*E(96)-E(96)^9+E(96)^25, -1*E(96)^17-E(96)^25, -1*E(96)^5+E(96)^21-E(96)^29], [2, -2, 0, 0, -1, 2*E(96)^24, -2*E(96)^24, 0, 0, 1-2*E(96)^16, 1, -1+2*E(96)^16, -2*E(96)^36, -2*E(96)^12, 2*E(96)^36, 2*E(96)^12, 0, 0, 0, 0, E(96)^8+E(96)^-8, -1*E(96)^8-E(96)^-8, E(96)^24, -1*E(96)^24, 2*E(96)^30, -2*E(96)^18, 2*E(96)^42, 2*E(96)^6, -2*E(96)^6, -2*E(96)^42, -2*E(96)^30, 2*E(96)^18, 0, 0, 0, 0, 0, 0, 0, 0, E(96)^36, -1*E(96)^4-E(96)^20, E(96)^12-2*E(96)^28, -1*E(96)^36, -1*E(96)^12, E(96)^12, -1*E(96)^12+2*E(96)^28, E(96)^4+E(96)^20, E(96)^7+E(96)^15-E(96)^23, -1*E(96)^7+E(96)^15+E(96)^23, E(96)^13+E(96)^21-E(96)^29, E(96)^7-E(96)^15-E(96)^23, -1*E(96)^13-E(96)^21+E(96)^29, E(96)+E(96)^9-E(96)^17, -1*E(96)-E(96)^9+E(96)^17, -1*E(96)^3-E(96)^27, E(96)^3+E(96)^27, -1*E(96)^13+E(96)^21+E(96)^29, E(96)^3-E(96)^27, E(96)-E(96)^9-E(96)^17, -1*E(96)^7-E(96)^15+E(96)^23, -1*E(96)^3+E(96)^27, E(96)^13-E(96)^21-E(96)^29, -1*E(96)+E(96)^9+E(96)^17, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(96)^6, -1*E(96)^10-E(96)^26, E(96)^30, -1*E(96)^42, E(96)^42, E(96)^6, -2*E(96)^14+E(96)^30, 2*E(96)^2-E(96)^18, E(96)^6-2*E(96)^22, E(96)^10+E(96)^26, 2*E(96)^14-E(96)^30, -2*E(96)^2+E(96)^18, E(96)^18, -1*E(96)^30, -1*E(96)^6+2*E(96)^22, -1*E(96)^18, -1*E(96)^23-E(96)^31, E(96)^3-E(96)^11-E(96)^19+E(96)^27, -1*E(96)^3+E(96)^11+E(96)^19-E(96)^27, -1*E(96)^5+E(96)^21-E(96)^29, -1*E(96)^17+E(96)^25, -1*E(96)^5-E(96)^13, -1*E(96)^5+E(96)^21+E(96)^29, E(96)^5+E(96)^13, -1*E(96)^3-E(96)^11+E(96)^19+E(96)^27, E(96)^7+E(96)^15-E(96)^31, -1*E(96)-E(96)^9+E(96)^25, E(96)^5-E(96)^13, -1*E(96)+E(96)^9-E(96)^25, E(96)^11+E(96)^19, E(96)^11-E(96)^19, -1*E(96)^17-E(96)^25, E(96)+E(96)^9-E(96)^25, E(96)-E(96)^9+E(96)^25, E(96)^5-E(96)^21+E(96)^29, E(96)^23-E(96)^31, -1*E(96)^7+E(96)^15-E(96)^31, -1*E(96)^23+E(96)^31, -1*E(96)^5+E(96)^13, E(96)^7-E(96)^15+E(96)^31, E(96)^3+E(96)^11-E(96)^19-E(96)^27, -1*E(96)^11-E(96)^19, E(96)^5-E(96)^21-E(96)^29, E(96)^17+E(96)^25, E(96)^17-E(96)^25, -1*E(96)^7-E(96)^15+E(96)^31, E(96)^23+E(96)^31, -1*E(96)^11+E(96)^19], [2, -2, 0, 0, -1, -2*E(96)^24, 2*E(96)^24, 0, 0, -1+2*E(96)^16, 1, 1-2*E(96)^16, 2*E(96)^12, 2*E(96)^36, -2*E(96)^12, -2*E(96)^36, 0, 0, 0, 0, E(96)^8+E(96)^-8, -1*E(96)^8-E(96)^-8, -1*E(96)^24, E(96)^24, 2*E(96)^18, -2*E(96)^30, 2*E(96)^6, 2*E(96)^42, -2*E(96)^42, -2*E(96)^6, -2*E(96)^18, 2*E(96)^30, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(96)^12, -1*E(96)^12+2*E(96)^28, E(96)^4+E(96)^20, E(96)^12, E(96)^36, -1*E(96)^36, -1*E(96)^4-E(96)^20, E(96)^12-2*E(96)^28, E(96)-E(96)^9-E(96)^17, -1*E(96)-E(96)^9+E(96)^17, E(96)^3+E(96)^27, E(96)+E(96)^9-E(96)^17, -1*E(96)^3-E(96)^27, -1*E(96)^7+E(96)^15+E(96)^23, E(96)^7-E(96)^15-E(96)^23, E(96)^13+E(96)^21-E(96)^29, -1*E(96)^13-E(96)^21+E(96)^29, E(96)^3-E(96)^27, E(96)^13-E(96)^21-E(96)^29, -1*E(96)^7-E(96)^15+E(96)^23, -1*E(96)+E(96)^9+E(96)^17, -1*E(96)^13+E(96)^21+E(96)^29, -1*E(96)^3+E(96)^27, E(96)^7+E(96)^15-E(96)^23, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(96)^42, E(96)^6-2*E(96)^22, E(96)^18, -1*E(96)^6, E(96)^6, E(96)^42, 2*E(96)^2-E(96)^18, -2*E(96)^14+E(96)^30, -1*E(96)^10-E(96)^26, -1*E(96)^6+2*E(96)^22, -2*E(96)^2+E(96)^18, 2*E(96)^14-E(96)^30, E(96)^30, -1*E(96)^18, E(96)^10+E(96)^26, -1*E(96)^30, E(96)+E(96)^9-E(96)^25, E(96)^5-E(96)^21+E(96)^29, -1*E(96)^5+E(96)^21-E(96)^29, E(96)^3-E(96)^11-E(96)^19+E(96)^27, -1*E(96)^7+E(96)^15-E(96)^31, -1*E(96)^11-E(96)^19, E(96)^3+E(96)^11-E(96)^19-E(96)^27, E(96)^11+E(96)^19, -1*E(96)^5+E(96)^21+E(96)^29, -1*E(96)^17-E(96)^25, -1*E(96)^23-E(96)^31, -1*E(96)^11+E(96)^19, -1*E(96)^23+E(96)^31, -1*E(96)^5-E(96)^13, E(96)^5-E(96)^13, -1*E(96)^7-E(96)^15+E(96)^31, E(96)^23+E(96)^31, E(96)^23-E(96)^31, -1*E(96)^3+E(96)^11+E(96)^19-E(96)^27, -1*E(96)+E(96)^9-E(96)^25, E(96)^17-E(96)^25, E(96)-E(96)^9+E(96)^25, E(96)^11-E(96)^19, -1*E(96)^17+E(96)^25, E(96)^5-E(96)^21-E(96)^29, E(96)^5+E(96)^13, -1*E(96)^3-E(96)^11+E(96)^19+E(96)^27, E(96)^7+E(96)^15-E(96)^31, E(96)^7-E(96)^15+E(96)^31, E(96)^17+E(96)^25, -1*E(96)-E(96)^9+E(96)^25, -1*E(96)^5+E(96)^13], [2, -2, 0, 0, -1, 2*E(96)^24, -2*E(96)^24, 0, 0, 1-2*E(96)^16, 1, -1+2*E(96)^16, -2*E(96)^36, -2*E(96)^12, 2*E(96)^36, 2*E(96)^12, 0, 0, 0, 0, E(96)^8+E(96)^-8, -1*E(96)^8-E(96)^-8, E(96)^24, -1*E(96)^24, -2*E(96)^30, 2*E(96)^18, -2*E(96)^42, -2*E(96)^6, 2*E(96)^6, 2*E(96)^42, 2*E(96)^30, -2*E(96)^18, 0, 0, 0, 0, 0, 0, 0, 0, E(96)^36, -1*E(96)^4-E(96)^20, E(96)^12-2*E(96)^28, -1*E(96)^36, -1*E(96)^12, E(96)^12, -1*E(96)^12+2*E(96)^28, E(96)^4+E(96)^20, -1*E(96)^7+E(96)^15+E(96)^23, -1*E(96)^7-E(96)^15+E(96)^23, E(96)^13-E(96)^21-E(96)^29, E(96)^7+E(96)^15-E(96)^23, -1*E(96)^13+E(96)^21+E(96)^29, E(96)-E(96)^9-E(96)^17, -1*E(96)+E(96)^9+E(96)^17, E(96)^3-E(96)^27, -1*E(96)^3+E(96)^27, E(96)^13+E(96)^21-E(96)^29, E(96)^3+E(96)^27, -1*E(96)-E(96)^9+E(96)^17, E(96)^7-E(96)^15-E(96)^23, -1*E(96)^3-E(96)^27, -1*E(96)^13-E(96)^21+E(96)^29, E(96)+E(96)^9-E(96)^17, 0, 0, 0, 0, 0, 0, 0, 0, E(96)^6, E(96)^10+E(96)^26, -1*E(96)^30, E(96)^42, -1*E(96)^42, -1*E(96)^6, 2*E(96)^14-E(96)^30, -2*E(96)^2+E(96)^18, -1*E(96)^6+2*E(96)^22, -1*E(96)^10-E(96)^26, -2*E(96)^14+E(96)^30, 2*E(96)^2-E(96)^18, -1*E(96)^18, E(96)^30, E(96)^6-2*E(96)^22, E(96)^18, E(96)^7+E(96)^15-E(96)^31, E(96)^11-E(96)^19, -1*E(96)^11+E(96)^19, -1*E(96)^5+E(96)^13, E(96)-E(96)^9+E(96)^25, -1*E(96)^5+E(96)^21+E(96)^29, E(96)^5+E(96)^13, E(96)^5-E(96)^21-E(96)^29, -1*E(96)^11-E(96)^19, E(96)^23+E(96)^31, E(96)^17+E(96)^25, -1*E(96)^5+E(96)^21-E(96)^29, -1*E(96)^17+E(96)^25, -1*E(96)^3-E(96)^11+E(96)^19+E(96)^27, -1*E(96)^3+E(96)^11+E(96)^19-E(96)^27, -1*E(96)-E(96)^9+E(96)^25, -1*E(96)^17-E(96)^25, E(96)^17-E(96)^25, E(96)^5-E(96)^13, E(96)^7-E(96)^15+E(96)^31, E(96)^23-E(96)^31, -1*E(96)^7+E(96)^15-E(96)^31, E(96)^5-E(96)^21+E(96)^29, -1*E(96)^23+E(96)^31, E(96)^11+E(96)^19, E(96)^3+E(96)^11-E(96)^19-E(96)^27, -1*E(96)^5-E(96)^13, E(96)+E(96)^9-E(96)^25, -1*E(96)+E(96)^9-E(96)^25, -1*E(96)^23-E(96)^31, -1*E(96)^7-E(96)^15+E(96)^31, E(96)^3-E(96)^11-E(96)^19+E(96)^27], [2, -2, 0, 0, -1, -2*E(96)^24, 2*E(96)^24, 0, 0, -1+2*E(96)^16, 1, 1-2*E(96)^16, 2*E(96)^12, 2*E(96)^36, -2*E(96)^12, -2*E(96)^36, 0, 0, 0, 0, E(96)^8+E(96)^-8, -1*E(96)^8-E(96)^-8, -1*E(96)^24, E(96)^24, 2*E(96)^18, -2*E(96)^30, 2*E(96)^6, 2*E(96)^42, -2*E(96)^42, -2*E(96)^6, -2*E(96)^18, 2*E(96)^30, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(96)^12, -1*E(96)^12+2*E(96)^28, E(96)^4+E(96)^20, E(96)^12, E(96)^36, -1*E(96)^36, -1*E(96)^4-E(96)^20, E(96)^12-2*E(96)^28, -1*E(96)+E(96)^9+E(96)^17, E(96)+E(96)^9-E(96)^17, -1*E(96)^3-E(96)^27, -1*E(96)-E(96)^9+E(96)^17, E(96)^3+E(96)^27, E(96)^7-E(96)^15-E(96)^23, -1*E(96)^7+E(96)^15+E(96)^23, -1*E(96)^13-E(96)^21+E(96)^29, E(96)^13+E(96)^21-E(96)^29, -1*E(96)^3+E(96)^27, -1*E(96)^13+E(96)^21+E(96)^29, E(96)^7+E(96)^15-E(96)^23, E(96)-E(96)^9-E(96)^17, E(96)^13-E(96)^21-E(96)^29, E(96)^3-E(96)^27, -1*E(96)^7-E(96)^15+E(96)^23, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(96)^42, E(96)^6-2*E(96)^22, E(96)^18, -1*E(96)^6, E(96)^6, E(96)^42, 2*E(96)^2-E(96)^18, -2*E(96)^14+E(96)^30, -1*E(96)^10-E(96)^26, -1*E(96)^6+2*E(96)^22, -2*E(96)^2+E(96)^18, 2*E(96)^14-E(96)^30, E(96)^30, -1*E(96)^18, E(96)^10+E(96)^26, -1*E(96)^30, -1*E(96)-E(96)^9+E(96)^25, -1*E(96)^5+E(96)^21-E(96)^29, E(96)^5-E(96)^21+E(96)^29, -1*E(96)^3+E(96)^11+E(96)^19-E(96)^27, E(96)^7-E(96)^15+E(96)^31, E(96)^11+E(96)^19, -1*E(96)^3-E(96)^11+E(96)^19+E(96)^27, -1*E(96)^11-E(96)^19, E(96)^5-E(96)^21-E(96)^29, E(96)^17+E(96)^25, E(96)^23+E(96)^31, E(96)^11-E(96)^19, E(96)^23-E(96)^31, E(96)^5+E(96)^13, -1*E(96)^5+E(96)^13, E(96)^7+E(96)^15-E(96)^31, -1*E(96)^23-E(96)^31, -1*E(96)^23+E(96)^31, E(96)^3-E(96)^11-E(96)^19+E(96)^27, E(96)-E(96)^9+E(96)^25, -1*E(96)^17+E(96)^25, -1*E(96)+E(96)^9-E(96)^25, -1*E(96)^11+E(96)^19, E(96)^17-E(96)^25, -1*E(96)^5+E(96)^21+E(96)^29, -1*E(96)^5-E(96)^13, E(96)^3+E(96)^11-E(96)^19-E(96)^27, -1*E(96)^7-E(96)^15+E(96)^31, -1*E(96)^7+E(96)^15-E(96)^31, -1*E(96)^17-E(96)^25, E(96)+E(96)^9-E(96)^25, E(96)^5-E(96)^13], [2, -2, 0, 0, -1, 2*E(96)^24, -2*E(96)^24, 0, 0, 1-2*E(96)^16, 1, -1+2*E(96)^16, -2*E(96)^36, -2*E(96)^12, 2*E(96)^36, 2*E(96)^12, 0, 0, 0, 0, E(96)^8+E(96)^-8, -1*E(96)^8-E(96)^-8, E(96)^24, -1*E(96)^24, -2*E(96)^30, 2*E(96)^18, -2*E(96)^42, -2*E(96)^6, 2*E(96)^6, 2*E(96)^42, 2*E(96)^30, -2*E(96)^18, 0, 0, 0, 0, 0, 0, 0, 0, E(96)^36, -1*E(96)^4-E(96)^20, E(96)^12-2*E(96)^28, -1*E(96)^36, -1*E(96)^12, E(96)^12, -1*E(96)^12+2*E(96)^28, E(96)^4+E(96)^20, E(96)^7-E(96)^15-E(96)^23, E(96)^7+E(96)^15-E(96)^23, -1*E(96)^13+E(96)^21+E(96)^29, -1*E(96)^7-E(96)^15+E(96)^23, E(96)^13-E(96)^21-E(96)^29, -1*E(96)+E(96)^9+E(96)^17, E(96)-E(96)^9-E(96)^17, -1*E(96)^3+E(96)^27, E(96)^3-E(96)^27, -1*E(96)^13-E(96)^21+E(96)^29, -1*E(96)^3-E(96)^27, E(96)+E(96)^9-E(96)^17, -1*E(96)^7+E(96)^15+E(96)^23, E(96)^3+E(96)^27, E(96)^13+E(96)^21-E(96)^29, -1*E(96)-E(96)^9+E(96)^17, 0, 0, 0, 0, 0, 0, 0, 0, E(96)^6, E(96)^10+E(96)^26, -1*E(96)^30, E(96)^42, -1*E(96)^42, -1*E(96)^6, 2*E(96)^14-E(96)^30, -2*E(96)^2+E(96)^18, -1*E(96)^6+2*E(96)^22, -1*E(96)^10-E(96)^26, -2*E(96)^14+E(96)^30, 2*E(96)^2-E(96)^18, -1*E(96)^18, E(96)^30, E(96)^6-2*E(96)^22, E(96)^18, -1*E(96)^7-E(96)^15+E(96)^31, -1*E(96)^11+E(96)^19, E(96)^11-E(96)^19, E(96)^5-E(96)^13, -1*E(96)+E(96)^9-E(96)^25, E(96)^5-E(96)^21-E(96)^29, -1*E(96)^5-E(96)^13, -1*E(96)^5+E(96)^21+E(96)^29, E(96)^11+E(96)^19, -1*E(96)^23-E(96)^31, -1*E(96)^17-E(96)^25, E(96)^5-E(96)^21+E(96)^29, E(96)^17-E(96)^25, E(96)^3+E(96)^11-E(96)^19-E(96)^27, E(96)^3-E(96)^11-E(96)^19+E(96)^27, E(96)+E(96)^9-E(96)^25, E(96)^17+E(96)^25, -1*E(96)^17+E(96)^25, -1*E(96)^5+E(96)^13, -1*E(96)^7+E(96)^15-E(96)^31, -1*E(96)^23+E(96)^31, E(96)^7-E(96)^15+E(96)^31, -1*E(96)^5+E(96)^21-E(96)^29, E(96)^23-E(96)^31, -1*E(96)^11-E(96)^19, -1*E(96)^3-E(96)^11+E(96)^19+E(96)^27, E(96)^5+E(96)^13, -1*E(96)-E(96)^9+E(96)^25, E(96)-E(96)^9+E(96)^25, E(96)^23+E(96)^31, E(96)^7+E(96)^15-E(96)^31, -1*E(96)^3+E(96)^11+E(96)^19-E(96)^27]]; ConvertToLibraryCharacterTableNC(chartbl_384_171);