/* Group 352.79 downloaded from the LMFDB on 23 November 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([6, -2, -2, -2, 2, 2, -11, 31, 10444, 370, 88, 11525]); a,b,c,d := Explode([GPC.1, GPC.2, GPC.4, GPC.5]); AssignNames(~GPC, ["a", "b", "b2", "c", "d", "d2"]); GPerm := PermutationGroup< 19 | (6,8)(10,11)(12,13)(14,15)(16,17)(18,19), (1,2,3,4)(6,8), (2,4)(5,6)(7,8), (1,3)(2,4), (1,3)(2,4)(5,7)(6,8), (9,10,12,14,16,18,19,17,15,13,11) >; GLZN := MatrixGroup< 2, Integers(88) | [[1, 44, 0, 1], [1, 22, 44, 1], [67, 65, 0, 21], [45, 0, 0, 45], [45, 33, 0, 67], [1, 8, 0, 1]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_352_79 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, c>,< 2, 1, b^2>,< 2, 1, b^2*c>,< 2, 4, d^11>,< 2, 22, a*b^2*d^10>,< 2, 22, a*b^2*c*d^12>,< 2, 44, a*b*c*d^3>,< 4, 2, b^3>,< 4, 2, b>,< 4, 4, b^3*c*d^11>,< 4, 22, a*b^3*c*d^10>,< 4, 22, a*b*d^12>,< 4, 44, a*b^2*c*d^3>,< 11, 2, d^4>,< 11, 2, d^8>,< 11, 2, d^12>,< 11, 2, d^16>,< 11, 2, d^20>,< 22, 2, c*d^2>,< 22, 2, c*d^6>,< 22, 2, c*d^10>,< 22, 2, c*d^8>,< 22, 2, c*d^4>,< 22, 2, b^2*d^4>,< 22, 2, b^2*d^12>,< 22, 2, b^2*d^20>,< 22, 2, b^2*d^6>,< 22, 2, b^2*d^14>,< 22, 2, b^2*c*d^2>,< 22, 2, b^2*c*d^6>,< 22, 2, b^2*c*d^10>,< 22, 2, b^2*c*d^14>,< 22, 2, b^2*c*d^18>,< 22, 4, d>,< 22, 4, b^2*d>,< 22, 4, d^3>,< 22, 4, d^19>,< 22, 4, d^5>,< 22, 4, d^17>,< 22, 4, d^7>,< 22, 4, d^15>,< 22, 4, d^9>,< 22, 4, d^13>,< 44, 4, b*d^2>,< 44, 4, b^3*d^2>,< 44, 4, b^3*d^6>,< 44, 4, b*d^6>,< 44, 4, b*d^10>,< 44, 4, b^3*d^10>,< 44, 4, b^3*d^8>,< 44, 4, b*d^8>,< 44, 4, b*d^4>,< 44, 4, b^3*d^4>,< 44, 4, b*d>,< 44, 4, b*d^19>,< 44, 4, b*d^5>,< 44, 4, b*d^15>,< 44, 4, b*d^9>,< 44, 4, b*d^13>,< 44, 4, b*d^7>,< 44, 4, b*d^17>,< 44, 4, b*d^3>,< 44, 4, b^3*d>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, 0, -2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, -2, -2, -2, 2, -2, -2, -2, -2, 2, 2, 2, 2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, -2, -2, -2, 2, -2, -2, -2, -2, 2, 2, 2, 2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, -2, 2, 0, 2, 2, 2, 2, 2, 2, 2, -2, -2, 2, 2, -2, 2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 2, -2, 0, 2, 2, 2, 2, 2, 2, 2, -2, -2, 2, 2, -2, 2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,-2*K.1,2*K.1,0,0,0,0,2,2,2,2,2,-2,-2,2,-2,-2,-2,2,-2,-2,-2,-2,-2,2,2,2,0,0,0,0,0,0,0,0,0,0,-2*K.1,0,0,0,-2*K.1,0,2*K.1,2*K.1,2*K.1,2*K.1,0,2*K.1,0,-2*K.1,0,0,0,-2*K.1,-2*K.1,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2*K.1,-2*K.1,0,0,0,0,2,2,2,2,2,-2,-2,2,-2,-2,-2,2,-2,-2,-2,-2,-2,2,2,2,0,0,0,0,0,0,0,0,0,0,2*K.1,0,0,0,2*K.1,0,-2*K.1,-2*K.1,-2*K.1,-2*K.1,0,-2*K.1,0,2*K.1,0,0,0,2*K.1,2*K.1,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,2,2,2,0,0,0,2,2,2,0,0,0,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,K.1+K.1^-1,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1^5+K.1^-5,K.1+K.1^-1,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1+K.1^-1,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^4+K.1^-4,K.1^5+K.1^-5,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^5+K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,K.1^4+K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,2,2,2,0,0,0,2,2,2,0,0,0,K.1^4+K.1^-4,K.1+K.1^-1,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^4+K.1^-4,K.1+K.1^-1,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^4+K.1^-4,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1+K.1^-1,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^4+K.1^-4,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,2,2,2,0,0,0,2,2,2,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1+K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1+K.1^-1,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,K.1^4+K.1^-4,K.1+K.1^-1,K.1^4+K.1^-4,K.1+K.1^-1,K.1^4+K.1^-4,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,2,2,2,0,0,0,2,2,2,0,0,0,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^4+K.1^-4,K.1+K.1^-1,K.1^5+K.1^-5,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^4+K.1^-4,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1+K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^5+K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,2,2,2,0,0,0,2,2,2,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1^5+K.1^-5,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1+K.1^-1,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1^5+K.1^-5,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1+K.1^-1,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,2,2,-2,0,0,0,-2,-2,2,0,0,0,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,K.1+K.1^-1,K.1^5+K.1^-5,K.1^4+K.1^-4,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^4-K.1^-4,K.1^5+K.1^-5,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^4+K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,2,2,-2,0,0,0,-2,-2,2,0,0,0,K.1^4+K.1^-4,K.1+K.1^-1,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^4+K.1^-4,K.1+K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^4+K.1^-4,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^5+K.1^-5,K.1+K.1^-1,K.1^4+K.1^-4,-1*K.1^3-K.1^-3,-1*K.1^4-K.1^-4,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,2,2,-2,0,0,0,-2,-2,2,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1+K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1+K.1^-1,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^4-K.1^-4,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1-K.1^-1,K.1^4+K.1^-4,K.1^5+K.1^-5,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^5+K.1^-5,-1*K.1^4-K.1^-4,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,2,2,-2,0,0,0,-2,-2,2,0,0,0,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^5+K.1^-5,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^4+K.1^-4,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^4-K.1^-4,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^4+K.1^-4,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^5+K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,2,2,-2,0,0,0,-2,-2,2,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1^5+K.1^-5,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^4-K.1^-4,-1*K.1^5-K.1^-5,-1*K.1^4-K.1^-4,K.1^5+K.1^-5,K.1^2+K.1^-2,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^4+K.1^-4,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^5-K.1^-5,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,2,2,-2,0,0,0,2,2,-2,0,0,0,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,K.1+K.1^-1,K.1^5+K.1^-5,K.1^4+K.1^-4,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^4+K.1^-4,-1*K.1^5-K.1^-5,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^4-K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,2,2,-2,0,0,0,2,2,-2,0,0,0,K.1^4+K.1^-4,K.1+K.1^-1,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^4+K.1^-4,K.1+K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^2-K.1^-2,K.1^5+K.1^-5,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^4-K.1^-4,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,K.1^3+K.1^-3,K.1^4+K.1^-4,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,2,2,-2,0,0,0,2,2,-2,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1+K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1+K.1^-1,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^4-K.1^-4,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,K.1+K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^5-K.1^-5,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^5-K.1^-5,K.1^4+K.1^-4,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,2,2,-2,0,0,0,2,2,-2,0,0,0,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^5+K.1^-5,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^4+K.1^-4,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^4-K.1^-4,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^5-K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,2,2,-2,0,0,0,2,2,-2,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1^5+K.1^-5,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^4-K.1^-4,-1*K.1^5-K.1^-5,K.1^4+K.1^-4,-1*K.1^5-K.1^-5,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^4-K.1^-4,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^5+K.1^-5,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,2,2,2,0,0,0,-2,-2,-2,0,0,0,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,K.1+K.1^-1,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1^5+K.1^-5,K.1+K.1^-1,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1+K.1^-1,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^4-K.1^-4,-1*K.1^5-K.1^-5,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^4-K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,2,2,2,0,0,0,-2,-2,-2,0,0,0,K.1^4+K.1^-4,K.1+K.1^-1,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^4+K.1^-4,K.1+K.1^-1,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^2+K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^-3,-1*K.1^4-K.1^-4,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,2,2,2,0,0,0,-2,-2,-2,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1+K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1+K.1^-1,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,K.1^4+K.1^-4,K.1+K.1^-1,K.1^4+K.1^-4,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^5-K.1^-5,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^4-K.1^-4,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,2,2,2,0,0,0,-2,-2,-2,0,0,0,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^4-K.1^-4,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^4-K.1^-4,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,2,2,2,0,0,0,-2,-2,-2,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1^5+K.1^-5,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1+K.1^-1,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1^5+K.1^-5,-1*K.1^4-K.1^-4,-1*K.1^5-K.1^-5,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,-2*K.1^11,2*K.1^11,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^6+K.1^-6,K.1^8+K.1^-8,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^10-K.1^-10,K.1^10+K.1^-10,-1*K.1^8-K.1^-8,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10+K.1^12-K.1^14+K.1^16-K.1^18,-1*K.1^4-K.1^18,-1*K.1^6-K.1^16,K.1^6+K.1^16,K.1^4+K.1^18,-1*K.1^8-K.1^14,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10-K.1^12+K.1^14-K.1^16+K.1^18,-1*K.1^10-K.1^12,K.1^8+K.1^14,K.1^10+K.1^12,-1*K.1^3-K.1^19,-1*K.1-K.1^-1,K.1^7+K.1^-7,K.1+K.1^-1,K.1^5+K.1^17,-1*K.1^9-K.1^-9,K.1^3+K.1^19,K.1^7+K.1^15,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11+K.1^13-K.1^15+K.1^17-K.1^19,-1*K.1^9-K.1^13,K.1^3+K.1^-3,-1*K.1^5-K.1^17,-1*K.1^7-K.1^-7,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11-K.1^13+K.1^15-K.1^17+K.1^19,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^9+K.1^-9,-1*K.1^7-K.1^15,K.1^9+K.1^13,-1*K.1^5-K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2*K.1^11,-2*K.1^11,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^6+K.1^-6,K.1^8+K.1^-8,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^10-K.1^-10,K.1^10+K.1^-10,-1*K.1^8-K.1^-8,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10-K.1^12+K.1^14-K.1^16+K.1^18,K.1^4+K.1^18,K.1^6+K.1^16,-1*K.1^6-K.1^16,-1*K.1^4-K.1^18,K.1^8+K.1^14,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10+K.1^12-K.1^14+K.1^16-K.1^18,K.1^10+K.1^12,-1*K.1^8-K.1^14,-1*K.1^10-K.1^12,K.1^3+K.1^19,-1*K.1-K.1^-1,K.1^7+K.1^-7,K.1+K.1^-1,-1*K.1^5-K.1^17,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^19,-1*K.1^7-K.1^15,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11-K.1^13+K.1^15-K.1^17+K.1^19,K.1^9+K.1^13,K.1^3+K.1^-3,K.1^5+K.1^17,-1*K.1^7-K.1^-7,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11+K.1^13-K.1^15+K.1^17-K.1^19,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^9+K.1^-9,K.1^7+K.1^15,-1*K.1^9-K.1^13,-1*K.1^5-K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,-2*K.1^11,2*K.1^11,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^6+K.1^-6,K.1^8+K.1^-8,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^10-K.1^-10,K.1^10+K.1^-10,-1*K.1^8-K.1^-8,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10-K.1^12+K.1^14-K.1^16+K.1^18,K.1^4+K.1^18,K.1^6+K.1^16,-1*K.1^6-K.1^16,-1*K.1^4-K.1^18,K.1^8+K.1^14,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10+K.1^12-K.1^14+K.1^16-K.1^18,K.1^10+K.1^12,-1*K.1^8-K.1^14,-1*K.1^10-K.1^12,-1*K.1^3-K.1^19,K.1+K.1^-1,-1*K.1^7-K.1^-7,-1*K.1-K.1^-1,K.1^5+K.1^17,K.1^9+K.1^-9,K.1^3+K.1^19,K.1^7+K.1^15,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11+K.1^13-K.1^15+K.1^17-K.1^19,-1*K.1^9-K.1^13,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^17,K.1^7+K.1^-7,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11-K.1^13+K.1^15-K.1^17+K.1^19,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^9-K.1^-9,-1*K.1^7-K.1^15,K.1^9+K.1^13,K.1^5+K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2*K.1^11,-2*K.1^11,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^6+K.1^-6,K.1^8+K.1^-8,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^10-K.1^-10,K.1^10+K.1^-10,-1*K.1^8-K.1^-8,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10+K.1^12-K.1^14+K.1^16-K.1^18,-1*K.1^4-K.1^18,-1*K.1^6-K.1^16,K.1^6+K.1^16,K.1^4+K.1^18,-1*K.1^8-K.1^14,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10-K.1^12+K.1^14-K.1^16+K.1^18,-1*K.1^10-K.1^12,K.1^8+K.1^14,K.1^10+K.1^12,K.1^3+K.1^19,K.1+K.1^-1,-1*K.1^7-K.1^-7,-1*K.1-K.1^-1,-1*K.1^5-K.1^17,K.1^9+K.1^-9,-1*K.1^3-K.1^19,-1*K.1^7-K.1^15,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11-K.1^13+K.1^15-K.1^17+K.1^19,K.1^9+K.1^13,-1*K.1^3-K.1^-3,K.1^5+K.1^17,K.1^7+K.1^-7,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11+K.1^13-K.1^15+K.1^17-K.1^19,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^9-K.1^-9,K.1^7+K.1^15,-1*K.1^9-K.1^13,K.1^5+K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,-2*K.1^11,2*K.1^11,0,0,0,0,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^8+K.1^-8,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^-10,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^10+K.1^-10,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,K.1^2+K.1^-2,-1*K.1^8-K.1^-8,K.1^6+K.1^-6,K.1^10+K.1^-10,-1*K.1^10-K.1^-10,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^16,-1*K.1^10-K.1^12,-1*K.1^4-K.1^18,K.1^4+K.1^18,K.1^10+K.1^12,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10-K.1^12+K.1^14-K.1^16+K.1^18,K.1^6+K.1^16,K.1^8+K.1^14,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10+K.1^12-K.1^14+K.1^16-K.1^18,-1*K.1^8-K.1^14,K.1^9+K.1^13,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^7-K.1^15,-1*K.1^5-K.1^-5,-1*K.1^9-K.1^13,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11+K.1^13-K.1^15+K.1^17-K.1^19,K.1^3+K.1^19,-1*K.1^5-K.1^17,-1*K.1^9-K.1^-9,K.1^7+K.1^15,-1*K.1-K.1^-1,-1*K.1^3-K.1^19,K.1^9+K.1^-9,K.1^7+K.1^-7,K.1^5+K.1^-5,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11-K.1^13+K.1^15-K.1^17+K.1^19,K.1^5+K.1^17,-1*K.1^7-K.1^-7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2*K.1^11,-2*K.1^11,0,0,0,0,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^8+K.1^-8,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^-10,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^10+K.1^-10,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,K.1^2+K.1^-2,-1*K.1^8-K.1^-8,K.1^6+K.1^-6,K.1^10+K.1^-10,-1*K.1^10-K.1^-10,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^16,K.1^10+K.1^12,K.1^4+K.1^18,-1*K.1^4-K.1^18,-1*K.1^10-K.1^12,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10+K.1^12-K.1^14+K.1^16-K.1^18,-1*K.1^6-K.1^16,-1*K.1^8-K.1^14,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10-K.1^12+K.1^14-K.1^16+K.1^18,K.1^8+K.1^14,-1*K.1^9-K.1^13,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^7+K.1^15,-1*K.1^5-K.1^-5,K.1^9+K.1^13,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11-K.1^13+K.1^15-K.1^17+K.1^19,-1*K.1^3-K.1^19,K.1^5+K.1^17,-1*K.1^9-K.1^-9,-1*K.1^7-K.1^15,-1*K.1-K.1^-1,K.1^3+K.1^19,K.1^9+K.1^-9,K.1^7+K.1^-7,K.1^5+K.1^-5,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11+K.1^13-K.1^15+K.1^17-K.1^19,-1*K.1^5-K.1^17,-1*K.1^7-K.1^-7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,-2*K.1^11,2*K.1^11,0,0,0,0,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^8+K.1^-8,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^-10,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^10+K.1^-10,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,K.1^2+K.1^-2,-1*K.1^8-K.1^-8,K.1^6+K.1^-6,K.1^10+K.1^-10,-1*K.1^10-K.1^-10,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^16,K.1^10+K.1^12,K.1^4+K.1^18,-1*K.1^4-K.1^18,-1*K.1^10-K.1^12,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10+K.1^12-K.1^14+K.1^16-K.1^18,-1*K.1^6-K.1^16,-1*K.1^8-K.1^14,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10-K.1^12+K.1^14-K.1^16+K.1^18,K.1^8+K.1^14,K.1^9+K.1^13,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^7-K.1^15,K.1^5+K.1^-5,-1*K.1^9-K.1^13,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11+K.1^13-K.1^15+K.1^17-K.1^19,K.1^3+K.1^19,-1*K.1^5-K.1^17,K.1^9+K.1^-9,K.1^7+K.1^15,K.1+K.1^-1,-1*K.1^3-K.1^19,-1*K.1^9-K.1^-9,-1*K.1^7-K.1^-7,-1*K.1^5-K.1^-5,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11-K.1^13+K.1^15-K.1^17+K.1^19,K.1^5+K.1^17,K.1^7+K.1^-7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2*K.1^11,-2*K.1^11,0,0,0,0,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^8+K.1^-8,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^-10,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^10+K.1^-10,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,K.1^2+K.1^-2,-1*K.1^8-K.1^-8,K.1^6+K.1^-6,K.1^10+K.1^-10,-1*K.1^10-K.1^-10,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^16,-1*K.1^10-K.1^12,-1*K.1^4-K.1^18,K.1^4+K.1^18,K.1^10+K.1^12,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10-K.1^12+K.1^14-K.1^16+K.1^18,K.1^6+K.1^16,K.1^8+K.1^14,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10+K.1^12-K.1^14+K.1^16-K.1^18,-1*K.1^8-K.1^14,-1*K.1^9-K.1^13,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^7+K.1^15,K.1^5+K.1^-5,K.1^9+K.1^13,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11-K.1^13+K.1^15-K.1^17+K.1^19,-1*K.1^3-K.1^19,K.1^5+K.1^17,K.1^9+K.1^-9,-1*K.1^7-K.1^15,K.1+K.1^-1,K.1^3+K.1^19,-1*K.1^9-K.1^-9,-1*K.1^7-K.1^-7,-1*K.1^5-K.1^-5,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11+K.1^13-K.1^15+K.1^17-K.1^19,-1*K.1^5-K.1^17,K.1^7+K.1^-7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,-2*K.1^11,2*K.1^11,0,0,0,0,-1*K.1^10-K.1^-10,K.1^8+K.1^-8,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^-10,K.1^8+K.1^-8,-1*K.1^10-K.1^12,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10+K.1^12-K.1^14+K.1^16-K.1^18,K.1^8+K.1^14,-1*K.1^8-K.1^14,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10-K.1^12+K.1^14-K.1^16+K.1^18,K.1^4+K.1^18,K.1^10+K.1^12,-1*K.1^6-K.1^16,-1*K.1^4-K.1^18,K.1^6+K.1^16,-1*K.1^7-K.1^15,-1*K.1^5-K.1^-5,K.1^9+K.1^-9,K.1^5+K.1^-5,-1*K.1^3-K.1^19,-1*K.1-K.1^-1,K.1^7+K.1^15,-1*K.1^9-K.1^13,-1*K.1^5-K.1^17,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11+K.1^13-K.1^15+K.1^17-K.1^19,-1*K.1^7-K.1^-7,K.1^3+K.1^19,-1*K.1^9-K.1^-9,K.1^5+K.1^17,K.1^7+K.1^-7,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^9+K.1^13,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11-K.1^13+K.1^15-K.1^17+K.1^19,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2*K.1^11,-2*K.1^11,0,0,0,0,-1*K.1^10-K.1^-10,K.1^8+K.1^-8,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^-10,K.1^8+K.1^-8,K.1^10+K.1^12,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10-K.1^12+K.1^14-K.1^16+K.1^18,-1*K.1^8-K.1^14,K.1^8+K.1^14,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10+K.1^12-K.1^14+K.1^16-K.1^18,-1*K.1^4-K.1^18,-1*K.1^10-K.1^12,K.1^6+K.1^16,K.1^4+K.1^18,-1*K.1^6-K.1^16,K.1^7+K.1^15,-1*K.1^5-K.1^-5,K.1^9+K.1^-9,K.1^5+K.1^-5,K.1^3+K.1^19,-1*K.1-K.1^-1,-1*K.1^7-K.1^15,K.1^9+K.1^13,K.1^5+K.1^17,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11-K.1^13+K.1^15-K.1^17+K.1^19,-1*K.1^7-K.1^-7,-1*K.1^3-K.1^19,-1*K.1^9-K.1^-9,-1*K.1^5-K.1^17,K.1^7+K.1^-7,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^9-K.1^13,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11+K.1^13-K.1^15+K.1^17-K.1^19,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,-2*K.1^11,2*K.1^11,0,0,0,0,-1*K.1^10-K.1^-10,K.1^8+K.1^-8,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^-10,K.1^8+K.1^-8,K.1^10+K.1^12,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10-K.1^12+K.1^14-K.1^16+K.1^18,-1*K.1^8-K.1^14,K.1^8+K.1^14,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10+K.1^12-K.1^14+K.1^16-K.1^18,-1*K.1^4-K.1^18,-1*K.1^10-K.1^12,K.1^6+K.1^16,K.1^4+K.1^18,-1*K.1^6-K.1^16,-1*K.1^7-K.1^15,K.1^5+K.1^-5,-1*K.1^9-K.1^-9,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^19,K.1+K.1^-1,K.1^7+K.1^15,-1*K.1^9-K.1^13,-1*K.1^5-K.1^17,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11+K.1^13-K.1^15+K.1^17-K.1^19,K.1^7+K.1^-7,K.1^3+K.1^19,K.1^9+K.1^-9,K.1^5+K.1^17,-1*K.1^7-K.1^-7,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^9+K.1^13,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11-K.1^13+K.1^15-K.1^17+K.1^19,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2*K.1^11,-2*K.1^11,0,0,0,0,-1*K.1^10-K.1^-10,K.1^8+K.1^-8,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^-10,K.1^8+K.1^-8,-1*K.1^10-K.1^12,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10+K.1^12-K.1^14+K.1^16-K.1^18,K.1^8+K.1^14,-1*K.1^8-K.1^14,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10-K.1^12+K.1^14-K.1^16+K.1^18,K.1^4+K.1^18,K.1^10+K.1^12,-1*K.1^6-K.1^16,-1*K.1^4-K.1^18,K.1^6+K.1^16,K.1^7+K.1^15,K.1^5+K.1^-5,-1*K.1^9-K.1^-9,-1*K.1^5-K.1^-5,K.1^3+K.1^19,K.1+K.1^-1,-1*K.1^7-K.1^15,K.1^9+K.1^13,K.1^5+K.1^17,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11-K.1^13+K.1^15-K.1^17+K.1^19,K.1^7+K.1^-7,-1*K.1^3-K.1^19,K.1^9+K.1^-9,-1*K.1^5-K.1^17,-1*K.1^7-K.1^-7,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^9-K.1^13,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11+K.1^13-K.1^15+K.1^17-K.1^19,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,-2*K.1^11,2*K.1^11,0,0,0,0,K.1^8+K.1^-8,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^10-K.1^-10,-1*K.1^6-K.1^-6,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^10-K.1^-10,K.1^2+K.1^-2,-1*K.1^8-K.1^-8,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^10+K.1^-10,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^8+K.1^-8,-1*K.1^2-K.1^-2,-1*K.1^8-K.1^14,K.1^6+K.1^16,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10-K.1^12+K.1^14-K.1^16+K.1^18,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10+K.1^12-K.1^14+K.1^16-K.1^18,-1*K.1^6-K.1^16,-1*K.1^10-K.1^12,K.1^8+K.1^14,K.1^4+K.1^18,K.1^10+K.1^12,-1*K.1^4-K.1^18,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11-K.1^13+K.1^15-K.1^17+K.1^19,K.1^7+K.1^-7,-1*K.1^5-K.1^-5,-1*K.1^7-K.1^-7,K.1^9+K.1^13,-1*K.1^3-K.1^-3,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11+K.1^13-K.1^15+K.1^17-K.1^19,-1*K.1^5-K.1^17,K.1^7+K.1^15,K.1^3+K.1^19,K.1+K.1^-1,-1*K.1^9-K.1^13,K.1^5+K.1^-5,-1*K.1^7-K.1^15,-1*K.1-K.1^-1,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,K.1^5+K.1^17,-1*K.1^3-K.1^19,K.1^9+K.1^-9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2*K.1^11,-2*K.1^11,0,0,0,0,K.1^8+K.1^-8,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^10-K.1^-10,-1*K.1^6-K.1^-6,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^10-K.1^-10,K.1^2+K.1^-2,-1*K.1^8-K.1^-8,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^10+K.1^-10,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^8+K.1^-8,-1*K.1^2-K.1^-2,K.1^8+K.1^14,-1*K.1^6-K.1^16,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10+K.1^12-K.1^14+K.1^16-K.1^18,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10-K.1^12+K.1^14-K.1^16+K.1^18,K.1^6+K.1^16,K.1^10+K.1^12,-1*K.1^8-K.1^14,-1*K.1^4-K.1^18,-1*K.1^10-K.1^12,K.1^4+K.1^18,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11+K.1^13-K.1^15+K.1^17-K.1^19,K.1^7+K.1^-7,-1*K.1^5-K.1^-5,-1*K.1^7-K.1^-7,-1*K.1^9-K.1^13,-1*K.1^3-K.1^-3,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11-K.1^13+K.1^15-K.1^17+K.1^19,K.1^5+K.1^17,-1*K.1^7-K.1^15,-1*K.1^3-K.1^19,K.1+K.1^-1,K.1^9+K.1^13,K.1^5+K.1^-5,K.1^7+K.1^15,-1*K.1-K.1^-1,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,-1*K.1^5-K.1^17,K.1^3+K.1^19,K.1^9+K.1^-9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,-2*K.1^11,2*K.1^11,0,0,0,0,K.1^8+K.1^-8,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^10-K.1^-10,-1*K.1^6-K.1^-6,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^10-K.1^-10,K.1^2+K.1^-2,-1*K.1^8-K.1^-8,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^10+K.1^-10,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^8+K.1^-8,-1*K.1^2-K.1^-2,K.1^8+K.1^14,-1*K.1^6-K.1^16,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10+K.1^12-K.1^14+K.1^16-K.1^18,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10-K.1^12+K.1^14-K.1^16+K.1^18,K.1^6+K.1^16,K.1^10+K.1^12,-1*K.1^8-K.1^14,-1*K.1^4-K.1^18,-1*K.1^10-K.1^12,K.1^4+K.1^18,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11-K.1^13+K.1^15-K.1^17+K.1^19,-1*K.1^7-K.1^-7,K.1^5+K.1^-5,K.1^7+K.1^-7,K.1^9+K.1^13,K.1^3+K.1^-3,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11+K.1^13-K.1^15+K.1^17-K.1^19,-1*K.1^5-K.1^17,K.1^7+K.1^15,K.1^3+K.1^19,-1*K.1-K.1^-1,-1*K.1^9-K.1^13,-1*K.1^5-K.1^-5,-1*K.1^7-K.1^15,K.1+K.1^-1,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,K.1^5+K.1^17,-1*K.1^3-K.1^19,-1*K.1^9-K.1^-9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2*K.1^11,-2*K.1^11,0,0,0,0,K.1^8+K.1^-8,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^10-K.1^-10,-1*K.1^6-K.1^-6,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^10-K.1^-10,K.1^2+K.1^-2,-1*K.1^8-K.1^-8,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^10+K.1^-10,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^8+K.1^-8,-1*K.1^2-K.1^-2,-1*K.1^8-K.1^14,K.1^6+K.1^16,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10-K.1^12+K.1^14-K.1^16+K.1^18,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10+K.1^12-K.1^14+K.1^16-K.1^18,-1*K.1^6-K.1^16,-1*K.1^10-K.1^12,K.1^8+K.1^14,K.1^4+K.1^18,K.1^10+K.1^12,-1*K.1^4-K.1^18,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11+K.1^13-K.1^15+K.1^17-K.1^19,-1*K.1^7-K.1^-7,K.1^5+K.1^-5,K.1^7+K.1^-7,-1*K.1^9-K.1^13,K.1^3+K.1^-3,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11-K.1^13+K.1^15-K.1^17+K.1^19,K.1^5+K.1^17,-1*K.1^7-K.1^15,-1*K.1^3-K.1^19,-1*K.1-K.1^-1,K.1^9+K.1^13,-1*K.1^5-K.1^-5,K.1^7+K.1^15,K.1+K.1^-1,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^17,K.1^3+K.1^19,-1*K.1^9-K.1^-9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,-2*K.1^11,2*K.1^11,0,0,0,0,K.1^4+K.1^-4,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^8+K.1^-8,K.1^6+K.1^-6,K.1^10+K.1^-10,-1*K.1^6-K.1^-6,K.1^10+K.1^-10,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^10-K.1^-10,-1*K.1^4-K.1^18,K.1^8+K.1^14,-1*K.1^10-K.1^12,K.1^10+K.1^12,-1*K.1^8-K.1^14,K.1^6+K.1^16,K.1^4+K.1^18,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10+K.1^12-K.1^14+K.1^16-K.1^18,-1*K.1^6-K.1^16,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10-K.1^12+K.1^14-K.1^16+K.1^18,K.1^5+K.1^17,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,K.1^9+K.1^-9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11-K.1^13+K.1^15-K.1^17+K.1^19,-1*K.1^7-K.1^-7,-1*K.1^5-K.1^17,K.1^3+K.1^19,-1*K.1^9-K.1^13,K.1^7+K.1^15,-1*K.1^5-K.1^-5,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11+K.1^13-K.1^15+K.1^17-K.1^19,K.1^3+K.1^-3,K.1^9+K.1^13,K.1^5+K.1^-5,K.1+K.1^-1,K.1^7+K.1^-7,-1*K.1^3-K.1^19,-1*K.1^7-K.1^15,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2*K.1^11,-2*K.1^11,0,0,0,0,K.1^4+K.1^-4,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^8+K.1^-8,K.1^6+K.1^-6,K.1^10+K.1^-10,-1*K.1^6-K.1^-6,K.1^10+K.1^-10,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^10-K.1^-10,K.1^4+K.1^18,-1*K.1^8-K.1^14,K.1^10+K.1^12,-1*K.1^10-K.1^12,K.1^8+K.1^14,-1*K.1^6-K.1^16,-1*K.1^4-K.1^18,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10-K.1^12+K.1^14-K.1^16+K.1^18,K.1^6+K.1^16,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10+K.1^12-K.1^14+K.1^16-K.1^18,-1*K.1^5-K.1^17,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,K.1^9+K.1^-9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11+K.1^13-K.1^15+K.1^17-K.1^19,-1*K.1^7-K.1^-7,K.1^5+K.1^17,-1*K.1^3-K.1^19,K.1^9+K.1^13,-1*K.1^7-K.1^15,-1*K.1^5-K.1^-5,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11-K.1^13+K.1^15-K.1^17+K.1^19,K.1^3+K.1^-3,-1*K.1^9-K.1^13,K.1^5+K.1^-5,K.1+K.1^-1,K.1^7+K.1^-7,K.1^3+K.1^19,K.1^7+K.1^15,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,-2*K.1^11,2*K.1^11,0,0,0,0,K.1^4+K.1^-4,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^8+K.1^-8,K.1^6+K.1^-6,K.1^10+K.1^-10,-1*K.1^6-K.1^-6,K.1^10+K.1^-10,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^10-K.1^-10,K.1^4+K.1^18,-1*K.1^8-K.1^14,K.1^10+K.1^12,-1*K.1^10-K.1^12,K.1^8+K.1^14,-1*K.1^6-K.1^16,-1*K.1^4-K.1^18,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10-K.1^12+K.1^14-K.1^16+K.1^18,K.1^6+K.1^16,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10+K.1^12-K.1^14+K.1^16-K.1^18,K.1^5+K.1^17,K.1^9+K.1^-9,K.1^3+K.1^-3,-1*K.1^9-K.1^-9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11-K.1^13+K.1^15-K.1^17+K.1^19,K.1^7+K.1^-7,-1*K.1^5-K.1^17,K.1^3+K.1^19,-1*K.1^9-K.1^13,K.1^7+K.1^15,K.1^5+K.1^-5,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11+K.1^13-K.1^15+K.1^17-K.1^19,-1*K.1^3-K.1^-3,K.1^9+K.1^13,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^7-K.1^-7,-1*K.1^3-K.1^19,-1*K.1^7-K.1^15,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2*K.1^11,-2*K.1^11,0,0,0,0,K.1^4+K.1^-4,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^8+K.1^-8,K.1^6+K.1^-6,K.1^10+K.1^-10,-1*K.1^6-K.1^-6,K.1^10+K.1^-10,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^10-K.1^-10,-1*K.1^4-K.1^18,K.1^8+K.1^14,-1*K.1^10-K.1^12,K.1^10+K.1^12,-1*K.1^8-K.1^14,K.1^6+K.1^16,K.1^4+K.1^18,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10+K.1^12-K.1^14+K.1^16-K.1^18,-1*K.1^6-K.1^16,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10-K.1^12+K.1^14-K.1^16+K.1^18,-1*K.1^5-K.1^17,K.1^9+K.1^-9,K.1^3+K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11+K.1^13-K.1^15+K.1^17-K.1^19,K.1^7+K.1^-7,K.1^5+K.1^17,-1*K.1^3-K.1^19,K.1^9+K.1^13,-1*K.1^7-K.1^15,K.1^5+K.1^-5,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11-K.1^13+K.1^15-K.1^17+K.1^19,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^13,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^7-K.1^-7,K.1^3+K.1^19,K.1^7+K.1^15,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,0,0,0,0,2*K.1^5+2*K.1^-5,2*K.1^4+2*K.1^-4,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^5-2*K.1^-5,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,-2*K.1^5-2*K.1^-5,2*K.1+2*K.1^-1,-2*K.1^4-2*K.1^-4,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^5+2*K.1^-5,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^4-2*K.1^-4,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1+2*K.1^-1,2*K.1^4+2*K.1^-4,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,-2*K.1^5-2*K.1^-5,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^4+2*K.1^-4,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,-2*K.1^3-2*K.1^-3,2*K.1^5+2*K.1^-5,-2*K.1^2-2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^5-2*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^3-2*K.1^-3,-2*K.1^4-2*K.1^-4,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^5-2*K.1^-5,-2*K.1^5-2*K.1^-5,2*K.1^4+2*K.1^-4,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,0,0,0,2*K.1^5+2*K.1^-5,2*K.1^4+2*K.1^-4,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^5-2*K.1^-5,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,2*K.1^4+2*K.1^-4,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^5-2*K.1^-5,-2*K.1^2-2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^4-2*K.1^-4,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1-2*K.1^-1,-2*K.1^4-2*K.1^-4,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,-2*K.1^5-2*K.1^-5,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^4+2*K.1^-4,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^5-2*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^3+2*K.1^-3,-2*K.1^4-2*K.1^-4,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^5-2*K.1^-5,2*K.1^5+2*K.1^-5,-2*K.1^4-2*K.1^-4,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_352_79:= KnownIrreducibles(CR);