# Group 350.3 downloaded from the LMFDB on 29 September 2025. ## Various presentations of this group are stored in this file: # GPC is polycyclic presentation GPerm is permutation group # GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups # Many characteristics of the group are stored as booleans in a record: # Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, # metacyclic, monomial, nilpotent, perfect, quasisimple, rational, # solvable, supersolvable # The character table is stored as a record chartbl_n_i where n is the order # of the group and i is which group of that order it is. The record is # converted to a character table using ConvertToLibraryCharacterTableNC # Constructions GPC := PcGroupCode(50566579252648547,350); a := GPC.1; b := GPC.2; GPerm := Group( (2,4)(3,7)(5,10)(6,13)(8,16)(9,15)(11,12)(14,20)(17,21)(18,22)(19,24)(23,25)(27,28)(29,30)(31,32), (1,2,5,11,13,7,15,22,24,20,16,21,25,23,17,8,14,19,18,9,3,6,12,10,4), (26,27,29,31,32,30,28), (1,3,8,16,7)(2,6,14,21,15)(4,9,17,20,13)(5,12,19,25,22)(10,18,23,24,11) ); GLFp := Group([[[ Z(349)^0, 0*Z(349) ], [ 0*Z(349), Z(349)^174 ]], [[ Z(349)^196, Z(349)^313 ], [ Z(349)^312, Z(349)^196 ]]]); # Booleans booleans_350_3 := rec( Agroup := true, Zgroup := true, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := true, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true); # Character Table chartbl_350_3:=rec(); chartbl_350_3.IsFinite:= true; chartbl_350_3.UnderlyingCharacteristic:= 0; chartbl_350_3.UnderlyingGroup:= GPC; chartbl_350_3.Size:= 350; chartbl_350_3.InfoText:= "Character table for group 350.3 downloaded from the LMFDB."; chartbl_350_3.Identifier:= " D175 "; chartbl_350_3.NrConjugacyClasses:= 89; chartbl_350_3.ConjugacyClasses:= [ of ..., f1*f4^6, f3^2*f4, f3^4*f4^2, f4, f4^2, f4^3, f2^2*f3, f2^4*f3^2, f2*f3^4, f2^3*f4, f2^2*f3^3*f4, f2^4*f3^4*f4, f2*f3*f4^2, f2^3*f3^2*f4^2, f2^2*f4^3, f2^4*f3*f4^3, f3, f3^2, f3^3, f3^4, f3*f4, f3^3*f4, f3^4*f4, f3*f4^2, f3^2*f4^2, f3^3*f4^2, f3*f4^3, f3^2*f4^3, f2, f2^2, f2^3, f2^4, f2*f3, f2^3*f3, f2^4*f3, f2*f3^2, f2^2*f3^2, f2^3*f3^2, f2*f3^3, f2^2*f3^3, f2^3*f3^3, f2^4*f3^3, f2^2*f3^4, f2^3*f3^4, f2*f4^6, f2*f4, f2^2*f4, f2^4*f4, f2*f3*f4, f2^2*f3*f4, f2^3*f3*f4, f2^4*f3*f4, f2*f3^2*f4, f2^2*f3^2*f4, f2^3*f3^2*f4, f2^4*f3^2*f4, f2*f3^3*f4, f2^3*f3^3*f4, f2*f3*f4^5, f2^4*f4^5, f2^3*f4^5, f2^2*f4^5, f2*f4^2, f2^2*f4^2, f2^3*f4^2, f2^4*f4^2, f2^2*f3*f4^2, f2^3*f3*f4^2, f2^4*f3*f4^2, f2*f3^2*f4^2, f2^2*f3^2*f4^2, f2*f3^2*f4^4, f2*f3^3*f4^2, f2^2*f3^3*f4^2, f2^2*f3*f4^4, f2*f3*f4^4, f2^4*f4^4, f2^3*f4^4, f2^2*f4^4, f2*f4^4, f2*f4^3, f2^3*f4^3, f2^4*f4^3, f2*f3*f4^3, f2^2*f3*f4^3, f2^3*f3*f4^3, f2*f3^2*f4^3, f2^2*f3^2*f4^3]; chartbl_350_3.IdentificationOfConjugacyClasses:= [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89]; chartbl_350_3.ComputedPowerMaps:= [ , [1, 1, 4, 3, 6, 7, 5, 9, 11, 12, 14, 17, 16, 15, 13, 10, 8, 19, 21, 22, 23, 26, 28, 29, 27, 25, 24, 20, 18, 31, 33, 34, 35, 38, 40, 42, 44, 46, 47, 51, 53, 54, 56, 60, 61, 63, 65, 67, 69, 72, 73, 74, 76, 79, 81, 82, 83, 86, 88, 89, 87, 85, 84, 80, 78, 77, 75, 71, 70, 68, 66, 64, 62, 59, 58, 57, 55, 52, 50, 49, 48, 45, 43, 41, 39, 37, 36, 32, 30], [1, 2, 4, 3, 7, 5, 6, 10, 12, 15, 17, 13, 11, 8, 9, 14, 16, 20, 22, 24, 26, 29, 25, 23, 19, 18, 21, 27, 28, 32, 34, 36, 38, 42, 46, 48, 52, 54, 57, 63, 64, 67, 68, 74, 77, 79, 83, 85, 89, 86, 84, 82, 80, 75, 73, 71, 69, 65, 61, 59, 55, 53, 50, 44, 43, 40, 39, 33, 30, 31, 35, 37, 41, 45, 47, 49, 51, 56, 58, 60, 62, 66, 70, 72, 76, 78, 81, 87, 88], [1, 2, 1, 1, 6, 7, 5, 3, 4, 4, 3, 3, 4, 4, 3, 3, 4, 5, 6, 7, 7, 5, 5, 6, 7, 6, 5, 6, 7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]]; chartbl_350_3.SizesCentralizers:= [350, 2, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175]; chartbl_350_3.ClassNames:= ["1A", "2A", "5A1", "5A2", "7A1", "7A2", "7A3", "25A1", "25A2", "25A3", "25A4", "25A6", "25A7", "25A8", "25A9", "25A11", "25A12", "35A1", "35A2", "35A3", "35A4", "35A6", "35A8", "35A9", "35A11", "35A12", "35A13", "35A16", "35A17", "175A1", "175A2", "175A3", "175A4", "175A6", "175A8", "175A9", "175A11", "175A12", "175A13", "175A16", "175A17", "175A18", "175A19", "175A22", "175A23", "175A24", "175A26", "175A27", "175A29", "175A31", "175A32", "175A33", "175A34", "175A36", "175A37", "175A38", "175A39", "175A41", "175A43", "175A44", "175A46", "175A47", "175A48", "175A51", "175A52", "175A53", "175A54", "175A57", "175A58", "175A59", "175A61", "175A62", "175A64", "175A66", "175A67", "175A68", "175A69", "175A71", "175A72", "175A73", "175A74", "175A76", "175A78", "175A79", "175A81", "175A82", "175A83", "175A86", "175A87"]; chartbl_350_3.OrderClassRepresentatives:= [1, 2, 5, 5, 7, 7, 7, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175, 175]; chartbl_350_3.Irr:= [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2, 0, 2, 2, 2, 2, 2, E(5)^2+E(5)^-2, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)+E(5)^-1, E(5)+E(5)^-1, E(5)^2+E(5)^-2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, E(5)+E(5)^-1, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)+E(5)^-1, E(5)+E(5)^-1, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)+E(5)^-1, E(5)+E(5)^-1, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)+E(5)^-1, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)^2+E(5)^-2, E(5)^2+E(5)^-2, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)^2+E(5)^-2, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)^2+E(5)^-2, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)^2+E(5)^-2, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)^2+E(5)^-2, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)+E(5)^-1, E(5)+E(5)^-1, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)^2+E(5)^-2, E(5)+E(5)^-1], [2, 0, 2, 2, 2, 2, 2, E(5)+E(5)^-1, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)^2+E(5)^-2, E(5)^2+E(5)^-2, E(5)+E(5)^-1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, E(5)^2+E(5)^-2, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)^2+E(5)^-2, E(5)^2+E(5)^-2, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)^2+E(5)^-2, E(5)^2+E(5)^-2, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)^2+E(5)^-2, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)+E(5)^-1, E(5)+E(5)^-1, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)+E(5)^-1, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)+E(5)^-1, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)+E(5)^-1, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)+E(5)^-1, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)^2+E(5)^-2, E(5)^2+E(5)^-2, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)+E(5)^-1, E(5)^2+E(5)^-2], [2, 0, 2, 2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2], [2, 0, 2, 2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1], [2, 0, 2, 2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3], [2, 0, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, 2, 2, 2, E(25)^11+E(25)^-11, E(25)^4+E(25)^-4, E(25)^2+E(25)^-2, E(25)+E(25)^-1, E(25)^8+E(25)^-8, E(25)^6+E(25)^-6, E(25)^12+E(25)^-12, E(25)^3+E(25)^-3, E(25)^7+E(25)^-7, E(25)^9+E(25)^-9, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^8+E(25)^-8, E(25)^2+E(25)^-2, E(25)+E(25)^-1, E(25)^11+E(25)^-11, E(25)^2+E(25)^-2, E(25)^12+E(25)^-12, E(25)^3+E(25)^-3, E(25)^12+E(25)^-12, E(25)+E(25)^-1, E(25)^7+E(25)^-7, E(25)^9+E(25)^-9, E(25)^2+E(25)^-2, E(25)^12+E(25)^-12, E(25)^3+E(25)^-3, E(25)^12+E(25)^-12, E(25)^4+E(25)^-4, E(25)^11+E(25)^-11, E(25)^8+E(25)^-8, E(25)+E(25)^-1, E(25)^8+E(25)^-8, E(25)^3+E(25)^-3, E(25)^7+E(25)^-7, E(25)^4+E(25)^-4, E(25)^11+E(25)^-11, E(25)^6+E(25)^-6, E(25)^4+E(25)^-4, E(25)^7+E(25)^-7, E(25)^6+E(25)^-6, E(25)^8+E(25)^-8, E(25)^7+E(25)^-7, E(25)^9+E(25)^-9, E(25)^9+E(25)^-9, E(25)^4+E(25)^-4, E(25)^12+E(25)^-12, E(25)^3+E(25)^-3, E(25)^6+E(25)^-6, E(25)^2+E(25)^-2, E(25)^9+E(25)^-9, E(25)^11+E(25)^-11, E(25)^2+E(25)^-2, E(25)^6+E(25)^-6, E(25)^6+E(25)^-6, E(25)^11+E(25)^-11, E(25)^2+E(25)^-2, E(25)+E(25)^-1, E(25)^9+E(25)^-9, E(25)^4+E(25)^-4, E(25)^8+E(25)^-8, E(25)+E(25)^-1, E(25)^12+E(25)^-12, E(25)^4+E(25)^-4, E(25)^11+E(25)^-11, E(25)^9+E(25)^-9, E(25)^7+E(25)^-7, E(25)^8+E(25)^-8, E(25)^3+E(25)^-3, E(25)^7+E(25)^-7, E(25)+E(25)^-1, E(25)^6+E(25)^-6, E(25)^3+E(25)^-3], [2, 0, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, 2, 2, 2, E(25)^9+E(25)^-9, E(25)+E(25)^-1, E(25)^12+E(25)^-12, E(25)^6+E(25)^-6, E(25)^2+E(25)^-2, E(25)^11+E(25)^-11, E(25)^3+E(25)^-3, E(25)^7+E(25)^-7, E(25)^8+E(25)^-8, E(25)^4+E(25)^-4, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^2+E(25)^-2, E(25)^12+E(25)^-12, E(25)^6+E(25)^-6, E(25)^9+E(25)^-9, E(25)^12+E(25)^-12, E(25)^3+E(25)^-3, E(25)^7+E(25)^-7, E(25)^3+E(25)^-3, E(25)^6+E(25)^-6, E(25)^8+E(25)^-8, E(25)^4+E(25)^-4, E(25)^12+E(25)^-12, E(25)^3+E(25)^-3, E(25)^7+E(25)^-7, E(25)^3+E(25)^-3, E(25)+E(25)^-1, E(25)^9+E(25)^-9, E(25)^2+E(25)^-2, E(25)^6+E(25)^-6, E(25)^2+E(25)^-2, E(25)^7+E(25)^-7, E(25)^8+E(25)^-8, E(25)+E(25)^-1, E(25)^9+E(25)^-9, E(25)^11+E(25)^-11, E(25)+E(25)^-1, E(25)^8+E(25)^-8, E(25)^11+E(25)^-11, E(25)^2+E(25)^-2, E(25)^8+E(25)^-8, E(25)^4+E(25)^-4, E(25)^4+E(25)^-4, E(25)+E(25)^-1, E(25)^3+E(25)^-3, E(25)^7+E(25)^-7, E(25)^11+E(25)^-11, E(25)^12+E(25)^-12, E(25)^4+E(25)^-4, E(25)^9+E(25)^-9, E(25)^12+E(25)^-12, E(25)^11+E(25)^-11, E(25)^11+E(25)^-11, E(25)^9+E(25)^-9, E(25)^12+E(25)^-12, E(25)^6+E(25)^-6, E(25)^4+E(25)^-4, E(25)+E(25)^-1, E(25)^2+E(25)^-2, E(25)^6+E(25)^-6, E(25)^3+E(25)^-3, E(25)+E(25)^-1, E(25)^9+E(25)^-9, E(25)^4+E(25)^-4, E(25)^8+E(25)^-8, E(25)^2+E(25)^-2, E(25)^7+E(25)^-7, E(25)^8+E(25)^-8, E(25)^6+E(25)^-6, E(25)^11+E(25)^-11, E(25)^7+E(25)^-7], [2, 0, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, 2, 2, 2, E(25)^6+E(25)^-6, E(25)^9+E(25)^-9, E(25)^8+E(25)^-8, E(25)^4+E(25)^-4, E(25)^7+E(25)^-7, E(25)+E(25)^-1, E(25)^2+E(25)^-2, E(25)^12+E(25)^-12, E(25)^3+E(25)^-3, E(25)^11+E(25)^-11, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^7+E(25)^-7, E(25)^8+E(25)^-8, E(25)^4+E(25)^-4, E(25)^6+E(25)^-6, E(25)^8+E(25)^-8, E(25)^2+E(25)^-2, E(25)^12+E(25)^-12, E(25)^2+E(25)^-2, E(25)^4+E(25)^-4, E(25)^3+E(25)^-3, E(25)^11+E(25)^-11, E(25)^8+E(25)^-8, E(25)^2+E(25)^-2, E(25)^12+E(25)^-12, E(25)^2+E(25)^-2, E(25)^9+E(25)^-9, E(25)^6+E(25)^-6, E(25)^7+E(25)^-7, E(25)^4+E(25)^-4, E(25)^7+E(25)^-7, E(25)^12+E(25)^-12, E(25)^3+E(25)^-3, E(25)^9+E(25)^-9, E(25)^6+E(25)^-6, E(25)+E(25)^-1, E(25)^9+E(25)^-9, E(25)^3+E(25)^-3, E(25)+E(25)^-1, E(25)^7+E(25)^-7, E(25)^3+E(25)^-3, E(25)^11+E(25)^-11, E(25)^11+E(25)^-11, E(25)^9+E(25)^-9, E(25)^2+E(25)^-2, E(25)^12+E(25)^-12, E(25)+E(25)^-1, E(25)^8+E(25)^-8, E(25)^11+E(25)^-11, E(25)^6+E(25)^-6, E(25)^8+E(25)^-8, E(25)+E(25)^-1, E(25)+E(25)^-1, E(25)^6+E(25)^-6, E(25)^8+E(25)^-8, E(25)^4+E(25)^-4, E(25)^11+E(25)^-11, E(25)^9+E(25)^-9, E(25)^7+E(25)^-7, E(25)^4+E(25)^-4, E(25)^2+E(25)^-2, E(25)^9+E(25)^-9, E(25)^6+E(25)^-6, E(25)^11+E(25)^-11, E(25)^3+E(25)^-3, E(25)^7+E(25)^-7, E(25)^12+E(25)^-12, E(25)^3+E(25)^-3, E(25)^4+E(25)^-4, E(25)+E(25)^-1, E(25)^12+E(25)^-12], [2, 0, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, 2, 2, 2, E(25)^4+E(25)^-4, E(25)^6+E(25)^-6, E(25)^3+E(25)^-3, E(25)^11+E(25)^-11, E(25)^12+E(25)^-12, E(25)^9+E(25)^-9, E(25)^7+E(25)^-7, E(25)^8+E(25)^-8, E(25)^2+E(25)^-2, E(25)+E(25)^-1, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^12+E(25)^-12, E(25)^3+E(25)^-3, E(25)^11+E(25)^-11, E(25)^4+E(25)^-4, E(25)^3+E(25)^-3, E(25)^7+E(25)^-7, E(25)^8+E(25)^-8, E(25)^7+E(25)^-7, E(25)^11+E(25)^-11, E(25)^2+E(25)^-2, E(25)+E(25)^-1, E(25)^3+E(25)^-3, E(25)^7+E(25)^-7, E(25)^8+E(25)^-8, E(25)^7+E(25)^-7, E(25)^6+E(25)^-6, E(25)^4+E(25)^-4, E(25)^12+E(25)^-12, E(25)^11+E(25)^-11, E(25)^12+E(25)^-12, E(25)^8+E(25)^-8, E(25)^2+E(25)^-2, E(25)^6+E(25)^-6, E(25)^4+E(25)^-4, E(25)^9+E(25)^-9, E(25)^6+E(25)^-6, E(25)^2+E(25)^-2, E(25)^9+E(25)^-9, E(25)^12+E(25)^-12, E(25)^2+E(25)^-2, E(25)+E(25)^-1, E(25)+E(25)^-1, E(25)^6+E(25)^-6, E(25)^7+E(25)^-7, E(25)^8+E(25)^-8, E(25)^9+E(25)^-9, E(25)^3+E(25)^-3, E(25)+E(25)^-1, E(25)^4+E(25)^-4, E(25)^3+E(25)^-3, E(25)^9+E(25)^-9, E(25)^9+E(25)^-9, E(25)^4+E(25)^-4, E(25)^3+E(25)^-3, E(25)^11+E(25)^-11, E(25)+E(25)^-1, E(25)^6+E(25)^-6, E(25)^12+E(25)^-12, E(25)^11+E(25)^-11, E(25)^7+E(25)^-7, E(25)^6+E(25)^-6, E(25)^4+E(25)^-4, E(25)+E(25)^-1, E(25)^2+E(25)^-2, E(25)^12+E(25)^-12, E(25)^8+E(25)^-8, E(25)^2+E(25)^-2, E(25)^11+E(25)^-11, E(25)^9+E(25)^-9, E(25)^8+E(25)^-8], [2, 0, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, 2, 2, 2, E(25)+E(25)^-1, E(25)^11+E(25)^-11, E(25)^7+E(25)^-7, E(25)^9+E(25)^-9, E(25)^3+E(25)^-3, E(25)^4+E(25)^-4, E(25)^8+E(25)^-8, E(25)^2+E(25)^-2, E(25)^12+E(25)^-12, E(25)^6+E(25)^-6, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^3+E(25)^-3, E(25)^7+E(25)^-7, E(25)^9+E(25)^-9, E(25)+E(25)^-1, E(25)^7+E(25)^-7, E(25)^8+E(25)^-8, E(25)^2+E(25)^-2, E(25)^8+E(25)^-8, E(25)^9+E(25)^-9, E(25)^12+E(25)^-12, E(25)^6+E(25)^-6, E(25)^7+E(25)^-7, E(25)^8+E(25)^-8, E(25)^2+E(25)^-2, E(25)^8+E(25)^-8, E(25)^11+E(25)^-11, E(25)+E(25)^-1, E(25)^3+E(25)^-3, E(25)^9+E(25)^-9, E(25)^3+E(25)^-3, E(25)^2+E(25)^-2, E(25)^12+E(25)^-12, E(25)^11+E(25)^-11, E(25)+E(25)^-1, E(25)^4+E(25)^-4, E(25)^11+E(25)^-11, E(25)^12+E(25)^-12, E(25)^4+E(25)^-4, E(25)^3+E(25)^-3, E(25)^12+E(25)^-12, E(25)^6+E(25)^-6, E(25)^6+E(25)^-6, E(25)^11+E(25)^-11, E(25)^8+E(25)^-8, E(25)^2+E(25)^-2, E(25)^4+E(25)^-4, E(25)^7+E(25)^-7, E(25)^6+E(25)^-6, E(25)+E(25)^-1, E(25)^7+E(25)^-7, E(25)^4+E(25)^-4, E(25)^4+E(25)^-4, E(25)+E(25)^-1, E(25)^7+E(25)^-7, E(25)^9+E(25)^-9, E(25)^6+E(25)^-6, E(25)^11+E(25)^-11, E(25)^3+E(25)^-3, E(25)^9+E(25)^-9, E(25)^8+E(25)^-8, E(25)^11+E(25)^-11, E(25)+E(25)^-1, E(25)^6+E(25)^-6, E(25)^12+E(25)^-12, E(25)^3+E(25)^-3, E(25)^2+E(25)^-2, E(25)^12+E(25)^-12, E(25)^9+E(25)^-9, E(25)^4+E(25)^-4, E(25)^2+E(25)^-2], [2, 0, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, 2, 2, 2, E(25)^12+E(25)^-12, E(25)^7+E(25)^-7, E(25)^9+E(25)^-9, E(25)^8+E(25)^-8, E(25)^11+E(25)^-11, E(25)^2+E(25)^-2, E(25)^4+E(25)^-4, E(25)+E(25)^-1, E(25)^6+E(25)^-6, E(25)^3+E(25)^-3, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)^11+E(25)^-11, E(25)^9+E(25)^-9, E(25)^8+E(25)^-8, E(25)^12+E(25)^-12, E(25)^9+E(25)^-9, E(25)^4+E(25)^-4, E(25)+E(25)^-1, E(25)^4+E(25)^-4, E(25)^8+E(25)^-8, E(25)^6+E(25)^-6, E(25)^3+E(25)^-3, E(25)^9+E(25)^-9, E(25)^4+E(25)^-4, E(25)+E(25)^-1, E(25)^4+E(25)^-4, E(25)^7+E(25)^-7, E(25)^12+E(25)^-12, E(25)^11+E(25)^-11, E(25)^8+E(25)^-8, E(25)^11+E(25)^-11, E(25)+E(25)^-1, E(25)^6+E(25)^-6, E(25)^7+E(25)^-7, E(25)^12+E(25)^-12, E(25)^2+E(25)^-2, E(25)^7+E(25)^-7, E(25)^6+E(25)^-6, E(25)^2+E(25)^-2, E(25)^11+E(25)^-11, E(25)^6+E(25)^-6, E(25)^3+E(25)^-3, E(25)^3+E(25)^-3, E(25)^7+E(25)^-7, E(25)^4+E(25)^-4, E(25)+E(25)^-1, E(25)^2+E(25)^-2, E(25)^9+E(25)^-9, E(25)^3+E(25)^-3, E(25)^12+E(25)^-12, E(25)^9+E(25)^-9, E(25)^2+E(25)^-2, E(25)^2+E(25)^-2, E(25)^12+E(25)^-12, E(25)^9+E(25)^-9, E(25)^8+E(25)^-8, E(25)^3+E(25)^-3, E(25)^7+E(25)^-7, E(25)^11+E(25)^-11, E(25)^8+E(25)^-8, E(25)^4+E(25)^-4, E(25)^7+E(25)^-7, E(25)^12+E(25)^-12, E(25)^3+E(25)^-3, E(25)^6+E(25)^-6, E(25)^11+E(25)^-11, E(25)+E(25)^-1, E(25)^6+E(25)^-6, E(25)^8+E(25)^-8, E(25)^2+E(25)^-2, E(25)+E(25)^-1], [2, 0, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, 2, 2, 2, E(25)^8+E(25)^-8, E(25)^12+E(25)^-12, E(25)^6+E(25)^-6, E(25)^3+E(25)^-3, E(25)+E(25)^-1, E(25)^7+E(25)^-7, E(25)^11+E(25)^-11, E(25)^9+E(25)^-9, E(25)^4+E(25)^-4, E(25)^2+E(25)^-2, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)+E(25)^-1, E(25)^6+E(25)^-6, E(25)^3+E(25)^-3, E(25)^8+E(25)^-8, E(25)^6+E(25)^-6, E(25)^11+E(25)^-11, E(25)^9+E(25)^-9, E(25)^11+E(25)^-11, E(25)^3+E(25)^-3, E(25)^4+E(25)^-4, E(25)^2+E(25)^-2, E(25)^6+E(25)^-6, E(25)^11+E(25)^-11, E(25)^9+E(25)^-9, E(25)^11+E(25)^-11, E(25)^12+E(25)^-12, E(25)^8+E(25)^-8, E(25)+E(25)^-1, E(25)^3+E(25)^-3, E(25)+E(25)^-1, E(25)^9+E(25)^-9, E(25)^4+E(25)^-4, E(25)^12+E(25)^-12, E(25)^8+E(25)^-8, E(25)^7+E(25)^-7, E(25)^12+E(25)^-12, E(25)^4+E(25)^-4, E(25)^7+E(25)^-7, E(25)+E(25)^-1, E(25)^4+E(25)^-4, E(25)^2+E(25)^-2, E(25)^2+E(25)^-2, E(25)^12+E(25)^-12, E(25)^11+E(25)^-11, E(25)^9+E(25)^-9, E(25)^7+E(25)^-7, E(25)^6+E(25)^-6, E(25)^2+E(25)^-2, E(25)^8+E(25)^-8, E(25)^6+E(25)^-6, E(25)^7+E(25)^-7, E(25)^7+E(25)^-7, E(25)^8+E(25)^-8, E(25)^6+E(25)^-6, E(25)^3+E(25)^-3, E(25)^2+E(25)^-2, E(25)^12+E(25)^-12, E(25)+E(25)^-1, E(25)^3+E(25)^-3, E(25)^11+E(25)^-11, E(25)^12+E(25)^-12, E(25)^8+E(25)^-8, E(25)^2+E(25)^-2, E(25)^4+E(25)^-4, E(25)+E(25)^-1, E(25)^9+E(25)^-9, E(25)^4+E(25)^-4, E(25)^3+E(25)^-3, E(25)^7+E(25)^-7, E(25)^9+E(25)^-9], [2, 0, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, 2, 2, 2, E(25)^7+E(25)^-7, E(25)^2+E(25)^-2, E(25)+E(25)^-1, E(25)^12+E(25)^-12, E(25)^4+E(25)^-4, E(25)^3+E(25)^-3, E(25)^6+E(25)^-6, E(25)^11+E(25)^-11, E(25)^9+E(25)^-9, E(25)^8+E(25)^-8, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)^4+E(25)^-4, E(25)+E(25)^-1, E(25)^12+E(25)^-12, E(25)^7+E(25)^-7, E(25)+E(25)^-1, E(25)^6+E(25)^-6, E(25)^11+E(25)^-11, E(25)^6+E(25)^-6, E(25)^12+E(25)^-12, E(25)^9+E(25)^-9, E(25)^8+E(25)^-8, E(25)+E(25)^-1, E(25)^6+E(25)^-6, E(25)^11+E(25)^-11, E(25)^6+E(25)^-6, E(25)^2+E(25)^-2, E(25)^7+E(25)^-7, E(25)^4+E(25)^-4, E(25)^12+E(25)^-12, E(25)^4+E(25)^-4, E(25)^11+E(25)^-11, E(25)^9+E(25)^-9, E(25)^2+E(25)^-2, E(25)^7+E(25)^-7, E(25)^3+E(25)^-3, E(25)^2+E(25)^-2, E(25)^9+E(25)^-9, E(25)^3+E(25)^-3, E(25)^4+E(25)^-4, E(25)^9+E(25)^-9, E(25)^8+E(25)^-8, E(25)^8+E(25)^-8, E(25)^2+E(25)^-2, E(25)^6+E(25)^-6, E(25)^11+E(25)^-11, E(25)^3+E(25)^-3, E(25)+E(25)^-1, E(25)^8+E(25)^-8, E(25)^7+E(25)^-7, E(25)+E(25)^-1, E(25)^3+E(25)^-3, E(25)^3+E(25)^-3, E(25)^7+E(25)^-7, E(25)+E(25)^-1, E(25)^12+E(25)^-12, E(25)^8+E(25)^-8, E(25)^2+E(25)^-2, E(25)^4+E(25)^-4, E(25)^12+E(25)^-12, E(25)^6+E(25)^-6, E(25)^2+E(25)^-2, E(25)^7+E(25)^-7, E(25)^8+E(25)^-8, E(25)^9+E(25)^-9, E(25)^4+E(25)^-4, E(25)^11+E(25)^-11, E(25)^9+E(25)^-9, E(25)^12+E(25)^-12, E(25)^3+E(25)^-3, E(25)^11+E(25)^-11], [2, 0, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, 2, 2, 2, E(25)^3+E(25)^-3, E(25)^8+E(25)^-8, E(25)^4+E(25)^-4, E(25)^2+E(25)^-2, E(25)^9+E(25)^-9, E(25)^12+E(25)^-12, E(25)+E(25)^-1, E(25)^6+E(25)^-6, E(25)^11+E(25)^-11, E(25)^7+E(25)^-7, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)^9+E(25)^-9, E(25)^4+E(25)^-4, E(25)^2+E(25)^-2, E(25)^3+E(25)^-3, E(25)^4+E(25)^-4, E(25)+E(25)^-1, E(25)^6+E(25)^-6, E(25)+E(25)^-1, E(25)^2+E(25)^-2, E(25)^11+E(25)^-11, E(25)^7+E(25)^-7, E(25)^4+E(25)^-4, E(25)+E(25)^-1, E(25)^6+E(25)^-6, E(25)+E(25)^-1, E(25)^8+E(25)^-8, E(25)^3+E(25)^-3, E(25)^9+E(25)^-9, E(25)^2+E(25)^-2, E(25)^9+E(25)^-9, E(25)^6+E(25)^-6, E(25)^11+E(25)^-11, E(25)^8+E(25)^-8, E(25)^3+E(25)^-3, E(25)^12+E(25)^-12, E(25)^8+E(25)^-8, E(25)^11+E(25)^-11, E(25)^12+E(25)^-12, E(25)^9+E(25)^-9, E(25)^11+E(25)^-11, E(25)^7+E(25)^-7, E(25)^7+E(25)^-7, E(25)^8+E(25)^-8, E(25)+E(25)^-1, E(25)^6+E(25)^-6, E(25)^12+E(25)^-12, E(25)^4+E(25)^-4, E(25)^7+E(25)^-7, E(25)^3+E(25)^-3, E(25)^4+E(25)^-4, E(25)^12+E(25)^-12, E(25)^12+E(25)^-12, E(25)^3+E(25)^-3, E(25)^4+E(25)^-4, E(25)^2+E(25)^-2, E(25)^7+E(25)^-7, E(25)^8+E(25)^-8, E(25)^9+E(25)^-9, E(25)^2+E(25)^-2, E(25)+E(25)^-1, E(25)^8+E(25)^-8, E(25)^3+E(25)^-3, E(25)^7+E(25)^-7, E(25)^11+E(25)^-11, E(25)^9+E(25)^-9, E(25)^6+E(25)^-6, E(25)^11+E(25)^-11, E(25)^2+E(25)^-2, E(25)^12+E(25)^-12, E(25)^6+E(25)^-6], [2, 0, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, 2, 2, 2, E(25)^2+E(25)^-2, E(25)^3+E(25)^-3, E(25)^11+E(25)^-11, E(25)^7+E(25)^-7, E(25)^6+E(25)^-6, E(25)^8+E(25)^-8, E(25)^9+E(25)^-9, E(25)^4+E(25)^-4, E(25)+E(25)^-1, E(25)^12+E(25)^-12, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)^10+E(25)^-10, E(25)^10+E(25)^-10, E(25)^5+E(25)^-5, E(25)^6+E(25)^-6, E(25)^11+E(25)^-11, E(25)^7+E(25)^-7, E(25)^2+E(25)^-2, E(25)^11+E(25)^-11, E(25)^9+E(25)^-9, E(25)^4+E(25)^-4, E(25)^9+E(25)^-9, E(25)^7+E(25)^-7, E(25)+E(25)^-1, E(25)^12+E(25)^-12, E(25)^11+E(25)^-11, E(25)^9+E(25)^-9, E(25)^4+E(25)^-4, E(25)^9+E(25)^-9, E(25)^3+E(25)^-3, E(25)^2+E(25)^-2, E(25)^6+E(25)^-6, E(25)^7+E(25)^-7, E(25)^6+E(25)^-6, E(25)^4+E(25)^-4, E(25)+E(25)^-1, E(25)^3+E(25)^-3, E(25)^2+E(25)^-2, E(25)^8+E(25)^-8, E(25)^3+E(25)^-3, E(25)+E(25)^-1, E(25)^8+E(25)^-8, E(25)^6+E(25)^-6, E(25)+E(25)^-1, E(25)^12+E(25)^-12, E(25)^12+E(25)^-12, E(25)^3+E(25)^-3, E(25)^9+E(25)^-9, E(25)^4+E(25)^-4, E(25)^8+E(25)^-8, E(25)^11+E(25)^-11, E(25)^12+E(25)^-12, E(25)^2+E(25)^-2, E(25)^11+E(25)^-11, E(25)^8+E(25)^-8, E(25)^8+E(25)^-8, E(25)^2+E(25)^-2, E(25)^11+E(25)^-11, E(25)^7+E(25)^-7, E(25)^12+E(25)^-12, E(25)^3+E(25)^-3, E(25)^6+E(25)^-6, E(25)^7+E(25)^-7, E(25)^9+E(25)^-9, E(25)^3+E(25)^-3, E(25)^2+E(25)^-2, E(25)^12+E(25)^-12, E(25)+E(25)^-1, E(25)^6+E(25)^-6, E(25)^4+E(25)^-4, E(25)+E(25)^-1, E(25)^7+E(25)^-7, E(25)^8+E(25)^-8, E(25)^4+E(25)^-4], [2, 0, 2, 2, E(35)^15+E(35)^-15, E(35)^5+E(35)^-5, E(35)^10+E(35)^-10, E(35)^14+E(35)^-14, E(35)^14+E(35)^-14, E(35)^7+E(35)^-7, E(35)^14+E(35)^-14, E(35)^7+E(35)^-7, E(35)^14+E(35)^-14, E(35)^7+E(35)^-7, E(35)^7+E(35)^-7, E(35)^7+E(35)^-7, E(35)^14+E(35)^-14, E(35)^10+E(35)^-10, E(35)^5+E(35)^-5, E(35)^5+E(35)^-5, E(35)^10+E(35)^-10, E(35)^15+E(35)^-15, E(35)^5+E(35)^-5, E(35)^15+E(35)^-15, E(35)^10+E(35)^-10, E(35)^15+E(35)^-15, E(35)^15+E(35)^-15, E(35)^5+E(35)^-5, E(35)^10+E(35)^-10, E(35)^12+E(35)^-12, E(35)^13+E(35)^-13, E(35)^11+E(35)^-11, E(35)^11+E(35)^-11, E(35)^8+E(35)^-8, E(35)^2+E(35)^-2, E(35)^12+E(35)^-12, E(35)^12+E(35)^-12, E(35)^4+E(35)^-4, E(35)^13+E(35)^-13, E(35)^6+E(35)^-6, E(35)^12+E(35)^-12, E(35)^17+E(35)^-17, E(35)^17+E(35)^-17, E(35)^3+E(35)^-3, E(35)^16+E(35)^-16, E(35)^6+E(35)^-6, E(35)^3+E(35)^-3, E(35)^9+E(35)^-9, E(35)^17+E(35)^-17, E(35)^8+E(35)^-8, E(35)^2+E(35)^-2, E(35)^4+E(35)^-4, E(35)^9+E(35)^-9, E(35)+E(35)^-1, E(35)^9+E(35)^-9, E(35)^8+E(35)^-8, E(35)^4+E(35)^-4, E(35)^8+E(35)^-8, E(35)^17+E(35)^-17, E(35)^4+E(35)^-4, E(35)+E(35)^-1, E(35)^6+E(35)^-6, E(35)^13+E(35)^-13, E(35)^2+E(35)^-2, E(35)^16+E(35)^-16, E(35)^17+E(35)^-17, E(35)^16+E(35)^-16, E(35)^16+E(35)^-16, E(35)^3+E(35)^-3, E(35)^11+E(35)^-11, E(35)^9+E(35)^-9, E(35)^4+E(35)^-4, E(35)^2+E(35)^-2, E(35)^6+E(35)^-6, E(35)^11+E(35)^-11, E(35)+E(35)^-1, E(35)^2+E(35)^-2, E(35)+E(35)^-1, E(35)^8+E(35)^-8, E(35)^11+E(35)^-11, E(35)+E(35)^-1, E(35)^9+E(35)^-9, E(35)^12+E(35)^-12, E(35)^13+E(35)^-13, E(35)^13+E(35)^-13, E(35)^3+E(35)^-3, E(35)^16+E(35)^-16, E(35)^6+E(35)^-6, E(35)^3+E(35)^-3], [2, 0, 2, 2, E(35)^15+E(35)^-15, E(35)^5+E(35)^-5, E(35)^10+E(35)^-10, E(35)^14+E(35)^-14, E(35)^14+E(35)^-14, E(35)^7+E(35)^-7, E(35)^14+E(35)^-14, E(35)^7+E(35)^-7, E(35)^14+E(35)^-14, E(35)^7+E(35)^-7, E(35)^7+E(35)^-7, E(35)^7+E(35)^-7, E(35)^14+E(35)^-14, E(35)^10+E(35)^-10, E(35)^5+E(35)^-5, E(35)^5+E(35)^-5, E(35)^10+E(35)^-10, E(35)^15+E(35)^-15, E(35)^5+E(35)^-5, E(35)^15+E(35)^-15, E(35)^10+E(35)^-10, E(35)^15+E(35)^-15, E(35)^15+E(35)^-15, E(35)^5+E(35)^-5, E(35)^10+E(35)^-10, E(35)^2+E(35)^-2, E(35)^8+E(35)^-8, E(35)^4+E(35)^-4, E(35)^4+E(35)^-4, E(35)^13+E(35)^-13, E(35)^12+E(35)^-12, E(35)^2+E(35)^-2, E(35)^2+E(35)^-2, E(35)^11+E(35)^-11, E(35)^8+E(35)^-8, E(35)+E(35)^-1, E(35)^2+E(35)^-2, E(35)^3+E(35)^-3, E(35)^3+E(35)^-3, E(35)^17+E(35)^-17, E(35)^9+E(35)^-9, E(35)+E(35)^-1, E(35)^17+E(35)^-17, E(35)^16+E(35)^-16, E(35)^3+E(35)^-3, E(35)^13+E(35)^-13, E(35)^12+E(35)^-12, E(35)^11+E(35)^-11, E(35)^16+E(35)^-16, E(35)^6+E(35)^-6, E(35)^16+E(35)^-16, E(35)^13+E(35)^-13, E(35)^11+E(35)^-11, E(35)^13+E(35)^-13, E(35)^3+E(35)^-3, E(35)^11+E(35)^-11, E(35)^6+E(35)^-6, E(35)+E(35)^-1, E(35)^8+E(35)^-8, E(35)^12+E(35)^-12, E(35)^9+E(35)^-9, E(35)^3+E(35)^-3, E(35)^9+E(35)^-9, E(35)^9+E(35)^-9, E(35)^17+E(35)^-17, E(35)^4+E(35)^-4, E(35)^16+E(35)^-16, E(35)^11+E(35)^-11, E(35)^12+E(35)^-12, E(35)+E(35)^-1, E(35)^4+E(35)^-4, E(35)^6+E(35)^-6, E(35)^12+E(35)^-12, E(35)^6+E(35)^-6, E(35)^13+E(35)^-13, E(35)^4+E(35)^-4, E(35)^6+E(35)^-6, E(35)^16+E(35)^-16, E(35)^2+E(35)^-2, E(35)^8+E(35)^-8, E(35)^8+E(35)^-8, E(35)^17+E(35)^-17, E(35)^9+E(35)^-9, E(35)+E(35)^-1, E(35)^17+E(35)^-17], [2, 0, 2, 2, E(35)^15+E(35)^-15, E(35)^5+E(35)^-5, E(35)^10+E(35)^-10, E(35)^7+E(35)^-7, E(35)^7+E(35)^-7, E(35)^14+E(35)^-14, E(35)^7+E(35)^-7, E(35)^14+E(35)^-14, E(35)^7+E(35)^-7, E(35)^14+E(35)^-14, E(35)^14+E(35)^-14, E(35)^14+E(35)^-14, E(35)^7+E(35)^-7, E(35)^10+E(35)^-10, E(35)^5+E(35)^-5, E(35)^5+E(35)^-5, E(35)^10+E(35)^-10, E(35)^15+E(35)^-15, E(35)^5+E(35)^-5, E(35)^15+E(35)^-15, E(35)^10+E(35)^-10, E(35)^15+E(35)^-15, E(35)^15+E(35)^-15, E(35)^5+E(35)^-5, E(35)^10+E(35)^-10, E(35)^16+E(35)^-16, E(35)^6+E(35)^-6, E(35)^3+E(35)^-3, E(35)^3+E(35)^-3, E(35)+E(35)^-1, E(35)^9+E(35)^-9, E(35)^16+E(35)^-16, E(35)^16+E(35)^-16, E(35)^17+E(35)^-17, E(35)^6+E(35)^-6, E(35)^8+E(35)^-8, E(35)^16+E(35)^-16, E(35)^11+E(35)^-11, E(35)^11+E(35)^-11, E(35)^4+E(35)^-4, E(35)^2+E(35)^-2, E(35)^8+E(35)^-8, E(35)^4+E(35)^-4, E(35)^12+E(35)^-12, E(35)^11+E(35)^-11, E(35)+E(35)^-1, E(35)^9+E(35)^-9, E(35)^17+E(35)^-17, E(35)^12+E(35)^-12, E(35)^13+E(35)^-13, E(35)^12+E(35)^-12, E(35)+E(35)^-1, E(35)^17+E(35)^-17, E(35)+E(35)^-1, E(35)^11+E(35)^-11, E(35)^17+E(35)^-17, E(35)^13+E(35)^-13, E(35)^8+E(35)^-8, E(35)^6+E(35)^-6, E(35)^9+E(35)^-9, E(35)^2+E(35)^-2, E(35)^11+E(35)^-11, E(35)^2+E(35)^-2, E(35)^2+E(35)^-2, E(35)^4+E(35)^-4, E(35)^3+E(35)^-3, E(35)^12+E(35)^-12, E(35)^17+E(35)^-17, E(35)^9+E(35)^-9, E(35)^8+E(35)^-8, E(35)^3+E(35)^-3, E(35)^13+E(35)^-13, E(35)^9+E(35)^-9, E(35)^13+E(35)^-13, E(35)+E(35)^-1, E(35)^3+E(35)^-3, E(35)^13+E(35)^-13, E(35)^12+E(35)^-12, E(35)^16+E(35)^-16, E(35)^6+E(35)^-6, E(35)^6+E(35)^-6, E(35)^4+E(35)^-4, E(35)^2+E(35)^-2, E(35)^8+E(35)^-8, E(35)^4+E(35)^-4], [2, 0, 2, 2, E(35)^15+E(35)^-15, E(35)^5+E(35)^-5, E(35)^10+E(35)^-10, E(35)^7+E(35)^-7, E(35)^7+E(35)^-7, E(35)^14+E(35)^-14, E(35)^7+E(35)^-7, E(35)^14+E(35)^-14, E(35)^7+E(35)^-7, E(35)^14+E(35)^-14, E(35)^14+E(35)^-14, E(35)^14+E(35)^-14, E(35)^7+E(35)^-7, E(35)^10+E(35)^-10, E(35)^5+E(35)^-5, E(35)^5+E(35)^-5, E(35)^10+E(35)^-10, E(35)^15+E(35)^-15, E(35)^5+E(35)^-5, E(35)^15+E(35)^-15, E(35)^10+E(35)^-10, E(35)^15+E(35)^-15, E(35)^15+E(35)^-15, E(35)^5+E(35)^-5, E(35)^10+E(35)^-10, E(35)^9+E(35)^-9, E(35)+E(35)^-1, E(35)^17+E(35)^-17, E(35)^17+E(35)^-17, E(35)^6+E(35)^-6, E(35)^16+E(35)^-16, E(35)^9+E(35)^-9, E(35)^9+E(35)^-9, E(35)^3+E(35)^-3, E(35)+E(35)^-1, E(35)^13+E(35)^-13, E(35)^9+E(35)^-9, E(35)^4+E(35)^-4, E(35)^4+E(35)^-4, E(35)^11+E(35)^-11, E(35)^12+E(35)^-12, E(35)^13+E(35)^-13, E(35)^11+E(35)^-11, E(35)^2+E(35)^-2, E(35)^4+E(35)^-4, E(35)^6+E(35)^-6, E(35)^16+E(35)^-16, E(35)^3+E(35)^-3, E(35)^2+E(35)^-2, E(35)^8+E(35)^-8, E(35)^2+E(35)^-2, E(35)^6+E(35)^-6, E(35)^3+E(35)^-3, E(35)^6+E(35)^-6, E(35)^4+E(35)^-4, E(35)^3+E(35)^-3, E(35)^8+E(35)^-8, E(35)^13+E(35)^-13, E(35)+E(35)^-1, E(35)^16+E(35)^-16, E(35)^12+E(35)^-12, E(35)^4+E(35)^-4, E(35)^12+E(35)^-12, E(35)^12+E(35)^-12, E(35)^11+E(35)^-11, E(35)^17+E(35)^-17, E(35)^2+E(35)^-2, E(35)^3+E(35)^-3, E(35)^16+E(35)^-16, E(35)^13+E(35)^-13, E(35)^17+E(35)^-17, E(35)^8+E(35)^-8, E(35)^16+E(35)^-16, E(35)^8+E(35)^-8, E(35)^6+E(35)^-6, E(35)^17+E(35)^-17, E(35)^8+E(35)^-8, E(35)^2+E(35)^-2, E(35)^9+E(35)^-9, E(35)+E(35)^-1, E(35)+E(35)^-1, E(35)^11+E(35)^-11, E(35)^12+E(35)^-12, E(35)^13+E(35)^-13, E(35)^11+E(35)^-11], [2, 0, 2, 2, E(35)^10+E(35)^-10, E(35)^15+E(35)^-15, E(35)^5+E(35)^-5, E(35)^14+E(35)^-14, E(35)^14+E(35)^-14, E(35)^7+E(35)^-7, E(35)^14+E(35)^-14, E(35)^7+E(35)^-7, E(35)^14+E(35)^-14, E(35)^7+E(35)^-7, E(35)^7+E(35)^-7, E(35)^7+E(35)^-7, E(35)^14+E(35)^-14, E(35)^5+E(35)^-5, E(35)^15+E(35)^-15, E(35)^15+E(35)^-15, E(35)^5+E(35)^-5, E(35)^10+E(35)^-10, E(35)^15+E(35)^-15, E(35)^10+E(35)^-10, E(35)^5+E(35)^-5, E(35)^10+E(35)^-10, E(35)^10+E(35)^-10, E(35)^15+E(35)^-15, E(35)^5+E(35)^-5, E(35)^13+E(35)^-13, E(35)^17+E(35)^-17, E(35)^9+E(35)^-9, E(35)^9+E(35)^-9, E(35)^3+E(35)^-3, E(35)^8+E(35)^-8, E(35)^13+E(35)^-13, E(35)^13+E(35)^-13, E(35)^16+E(35)^-16, E(35)^17+E(35)^-17, E(35)^11+E(35)^-11, E(35)^13+E(35)^-13, E(35)^2+E(35)^-2, E(35)^2+E(35)^-2, E(35)^12+E(35)^-12, E(35)^6+E(35)^-6, E(35)^11+E(35)^-11, E(35)^12+E(35)^-12, E(35)+E(35)^-1, E(35)^2+E(35)^-2, E(35)^3+E(35)^-3, E(35)^8+E(35)^-8, E(35)^16+E(35)^-16, E(35)+E(35)^-1, E(35)^4+E(35)^-4, E(35)+E(35)^-1, E(35)^3+E(35)^-3, E(35)^16+E(35)^-16, E(35)^3+E(35)^-3, E(35)^2+E(35)^-2, E(35)^16+E(35)^-16, E(35)^4+E(35)^-4, E(35)^11+E(35)^-11, E(35)^17+E(35)^-17, E(35)^8+E(35)^-8, E(35)^6+E(35)^-6, E(35)^2+E(35)^-2, E(35)^6+E(35)^-6, E(35)^6+E(35)^-6, E(35)^12+E(35)^-12, E(35)^9+E(35)^-9, E(35)+E(35)^-1, E(35)^16+E(35)^-16, E(35)^8+E(35)^-8, E(35)^11+E(35)^-11, E(35)^9+E(35)^-9, E(35)^4+E(35)^-4, E(35)^8+E(35)^-8, E(35)^4+E(35)^-4, E(35)^3+E(35)^-3, E(35)^9+E(35)^-9, E(35)^4+E(35)^-4, E(35)+E(35)^-1, E(35)^13+E(35)^-13, E(35)^17+E(35)^-17, E(35)^17+E(35)^-17, E(35)^12+E(35)^-12, E(35)^6+E(35)^-6, E(35)^11+E(35)^-11, E(35)^12+E(35)^-12], [2, 0, 2, 2, E(35)^10+E(35)^-10, E(35)^15+E(35)^-15, E(35)^5+E(35)^-5, E(35)^14+E(35)^-14, E(35)^14+E(35)^-14, E(35)^7+E(35)^-7, E(35)^14+E(35)^-14, E(35)^7+E(35)^-7, E(35)^14+E(35)^-14, E(35)^7+E(35)^-7, E(35)^7+E(35)^-7, E(35)^7+E(35)^-7, E(35)^14+E(35)^-14, E(35)^5+E(35)^-5, E(35)^15+E(35)^-15, E(35)^15+E(35)^-15, E(35)^5+E(35)^-5, E(35)^10+E(35)^-10, E(35)^15+E(35)^-15, E(35)^10+E(35)^-10, E(35)^5+E(35)^-5, E(35)^10+E(35)^-10, E(35)^10+E(35)^-10, E(35)^15+E(35)^-15, E(35)^5+E(35)^-5, E(35)^8+E(35)^-8, E(35)^3+E(35)^-3, E(35)^16+E(35)^-16, E(35)^16+E(35)^-16, E(35)^17+E(35)^-17, E(35)^13+E(35)^-13, E(35)^8+E(35)^-8, E(35)^8+E(35)^-8, E(35)^9+E(35)^-9, E(35)^3+E(35)^-3, E(35)^4+E(35)^-4, E(35)^8+E(35)^-8, E(35)^12+E(35)^-12, E(35)^12+E(35)^-12, E(35)^2+E(35)^-2, E(35)+E(35)^-1, E(35)^4+E(35)^-4, E(35)^2+E(35)^-2, E(35)^6+E(35)^-6, E(35)^12+E(35)^-12, E(35)^17+E(35)^-17, E(35)^13+E(35)^-13, E(35)^9+E(35)^-9, E(35)^6+E(35)^-6, E(35)^11+E(35)^-11, E(35)^6+E(35)^-6, E(35)^17+E(35)^-17, E(35)^9+E(35)^-9, E(35)^17+E(35)^-17, E(35)^12+E(35)^-12, E(35)^9+E(35)^-9, E(35)^11+E(35)^-11, E(35)^4+E(35)^-4, E(35)^3+E(35)^-3, E(35)^13+E(35)^-13, E(35)+E(35)^-1, E(35)^12+E(35)^-12, E(35)+E(35)^-1, E(35)+E(35)^-1, E(35)^2+E(35)^-2, E(35)^16+E(35)^-16, E(35)^6+E(35)^-6, E(35)^9+E(35)^-9, E(35)^13+E(35)^-13, E(35)^4+E(35)^-4, E(35)^16+E(35)^-16, E(35)^11+E(35)^-11, E(35)^13+E(35)^-13, E(35)^11+E(35)^-11, E(35)^17+E(35)^-17, E(35)^16+E(35)^-16, E(35)^11+E(35)^-11, E(35)^6+E(35)^-6, E(35)^8+E(35)^-8, E(35)^3+E(35)^-3, E(35)^3+E(35)^-3, E(35)^2+E(35)^-2, E(35)+E(35)^-1, E(35)^4+E(35)^-4, E(35)^2+E(35)^-2], [2, 0, 2, 2, E(35)^10+E(35)^-10, E(35)^15+E(35)^-15, E(35)^5+E(35)^-5, E(35)^7+E(35)^-7, E(35)^7+E(35)^-7, E(35)^14+E(35)^-14, E(35)^7+E(35)^-7, E(35)^14+E(35)^-14, E(35)^7+E(35)^-7, E(35)^14+E(35)^-14, E(35)^14+E(35)^-14, E(35)^14+E(35)^-14, E(35)^7+E(35)^-7, E(35)^5+E(35)^-5, E(35)^15+E(35)^-15, E(35)^15+E(35)^-15, E(35)^5+E(35)^-5, E(35)^10+E(35)^-10, E(35)^15+E(35)^-15, E(35)^10+E(35)^-10, E(35)^5+E(35)^-5, E(35)^10+E(35)^-10, E(35)^10+E(35)^-10, E(35)^15+E(35)^-15, E(35)^5+E(35)^-5, E(35)^6+E(35)^-6, E(35)^11+E(35)^-11, E(35)^12+E(35)^-12, E(35)^12+E(35)^-12, E(35)^4+E(35)^-4, E(35)+E(35)^-1, E(35)^6+E(35)^-6, E(35)^6+E(35)^-6, E(35)^2+E(35)^-2, E(35)^11+E(35)^-11, E(35)^3+E(35)^-3, E(35)^6+E(35)^-6, E(35)^9+E(35)^-9, E(35)^9+E(35)^-9, E(35)^16+E(35)^-16, E(35)^8+E(35)^-8, E(35)^3+E(35)^-3, E(35)^16+E(35)^-16, E(35)^13+E(35)^-13, E(35)^9+E(35)^-9, E(35)^4+E(35)^-4, E(35)+E(35)^-1, E(35)^2+E(35)^-2, E(35)^13+E(35)^-13, E(35)^17+E(35)^-17, E(35)^13+E(35)^-13, E(35)^4+E(35)^-4, E(35)^2+E(35)^-2, E(35)^4+E(35)^-4, E(35)^9+E(35)^-9, E(35)^2+E(35)^-2, E(35)^17+E(35)^-17, E(35)^3+E(35)^-3, E(35)^11+E(35)^-11, E(35)+E(35)^-1, E(35)^8+E(35)^-8, E(35)^9+E(35)^-9, E(35)^8+E(35)^-8, E(35)^8+E(35)^-8, E(35)^16+E(35)^-16, E(35)^12+E(35)^-12, E(35)^13+E(35)^-13, E(35)^2+E(35)^-2, E(35)+E(35)^-1, E(35)^3+E(35)^-3, E(35)^12+E(35)^-12, E(35)^17+E(35)^-17, E(35)+E(35)^-1, E(35)^17+E(35)^-17, E(35)^4+E(35)^-4, E(35)^12+E(35)^-12, E(35)^17+E(35)^-17, E(35)^13+E(35)^-13, E(35)^6+E(35)^-6, E(35)^11+E(35)^-11, E(35)^11+E(35)^-11, E(35)^16+E(35)^-16, E(35)^8+E(35)^-8, E(35)^3+E(35)^-3, E(35)^16+E(35)^-16], [2, 0, 2, 2, E(35)^10+E(35)^-10, E(35)^15+E(35)^-15, E(35)^5+E(35)^-5, E(35)^7+E(35)^-7, E(35)^7+E(35)^-7, E(35)^14+E(35)^-14, E(35)^7+E(35)^-7, E(35)^14+E(35)^-14, E(35)^7+E(35)^-7, E(35)^14+E(35)^-14, E(35)^14+E(35)^-14, E(35)^14+E(35)^-14, E(35)^7+E(35)^-7, E(35)^5+E(35)^-5, E(35)^15+E(35)^-15, E(35)^15+E(35)^-15, E(35)^5+E(35)^-5, E(35)^10+E(35)^-10, E(35)^15+E(35)^-15, E(35)^10+E(35)^-10, E(35)^5+E(35)^-5, E(35)^10+E(35)^-10, E(35)^10+E(35)^-10, E(35)^15+E(35)^-15, E(35)^5+E(35)^-5, E(35)+E(35)^-1, E(35)^4+E(35)^-4, E(35)^2+E(35)^-2, E(35)^2+E(35)^-2, E(35)^11+E(35)^-11, E(35)^6+E(35)^-6, E(35)+E(35)^-1, E(35)+E(35)^-1, E(35)^12+E(35)^-12, E(35)^4+E(35)^-4, E(35)^17+E(35)^-17, E(35)+E(35)^-1, E(35)^16+E(35)^-16, E(35)^16+E(35)^-16, E(35)^9+E(35)^-9, E(35)^13+E(35)^-13, E(35)^17+E(35)^-17, E(35)^9+E(35)^-9, E(35)^8+E(35)^-8, E(35)^16+E(35)^-16, E(35)^11+E(35)^-11, E(35)^6+E(35)^-6, E(35)^12+E(35)^-12, E(35)^8+E(35)^-8, E(35)^3+E(35)^-3, E(35)^8+E(35)^-8, E(35)^11+E(35)^-11, E(35)^12+E(35)^-12, E(35)^11+E(35)^-11, E(35)^16+E(35)^-16, E(35)^12+E(35)^-12, E(35)^3+E(35)^-3, E(35)^17+E(35)^-17, E(35)^4+E(35)^-4, E(35)^6+E(35)^-6, E(35)^13+E(35)^-13, E(35)^16+E(35)^-16, E(35)^13+E(35)^-13, E(35)^13+E(35)^-13, E(35)^9+E(35)^-9, E(35)^2+E(35)^-2, E(35)^8+E(35)^-8, E(35)^12+E(35)^-12, E(35)^6+E(35)^-6, E(35)^17+E(35)^-17, E(35)^2+E(35)^-2, E(35)^3+E(35)^-3, E(35)^6+E(35)^-6, E(35)^3+E(35)^-3, E(35)^11+E(35)^-11, E(35)^2+E(35)^-2, E(35)^3+E(35)^-3, E(35)^8+E(35)^-8, E(35)+E(35)^-1, E(35)^4+E(35)^-4, E(35)^4+E(35)^-4, E(35)^9+E(35)^-9, E(35)^13+E(35)^-13, E(35)^17+E(35)^-17, E(35)^9+E(35)^-9], [2, 0, 2, 2, E(35)^5+E(35)^-5, E(35)^10+E(35)^-10, E(35)^15+E(35)^-15, E(35)^14+E(35)^-14, E(35)^14+E(35)^-14, E(35)^7+E(35)^-7, E(35)^14+E(35)^-14, E(35)^7+E(35)^-7, E(35)^14+E(35)^-14, E(35)^7+E(35)^-7, E(35)^7+E(35)^-7, E(35)^7+E(35)^-7, E(35)^14+E(35)^-14, E(35)^15+E(35)^-15, E(35)^10+E(35)^-10, E(35)^10+E(35)^-10, E(35)^15+E(35)^-15, E(35)^5+E(35)^-5, E(35)^10+E(35)^-10, E(35)^5+E(35)^-5, E(35)^15+E(35)^-15, E(35)^5+E(35)^-5, E(35)^5+E(35)^-5, E(35)^10+E(35)^-10, E(35)^15+E(35)^-15, E(35)^17+E(35)^-17, E(35)^2+E(35)^-2, E(35)+E(35)^-1, E(35)+E(35)^-1, E(35)^12+E(35)^-12, E(35)^3+E(35)^-3, E(35)^17+E(35)^-17, E(35)^17+E(35)^-17, E(35)^6+E(35)^-6, E(35)^2+E(35)^-2, E(35)^9+E(35)^-9, E(35)^17+E(35)^-17, E(35)^8+E(35)^-8, E(35)^8+E(35)^-8, E(35)^13+E(35)^-13, E(35)^11+E(35)^-11, E(35)^9+E(35)^-9, E(35)^13+E(35)^-13, E(35)^4+E(35)^-4, E(35)^8+E(35)^-8, E(35)^12+E(35)^-12, E(35)^3+E(35)^-3, E(35)^6+E(35)^-6, E(35)^4+E(35)^-4, E(35)^16+E(35)^-16, E(35)^4+E(35)^-4, E(35)^12+E(35)^-12, E(35)^6+E(35)^-6, E(35)^12+E(35)^-12, E(35)^8+E(35)^-8, E(35)^6+E(35)^-6, E(35)^16+E(35)^-16, E(35)^9+E(35)^-9, E(35)^2+E(35)^-2, E(35)^3+E(35)^-3, E(35)^11+E(35)^-11, E(35)^8+E(35)^-8, E(35)^11+E(35)^-11, E(35)^11+E(35)^-11, E(35)^13+E(35)^-13, E(35)+E(35)^-1, E(35)^4+E(35)^-4, E(35)^6+E(35)^-6, E(35)^3+E(35)^-3, E(35)^9+E(35)^-9, E(35)+E(35)^-1, E(35)^16+E(35)^-16, E(35)^3+E(35)^-3, E(35)^16+E(35)^-16, E(35)^12+E(35)^-12, E(35)+E(35)^-1, E(35)^16+E(35)^-16, E(35)^4+E(35)^-4, E(35)^17+E(35)^-17, E(35)^2+E(35)^-2, E(35)^2+E(35)^-2, E(35)^13+E(35)^-13, E(35)^11+E(35)^-11, E(35)^9+E(35)^-9, E(35)^13+E(35)^-13], [2, 0, 2, 2, E(35)^5+E(35)^-5, E(35)^10+E(35)^-10, E(35)^15+E(35)^-15, E(35)^14+E(35)^-14, E(35)^14+E(35)^-14, E(35)^7+E(35)^-7, E(35)^14+E(35)^-14, E(35)^7+E(35)^-7, E(35)^14+E(35)^-14, E(35)^7+E(35)^-7, E(35)^7+E(35)^-7, E(35)^7+E(35)^-7, E(35)^14+E(35)^-14, E(35)^15+E(35)^-15, E(35)^10+E(35)^-10, E(35)^10+E(35)^-10, E(35)^15+E(35)^-15, E(35)^5+E(35)^-5, E(35)^10+E(35)^-10, E(35)^5+E(35)^-5, E(35)^15+E(35)^-15, E(35)^5+E(35)^-5, E(35)^5+E(35)^-5, E(35)^10+E(35)^-10, E(35)^15+E(35)^-15, E(35)^3+E(35)^-3, E(35)^12+E(35)^-12, E(35)^6+E(35)^-6, E(35)^6+E(35)^-6, E(35)^2+E(35)^-2, E(35)^17+E(35)^-17, E(35)^3+E(35)^-3, E(35)^3+E(35)^-3, E(35)+E(35)^-1, E(35)^12+E(35)^-12, E(35)^16+E(35)^-16, E(35)^3+E(35)^-3, E(35)^13+E(35)^-13, E(35)^13+E(35)^-13, E(35)^8+E(35)^-8, E(35)^4+E(35)^-4, E(35)^16+E(35)^-16, E(35)^8+E(35)^-8, E(35)^11+E(35)^-11, E(35)^13+E(35)^-13, E(35)^2+E(35)^-2, E(35)^17+E(35)^-17, E(35)+E(35)^-1, E(35)^11+E(35)^-11, E(35)^9+E(35)^-9, E(35)^11+E(35)^-11, E(35)^2+E(35)^-2, E(35)+E(35)^-1, E(35)^2+E(35)^-2, E(35)^13+E(35)^-13, E(35)+E(35)^-1, E(35)^9+E(35)^-9, E(35)^16+E(35)^-16, E(35)^12+E(35)^-12, E(35)^17+E(35)^-17, E(35)^4+E(35)^-4, E(35)^13+E(35)^-13, E(35)^4+E(35)^-4, E(35)^4+E(35)^-4, E(35)^8+E(35)^-8, E(35)^6+E(35)^-6, E(35)^11+E(35)^-11, E(35)+E(35)^-1, E(35)^17+E(35)^-17, E(35)^16+E(35)^-16, E(35)^6+E(35)^-6, E(35)^9+E(35)^-9, E(35)^17+E(35)^-17, E(35)^9+E(35)^-9, E(35)^2+E(35)^-2, E(35)^6+E(35)^-6, E(35)^9+E(35)^-9, E(35)^11+E(35)^-11, E(35)^3+E(35)^-3, E(35)^12+E(35)^-12, E(35)^12+E(35)^-12, E(35)^8+E(35)^-8, E(35)^4+E(35)^-4, E(35)^16+E(35)^-16, E(35)^8+E(35)^-8], [2, 0, 2, 2, E(35)^5+E(35)^-5, E(35)^10+E(35)^-10, E(35)^15+E(35)^-15, E(35)^7+E(35)^-7, E(35)^7+E(35)^-7, E(35)^14+E(35)^-14, E(35)^7+E(35)^-7, E(35)^14+E(35)^-14, E(35)^7+E(35)^-7, E(35)^14+E(35)^-14, E(35)^14+E(35)^-14, E(35)^14+E(35)^-14, E(35)^7+E(35)^-7, E(35)^15+E(35)^-15, E(35)^10+E(35)^-10, E(35)^10+E(35)^-10, E(35)^15+E(35)^-15, E(35)^5+E(35)^-5, E(35)^10+E(35)^-10, E(35)^5+E(35)^-5, E(35)^15+E(35)^-15, E(35)^5+E(35)^-5, E(35)^5+E(35)^-5, E(35)^10+E(35)^-10, E(35)^15+E(35)^-15, E(35)^11+E(35)^-11, E(35)^9+E(35)^-9, E(35)^13+E(35)^-13, E(35)^13+E(35)^-13, E(35)^16+E(35)^-16, E(35)^4+E(35)^-4, E(35)^11+E(35)^-11, E(35)^11+E(35)^-11, E(35)^8+E(35)^-8, E(35)^9+E(35)^-9, E(35)^12+E(35)^-12, E(35)^11+E(35)^-11, E(35)+E(35)^-1, E(35)+E(35)^-1, E(35)^6+E(35)^-6, E(35)^3+E(35)^-3, E(35)^12+E(35)^-12, E(35)^6+E(35)^-6, E(35)^17+E(35)^-17, E(35)+E(35)^-1, E(35)^16+E(35)^-16, E(35)^4+E(35)^-4, E(35)^8+E(35)^-8, E(35)^17+E(35)^-17, E(35)^2+E(35)^-2, E(35)^17+E(35)^-17, E(35)^16+E(35)^-16, E(35)^8+E(35)^-8, E(35)^16+E(35)^-16, E(35)+E(35)^-1, E(35)^8+E(35)^-8, E(35)^2+E(35)^-2, E(35)^12+E(35)^-12, E(35)^9+E(35)^-9, E(35)^4+E(35)^-4, E(35)^3+E(35)^-3, E(35)+E(35)^-1, E(35)^3+E(35)^-3, E(35)^3+E(35)^-3, E(35)^6+E(35)^-6, E(35)^13+E(35)^-13, E(35)^17+E(35)^-17, E(35)^8+E(35)^-8, E(35)^4+E(35)^-4, E(35)^12+E(35)^-12, E(35)^13+E(35)^-13, E(35)^2+E(35)^-2, E(35)^4+E(35)^-4, E(35)^2+E(35)^-2, E(35)^16+E(35)^-16, E(35)^13+E(35)^-13, E(35)^2+E(35)^-2, E(35)^17+E(35)^-17, E(35)^11+E(35)^-11, E(35)^9+E(35)^-9, E(35)^9+E(35)^-9, E(35)^6+E(35)^-6, E(35)^3+E(35)^-3, E(35)^12+E(35)^-12, E(35)^6+E(35)^-6], [2, 0, 2, 2, E(35)^5+E(35)^-5, E(35)^10+E(35)^-10, E(35)^15+E(35)^-15, E(35)^7+E(35)^-7, E(35)^7+E(35)^-7, E(35)^14+E(35)^-14, E(35)^7+E(35)^-7, E(35)^14+E(35)^-14, E(35)^7+E(35)^-7, E(35)^14+E(35)^-14, E(35)^14+E(35)^-14, E(35)^14+E(35)^-14, E(35)^7+E(35)^-7, E(35)^15+E(35)^-15, E(35)^10+E(35)^-10, E(35)^10+E(35)^-10, E(35)^15+E(35)^-15, E(35)^5+E(35)^-5, E(35)^10+E(35)^-10, E(35)^5+E(35)^-5, E(35)^15+E(35)^-15, E(35)^5+E(35)^-5, E(35)^5+E(35)^-5, E(35)^10+E(35)^-10, E(35)^15+E(35)^-15, E(35)^4+E(35)^-4, E(35)^16+E(35)^-16, E(35)^8+E(35)^-8, E(35)^8+E(35)^-8, E(35)^9+E(35)^-9, E(35)^11+E(35)^-11, E(35)^4+E(35)^-4, E(35)^4+E(35)^-4, E(35)^13+E(35)^-13, E(35)^16+E(35)^-16, E(35)^2+E(35)^-2, E(35)^4+E(35)^-4, E(35)^6+E(35)^-6, E(35)^6+E(35)^-6, E(35)+E(35)^-1, E(35)^17+E(35)^-17, E(35)^2+E(35)^-2, E(35)+E(35)^-1, E(35)^3+E(35)^-3, E(35)^6+E(35)^-6, E(35)^9+E(35)^-9, E(35)^11+E(35)^-11, E(35)^13+E(35)^-13, E(35)^3+E(35)^-3, E(35)^12+E(35)^-12, E(35)^3+E(35)^-3, E(35)^9+E(35)^-9, E(35)^13+E(35)^-13, E(35)^9+E(35)^-9, E(35)^6+E(35)^-6, E(35)^13+E(35)^-13, E(35)^12+E(35)^-12, E(35)^2+E(35)^-2, E(35)^16+E(35)^-16, E(35)^11+E(35)^-11, E(35)^17+E(35)^-17, E(35)^6+E(35)^-6, E(35)^17+E(35)^-17, E(35)^17+E(35)^-17, E(35)+E(35)^-1, E(35)^8+E(35)^-8, E(35)^3+E(35)^-3, E(35)^13+E(35)^-13, E(35)^11+E(35)^-11, E(35)^2+E(35)^-2, E(35)^8+E(35)^-8, E(35)^12+E(35)^-12, E(35)^11+E(35)^-11, E(35)^12+E(35)^-12, E(35)^9+E(35)^-9, E(35)^8+E(35)^-8, E(35)^12+E(35)^-12, E(35)^3+E(35)^-3, E(35)^4+E(35)^-4, E(35)^16+E(35)^-16, E(35)^16+E(35)^-16, E(35)+E(35)^-1, E(35)^17+E(35)^-17, E(35)^2+E(35)^-2, E(35)+E(35)^-1], [2, 0, E(175)^70+E(175)^-70, E(175)^35+E(175)^-35, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^77+E(175)^-77, E(175)^28+E(175)^-28, E(175)^14+E(175)^-14, E(175)^7+E(175)^-7, E(175)^56+E(175)^-56, E(175)^42+E(175)^-42, E(175)^84+E(175)^-84, E(175)^21+E(175)^-21, E(175)^49+E(175)^-49, E(175)^63+E(175)^-63, E(175)^55+E(175)^-55, E(175)^60+E(175)^-60, E(175)^45+E(175)^-45, E(175)^15+E(175)^-15, E(175)^40+E(175)^-40, E(175)^80+E(175)^-80, E(175)^5+E(175)^-5, E(175)^85+E(175)^-85, E(175)^30+E(175)^-30, E(175)^65+E(175)^-65, E(175)^10+E(175)^-10, E(175)^20+E(175)^-20, E(175)^81+E(175)^-81, E(175)^61+E(175)^-61, E(175)^57+E(175)^-57, E(175)^48+E(175)^-48, E(175)^86+E(175)^-86, E(175)^66+E(175)^-66, E(175)^46+E(175)^-46, E(175)^59+E(175)^-59, E(175)^43+E(175)^-43, E(175)^26+E(175)^-26, E(175)^12+E(175)^-12, E(175)^11+E(175)^-11, E(175)^34+E(175)^-34, E(175)^71+E(175)^-71, E(175)^41+E(175)^-41, E(175)^3+E(175)^-3, E(175)^23+E(175)^-23, E(175)^6+E(175)^-6, E(175)^18+E(175)^-18, E(175)^69+E(175)^-69, E(175)^54+E(175)^-54, E(175)^74+E(175)^-74, E(175)^78+E(175)^-78, E(175)^52+E(175)^-52, E(175)^33+E(175)^-33, E(175)^53+E(175)^-53, E(175)^51+E(175)^-51, E(175)^8+E(175)^-8, E(175)^19+E(175)^-19, E(175)+E(175)^-1, E(175)^62+E(175)^-62, E(175)^37+E(175)^-37, E(175)^47+E(175)^-47, E(175)^9+E(175)^-9, E(175)^4+E(175)^-4, E(175)^67+E(175)^-67, E(175)^36+E(175)^-36, E(175)^38+E(175)^-38, E(175)^73+E(175)^-73, E(175)^64+E(175)^-64, E(175)^83+E(175)^-83, E(175)^17+E(175)^-17, E(175)^27+E(175)^-27, E(175)^39+E(175)^-39, E(175)^82+E(175)^-82, E(175)^13+E(175)^-13, E(175)^72+E(175)^-72, E(175)^31+E(175)^-31, E(175)^68+E(175)^-68, E(175)^16+E(175)^-16, E(175)^22+E(175)^-22, E(175)^2+E(175)^-2, E(175)^87+E(175)^-87, E(175)^24+E(175)^-24, E(175)^44+E(175)^-44, E(175)^79+E(175)^-79, E(175)^76+E(175)^-76, E(175)^32+E(175)^-32, E(175)^58+E(175)^-58, E(175)^29+E(175)^-29], [2, 0, E(175)^70+E(175)^-70, E(175)^35+E(175)^-35, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^77+E(175)^-77, E(175)^28+E(175)^-28, E(175)^14+E(175)^-14, E(175)^7+E(175)^-7, E(175)^56+E(175)^-56, E(175)^42+E(175)^-42, E(175)^84+E(175)^-84, E(175)^21+E(175)^-21, E(175)^49+E(175)^-49, E(175)^63+E(175)^-63, E(175)^20+E(175)^-20, E(175)^10+E(175)^-10, E(175)^80+E(175)^-80, E(175)^85+E(175)^-85, E(175)^65+E(175)^-65, E(175)^45+E(175)^-45, E(175)^30+E(175)^-30, E(175)^15+E(175)^-15, E(175)^5+E(175)^-5, E(175)^40+E(175)^-40, E(175)^60+E(175)^-60, E(175)^55+E(175)^-55, E(175)^31+E(175)^-31, E(175)^86+E(175)^-86, E(175)^43+E(175)^-43, E(175)^27+E(175)^-27, E(175)^61+E(175)^-61, E(175)^59+E(175)^-59, E(175)^4+E(175)^-4, E(175)^66+E(175)^-66, E(175)^57+E(175)^-57, E(175)^51+E(175)^-51, E(175)^37+E(175)^-37, E(175)^39+E(175)^-39, E(175)^41+E(175)^-41, E(175)^29+E(175)^-29, E(175)^34+E(175)^-34, E(175)^53+E(175)^-53, E(175)^2+E(175)^-2, E(175)^69+E(175)^-69, E(175)^32+E(175)^-32, E(175)^6+E(175)^-6, E(175)^79+E(175)^-79, E(175)^24+E(175)^-24, E(175)^22+E(175)^-22, E(175)^73+E(175)^-73, E(175)^58+E(175)^-58, E(175)^3+E(175)^-3, E(175)^26+E(175)^-26, E(175)^83+E(175)^-83, E(175)^44+E(175)^-44, E(175)^76+E(175)^-76, E(175)^13+E(175)^-13, E(175)^12+E(175)^-12, E(175)^72+E(175)^-72, E(175)^16+E(175)^-16, E(175)^46+E(175)^-46, E(175)^17+E(175)^-17, E(175)^64+E(175)^-64, E(175)^87+E(175)^-87, E(175)^52+E(175)^-52, E(175)^36+E(175)^-36, E(175)^8+E(175)^-8, E(175)^67+E(175)^-67, E(175)^48+E(175)^-48, E(175)^11+E(175)^-11, E(175)^68+E(175)^-68, E(175)^62+E(175)^-62, E(175)^47+E(175)^-47, E(175)^81+E(175)^-81, E(175)^82+E(175)^-82, E(175)^9+E(175)^-9, E(175)^78+E(175)^-78, E(175)^23+E(175)^-23, E(175)^38+E(175)^-38, E(175)^74+E(175)^-74, E(175)^19+E(175)^-19, E(175)^54+E(175)^-54, E(175)+E(175)^-1, E(175)^18+E(175)^-18, E(175)^33+E(175)^-33, E(175)^71+E(175)^-71], [2, 0, E(175)^70+E(175)^-70, E(175)^35+E(175)^-35, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^63+E(175)^-63, E(175)^7+E(175)^-7, E(175)^84+E(175)^-84, E(175)^42+E(175)^-42, E(175)^14+E(175)^-14, E(175)^77+E(175)^-77, E(175)^21+E(175)^-21, E(175)^49+E(175)^-49, E(175)^56+E(175)^-56, E(175)^28+E(175)^-28, E(175)^55+E(175)^-55, E(175)^60+E(175)^-60, E(175)^45+E(175)^-45, E(175)^15+E(175)^-15, E(175)^40+E(175)^-40, E(175)^80+E(175)^-80, E(175)^5+E(175)^-5, E(175)^85+E(175)^-85, E(175)^30+E(175)^-30, E(175)^65+E(175)^-65, E(175)^10+E(175)^-10, E(175)^20+E(175)^-20, E(175)^11+E(175)^-11, E(175)^9+E(175)^-9, E(175)^83+E(175)^-83, E(175)^13+E(175)^-13, E(175)^16+E(175)^-16, E(175)^4+E(175)^-4, E(175)^24+E(175)^-24, E(175)^46+E(175)^-46, E(175)^8+E(175)^-8, E(175)^44+E(175)^-44, E(175)^47+E(175)^-47, E(175)^59+E(175)^-59, E(175)^71+E(175)^-71, E(175)+E(175)^-1, E(175)^29+E(175)^-29, E(175)^32+E(175)^-32, E(175)^12+E(175)^-12, E(175)^64+E(175)^-64, E(175)^17+E(175)^-17, E(175)^36+E(175)^-36, E(175)^51+E(175)^-51, E(175)^31+E(175)^-31, E(175)^43+E(175)^-43, E(175)^87+E(175)^-87, E(175)^2+E(175)^-2, E(175)^18+E(175)^-18, E(175)^19+E(175)^-19, E(175)^27+E(175)^-27, E(175)^86+E(175)^-86, E(175)^69+E(175)^-69, E(175)^78+E(175)^-78, E(175)^72+E(175)^-72, E(175)^82+E(175)^-82, E(175)^79+E(175)^-79, E(175)^74+E(175)^-74, E(175)^73+E(175)^-73, E(175)^34+E(175)^-34, E(175)^3+E(175)^-3, E(175)^38+E(175)^-38, E(175)^41+E(175)^-41, E(175)^48+E(175)^-48, E(175)^52+E(175)^-52, E(175)^62+E(175)^-62, E(175)^66+E(175)^-66, E(175)^58+E(175)^-58, E(175)^22+E(175)^-22, E(175)^68+E(175)^-68, E(175)^39+E(175)^-39, E(175)^33+E(175)^-33, E(175)^54+E(175)^-54, E(175)^57+E(175)^-57, E(175)^37+E(175)^-37, E(175)^53+E(175)^-53, E(175)^81+E(175)^-81, E(175)^61+E(175)^-61, E(175)^26+E(175)^-26, E(175)^6+E(175)^-6, E(175)^67+E(175)^-67, E(175)^23+E(175)^-23, E(175)^76+E(175)^-76], [2, 0, E(175)^70+E(175)^-70, E(175)^35+E(175)^-35, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^63+E(175)^-63, E(175)^7+E(175)^-7, E(175)^84+E(175)^-84, E(175)^42+E(175)^-42, E(175)^14+E(175)^-14, E(175)^77+E(175)^-77, E(175)^21+E(175)^-21, E(175)^49+E(175)^-49, E(175)^56+E(175)^-56, E(175)^28+E(175)^-28, E(175)^20+E(175)^-20, E(175)^10+E(175)^-10, E(175)^80+E(175)^-80, E(175)^85+E(175)^-85, E(175)^65+E(175)^-65, E(175)^45+E(175)^-45, E(175)^30+E(175)^-30, E(175)^15+E(175)^-15, E(175)^5+E(175)^-5, E(175)^40+E(175)^-40, E(175)^60+E(175)^-60, E(175)^55+E(175)^-55, E(175)^39+E(175)^-39, E(175)^16+E(175)^-16, E(175)^8+E(175)^-8, E(175)^62+E(175)^-62, E(175)^9+E(175)^-9, E(175)^46+E(175)^-46, E(175)^74+E(175)^-74, E(175)^4+E(175)^-4, E(175)^83+E(175)^-83, E(175)^19+E(175)^-19, E(175)^72+E(175)^-72, E(175)^66+E(175)^-66, E(175)^29+E(175)^-29, E(175)^76+E(175)^-76, E(175)^71+E(175)^-71, E(175)^18+E(175)^-18, E(175)^37+E(175)^-37, E(175)^36+E(175)^-36, E(175)^67+E(175)^-67, E(175)^64+E(175)^-64, E(175)^26+E(175)^-26, E(175)^81+E(175)^-81, E(175)^57+E(175)^-57, E(175)^38+E(175)^-38, E(175)^23+E(175)^-23, E(175)^32+E(175)^-32, E(175)^44+E(175)^-44, E(175)^48+E(175)^-48, E(175)^61+E(175)^-61, E(175)^6+E(175)^-6, E(175)^22+E(175)^-22, E(175)^47+E(175)^-47, E(175)^68+E(175)^-68, E(175)^54+E(175)^-54, E(175)^24+E(175)^-24, E(175)^52+E(175)^-52, E(175)^41+E(175)^-41, E(175)^53+E(175)^-53, E(175)^87+E(175)^-87, E(175)^34+E(175)^-34, E(175)^27+E(175)^-27, E(175)^73+E(175)^-73, E(175)^13+E(175)^-13, E(175)^59+E(175)^-59, E(175)^33+E(175)^-33, E(175)^78+E(175)^-78, E(175)^82+E(175)^-82, E(175)^11+E(175)^-11, E(175)^58+E(175)^-58, E(175)^79+E(175)^-79, E(175)^43+E(175)^-43, E(175)^12+E(175)^-12, E(175)^3+E(175)^-3, E(175)^31+E(175)^-31, E(175)^86+E(175)^-86, E(175)^51+E(175)^-51, E(175)^69+E(175)^-69, E(175)^17+E(175)^-17, E(175)^2+E(175)^-2, E(175)+E(175)^-1], [2, 0, E(175)^70+E(175)^-70, E(175)^35+E(175)^-35, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^42+E(175)^-42, E(175)^63+E(175)^-63, E(175)^56+E(175)^-56, E(175)^28+E(175)^-28, E(175)^49+E(175)^-49, E(175)^7+E(175)^-7, E(175)^14+E(175)^-14, E(175)^84+E(175)^-84, E(175)^21+E(175)^-21, E(175)^77+E(175)^-77, E(175)^55+E(175)^-55, E(175)^60+E(175)^-60, E(175)^45+E(175)^-45, E(175)^15+E(175)^-15, E(175)^40+E(175)^-40, E(175)^80+E(175)^-80, E(175)^5+E(175)^-5, E(175)^85+E(175)^-85, E(175)^30+E(175)^-30, E(175)^65+E(175)^-65, E(175)^10+E(175)^-10, E(175)^20+E(175)^-20, E(175)^24+E(175)^-24, E(175)^44+E(175)^-44, E(175)^22+E(175)^-22, E(175)^83+E(175)^-83, E(175)^19+E(175)^-19, E(175)^39+E(175)^-39, E(175)^59+E(175)^-59, E(175)^11+E(175)^-11, E(175)^78+E(175)^-78, E(175)^79+E(175)^-79, E(175)^23+E(175)^-23, E(175)^81+E(175)^-81, E(175)^36+E(175)^-36, E(175)^34+E(175)^-34, E(175)^64+E(175)^-64, E(175)^38+E(175)^-38, E(175)^58+E(175)^-58, E(175)^76+E(175)^-76, E(175)^53+E(175)^-53, E(175)+E(175)^-1, E(175)^16+E(175)^-16, E(175)^4+E(175)^-4, E(175)^62+E(175)^-62, E(175)^17+E(175)^-17, E(175)^68+E(175)^-68, E(175)^87+E(175)^-87, E(175)^54+E(175)^-54, E(175)^43+E(175)^-43, E(175)^51+E(175)^-51, E(175)^71+E(175)^-71, E(175)^27+E(175)^-27, E(175)^2+E(175)^-2, E(175)^12+E(175)^-12, E(175)^61+E(175)^-61, E(175)^66+E(175)^-66, E(175)^32+E(175)^-32, E(175)^69+E(175)^-69, E(175)^73+E(175)^-73, E(175)^67+E(175)^-67, E(175)^6+E(175)^-6, E(175)^57+E(175)^-57, E(175)^18+E(175)^-18, E(175)^8+E(175)^-8, E(175)^31+E(175)^-31, E(175)^47+E(175)^-47, E(175)^48+E(175)^-48, E(175)^37+E(175)^-37, E(175)^74+E(175)^-74, E(175)^72+E(175)^-72, E(175)^86+E(175)^-86, E(175)^13+E(175)^-13, E(175)^33+E(175)^-33, E(175)^52+E(175)^-52, E(175)^46+E(175)^-46, E(175)^26+E(175)^-26, E(175)^9+E(175)^-9, E(175)^29+E(175)^-29, E(175)^3+E(175)^-3, E(175)^82+E(175)^-82, E(175)^41+E(175)^-41], [2, 0, E(175)^70+E(175)^-70, E(175)^35+E(175)^-35, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^42+E(175)^-42, E(175)^63+E(175)^-63, E(175)^56+E(175)^-56, E(175)^28+E(175)^-28, E(175)^49+E(175)^-49, E(175)^7+E(175)^-7, E(175)^14+E(175)^-14, E(175)^84+E(175)^-84, E(175)^21+E(175)^-21, E(175)^77+E(175)^-77, E(175)^20+E(175)^-20, E(175)^10+E(175)^-10, E(175)^80+E(175)^-80, E(175)^85+E(175)^-85, E(175)^65+E(175)^-65, E(175)^45+E(175)^-45, E(175)^30+E(175)^-30, E(175)^15+E(175)^-15, E(175)^5+E(175)^-5, E(175)^40+E(175)^-40, E(175)^60+E(175)^-60, E(175)^55+E(175)^-55, E(175)^74+E(175)^-74, E(175)^19+E(175)^-19, E(175)^78+E(175)^-78, E(175)^8+E(175)^-8, E(175)^44+E(175)^-44, E(175)^11+E(175)^-11, E(175)^66+E(175)^-66, E(175)^39+E(175)^-39, E(175)^22+E(175)^-22, E(175)^54+E(175)^-54, E(175)^2+E(175)^-2, E(175)^31+E(175)^-31, E(175)^64+E(175)^-64, E(175)^41+E(175)^-41, E(175)^36+E(175)^-36, E(175)^87+E(175)^-87, E(175)^33+E(175)^-33, E(175)+E(175)^-1, E(175)^3+E(175)^-3, E(175)^76+E(175)^-76, E(175)^9+E(175)^-9, E(175)^46+E(175)^-46, E(175)^13+E(175)^-13, E(175)^67+E(175)^-67, E(175)^82+E(175)^-82, E(175)^38+E(175)^-38, E(175)^79+E(175)^-79, E(175)^57+E(175)^-57, E(175)^26+E(175)^-26, E(175)^29+E(175)^-29, E(175)^48+E(175)^-48, E(175)^23+E(175)^-23, E(175)^37+E(175)^-37, E(175)^86+E(175)^-86, E(175)^59+E(175)^-59, E(175)^18+E(175)^-18, E(175)^6+E(175)^-6, E(175)^52+E(175)^-52, E(175)^17+E(175)^-17, E(175)^69+E(175)^-69, E(175)^43+E(175)^-43, E(175)^32+E(175)^-32, E(175)^83+E(175)^-83, E(175)^81+E(175)^-81, E(175)^72+E(175)^-72, E(175)^27+E(175)^-27, E(175)^12+E(175)^-12, E(175)^24+E(175)^-24, E(175)^47+E(175)^-47, E(175)^61+E(175)^-61, E(175)^62+E(175)^-62, E(175)^58+E(175)^-58, E(175)^73+E(175)^-73, E(175)^4+E(175)^-4, E(175)^51+E(175)^-51, E(175)^16+E(175)^-16, E(175)^71+E(175)^-71, E(175)^53+E(175)^-53, E(175)^68+E(175)^-68, E(175)^34+E(175)^-34], [2, 0, E(175)^70+E(175)^-70, E(175)^35+E(175)^-35, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^28+E(175)^-28, E(175)^42+E(175)^-42, E(175)^21+E(175)^-21, E(175)^77+E(175)^-77, E(175)^84+E(175)^-84, E(175)^63+E(175)^-63, E(175)^49+E(175)^-49, E(175)^56+E(175)^-56, E(175)^14+E(175)^-14, E(175)^7+E(175)^-7, E(175)^55+E(175)^-55, E(175)^60+E(175)^-60, E(175)^45+E(175)^-45, E(175)^15+E(175)^-15, E(175)^40+E(175)^-40, E(175)^80+E(175)^-80, E(175)^5+E(175)^-5, E(175)^85+E(175)^-85, E(175)^30+E(175)^-30, E(175)^65+E(175)^-65, E(175)^10+E(175)^-10, E(175)^20+E(175)^-20, E(175)^59+E(175)^-59, E(175)^79+E(175)^-79, E(175)^48+E(175)^-48, E(175)^22+E(175)^-22, E(175)^54+E(175)^-54, E(175)^74+E(175)^-74, E(175)^81+E(175)^-81, E(175)^24+E(175)^-24, E(175)^27+E(175)^-27, E(175)^61+E(175)^-61, E(175)^82+E(175)^-82, E(175)^46+E(175)^-46, E(175)+E(175)^-1, E(175)^69+E(175)^-69, E(175)^76+E(175)^-76, E(175)^67+E(175)^-67, E(175)^47+E(175)^-47, E(175)^41+E(175)^-41, E(175)^52+E(175)^-52, E(175)^34+E(175)^-34, E(175)^19+E(175)^-19, E(175)^39+E(175)^-39, E(175)^8+E(175)^-8, E(175)^53+E(175)^-53, E(175)^37+E(175)^-37, E(175)^17+E(175)^-17, E(175)^86+E(175)^-86, E(175)^62+E(175)^-62, E(175)^16+E(175)^-16, E(175)^36+E(175)^-36, E(175)^43+E(175)^-43, E(175)^68+E(175)^-68, E(175)^58+E(175)^-58, E(175)^26+E(175)^-26, E(175)^31+E(175)^-31, E(175)^38+E(175)^-38, E(175)^71+E(175)^-71, E(175)^32+E(175)^-32, E(175)^3+E(175)^-3, E(175)^29+E(175)^-29, E(175)^13+E(175)^-13, E(175)^87+E(175)^-87, E(175)^78+E(175)^-78, E(175)^4+E(175)^-4, E(175)^23+E(175)^-23, E(175)^57+E(175)^-57, E(175)^33+E(175)^-33, E(175)^66+E(175)^-66, E(175)^2+E(175)^-2, E(175)^51+E(175)^-51, E(175)^83+E(175)^-83, E(175)^72+E(175)^-72, E(175)^18+E(175)^-18, E(175)^11+E(175)^-11, E(175)^9+E(175)^-9, E(175)^44+E(175)^-44, E(175)^64+E(175)^-64, E(175)^73+E(175)^-73, E(175)^12+E(175)^-12, E(175)^6+E(175)^-6], [2, 0, E(175)^70+E(175)^-70, E(175)^35+E(175)^-35, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^28+E(175)^-28, E(175)^42+E(175)^-42, E(175)^21+E(175)^-21, E(175)^77+E(175)^-77, E(175)^84+E(175)^-84, E(175)^63+E(175)^-63, E(175)^49+E(175)^-49, E(175)^56+E(175)^-56, E(175)^14+E(175)^-14, E(175)^7+E(175)^-7, E(175)^20+E(175)^-20, E(175)^10+E(175)^-10, E(175)^80+E(175)^-80, E(175)^85+E(175)^-85, E(175)^65+E(175)^-65, E(175)^45+E(175)^-45, E(175)^30+E(175)^-30, E(175)^15+E(175)^-15, E(175)^5+E(175)^-5, E(175)^40+E(175)^-40, E(175)^60+E(175)^-60, E(175)^55+E(175)^-55, E(175)^66+E(175)^-66, E(175)^54+E(175)^-54, E(175)^27+E(175)^-27, E(175)^78+E(175)^-78, E(175)^79+E(175)^-79, E(175)^24+E(175)^-24, E(175)^31+E(175)^-31, E(175)^74+E(175)^-74, E(175)^48+E(175)^-48, E(175)^86+E(175)^-86, E(175)^68+E(175)^-68, E(175)^4+E(175)^-4, E(175)^76+E(175)^-76, E(175)^6+E(175)^-6, E(175)+E(175)^-1, E(175)^17+E(175)^-17, E(175)^72+E(175)^-72, E(175)^34+E(175)^-34, E(175)^73+E(175)^-73, E(175)^41+E(175)^-41, E(175)^44+E(175)^-44, E(175)^11+E(175)^-11, E(175)^83+E(175)^-83, E(175)^3+E(175)^-3, E(175)^12+E(175)^-12, E(175)^67+E(175)^-67, E(175)^61+E(175)^-61, E(175)^13+E(175)^-13, E(175)^9+E(175)^-9, E(175)^64+E(175)^-64, E(175)^57+E(175)^-57, E(175)^82+E(175)^-82, E(175)^33+E(175)^-33, E(175)^51+E(175)^-51, E(175)^81+E(175)^-81, E(175)^87+E(175)^-87, E(175)^29+E(175)^-29, E(175)^18+E(175)^-18, E(175)^53+E(175)^-53, E(175)^71+E(175)^-71, E(175)^62+E(175)^-62, E(175)^38+E(175)^-38, E(175)^22+E(175)^-22, E(175)^46+E(175)^-46, E(175)^2+E(175)^-2, E(175)^43+E(175)^-43, E(175)^58+E(175)^-58, E(175)^59+E(175)^-59, E(175)^23+E(175)^-23, E(175)^26+E(175)^-26, E(175)^8+E(175)^-8, E(175)^47+E(175)^-47, E(175)^32+E(175)^-32, E(175)^39+E(175)^-39, E(175)^16+E(175)^-16, E(175)^19+E(175)^-19, E(175)^36+E(175)^-36, E(175)^52+E(175)^-52, E(175)^37+E(175)^-37, E(175)^69+E(175)^-69], [2, 0, E(175)^70+E(175)^-70, E(175)^35+E(175)^-35, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^7+E(175)^-7, E(175)^77+E(175)^-77, E(175)^49+E(175)^-49, E(175)^63+E(175)^-63, E(175)^21+E(175)^-21, E(175)^28+E(175)^-28, E(175)^56+E(175)^-56, E(175)^14+E(175)^-14, E(175)^84+E(175)^-84, E(175)^42+E(175)^-42, E(175)^55+E(175)^-55, E(175)^60+E(175)^-60, E(175)^45+E(175)^-45, E(175)^15+E(175)^-15, E(175)^40+E(175)^-40, E(175)^80+E(175)^-80, E(175)^5+E(175)^-5, E(175)^85+E(175)^-85, E(175)^30+E(175)^-30, E(175)^65+E(175)^-65, E(175)^10+E(175)^-10, E(175)^20+E(175)^-20, E(175)^46+E(175)^-46, E(175)^26+E(175)^-26, E(175)^13+E(175)^-13, E(175)^57+E(175)^-57, E(175)^51+E(175)^-51, E(175)^31+E(175)^-31, E(175)^11+E(175)^-11, E(175)^81+E(175)^-81, E(175)^62+E(175)^-62, E(175)^9+E(175)^-9, E(175)^58+E(175)^-58, E(175)^24+E(175)^-24, E(175)^69+E(175)^-69, E(175)^36+E(175)^-36, E(175)^6+E(175)^-6, E(175)^73+E(175)^-73, E(175)^82+E(175)^-82, E(175)^29+E(175)^-29, E(175)^87+E(175)^-87, E(175)^71+E(175)^-71, E(175)^86+E(175)^-86, E(175)^66+E(175)^-66, E(175)^27+E(175)^-27, E(175)^18+E(175)^-18, E(175)^72+E(175)^-72, E(175)^52+E(175)^-52, E(175)^16+E(175)^-16, E(175)^78+E(175)^-78, E(175)^54+E(175)^-54, E(175)^34+E(175)^-34, E(175)^8+E(175)^-8, E(175)^33+E(175)^-33, E(175)^23+E(175)^-23, E(175)^44+E(175)^-44, E(175)^39+E(175)^-39, E(175)^3+E(175)^-3, E(175)+E(175)^-1, E(175)^67+E(175)^-67, E(175)^32+E(175)^-32, E(175)^76+E(175)^-76, E(175)^22+E(175)^-22, E(175)^53+E(175)^-53, E(175)^43+E(175)^-43, E(175)^74+E(175)^-74, E(175)^12+E(175)^-12, E(175)^83+E(175)^-83, E(175)^2+E(175)^-2, E(175)^4+E(175)^-4, E(175)^37+E(175)^-37, E(175)^19+E(175)^-19, E(175)^48+E(175)^-48, E(175)^68+E(175)^-68, E(175)^17+E(175)^-17, E(175)^59+E(175)^-59, E(175)^79+E(175)^-79, E(175)^61+E(175)^-61, E(175)^41+E(175)^-41, E(175)^38+E(175)^-38, E(175)^47+E(175)^-47, E(175)^64+E(175)^-64], [2, 0, E(175)^70+E(175)^-70, E(175)^35+E(175)^-35, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^7+E(175)^-7, E(175)^77+E(175)^-77, E(175)^49+E(175)^-49, E(175)^63+E(175)^-63, E(175)^21+E(175)^-21, E(175)^28+E(175)^-28, E(175)^56+E(175)^-56, E(175)^14+E(175)^-14, E(175)^84+E(175)^-84, E(175)^42+E(175)^-42, E(175)^20+E(175)^-20, E(175)^10+E(175)^-10, E(175)^80+E(175)^-80, E(175)^85+E(175)^-85, E(175)^65+E(175)^-65, E(175)^45+E(175)^-45, E(175)^30+E(175)^-30, E(175)^15+E(175)^-15, E(175)^5+E(175)^-5, E(175)^40+E(175)^-40, E(175)^60+E(175)^-60, E(175)^55+E(175)^-55, E(175)^4+E(175)^-4, E(175)^51+E(175)^-51, E(175)^62+E(175)^-62, E(175)^43+E(175)^-43, E(175)^26+E(175)^-26, E(175)^81+E(175)^-81, E(175)^39+E(175)^-39, E(175)^31+E(175)^-31, E(175)^13+E(175)^-13, E(175)^16+E(175)^-16, E(175)^33+E(175)^-33, E(175)^74+E(175)^-74, E(175)^6+E(175)^-6, E(175)^64+E(175)^-64, E(175)^69+E(175)^-69, E(175)^52+E(175)^-52, E(175)^68+E(175)^-68, E(175)^71+E(175)^-71, E(175)^38+E(175)^-38, E(175)^29+E(175)^-29, E(175)^61+E(175)^-61, E(175)^59+E(175)^-59, E(175)^48+E(175)^-48, E(175)^32+E(175)^-32, E(175)^47+E(175)^-47, E(175)^73+E(175)^-73, E(175)^9+E(175)^-9, E(175)^22+E(175)^-22, E(175)^79+E(175)^-79, E(175)^41+E(175)^-41, E(175)^83+E(175)^-83, E(175)^58+E(175)^-58, E(175)^2+E(175)^-2, E(175)^19+E(175)^-19, E(175)^11+E(175)^-11, E(175)^53+E(175)^-53, E(175)^76+E(175)^-76, E(175)^17+E(175)^-17, E(175)^18+E(175)^-18, E(175)+E(175)^-1, E(175)^78+E(175)^-78, E(175)^3+E(175)^-3, E(175)^57+E(175)^-57, E(175)^24+E(175)^-24, E(175)^37+E(175)^-37, E(175)^8+E(175)^-8, E(175)^23+E(175)^-23, E(175)^46+E(175)^-46, E(175)^12+E(175)^-12, E(175)^44+E(175)^-44, E(175)^27+E(175)^-27, E(175)^82+E(175)^-82, E(175)^67+E(175)^-67, E(175)^66+E(175)^-66, E(175)^54+E(175)^-54, E(175)^86+E(175)^-86, E(175)^34+E(175)^-34, E(175)^87+E(175)^-87, E(175)^72+E(175)^-72, E(175)^36+E(175)^-36], [2, 0, E(175)^70+E(175)^-70, E(175)^35+E(175)^-35, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^77+E(175)^-77, E(175)^28+E(175)^-28, E(175)^14+E(175)^-14, E(175)^7+E(175)^-7, E(175)^56+E(175)^-56, E(175)^42+E(175)^-42, E(175)^84+E(175)^-84, E(175)^21+E(175)^-21, E(175)^49+E(175)^-49, E(175)^63+E(175)^-63, E(175)^80+E(175)^-80, E(175)^40+E(175)^-40, E(175)^30+E(175)^-30, E(175)^10+E(175)^-10, E(175)^85+E(175)^-85, E(175)^5+E(175)^-5, E(175)^55+E(175)^-55, E(175)^60+E(175)^-60, E(175)^20+E(175)^-20, E(175)^15+E(175)^-15, E(175)^65+E(175)^-65, E(175)^45+E(175)^-45, E(175)^19+E(175)^-19, E(175)^64+E(175)^-64, E(175)^32+E(175)^-32, E(175)^73+E(175)^-73, E(175)^36+E(175)^-36, E(175)^9+E(175)^-9, E(175)^54+E(175)^-54, E(175)^16+E(175)^-16, E(175)^18+E(175)^-18, E(175)^76+E(175)^-76, E(175)^62+E(175)^-62, E(175)^86+E(175)^-86, E(175)^59+E(175)^-59, E(175)^46+E(175)^-46, E(175)^66+E(175)^-66, E(175)^72+E(175)^-72, E(175)^27+E(175)^-27, E(175)^31+E(175)^-31, E(175)^82+E(175)^-82, E(175)^81+E(175)^-81, E(175)^71+E(175)^-71, E(175)^26+E(175)^-26, E(175)^53+E(175)^-53, E(175)^23+E(175)^-23, E(175)^83+E(175)^-83, E(175)^47+E(175)^-47, E(175)+E(175)^-1, E(175)^17+E(175)^-17, E(175)^69+E(175)^-69, E(175)^24+E(175)^-24, E(175)^87+E(175)^-87, E(175)^13+E(175)^-13, E(175)^78+E(175)^-78, E(175)^41+E(175)^-41, E(175)^79+E(175)^-79, E(175)^33+E(175)^-33, E(175)^11+E(175)^-11, E(175)^37+E(175)^-37, E(175)^2+E(175)^-2, E(175)^39+E(175)^-39, E(175)^67+E(175)^-67, E(175)^58+E(175)^-58, E(175)^52+E(175)^-52, E(175)^61+E(175)^-61, E(175)^43+E(175)^-43, E(175)^38+E(175)^-38, E(175)^22+E(175)^-22, E(175)^44+E(175)^-44, E(175)^57+E(175)^-57, E(175)^34+E(175)^-34, E(175)^3+E(175)^-3, E(175)^48+E(175)^-48, E(175)^12+E(175)^-12, E(175)^51+E(175)^-51, E(175)^6+E(175)^-6, E(175)^29+E(175)^-29, E(175)^74+E(175)^-74, E(175)^68+E(175)^-68, E(175)^8+E(175)^-8, E(175)^4+E(175)^-4], [2, 0, E(175)^70+E(175)^-70, E(175)^35+E(175)^-35, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^77+E(175)^-77, E(175)^28+E(175)^-28, E(175)^14+E(175)^-14, E(175)^7+E(175)^-7, E(175)^56+E(175)^-56, E(175)^42+E(175)^-42, E(175)^84+E(175)^-84, E(175)^21+E(175)^-21, E(175)^49+E(175)^-49, E(175)^63+E(175)^-63, E(175)^45+E(175)^-45, E(175)^65+E(175)^-65, E(175)^5+E(175)^-5, E(175)^60+E(175)^-60, E(175)^15+E(175)^-15, E(175)^30+E(175)^-30, E(175)^20+E(175)^-20, E(175)^10+E(175)^-10, E(175)^55+E(175)^-55, E(175)^85+E(175)^-85, E(175)^40+E(175)^-40, E(175)^80+E(175)^-80, E(175)^44+E(175)^-44, E(175)^36+E(175)^-36, E(175)^18+E(175)^-18, E(175)^52+E(175)^-52, E(175)^64+E(175)^-64, E(175)^16+E(175)^-16, E(175)^79+E(175)^-79, E(175)^9+E(175)^-9, E(175)^32+E(175)^-32, E(175)+E(175)^-1, E(175)^13+E(175)^-13, E(175)^61+E(175)^-61, E(175)^66+E(175)^-66, E(175)^4+E(175)^-4, E(175)^59+E(175)^-59, E(175)^47+E(175)^-47, E(175)^48+E(175)^-48, E(175)^81+E(175)^-81, E(175)^68+E(175)^-68, E(175)^31+E(175)^-31, E(175)^29+E(175)^-29, E(175)^51+E(175)^-51, E(175)^3+E(175)^-3, E(175)^2+E(175)^-2, E(175)^8+E(175)^-8, E(175)^72+E(175)^-72, E(175)^76+E(175)^-76, E(175)^67+E(175)^-67, E(175)^6+E(175)^-6, E(175)^74+E(175)^-74, E(175)^38+E(175)^-38, E(175)^62+E(175)^-62, E(175)^22+E(175)^-22, E(175)^34+E(175)^-34, E(175)^54+E(175)^-54, E(175)^58+E(175)^-58, E(175)^39+E(175)^-39, E(175)^12+E(175)^-12, E(175)^23+E(175)^-23, E(175)^11+E(175)^-11, E(175)^17+E(175)^-17, E(175)^33+E(175)^-33, E(175)^73+E(175)^-73, E(175)^86+E(175)^-86, E(175)^57+E(175)^-57, E(175)^87+E(175)^-87, E(175)^78+E(175)^-78, E(175)^19+E(175)^-19, E(175)^43+E(175)^-43, E(175)^41+E(175)^-41, E(175)^53+E(175)^-53, E(175)^27+E(175)^-27, E(175)^37+E(175)^-37, E(175)^26+E(175)^-26, E(175)^69+E(175)^-69, E(175)^71+E(175)^-71, E(175)^24+E(175)^-24, E(175)^82+E(175)^-82, E(175)^83+E(175)^-83, E(175)^46+E(175)^-46], [2, 0, E(175)^70+E(175)^-70, E(175)^35+E(175)^-35, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^63+E(175)^-63, E(175)^7+E(175)^-7, E(175)^84+E(175)^-84, E(175)^42+E(175)^-42, E(175)^14+E(175)^-14, E(175)^77+E(175)^-77, E(175)^21+E(175)^-21, E(175)^49+E(175)^-49, E(175)^56+E(175)^-56, E(175)^28+E(175)^-28, E(175)^80+E(175)^-80, E(175)^40+E(175)^-40, E(175)^30+E(175)^-30, E(175)^10+E(175)^-10, E(175)^85+E(175)^-85, E(175)^5+E(175)^-5, E(175)^55+E(175)^-55, E(175)^60+E(175)^-60, E(175)^20+E(175)^-20, E(175)^15+E(175)^-15, E(175)^65+E(175)^-65, E(175)^45+E(175)^-45, E(175)^86+E(175)^-86, E(175)^41+E(175)^-41, E(175)^67+E(175)^-67, E(175)^38+E(175)^-38, E(175)^34+E(175)^-34, E(175)^79+E(175)^-79, E(175)^51+E(175)^-51, E(175)^54+E(175)^-54, E(175)^17+E(175)^-17, E(175)^6+E(175)^-6, E(175)^78+E(175)^-78, E(175)^16+E(175)^-16, E(175)^46+E(175)^-46, E(175)^24+E(175)^-24, E(175)^4+E(175)^-4, E(175)^68+E(175)^-68, E(175)^62+E(175)^-62, E(175)^39+E(175)^-39, E(175)^58+E(175)^-58, E(175)^11+E(175)^-11, E(175)+E(175)^-1, E(175)^44+E(175)^-44, E(175)^18+E(175)^-18, E(175)^12+E(175)^-12, E(175)^48+E(175)^-48, E(175)^82+E(175)^-82, E(175)^69+E(175)^-69, E(175)^52+E(175)^-52, E(175)^36+E(175)^-36, E(175)^81+E(175)^-81, E(175)^53+E(175)^-53, E(175)^22+E(175)^-22, E(175)^43+E(175)^-43, E(175)^29+E(175)^-29, E(175)^26+E(175)^-26, E(175)^2+E(175)^-2, E(175)^59+E(175)^-59, E(175)^72+E(175)^-72, E(175)^37+E(175)^-37, E(175)^66+E(175)^-66, E(175)^73+E(175)^-73, E(175)^23+E(175)^-23, E(175)^87+E(175)^-87, E(175)^9+E(175)^-9, E(175)^8+E(175)^-8, E(175)^3+E(175)^-3, E(175)^57+E(175)^-57, E(175)^61+E(175)^-61, E(175)^83+E(175)^-83, E(175)^71+E(175)^-71, E(175)^32+E(175)^-32, E(175)^13+E(175)^-13, E(175)^47+E(175)^-47, E(175)^19+E(175)^-19, E(175)^64+E(175)^-64, E(175)^76+E(175)^-76, E(175)^31+E(175)^-31, E(175)^33+E(175)^-33, E(175)^27+E(175)^-27, E(175)^74+E(175)^-74], [2, 0, E(175)^70+E(175)^-70, E(175)^35+E(175)^-35, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^63+E(175)^-63, E(175)^7+E(175)^-7, E(175)^84+E(175)^-84, E(175)^42+E(175)^-42, E(175)^14+E(175)^-14, E(175)^77+E(175)^-77, E(175)^21+E(175)^-21, E(175)^49+E(175)^-49, E(175)^56+E(175)^-56, E(175)^28+E(175)^-28, E(175)^45+E(175)^-45, E(175)^65+E(175)^-65, E(175)^5+E(175)^-5, E(175)^60+E(175)^-60, E(175)^15+E(175)^-15, E(175)^30+E(175)^-30, E(175)^20+E(175)^-20, E(175)^10+E(175)^-10, E(175)^55+E(175)^-55, E(175)^85+E(175)^-85, E(175)^40+E(175)^-40, E(175)^80+E(175)^-80, E(175)^61+E(175)^-61, E(175)^34+E(175)^-34, E(175)^17+E(175)^-17, E(175)^87+E(175)^-87, E(175)^41+E(175)^-41, E(175)^54+E(175)^-54, E(175)^26+E(175)^-26, E(175)^79+E(175)^-79, E(175)^67+E(175)^-67, E(175)^69+E(175)^-69, E(175)^22+E(175)^-22, E(175)^9+E(175)^-9, E(175)^4+E(175)^-4, E(175)^74+E(175)^-74, E(175)^46+E(175)^-46, E(175)^82+E(175)^-82, E(175)^13+E(175)^-13, E(175)^11+E(175)^-11, E(175)^33+E(175)^-33, E(175)^39+E(175)^-39, E(175)^76+E(175)^-76, E(175)^19+E(175)^-19, E(175)^32+E(175)^-32, E(175)^37+E(175)^-37, E(175)^27+E(175)^-27, E(175)^68+E(175)^-68, E(175)^6+E(175)^-6, E(175)^73+E(175)^-73, E(175)^64+E(175)^-64, E(175)^31+E(175)^-31, E(175)^3+E(175)^-3, E(175)^78+E(175)^-78, E(175)^57+E(175)^-57, E(175)^71+E(175)^-71, E(175)^51+E(175)^-51, E(175)^23+E(175)^-23, E(175)^66+E(175)^-66, E(175)^47+E(175)^-47, E(175)^12+E(175)^-12, E(175)^59+E(175)^-59, E(175)^52+E(175)^-52, E(175)^2+E(175)^-2, E(175)^38+E(175)^-38, E(175)^16+E(175)^-16, E(175)^83+E(175)^-83, E(175)^53+E(175)^-53, E(175)^43+E(175)^-43, E(175)^86+E(175)^-86, E(175)^8+E(175)^-8, E(175)^29+E(175)^-29, E(175)^18+E(175)^-18, E(175)^62+E(175)^-62, E(175)^72+E(175)^-72, E(175)^44+E(175)^-44, E(175)^36+E(175)^-36, E(175)+E(175)^-1, E(175)^81+E(175)^-81, E(175)^58+E(175)^-58, E(175)^48+E(175)^-48, E(175)^24+E(175)^-24], [2, 0, E(175)^70+E(175)^-70, E(175)^35+E(175)^-35, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^42+E(175)^-42, E(175)^63+E(175)^-63, E(175)^56+E(175)^-56, E(175)^28+E(175)^-28, E(175)^49+E(175)^-49, E(175)^7+E(175)^-7, E(175)^14+E(175)^-14, E(175)^84+E(175)^-84, E(175)^21+E(175)^-21, E(175)^77+E(175)^-77, E(175)^80+E(175)^-80, E(175)^40+E(175)^-40, E(175)^30+E(175)^-30, E(175)^10+E(175)^-10, E(175)^85+E(175)^-85, E(175)^5+E(175)^-5, E(175)^55+E(175)^-55, E(175)^60+E(175)^-60, E(175)^20+E(175)^-20, E(175)^15+E(175)^-15, E(175)^65+E(175)^-65, E(175)^45+E(175)^-45, E(175)^51+E(175)^-51, E(175)^6+E(175)^-6, E(175)^3+E(175)^-3, E(175)^67+E(175)^-67, E(175)^69+E(175)^-69, E(175)^61+E(175)^-61, E(175)^16+E(175)^-16, E(175)^86+E(175)^-86, E(175)^53+E(175)^-53, E(175)^29+E(175)^-29, E(175)^27+E(175)^-27, E(175)^19+E(175)^-19, E(175)^11+E(175)^-11, E(175)^59+E(175)^-59, E(175)^39+E(175)^-39, E(175)^37+E(175)^-37, E(175)^8+E(175)^-8, E(175)^74+E(175)^-74, E(175)^47+E(175)^-47, E(175)^24+E(175)^-24, E(175)^34+E(175)^-34, E(175)^79+E(175)^-79, E(175)^87+E(175)^-87, E(175)^58+E(175)^-58, E(175)^57+E(175)^-57, E(175)^12+E(175)^-12, E(175)^71+E(175)^-71, E(175)^18+E(175)^-18, E(175)+E(175)^-1, E(175)^46+E(175)^-46, E(175)^52+E(175)^-52, E(175)^48+E(175)^-48, E(175)^62+E(175)^-62, E(175)^64+E(175)^-64, E(175)^9+E(175)^-9, E(175)^68+E(175)^-68, E(175)^81+E(175)^-81, E(175)^2+E(175)^-2, E(175)^33+E(175)^-33, E(175)^31+E(175)^-31, E(175)^32+E(175)^-32, E(175)^82+E(175)^-82, E(175)^17+E(175)^-17, E(175)^44+E(175)^-44, E(175)^78+E(175)^-78, E(175)^73+E(175)^-73, E(175)^13+E(175)^-13, E(175)^26+E(175)^-26, E(175)^22+E(175)^-22, E(175)^36+E(175)^-36, E(175)^38+E(175)^-38, E(175)^83+E(175)^-83, E(175)^23+E(175)^-23, E(175)^54+E(175)^-54, E(175)^76+E(175)^-76, E(175)^41+E(175)^-41, E(175)^4+E(175)^-4, E(175)^72+E(175)^-72, E(175)^43+E(175)^-43, E(175)^66+E(175)^-66], [2, 0, E(175)^70+E(175)^-70, E(175)^35+E(175)^-35, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^42+E(175)^-42, E(175)^63+E(175)^-63, E(175)^56+E(175)^-56, E(175)^28+E(175)^-28, E(175)^49+E(175)^-49, E(175)^7+E(175)^-7, E(175)^14+E(175)^-14, E(175)^84+E(175)^-84, E(175)^21+E(175)^-21, E(175)^77+E(175)^-77, E(175)^45+E(175)^-45, E(175)^65+E(175)^-65, E(175)^5+E(175)^-5, E(175)^60+E(175)^-60, E(175)^15+E(175)^-15, E(175)^30+E(175)^-30, E(175)^20+E(175)^-20, E(175)^10+E(175)^-10, E(175)^55+E(175)^-55, E(175)^85+E(175)^-85, E(175)^40+E(175)^-40, E(175)^80+E(175)^-80, E(175)^26+E(175)^-26, E(175)^69+E(175)^-69, E(175)^53+E(175)^-53, E(175)^17+E(175)^-17, E(175)^6+E(175)^-6, E(175)^86+E(175)^-86, E(175)^9+E(175)^-9, E(175)^61+E(175)^-61, E(175)^3+E(175)^-3, E(175)^71+E(175)^-71, E(175)^48+E(175)^-48, E(175)^44+E(175)^-44, E(175)^39+E(175)^-39, E(175)^66+E(175)^-66, E(175)^11+E(175)^-11, E(175)^12+E(175)^-12, E(175)^83+E(175)^-83, E(175)^24+E(175)^-24, E(175)^72+E(175)^-72, E(175)^74+E(175)^-74, E(175)^41+E(175)^-41, E(175)^54+E(175)^-54, E(175)^38+E(175)^-38, E(175)^33+E(175)^-33, E(175)^43+E(175)^-43, E(175)^37+E(175)^-37, E(175)^29+E(175)^-29, E(175)^32+E(175)^-32, E(175)^76+E(175)^-76, E(175)^4+E(175)^-4, E(175)^73+E(175)^-73, E(175)^27+E(175)^-27, E(175)^13+E(175)^-13, E(175)^36+E(175)^-36, E(175)^16+E(175)^-16, E(175)^82+E(175)^-82, E(175)^31+E(175)^-31, E(175)^23+E(175)^-23, E(175)^58+E(175)^-58, E(175)^81+E(175)^-81, E(175)^18+E(175)^-18, E(175)^68+E(175)^-68, E(175)^67+E(175)^-67, E(175)^19+E(175)^-19, E(175)^22+E(175)^-22, E(175)^52+E(175)^-52, E(175)^62+E(175)^-62, E(175)^51+E(175)^-51, E(175)^78+E(175)^-78, E(175)^64+E(175)^-64, E(175)^87+E(175)^-87, E(175)^8+E(175)^-8, E(175)^2+E(175)^-2, E(175)^79+E(175)^-79, E(175)+E(175)^-1, E(175)^34+E(175)^-34, E(175)^46+E(175)^-46, E(175)^47+E(175)^-47, E(175)^57+E(175)^-57, E(175)^59+E(175)^-59], [2, 0, E(175)^70+E(175)^-70, E(175)^35+E(175)^-35, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^28+E(175)^-28, E(175)^42+E(175)^-42, E(175)^21+E(175)^-21, E(175)^77+E(175)^-77, E(175)^84+E(175)^-84, E(175)^63+E(175)^-63, E(175)^49+E(175)^-49, E(175)^56+E(175)^-56, E(175)^14+E(175)^-14, E(175)^7+E(175)^-7, E(175)^80+E(175)^-80, E(175)^40+E(175)^-40, E(175)^30+E(175)^-30, E(175)^10+E(175)^-10, E(175)^85+E(175)^-85, E(175)^5+E(175)^-5, E(175)^55+E(175)^-55, E(175)^60+E(175)^-60, E(175)^20+E(175)^-20, E(175)^15+E(175)^-15, E(175)^65+E(175)^-65, E(175)^45+E(175)^-45, E(175)^16+E(175)^-16, E(175)^29+E(175)^-29, E(175)^73+E(175)^-73, E(175)^3+E(175)^-3, E(175)^71+E(175)^-71, E(175)^26+E(175)^-26, E(175)^19+E(175)^-19, E(175)^51+E(175)^-51, E(175)^52+E(175)^-52, E(175)^64+E(175)^-64, E(175)^43+E(175)^-43, E(175)^54+E(175)^-54, E(175)^24+E(175)^-24, E(175)^81+E(175)^-81, E(175)^74+E(175)^-74, E(175)^33+E(175)^-33, E(175)^78+E(175)^-78, E(175)^66+E(175)^-66, E(175)^23+E(175)^-23, E(175)^59+E(175)^-59, E(175)^69+E(175)^-69, E(175)^61+E(175)^-61, E(175)^17+E(175)^-17, E(175)^47+E(175)^-47, E(175)^13+E(175)^-13, E(175)^58+E(175)^-58, E(175)^36+E(175)^-36, E(175)^87+E(175)^-87, E(175)^34+E(175)^-34, E(175)^11+E(175)^-11, E(175)^18+E(175)^-18, E(175)^57+E(175)^-57, E(175)^8+E(175)^-8, E(175)^76+E(175)^-76, E(175)^44+E(175)^-44, E(175)^37+E(175)^-37, E(175)^46+E(175)^-46, E(175)^68+E(175)^-68, E(175)^72+E(175)^-72, E(175)^4+E(175)^-4, E(175)^38+E(175)^-38, E(175)^12+E(175)^-12, E(175)^53+E(175)^-53, E(175)^79+E(175)^-79, E(175)^27+E(175)^-27, E(175)^32+E(175)^-32, E(175)^83+E(175)^-83, E(175)^9+E(175)^-9, E(175)^48+E(175)^-48, E(175)+E(175)^-1, E(175)^67+E(175)^-67, E(175)^22+E(175)^-22, E(175)^82+E(175)^-82, E(175)^86+E(175)^-86, E(175)^41+E(175)^-41, E(175)^6+E(175)^-6, E(175)^39+E(175)^-39, E(175)^2+E(175)^-2, E(175)^62+E(175)^-62, E(175)^31+E(175)^-31], [2, 0, E(175)^70+E(175)^-70, E(175)^35+E(175)^-35, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^28+E(175)^-28, E(175)^42+E(175)^-42, E(175)^21+E(175)^-21, E(175)^77+E(175)^-77, E(175)^84+E(175)^-84, E(175)^63+E(175)^-63, E(175)^49+E(175)^-49, E(175)^56+E(175)^-56, E(175)^14+E(175)^-14, E(175)^7+E(175)^-7, E(175)^45+E(175)^-45, E(175)^65+E(175)^-65, E(175)^5+E(175)^-5, E(175)^60+E(175)^-60, E(175)^15+E(175)^-15, E(175)^30+E(175)^-30, E(175)^20+E(175)^-20, E(175)^10+E(175)^-10, E(175)^55+E(175)^-55, E(175)^85+E(175)^-85, E(175)^40+E(175)^-40, E(175)^80+E(175)^-80, E(175)^9+E(175)^-9, E(175)^71+E(175)^-71, E(175)^52+E(175)^-52, E(175)^53+E(175)^-53, E(175)^29+E(175)^-29, E(175)^51+E(175)^-51, E(175)^44+E(175)^-44, E(175)^26+E(175)^-26, E(175)^73+E(175)^-73, E(175)^36+E(175)^-36, E(175)^57+E(175)^-57, E(175)^79+E(175)^-79, E(175)^74+E(175)^-74, E(175)^31+E(175)^-31, E(175)^24+E(175)^-24, E(175)^58+E(175)^-58, E(175)^22+E(175)^-22, E(175)^59+E(175)^-59, E(175)^2+E(175)^-2, E(175)^66+E(175)^-66, E(175)^6+E(175)^-6, E(175)^86+E(175)^-86, E(175)^67+E(175)^-67, E(175)^72+E(175)^-72, E(175)^62+E(175)^-62, E(175)^33+E(175)^-33, E(175)^64+E(175)^-64, E(175)^38+E(175)^-38, E(175)^41+E(175)^-41, E(175)^39+E(175)^-39, E(175)^32+E(175)^-32, E(175)^43+E(175)^-43, E(175)^83+E(175)^-83, E(175)+E(175)^-1, E(175)^19+E(175)^-19, E(175)^12+E(175)^-12, E(175)^4+E(175)^-4, E(175)^82+E(175)^-82, E(175)^47+E(175)^-47, E(175)^46+E(175)^-46, E(175)^87+E(175)^-87, E(175)^37+E(175)^-37, E(175)^3+E(175)^-3, E(175)^54+E(175)^-54, E(175)^48+E(175)^-48, E(175)^18+E(175)^-18, E(175)^8+E(175)^-8, E(175)^16+E(175)^-16, E(175)^27+E(175)^-27, E(175)^76+E(175)^-76, E(175)^17+E(175)^-17, E(175)^78+E(175)^-78, E(175)^68+E(175)^-68, E(175)^61+E(175)^-61, E(175)^34+E(175)^-34, E(175)^69+E(175)^-69, E(175)^11+E(175)^-11, E(175)^23+E(175)^-23, E(175)^13+E(175)^-13, E(175)^81+E(175)^-81], [2, 0, E(175)^70+E(175)^-70, E(175)^35+E(175)^-35, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^7+E(175)^-7, E(175)^77+E(175)^-77, E(175)^49+E(175)^-49, E(175)^63+E(175)^-63, E(175)^21+E(175)^-21, E(175)^28+E(175)^-28, E(175)^56+E(175)^-56, E(175)^14+E(175)^-14, E(175)^84+E(175)^-84, E(175)^42+E(175)^-42, E(175)^80+E(175)^-80, E(175)^40+E(175)^-40, E(175)^30+E(175)^-30, E(175)^10+E(175)^-10, E(175)^85+E(175)^-85, E(175)^5+E(175)^-5, E(175)^55+E(175)^-55, E(175)^60+E(175)^-60, E(175)^20+E(175)^-20, E(175)^15+E(175)^-15, E(175)^65+E(175)^-65, E(175)^45+E(175)^-45, E(175)^54+E(175)^-54, E(175)^76+E(175)^-76, E(175)^38+E(175)^-38, E(175)^32+E(175)^-32, E(175)+E(175)^-1, E(175)^44+E(175)^-44, E(175)^86+E(175)^-86, E(175)^19+E(175)^-19, E(175)^87+E(175)^-87, E(175)^41+E(175)^-41, E(175)^8+E(175)^-8, E(175)^51+E(175)^-51, E(175)^81+E(175)^-81, E(175)^11+E(175)^-11, E(175)^31+E(175)^-31, E(175)^2+E(175)^-2, E(175)^43+E(175)^-43, E(175)^4+E(175)^-4, E(175)^12+E(175)^-12, E(175)^46+E(175)^-46, E(175)^36+E(175)^-36, E(175)^9+E(175)^-9, E(175)^52+E(175)^-52, E(175)^82+E(175)^-82, E(175)^22+E(175)^-22, E(175)^23+E(175)^-23, E(175)^34+E(175)^-34, E(175)^53+E(175)^-53, E(175)^71+E(175)^-71, E(175)^59+E(175)^-59, E(175)^17+E(175)^-17, E(175)^83+E(175)^-83, E(175)^27+E(175)^-27, E(175)^6+E(175)^-6, E(175)^61+E(175)^-61, E(175)^72+E(175)^-72, E(175)^24+E(175)^-24, E(175)^33+E(175)^-33, E(175)^68+E(175)^-68, E(175)^74+E(175)^-74, E(175)^3+E(175)^-3, E(175)^47+E(175)^-47, E(175)^18+E(175)^-18, E(175)^26+E(175)^-26, E(175)^62+E(175)^-62, E(175)^67+E(175)^-67, E(175)^48+E(175)^-48, E(175)^79+E(175)^-79, E(175)^13+E(175)^-13, E(175)^69+E(175)^-69, E(175)^73+E(175)^-73, E(175)^57+E(175)^-57, E(175)^58+E(175)^-58, E(175)^16+E(175)^-16, E(175)^29+E(175)^-29, E(175)^64+E(175)^-64, E(175)^66+E(175)^-66, E(175)^37+E(175)^-37, E(175)^78+E(175)^-78, E(175)^39+E(175)^-39], [2, 0, E(175)^70+E(175)^-70, E(175)^35+E(175)^-35, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^7+E(175)^-7, E(175)^77+E(175)^-77, E(175)^49+E(175)^-49, E(175)^63+E(175)^-63, E(175)^21+E(175)^-21, E(175)^28+E(175)^-28, E(175)^56+E(175)^-56, E(175)^14+E(175)^-14, E(175)^84+E(175)^-84, E(175)^42+E(175)^-42, E(175)^45+E(175)^-45, E(175)^65+E(175)^-65, E(175)^5+E(175)^-5, E(175)^60+E(175)^-60, E(175)^15+E(175)^-15, E(175)^30+E(175)^-30, E(175)^20+E(175)^-20, E(175)^10+E(175)^-10, E(175)^55+E(175)^-55, E(175)^85+E(175)^-85, E(175)^40+E(175)^-40, E(175)^80+E(175)^-80, E(175)^79+E(175)^-79, E(175)+E(175)^-1, E(175)^87+E(175)^-87, E(175)^18+E(175)^-18, E(175)^76+E(175)^-76, E(175)^19+E(175)^-19, E(175)^61+E(175)^-61, E(175)^44+E(175)^-44, E(175)^38+E(175)^-38, E(175)^34+E(175)^-34, E(175)^83+E(175)^-83, E(175)^26+E(175)^-26, E(175)^31+E(175)^-31, E(175)^39+E(175)^-39, E(175)^81+E(175)^-81, E(175)^23+E(175)^-23, E(175)^57+E(175)^-57, E(175)^46+E(175)^-46, E(175)^37+E(175)^-37, E(175)^4+E(175)^-4, E(175)^64+E(175)^-64, E(175)^16+E(175)^-16, E(175)^73+E(175)^-73, E(175)^68+E(175)^-68, E(175)^78+E(175)^-78, E(175)^2+E(175)^-2, E(175)^41+E(175)^-41, E(175)^3+E(175)^-3, E(175)^29+E(175)^-29, E(175)^66+E(175)^-66, E(175)^67+E(175)^-67, E(175)^8+E(175)^-8, E(175)^48+E(175)^-48, E(175)^69+E(175)^-69, E(175)^86+E(175)^-86, E(175)^47+E(175)^-47, E(175)^74+E(175)^-74, E(175)^58+E(175)^-58, E(175)^82+E(175)^-82, E(175)^24+E(175)^-24, E(175)^53+E(175)^-53, E(175)^72+E(175)^-72, E(175)^32+E(175)^-32, E(175)^51+E(175)^-51, E(175)^13+E(175)^-13, E(175)^17+E(175)^-17, E(175)^27+E(175)^-27, E(175)^54+E(175)^-54, E(175)^62+E(175)^-62, E(175)^6+E(175)^-6, E(175)^52+E(175)^-52, E(175)^43+E(175)^-43, E(175)^33+E(175)^-33, E(175)^9+E(175)^-9, E(175)^71+E(175)^-71, E(175)^36+E(175)^-36, E(175)^59+E(175)^-59, E(175)^12+E(175)^-12, E(175)^22+E(175)^-22, E(175)^11+E(175)^-11], [2, 0, E(175)^70+E(175)^-70, E(175)^35+E(175)^-35, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^77+E(175)^-77, E(175)^28+E(175)^-28, E(175)^14+E(175)^-14, E(175)^7+E(175)^-7, E(175)^56+E(175)^-56, E(175)^42+E(175)^-42, E(175)^84+E(175)^-84, E(175)^21+E(175)^-21, E(175)^49+E(175)^-49, E(175)^63+E(175)^-63, E(175)^30+E(175)^-30, E(175)^15+E(175)^-15, E(175)^55+E(175)^-55, E(175)^40+E(175)^-40, E(175)^10+E(175)^-10, E(175)^20+E(175)^-20, E(175)^45+E(175)^-45, E(175)^65+E(175)^-65, E(175)^80+E(175)^-80, E(175)^60+E(175)^-60, E(175)^85+E(175)^-85, E(175)^5+E(175)^-5, E(175)^6+E(175)^-6, E(175)^11+E(175)^-11, E(175)^82+E(175)^-82, E(175)^23+E(175)^-23, E(175)^39+E(175)^-39, E(175)^34+E(175)^-34, E(175)^29+E(175)^-29, E(175)^41+E(175)^-41, E(175)^68+E(175)^-68, E(175)^24+E(175)^-24, E(175)^38+E(175)^-38, E(175)^64+E(175)^-64, E(175)^9+E(175)^-9, E(175)^79+E(175)^-79, E(175)^16+E(175)^-16, E(175)^78+E(175)^-78, E(175)^73+E(175)^-73, E(175)^19+E(175)^-19, E(175)^57+E(175)^-57, E(175)^44+E(175)^-44, E(175)^4+E(175)^-4, E(175)+E(175)^-1, E(175)^72+E(175)^-72, E(175)^48+E(175)^-48, E(175)^17+E(175)^-17, E(175)^22+E(175)^-22, E(175)^74+E(175)^-74, E(175)^33+E(175)^-33, E(175)^31+E(175)^-31, E(175)^26+E(175)^-26, E(175)^37+E(175)^-37, E(175)^87+E(175)^-87, E(175)^3+E(175)^-3, E(175)^59+E(175)^-59, E(175)^71+E(175)^-71, E(175)^8+E(175)^-8, E(175)^61+E(175)^-61, E(175)^62+E(175)^-62, E(175)^27+E(175)^-27, E(175)^86+E(175)^-86, E(175)^58+E(175)^-58, E(175)^83+E(175)^-83, E(175)^2+E(175)^-2, E(175)^36+E(175)^-36, E(175)^32+E(175)^-32, E(175)^12+E(175)^-12, E(175)^53+E(175)^-53, E(175)^69+E(175)^-69, E(175)^18+E(175)^-18, E(175)^66+E(175)^-66, E(175)^47+E(175)^-47, E(175)^52+E(175)^-52, E(175)^13+E(175)^-13, E(175)^76+E(175)^-76, E(175)^81+E(175)^-81, E(175)^46+E(175)^-46, E(175)^51+E(175)^-51, E(175)^43+E(175)^-43, E(175)^67+E(175)^-67, E(175)^54+E(175)^-54], [2, 0, E(175)^70+E(175)^-70, E(175)^35+E(175)^-35, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^77+E(175)^-77, E(175)^28+E(175)^-28, E(175)^14+E(175)^-14, E(175)^7+E(175)^-7, E(175)^56+E(175)^-56, E(175)^42+E(175)^-42, E(175)^84+E(175)^-84, E(175)^21+E(175)^-21, E(175)^49+E(175)^-49, E(175)^63+E(175)^-63, E(175)^5+E(175)^-5, E(175)^85+E(175)^-85, E(175)^20+E(175)^-20, E(175)^65+E(175)^-65, E(175)^60+E(175)^-60, E(175)^55+E(175)^-55, E(175)^80+E(175)^-80, E(175)^40+E(175)^-40, E(175)^45+E(175)^-45, E(175)^10+E(175)^-10, E(175)^15+E(175)^-15, E(175)^30+E(175)^-30, E(175)^69+E(175)^-69, E(175)^39+E(175)^-39, E(175)^68+E(175)^-68, E(175)^2+E(175)^-2, E(175)^11+E(175)^-11, E(175)^41+E(175)^-41, E(175)^71+E(175)^-71, E(175)^34+E(175)^-34, E(175)^82+E(175)^-82, E(175)^74+E(175)^-74, E(175)^87+E(175)^-87, E(175)^36+E(175)^-36, E(175)^16+E(175)^-16, E(175)^54+E(175)^-54, E(175)^9+E(175)^-9, E(175)^22+E(175)^-22, E(175)^52+E(175)^-52, E(175)^44+E(175)^-44, E(175)^43+E(175)^-43, E(175)^19+E(175)^-19, E(175)^46+E(175)^-46, E(175)^76+E(175)^-76, E(175)^47+E(175)^-47, E(175)^27+E(175)^-27, E(175)^67+E(175)^-67, E(175)^78+E(175)^-78, E(175)^24+E(175)^-24, E(175)^58+E(175)^-58, E(175)^81+E(175)^-81, E(175)^51+E(175)^-51, E(175)^12+E(175)^-12, E(175)^38+E(175)^-38, E(175)^53+E(175)^-53, E(175)^66+E(175)^-66, E(175)^29+E(175)^-29, E(175)^83+E(175)^-83, E(175)^86+E(175)^-86, E(175)^13+E(175)^-13, E(175)^48+E(175)^-48, E(175)^61+E(175)^-61, E(175)^33+E(175)^-33, E(175)^8+E(175)^-8, E(175)^23+E(175)^-23, E(175)^64+E(175)^-64, E(175)^18+E(175)^-18, E(175)^37+E(175)^-37, E(175)^3+E(175)^-3, E(175)^6+E(175)^-6, E(175)^32+E(175)^-32, E(175)^59+E(175)^-59, E(175)^72+E(175)^-72, E(175)^73+E(175)^-73, E(175)^62+E(175)^-62, E(175)+E(175)^-1, E(175)^31+E(175)^-31, E(175)^4+E(175)^-4, E(175)^26+E(175)^-26, E(175)^57+E(175)^-57, E(175)^17+E(175)^-17, E(175)^79+E(175)^-79], [2, 0, E(175)^70+E(175)^-70, E(175)^35+E(175)^-35, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^63+E(175)^-63, E(175)^7+E(175)^-7, E(175)^84+E(175)^-84, E(175)^42+E(175)^-42, E(175)^14+E(175)^-14, E(175)^77+E(175)^-77, E(175)^21+E(175)^-21, E(175)^49+E(175)^-49, E(175)^56+E(175)^-56, E(175)^28+E(175)^-28, E(175)^30+E(175)^-30, E(175)^15+E(175)^-15, E(175)^55+E(175)^-55, E(175)^40+E(175)^-40, E(175)^10+E(175)^-10, E(175)^20+E(175)^-20, E(175)^45+E(175)^-45, E(175)^65+E(175)^-65, E(175)^80+E(175)^-80, E(175)^60+E(175)^-60, E(175)^85+E(175)^-85, E(175)^5+E(175)^-5, E(175)^64+E(175)^-64, E(175)^59+E(175)^-59, E(175)^58+E(175)^-58, E(175)^12+E(175)^-12, E(175)^66+E(175)^-66, E(175)^71+E(175)^-71, E(175)^76+E(175)^-76, E(175)^29+E(175)^-29, E(175)^33+E(175)^-33, E(175)^81+E(175)^-81, E(175)^3+E(175)^-3, E(175)^41+E(175)^-41, E(175)^79+E(175)^-79, E(175)^26+E(175)^-26, E(175)^54+E(175)^-54, E(175)^43+E(175)^-43, E(175)^38+E(175)^-38, E(175)^86+E(175)^-86, E(175)^83+E(175)^-83, E(175)^61+E(175)^-61, E(175)^74+E(175)^-74, E(175)^69+E(175)^-69, E(175)^68+E(175)^-68, E(175)^13+E(175)^-13, E(175)^52+E(175)^-52, E(175)^57+E(175)^-57, E(175)^31+E(175)^-31, E(175)^2+E(175)^-2, E(175)^39+E(175)^-39, E(175)^44+E(175)^-44, E(175)^72+E(175)^-72, E(175)^53+E(175)^-53, E(175)^32+E(175)^-32, E(175)^46+E(175)^-46, E(175)+E(175)^-1, E(175)^27+E(175)^-27, E(175)^9+E(175)^-9, E(175)^78+E(175)^-78, E(175)^62+E(175)^-62, E(175)^16+E(175)^-16, E(175)^23+E(175)^-23, E(175)^48+E(175)^-48, E(175)^37+E(175)^-37, E(175)^34+E(175)^-34, E(175)^67+E(175)^-67, E(175)^47+E(175)^-47, E(175)^18+E(175)^-18, E(175)^36+E(175)^-36, E(175)^17+E(175)^-17, E(175)^4+E(175)^-4, E(175)^82+E(175)^-82, E(175)^87+E(175)^-87, E(175)^22+E(175)^-22, E(175)^6+E(175)^-6, E(175)^11+E(175)^-11, E(175)^24+E(175)^-24, E(175)^19+E(175)^-19, E(175)^8+E(175)^-8, E(175)^73+E(175)^-73, E(175)^51+E(175)^-51], [2, 0, E(175)^70+E(175)^-70, E(175)^35+E(175)^-35, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^63+E(175)^-63, E(175)^7+E(175)^-7, E(175)^84+E(175)^-84, E(175)^42+E(175)^-42, E(175)^14+E(175)^-14, E(175)^77+E(175)^-77, E(175)^21+E(175)^-21, E(175)^49+E(175)^-49, E(175)^56+E(175)^-56, E(175)^28+E(175)^-28, E(175)^5+E(175)^-5, E(175)^85+E(175)^-85, E(175)^20+E(175)^-20, E(175)^65+E(175)^-65, E(175)^60+E(175)^-60, E(175)^55+E(175)^-55, E(175)^80+E(175)^-80, E(175)^40+E(175)^-40, E(175)^45+E(175)^-45, E(175)^10+E(175)^-10, E(175)^15+E(175)^-15, E(175)^30+E(175)^-30, E(175)^36+E(175)^-36, E(175)^66+E(175)^-66, E(175)^33+E(175)^-33, E(175)^37+E(175)^-37, E(175)^59+E(175)^-59, E(175)^29+E(175)^-29, E(175)+E(175)^-1, E(175)^71+E(175)^-71, E(175)^58+E(175)^-58, E(175)^31+E(175)^-31, E(175)^53+E(175)^-53, E(175)^34+E(175)^-34, E(175)^54+E(175)^-54, E(175)^51+E(175)^-51, E(175)^79+E(175)^-79, E(175)^57+E(175)^-57, E(175)^87+E(175)^-87, E(175)^61+E(175)^-61, E(175)^8+E(175)^-8, E(175)^86+E(175)^-86, E(175)^24+E(175)^-24, E(175)^6+E(175)^-6, E(175)^82+E(175)^-82, E(175)^62+E(175)^-62, E(175)^73+E(175)^-73, E(175)^43+E(175)^-43, E(175)^81+E(175)^-81, E(175)^23+E(175)^-23, E(175)^11+E(175)^-11, E(175)^19+E(175)^-19, E(175)^47+E(175)^-47, E(175)^3+E(175)^-3, E(175)^18+E(175)^-18, E(175)^4+E(175)^-4, E(175)^76+E(175)^-76, E(175)^48+E(175)^-48, E(175)^16+E(175)^-16, E(175)^22+E(175)^-22, E(175)^13+E(175)^-13, E(175)^9+E(175)^-9, E(175)^2+E(175)^-2, E(175)^27+E(175)^-27, E(175)^12+E(175)^-12, E(175)^41+E(175)^-41, E(175)^17+E(175)^-17, E(175)^72+E(175)^-72, E(175)^32+E(175)^-32, E(175)^64+E(175)^-64, E(175)^67+E(175)^-67, E(175)^46+E(175)^-46, E(175)^68+E(175)^-68, E(175)^38+E(175)^-38, E(175)^78+E(175)^-78, E(175)^69+E(175)^-69, E(175)^39+E(175)^-39, E(175)^74+E(175)^-74, E(175)^44+E(175)^-44, E(175)^83+E(175)^-83, E(175)^52+E(175)^-52, E(175)^26+E(175)^-26], [2, 0, E(175)^70+E(175)^-70, E(175)^35+E(175)^-35, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^42+E(175)^-42, E(175)^63+E(175)^-63, E(175)^56+E(175)^-56, E(175)^28+E(175)^-28, E(175)^49+E(175)^-49, E(175)^7+E(175)^-7, E(175)^14+E(175)^-14, E(175)^84+E(175)^-84, E(175)^21+E(175)^-21, E(175)^77+E(175)^-77, E(175)^30+E(175)^-30, E(175)^15+E(175)^-15, E(175)^55+E(175)^-55, E(175)^40+E(175)^-40, E(175)^10+E(175)^-10, E(175)^20+E(175)^-20, E(175)^45+E(175)^-45, E(175)^65+E(175)^-65, E(175)^80+E(175)^-80, E(175)^60+E(175)^-60, E(175)^85+E(175)^-85, E(175)^5+E(175)^-5, E(175)^76+E(175)^-76, E(175)^81+E(175)^-81, E(175)^47+E(175)^-47, E(175)^58+E(175)^-58, E(175)^31+E(175)^-31, E(175)^36+E(175)^-36, E(175)^41+E(175)^-41, E(175)^64+E(175)^-64, E(175)^72+E(175)^-72, E(175)^46+E(175)^-46, E(175)^73+E(175)^-73, E(175)^6+E(175)^-6, E(175)^61+E(175)^-61, E(175)^9+E(175)^-9, E(175)^86+E(175)^-86, E(175)^62+E(175)^-62, E(175)^67+E(175)^-67, E(175)^51+E(175)^-51, E(175)^22+E(175)^-22, E(175)^26+E(175)^-26, E(175)^66+E(175)^-66, E(175)^71+E(175)^-71, E(175)^37+E(175)^-37, E(175)^83+E(175)^-83, E(175)^18+E(175)^-18, E(175)^13+E(175)^-13, E(175)^4+E(175)^-4, E(175)^68+E(175)^-68, E(175)^74+E(175)^-74, E(175)^79+E(175)^-79, E(175)^2+E(175)^-2, E(175)^52+E(175)^-52, E(175)^38+E(175)^-38, E(175)^11+E(175)^-11, E(175)^34+E(175)^-34, E(175)^43+E(175)^-43, E(175)^44+E(175)^-44, E(175)^27+E(175)^-27, E(175)^8+E(175)^-8, E(175)^19+E(175)^-19, E(175)^82+E(175)^-82, E(175)^57+E(175)^-57, E(175)^33+E(175)^-33, E(175)^69+E(175)^-69, E(175)^3+E(175)^-3, E(175)^23+E(175)^-23, E(175)^87+E(175)^-87, E(175)+E(175)^-1, E(175)^53+E(175)^-53, E(175)^39+E(175)^-39, E(175)^12+E(175)^-12, E(175)^17+E(175)^-17, E(175)^48+E(175)^-48, E(175)^29+E(175)^-29, E(175)^24+E(175)^-24, E(175)^59+E(175)^-59, E(175)^54+E(175)^-54, E(175)^78+E(175)^-78, E(175)^32+E(175)^-32, E(175)^16+E(175)^-16], [2, 0, E(175)^70+E(175)^-70, E(175)^35+E(175)^-35, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^42+E(175)^-42, E(175)^63+E(175)^-63, E(175)^56+E(175)^-56, E(175)^28+E(175)^-28, E(175)^49+E(175)^-49, E(175)^7+E(175)^-7, E(175)^14+E(175)^-14, E(175)^84+E(175)^-84, E(175)^21+E(175)^-21, E(175)^77+E(175)^-77, E(175)^5+E(175)^-5, E(175)^85+E(175)^-85, E(175)^20+E(175)^-20, E(175)^65+E(175)^-65, E(175)^60+E(175)^-60, E(175)^55+E(175)^-55, E(175)^80+E(175)^-80, E(175)^40+E(175)^-40, E(175)^45+E(175)^-45, E(175)^10+E(175)^-10, E(175)^15+E(175)^-15, E(175)^30+E(175)^-30, E(175)+E(175)^-1, E(175)^31+E(175)^-31, E(175)^72+E(175)^-72, E(175)^33+E(175)^-33, E(175)^81+E(175)^-81, E(175)^64+E(175)^-64, E(175)^34+E(175)^-34, E(175)^36+E(175)^-36, E(175)^47+E(175)^-47, E(175)^4+E(175)^-4, E(175)^52+E(175)^-52, E(175)^69+E(175)^-69, E(175)^86+E(175)^-86, E(175)^16+E(175)^-16, E(175)^61+E(175)^-61, E(175)^13+E(175)^-13, E(175)^17+E(175)^-17, E(175)^26+E(175)^-26, E(175)^78+E(175)^-78, E(175)^51+E(175)^-51, E(175)^59+E(175)^-59, E(175)^29+E(175)^-29, E(175)^12+E(175)^-12, E(175)^8+E(175)^-8, E(175)^32+E(175)^-32, E(175)^62+E(175)^-62, E(175)^46+E(175)^-46, E(175)^82+E(175)^-82, E(175)^24+E(175)^-24, E(175)^54+E(175)^-54, E(175)^23+E(175)^-23, E(175)^73+E(175)^-73, E(175)^87+E(175)^-87, E(175)^39+E(175)^-39, E(175)^41+E(175)^-41, E(175)^57+E(175)^-57, E(175)^19+E(175)^-19, E(175)^48+E(175)^-48, E(175)^83+E(175)^-83, E(175)^44+E(175)^-44, E(175)^68+E(175)^-68, E(175)^43+E(175)^-43, E(175)^58+E(175)^-58, E(175)^6+E(175)^-6, E(175)^53+E(175)^-53, E(175)^2+E(175)^-2, E(175)^38+E(175)^-38, E(175)^76+E(175)^-76, E(175)^3+E(175)^-3, E(175)^11+E(175)^-11, E(175)^37+E(175)^-37, E(175)^67+E(175)^-67, E(175)^27+E(175)^-27, E(175)^71+E(175)^-71, E(175)^74+E(175)^-74, E(175)^66+E(175)^-66, E(175)^79+E(175)^-79, E(175)^22+E(175)^-22, E(175)^18+E(175)^-18, E(175)^9+E(175)^-9], [2, 0, E(175)^70+E(175)^-70, E(175)^35+E(175)^-35, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^28+E(175)^-28, E(175)^42+E(175)^-42, E(175)^21+E(175)^-21, E(175)^77+E(175)^-77, E(175)^84+E(175)^-84, E(175)^63+E(175)^-63, E(175)^49+E(175)^-49, E(175)^56+E(175)^-56, E(175)^14+E(175)^-14, E(175)^7+E(175)^-7, E(175)^30+E(175)^-30, E(175)^15+E(175)^-15, E(175)^55+E(175)^-55, E(175)^40+E(175)^-40, E(175)^10+E(175)^-10, E(175)^20+E(175)^-20, E(175)^45+E(175)^-45, E(175)^65+E(175)^-65, E(175)^80+E(175)^-80, E(175)^60+E(175)^-60, E(175)^85+E(175)^-85, E(175)^5+E(175)^-5, E(175)^41+E(175)^-41, E(175)^46+E(175)^-46, E(175)^23+E(175)^-23, E(175)^47+E(175)^-47, E(175)^4+E(175)^-4, E(175)+E(175)^-1, E(175)^6+E(175)^-6, E(175)^76+E(175)^-76, E(175)^2+E(175)^-2, E(175)^11+E(175)^-11, E(175)^32+E(175)^-32, E(175)^29+E(175)^-29, E(175)^26+E(175)^-26, E(175)^44+E(175)^-44, E(175)^51+E(175)^-51, E(175)^8+E(175)^-8, E(175)^3+E(175)^-3, E(175)^16+E(175)^-16, E(175)^48+E(175)^-48, E(175)^9+E(175)^-9, E(175)^31+E(175)^-31, E(175)^36+E(175)^-36, E(175)^33+E(175)^-33, E(175)^22+E(175)^-22, E(175)^87+E(175)^-87, E(175)^83+E(175)^-83, E(175)^39+E(175)^-39, E(175)^37+E(175)^-37, E(175)^66+E(175)^-66, E(175)^61+E(175)^-61, E(175)^68+E(175)^-68, E(175)^18+E(175)^-18, E(175)^67+E(175)^-67, E(175)^24+E(175)^-24, E(175)^69+E(175)^-69, E(175)^62+E(175)^-62, E(175)^79+E(175)^-79, E(175)^43+E(175)^-43, E(175)^78+E(175)^-78, E(175)^54+E(175)^-54, E(175)^12+E(175)^-12, E(175)^13+E(175)^-13, E(175)^72+E(175)^-72, E(175)^71+E(175)^-71, E(175)^73+E(175)^-73, E(175)^82+E(175)^-82, E(175)^17+E(175)^-17, E(175)^34+E(175)^-34, E(175)^52+E(175)^-52, E(175)^74+E(175)^-74, E(175)^58+E(175)^-58, E(175)^53+E(175)^-53, E(175)^57+E(175)^-57, E(175)^64+E(175)^-64, E(175)^59+E(175)^-59, E(175)^81+E(175)^-81, E(175)^86+E(175)^-86, E(175)^27+E(175)^-27, E(175)^38+E(175)^-38, E(175)^19+E(175)^-19], [2, 0, E(175)^70+E(175)^-70, E(175)^35+E(175)^-35, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^28+E(175)^-28, E(175)^42+E(175)^-42, E(175)^21+E(175)^-21, E(175)^77+E(175)^-77, E(175)^84+E(175)^-84, E(175)^63+E(175)^-63, E(175)^49+E(175)^-49, E(175)^56+E(175)^-56, E(175)^14+E(175)^-14, E(175)^7+E(175)^-7, E(175)^5+E(175)^-5, E(175)^85+E(175)^-85, E(175)^20+E(175)^-20, E(175)^65+E(175)^-65, E(175)^60+E(175)^-60, E(175)^55+E(175)^-55, E(175)^80+E(175)^-80, E(175)^40+E(175)^-40, E(175)^45+E(175)^-45, E(175)^10+E(175)^-10, E(175)^15+E(175)^-15, E(175)^30+E(175)^-30, E(175)^34+E(175)^-34, E(175)^4+E(175)^-4, E(175)^2+E(175)^-2, E(175)^72+E(175)^-72, E(175)^46+E(175)^-46, E(175)^76+E(175)^-76, E(175)^69+E(175)^-69, E(175)+E(175)^-1, E(175)^23+E(175)^-23, E(175)^39+E(175)^-39, E(175)^18+E(175)^-18, E(175)^71+E(175)^-71, E(175)^51+E(175)^-51, E(175)^19+E(175)^-19, E(175)^26+E(175)^-26, E(175)^83+E(175)^-83, E(175)^53+E(175)^-53, E(175)^9+E(175)^-9, E(175)^27+E(175)^-27, E(175)^16+E(175)^-16, E(175)^81+E(175)^-81, E(175)^64+E(175)^-64, E(175)^58+E(175)^-58, E(175)^78+E(175)^-78, E(175)^38+E(175)^-38, E(175)^8+E(175)^-8, E(175)^11+E(175)^-11, E(175)^12+E(175)^-12, E(175)^59+E(175)^-59, E(175)^86+E(175)^-86, E(175)^82+E(175)^-82, E(175)^32+E(175)^-32, E(175)^17+E(175)^-17, E(175)^74+E(175)^-74, E(175)^6+E(175)^-6, E(175)^13+E(175)^-13, E(175)^54+E(175)^-54, E(175)^57+E(175)^-57, E(175)^22+E(175)^-22, E(175)^79+E(175)^-79, E(175)^37+E(175)^-37, E(175)^62+E(175)^-62, E(175)^47+E(175)^-47, E(175)^29+E(175)^-29, E(175)^52+E(175)^-52, E(175)^68+E(175)^-68, E(175)^67+E(175)^-67, E(175)^41+E(175)^-41, E(175)^73+E(175)^-73, E(175)^24+E(175)^-24, E(175)^33+E(175)^-33, E(175)^3+E(175)^-3, E(175)^43+E(175)^-43, E(175)^36+E(175)^-36, E(175)^66+E(175)^-66, E(175)^31+E(175)^-31, E(175)^61+E(175)^-61, E(175)^48+E(175)^-48, E(175)^87+E(175)^-87, E(175)^44+E(175)^-44], [2, 0, E(175)^70+E(175)^-70, E(175)^35+E(175)^-35, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^7+E(175)^-7, E(175)^77+E(175)^-77, E(175)^49+E(175)^-49, E(175)^63+E(175)^-63, E(175)^21+E(175)^-21, E(175)^28+E(175)^-28, E(175)^56+E(175)^-56, E(175)^14+E(175)^-14, E(175)^84+E(175)^-84, E(175)^42+E(175)^-42, E(175)^30+E(175)^-30, E(175)^15+E(175)^-15, E(175)^55+E(175)^-55, E(175)^40+E(175)^-40, E(175)^10+E(175)^-10, E(175)^20+E(175)^-20, E(175)^45+E(175)^-45, E(175)^65+E(175)^-65, E(175)^80+E(175)^-80, E(175)^60+E(175)^-60, E(175)^85+E(175)^-85, E(175)^5+E(175)^-5, E(175)^29+E(175)^-29, E(175)^24+E(175)^-24, E(175)^12+E(175)^-12, E(175)^82+E(175)^-82, E(175)^74+E(175)^-74, E(175)^69+E(175)^-69, E(175)^64+E(175)^-64, E(175)^6+E(175)^-6, E(175)^37+E(175)^-37, E(175)^59+E(175)^-59, E(175)^67+E(175)^-67, E(175)^76+E(175)^-76, E(175)^44+E(175)^-44, E(175)^61+E(175)^-61, E(175)^19+E(175)^-19, E(175)^27+E(175)^-27, E(175)^32+E(175)^-32, E(175)^54+E(175)^-54, E(175)^13+E(175)^-13, E(175)^79+E(175)^-79, E(175)^39+E(175)^-39, E(175)^34+E(175)^-34, E(175)^2+E(175)^-2, E(175)^57+E(175)^-57, E(175)^53+E(175)^-53, E(175)^48+E(175)^-48, E(175)^66+E(175)^-66, E(175)^72+E(175)^-72, E(175)^4+E(175)^-4, E(175)^9+E(175)^-9, E(175)^33+E(175)^-33, E(175)^17+E(175)^-17, E(175)^73+E(175)^-73, E(175)^81+E(175)^-81, E(175)^36+E(175)^-36, E(175)^78+E(175)^-78, E(175)^26+E(175)^-26, E(175)^8+E(175)^-8, E(175)^43+E(175)^-43, E(175)^51+E(175)^-51, E(175)^47+E(175)^-47, E(175)^22+E(175)^-22, E(175)^68+E(175)^-68, E(175)+E(175)^-1, E(175)^38+E(175)^-38, E(175)^58+E(175)^-58, E(175)^52+E(175)^-52, E(175)^71+E(175)^-71, E(175)^87+E(175)^-87, E(175)^31+E(175)^-31, E(175)^23+E(175)^-23, E(175)^18+E(175)^-18, E(175)^83+E(175)^-83, E(175)^41+E(175)^-41, E(175)^46+E(175)^-46, E(175)^11+E(175)^-11, E(175)^16+E(175)^-16, E(175)^62+E(175)^-62, E(175)^3+E(175)^-3, E(175)^86+E(175)^-86], [2, 0, E(175)^70+E(175)^-70, E(175)^35+E(175)^-35, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^7+E(175)^-7, E(175)^77+E(175)^-77, E(175)^49+E(175)^-49, E(175)^63+E(175)^-63, E(175)^21+E(175)^-21, E(175)^28+E(175)^-28, E(175)^56+E(175)^-56, E(175)^14+E(175)^-14, E(175)^84+E(175)^-84, E(175)^42+E(175)^-42, E(175)^5+E(175)^-5, E(175)^85+E(175)^-85, E(175)^20+E(175)^-20, E(175)^65+E(175)^-65, E(175)^60+E(175)^-60, E(175)^55+E(175)^-55, E(175)^80+E(175)^-80, E(175)^40+E(175)^-40, E(175)^45+E(175)^-45, E(175)^10+E(175)^-10, E(175)^15+E(175)^-15, E(175)^30+E(175)^-30, E(175)^71+E(175)^-71, E(175)^74+E(175)^-74, E(175)^37+E(175)^-37, E(175)^68+E(175)^-68, E(175)^24+E(175)^-24, E(175)^6+E(175)^-6, E(175)^36+E(175)^-36, E(175)^69+E(175)^-69, E(175)^12+E(175)^-12, E(175)^66+E(175)^-66, E(175)^17+E(175)^-17, E(175)+E(175)^-1, E(175)^19+E(175)^-19, E(175)^86+E(175)^-86, E(175)^44+E(175)^-44, E(175)^48+E(175)^-48, E(175)^18+E(175)^-18, E(175)^79+E(175)^-79, E(175)^62+E(175)^-62, E(175)^54+E(175)^-54, E(175)^11+E(175)^-11, E(175)^41+E(175)^-41, E(175)^23+E(175)^-23, E(175)^43+E(175)^-43, E(175)^3+E(175)^-3, E(175)^27+E(175)^-27, E(175)^59+E(175)^-59, E(175)^47+E(175)^-47, E(175)^46+E(175)^-46, E(175)^16+E(175)^-16, E(175)^58+E(175)^-58, E(175)^67+E(175)^-67, E(175)^52+E(175)^-52, E(175)^31+E(175)^-31, E(175)^64+E(175)^-64, E(175)^22+E(175)^-22, E(175)^51+E(175)^-51, E(175)^83+E(175)^-83, E(175)^57+E(175)^-57, E(175)^26+E(175)^-26, E(175)^72+E(175)^-72, E(175)^78+E(175)^-78, E(175)^82+E(175)^-82, E(175)^76+E(175)^-76, E(175)^87+E(175)^-87, E(175)^33+E(175)^-33, E(175)^73+E(175)^-73, E(175)^29+E(175)^-29, E(175)^38+E(175)^-38, E(175)^81+E(175)^-81, E(175)^2+E(175)^-2, E(175)^32+E(175)^-32, E(175)^8+E(175)^-8, E(175)^34+E(175)^-34, E(175)^4+E(175)^-4, E(175)^39+E(175)^-39, E(175)^9+E(175)^-9, E(175)^13+E(175)^-13, E(175)^53+E(175)^-53, E(175)^61+E(175)^-61], [2, 0, E(175)^35+E(175)^-35, E(175)^70+E(175)^-70, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^84+E(175)^-84, E(175)^49+E(175)^-49, E(175)^63+E(175)^-63, E(175)^56+E(175)^-56, E(175)^77+E(175)^-77, E(175)^14+E(175)^-14, E(175)^28+E(175)^-28, E(175)^7+E(175)^-7, E(175)^42+E(175)^-42, E(175)^21+E(175)^-21, E(175)^85+E(175)^-85, E(175)^45+E(175)^-45, E(175)^10+E(175)^-10, E(175)^55+E(175)^-55, E(175)^30+E(175)^-30, E(175)^60+E(175)^-60, E(175)^40+E(175)^-40, E(175)^20+E(175)^-20, E(175)^65+E(175)^-65, E(175)^5+E(175)^-5, E(175)^80+E(175)^-80, E(175)^15+E(175)^-15, E(175)^52+E(175)^-52, E(175)^37+E(175)^-37, E(175)^69+E(175)^-69, E(175)^34+E(175)^-34, E(175)^12+E(175)^-12, E(175)^3+E(175)^-3, E(175)^18+E(175)^-18, E(175)^53+E(175)^-53, E(175)^6+E(175)^-6, E(175)^33+E(175)^-33, E(175)^79+E(175)^-79, E(175)^87+E(175)^-87, E(175)^78+E(175)^-78, E(175)^43+E(175)^-43, E(175)^22+E(175)^-22, E(175)^24+E(175)^-24, E(175)^9+E(175)^-9, E(175)^48+E(175)^-48, E(175)^31+E(175)^-31, E(175)^27+E(175)^-27, E(175)^82+E(175)^-82, E(175)^67+E(175)^-67, E(175)^76+E(175)^-76, E(175)^66+E(175)^-66, E(175)^86+E(175)^-86, E(175)^74+E(175)^-74, E(175)^58+E(175)^-58, E(175)^64+E(175)^-64, E(175)^23+E(175)^-23, E(175)^8+E(175)^-8, E(175)^29+E(175)^-29, E(175)^54+E(175)^-54, E(175)^26+E(175)^-26, E(175)^72+E(175)^-72, E(175)^32+E(175)^-32, E(175)^11+E(175)^-11, E(175)^62+E(175)^-62, E(175)^46+E(175)^-46, E(175)^59+E(175)^-59, E(175)^13+E(175)^-13, E(175)^36+E(175)^-36, E(175)^39+E(175)^-39, E(175)^41+E(175)^-41, E(175)^38+E(175)^-38, E(175)^44+E(175)^-44, E(175)^71+E(175)^-71, E(175)^51+E(175)^-51, E(175)^73+E(175)^-73, E(175)^19+E(175)^-19, E(175)^47+E(175)^-47, E(175)+E(175)^-1, E(175)^16+E(175)^-16, E(175)^4+E(175)^-4, E(175)^17+E(175)^-17, E(175)^2+E(175)^-2, E(175)^68+E(175)^-68, E(175)^83+E(175)^-83, E(175)^81+E(175)^-81, E(175)^61+E(175)^-61, E(175)^57+E(175)^-57], [2, 0, E(175)^35+E(175)^-35, E(175)^70+E(175)^-70, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^84+E(175)^-84, E(175)^49+E(175)^-49, E(175)^63+E(175)^-63, E(175)^56+E(175)^-56, E(175)^77+E(175)^-77, E(175)^14+E(175)^-14, E(175)^28+E(175)^-28, E(175)^7+E(175)^-7, E(175)^42+E(175)^-42, E(175)^21+E(175)^-21, E(175)^15+E(175)^-15, E(175)^80+E(175)^-80, E(175)^60+E(175)^-60, E(175)^20+E(175)^-20, E(175)^5+E(175)^-5, E(175)^10+E(175)^-10, E(175)^65+E(175)^-65, E(175)^55+E(175)^-55, E(175)^40+E(175)^-40, E(175)^30+E(175)^-30, E(175)^45+E(175)^-45, E(175)^85+E(175)^-85, E(175)^73+E(175)^-73, E(175)^12+E(175)^-12, E(175)^6+E(175)^-6, E(175)^41+E(175)^-41, E(175)^37+E(175)^-37, E(175)^53+E(175)^-53, E(175)^32+E(175)^-32, E(175)^3+E(175)^-3, E(175)^69+E(175)^-69, E(175)^58+E(175)^-58, E(175)^54+E(175)^-54, E(175)^38+E(175)^-38, E(175)^22+E(175)^-22, E(175)^57+E(175)^-57, E(175)^78+E(175)^-78, E(175)^74+E(175)^-74, E(175)^16+E(175)^-16, E(175)^27+E(175)^-27, E(175)^81+E(175)^-81, E(175)^48+E(175)^-48, E(175)^68+E(175)^-68, E(175)^17+E(175)^-17, E(175)+E(175)^-1, E(175)^59+E(175)^-59, E(175)^61+E(175)^-61, E(175)^24+E(175)^-24, E(175)^33+E(175)^-33, E(175)^36+E(175)^-36, E(175)^2+E(175)^-2, E(175)^83+E(175)^-83, E(175)^71+E(175)^-71, E(175)^79+E(175)^-79, E(175)^51+E(175)^-51, E(175)^47+E(175)^-47, E(175)^18+E(175)^-18, E(175)^39+E(175)^-39, E(175)^13+E(175)^-13, E(175)^4+E(175)^-4, E(175)^66+E(175)^-66, E(175)^62+E(175)^-62, E(175)^64+E(175)^-64, E(175)^11+E(175)^-11, E(175)^34+E(175)^-34, E(175)^87+E(175)^-87, E(175)^19+E(175)^-19, E(175)^29+E(175)^-29, E(175)^26+E(175)^-26, E(175)^52+E(175)^-52, E(175)^44+E(175)^-44, E(175)^72+E(175)^-72, E(175)^76+E(175)^-76, E(175)^9+E(175)^-9, E(175)^46+E(175)^-46, E(175)^67+E(175)^-67, E(175)^23+E(175)^-23, E(175)^82+E(175)^-82, E(175)^8+E(175)^-8, E(175)^31+E(175)^-31, E(175)^86+E(175)^-86, E(175)^43+E(175)^-43], [2, 0, E(175)^35+E(175)^-35, E(175)^70+E(175)^-70, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^56+E(175)^-56, E(175)^84+E(175)^-84, E(175)^42+E(175)^-42, E(175)^21+E(175)^-21, E(175)^7+E(175)^-7, E(175)^49+E(175)^-49, E(175)^77+E(175)^-77, E(175)^63+E(175)^-63, E(175)^28+E(175)^-28, E(175)^14+E(175)^-14, E(175)^85+E(175)^-85, E(175)^45+E(175)^-45, E(175)^10+E(175)^-10, E(175)^55+E(175)^-55, E(175)^30+E(175)^-30, E(175)^60+E(175)^-60, E(175)^40+E(175)^-40, E(175)^20+E(175)^-20, E(175)^65+E(175)^-65, E(175)^5+E(175)^-5, E(175)^80+E(175)^-80, E(175)^15+E(175)^-15, E(175)^18+E(175)^-18, E(175)^33+E(175)^-33, E(175)^71+E(175)^-71, E(175)^69+E(175)^-69, E(175)^58+E(175)^-58, E(175)^73+E(175)^-73, E(175)^87+E(175)^-87, E(175)^52+E(175)^-52, E(175)^29+E(175)^-29, E(175)^72+E(175)^-72, E(175)^61+E(175)^-61, E(175)^17+E(175)^-17, E(175)^27+E(175)^-27, E(175)^62+E(175)^-62, E(175)^48+E(175)^-48, E(175)^59+E(175)^-59, E(175)^44+E(175)^-44, E(175)^57+E(175)^-57, E(175)^4+E(175)^-4, E(175)^43+E(175)^-43, E(175)^12+E(175)^-12, E(175)^3+E(175)^-3, E(175)^41+E(175)^-41, E(175)^31+E(175)^-31, E(175)^51+E(175)^-51, E(175)^66+E(175)^-66, E(175)^47+E(175)^-47, E(175)^76+E(175)^-76, E(175)^82+E(175)^-82, E(175)^78+E(175)^-78, E(175)^64+E(175)^-64, E(175)^86+E(175)^-86, E(175)^9+E(175)^-9, E(175)^2+E(175)^-2, E(175)^38+E(175)^-38, E(175)^24+E(175)^-24, E(175)^8+E(175)^-8, E(175)^11+E(175)^-11, E(175)^81+E(175)^-81, E(175)^83+E(175)^-83, E(175)+E(175)^-1, E(175)^74+E(175)^-74, E(175)^6+E(175)^-6, E(175)^67+E(175)^-67, E(175)^79+E(175)^-79, E(175)^36+E(175)^-36, E(175)^16+E(175)^-16, E(175)^32+E(175)^-32, E(175)^54+E(175)^-54, E(175)^23+E(175)^-23, E(175)^34+E(175)^-34, E(175)^19+E(175)^-19, E(175)^39+E(175)^-39, E(175)^53+E(175)^-53, E(175)^68+E(175)^-68, E(175)^37+E(175)^-37, E(175)^22+E(175)^-22, E(175)^46+E(175)^-46, E(175)^26+E(175)^-26, E(175)^13+E(175)^-13], [2, 0, E(175)^35+E(175)^-35, E(175)^70+E(175)^-70, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^56+E(175)^-56, E(175)^84+E(175)^-84, E(175)^42+E(175)^-42, E(175)^21+E(175)^-21, E(175)^7+E(175)^-7, E(175)^49+E(175)^-49, E(175)^77+E(175)^-77, E(175)^63+E(175)^-63, E(175)^28+E(175)^-28, E(175)^14+E(175)^-14, E(175)^15+E(175)^-15, E(175)^80+E(175)^-80, E(175)^60+E(175)^-60, E(175)^20+E(175)^-20, E(175)^5+E(175)^-5, E(175)^10+E(175)^-10, E(175)^65+E(175)^-65, E(175)^55+E(175)^-55, E(175)^40+E(175)^-40, E(175)^30+E(175)^-30, E(175)^45+E(175)^-45, E(175)^85+E(175)^-85, E(175)^32+E(175)^-32, E(175)^58+E(175)^-58, E(175)^29+E(175)^-29, E(175)^6+E(175)^-6, E(175)^33+E(175)^-33, E(175)^52+E(175)^-52, E(175)^38+E(175)^-38, E(175)^73+E(175)^-73, E(175)^71+E(175)^-71, E(175)^47+E(175)^-47, E(175)^86+E(175)^-86, E(175)^67+E(175)^-67, E(175)^48+E(175)^-48, E(175)^13+E(175)^-13, E(175)^27+E(175)^-27, E(175)^66+E(175)^-66, E(175)^19+E(175)^-19, E(175)^43+E(175)^-43, E(175)^46+E(175)^-46, E(175)^57+E(175)^-57, E(175)^37+E(175)^-37, E(175)^53+E(175)^-53, E(175)^34+E(175)^-34, E(175)^81+E(175)^-81, E(175)^26+E(175)^-26, E(175)^59+E(175)^-59, E(175)^72+E(175)^-72, E(175)+E(175)^-1, E(175)^68+E(175)^-68, E(175)^22+E(175)^-22, E(175)^36+E(175)^-36, E(175)^61+E(175)^-61, E(175)^16+E(175)^-16, E(175)^23+E(175)^-23, E(175)^87+E(175)^-87, E(175)^74+E(175)^-74, E(175)^83+E(175)^-83, E(175)^39+E(175)^-39, E(175)^31+E(175)^-31, E(175)^8+E(175)^-8, E(175)^76+E(175)^-76, E(175)^24+E(175)^-24, E(175)^69+E(175)^-69, E(175)^17+E(175)^-17, E(175)^54+E(175)^-54, E(175)^64+E(175)^-64, E(175)^9+E(175)^-9, E(175)^18+E(175)^-18, E(175)^79+E(175)^-79, E(175)^2+E(175)^-2, E(175)^41+E(175)^-41, E(175)^44+E(175)^-44, E(175)^11+E(175)^-11, E(175)^3+E(175)^-3, E(175)^82+E(175)^-82, E(175)^12+E(175)^-12, E(175)^78+E(175)^-78, E(175)^4+E(175)^-4, E(175)^51+E(175)^-51, E(175)^62+E(175)^-62], [2, 0, E(175)^35+E(175)^-35, E(175)^70+E(175)^-70, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^49+E(175)^-49, E(175)^14+E(175)^-14, E(175)^7+E(175)^-7, E(175)^84+E(175)^-84, E(175)^28+E(175)^-28, E(175)^21+E(175)^-21, E(175)^42+E(175)^-42, E(175)^77+E(175)^-77, E(175)^63+E(175)^-63, E(175)^56+E(175)^-56, E(175)^85+E(175)^-85, E(175)^45+E(175)^-45, E(175)^10+E(175)^-10, E(175)^55+E(175)^-55, E(175)^30+E(175)^-30, E(175)^60+E(175)^-60, E(175)^40+E(175)^-40, E(175)^20+E(175)^-20, E(175)^65+E(175)^-65, E(175)^5+E(175)^-5, E(175)^80+E(175)^-80, E(175)^15+E(175)^-15, E(175)^53+E(175)^-53, E(175)^68+E(175)^-68, E(175)^34+E(175)^-34, E(175)+E(175)^-1, E(175)^82+E(175)^-82, E(175)^67+E(175)^-67, E(175)^52+E(175)^-52, E(175)^17+E(175)^-17, E(175)^41+E(175)^-41, E(175)^37+E(175)^-37, E(175)^44+E(175)^-44, E(175)^18+E(175)^-18, E(175)^8+E(175)^-8, E(175)^27+E(175)^-27, E(175)^83+E(175)^-83, E(175)^11+E(175)^-11, E(175)^26+E(175)^-26, E(175)^22+E(175)^-22, E(175)^66+E(175)^-66, E(175)^78+E(175)^-78, E(175)^23+E(175)^-23, E(175)^38+E(175)^-38, E(175)^64+E(175)^-64, E(175)^74+E(175)^-74, E(175)^54+E(175)^-54, E(175)^39+E(175)^-39, E(175)^12+E(175)^-12, E(175)^29+E(175)^-29, E(175)^47+E(175)^-47, E(175)^62+E(175)^-62, E(175)^6+E(175)^-6, E(175)^19+E(175)^-19, E(175)^61+E(175)^-61, E(175)^33+E(175)^-33, E(175)^73+E(175)^-73, E(175)^46+E(175)^-46, E(175)^43+E(175)^-43, E(175)^81+E(175)^-81, E(175)^24+E(175)^-24, E(175)^57+E(175)^-57, E(175)^71+E(175)^-71, E(175)^4+E(175)^-4, E(175)^76+E(175)^-76, E(175)^32+E(175)^-32, E(175)^9+E(175)^-9, E(175)^69+E(175)^-69, E(175)^86+E(175)^-86, E(175)^3+E(175)^-3, E(175)^16+E(175)^-16, E(175)^58+E(175)^-58, E(175)^36+E(175)^-36, E(175)^51+E(175)^-51, E(175)^31+E(175)^-31, E(175)^87+E(175)^-87, E(175)^72+E(175)^-72, E(175)^2+E(175)^-2, E(175)^13+E(175)^-13, E(175)^59+E(175)^-59, E(175)^79+E(175)^-79, E(175)^48+E(175)^-48], [2, 0, E(175)^35+E(175)^-35, E(175)^70+E(175)^-70, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^49+E(175)^-49, E(175)^14+E(175)^-14, E(175)^7+E(175)^-7, E(175)^84+E(175)^-84, E(175)^28+E(175)^-28, E(175)^21+E(175)^-21, E(175)^42+E(175)^-42, E(175)^77+E(175)^-77, E(175)^63+E(175)^-63, E(175)^56+E(175)^-56, E(175)^15+E(175)^-15, E(175)^80+E(175)^-80, E(175)^60+E(175)^-60, E(175)^20+E(175)^-20, E(175)^5+E(175)^-5, E(175)^10+E(175)^-10, E(175)^65+E(175)^-65, E(175)^55+E(175)^-55, E(175)^40+E(175)^-40, E(175)^30+E(175)^-30, E(175)^45+E(175)^-45, E(175)^85+E(175)^-85, E(175)^3+E(175)^-3, E(175)^82+E(175)^-82, E(175)^41+E(175)^-41, E(175)^76+E(175)^-76, E(175)^68+E(175)^-68, E(175)^17+E(175)^-17, E(175)^73+E(175)^-73, E(175)^67+E(175)^-67, E(175)^34+E(175)^-34, E(175)^12+E(175)^-12, E(175)^19+E(175)^-19, E(175)^32+E(175)^-32, E(175)^83+E(175)^-83, E(175)^48+E(175)^-48, E(175)^8+E(175)^-8, E(175)^39+E(175)^-39, E(175)^51+E(175)^-51, E(175)^78+E(175)^-78, E(175)^59+E(175)^-59, E(175)^22+E(175)^-22, E(175)^2+E(175)^-2, E(175)^87+E(175)^-87, E(175)^36+E(175)^-36, E(175)^24+E(175)^-24, E(175)^79+E(175)^-79, E(175)^11+E(175)^-11, E(175)^37+E(175)^-37, E(175)^71+E(175)^-71, E(175)^72+E(175)^-72, E(175)^13+E(175)^-13, E(175)^69+E(175)^-69, E(175)^44+E(175)^-44, E(175)^86+E(175)^-86, E(175)^58+E(175)^-58, E(175)^52+E(175)^-52, E(175)^4+E(175)^-4, E(175)^57+E(175)^-57, E(175)^31+E(175)^-31, E(175)^74+E(175)^-74, E(175)^43+E(175)^-43, E(175)^29+E(175)^-29, E(175)^46+E(175)^-46, E(175)+E(175)^-1, E(175)^18+E(175)^-18, E(175)^16+E(175)^-16, E(175)^6+E(175)^-6, E(175)^61+E(175)^-61, E(175)^53+E(175)^-53, E(175)^9+E(175)^-9, E(175)^33+E(175)^-33, E(175)^64+E(175)^-64, E(175)^26+E(175)^-26, E(175)^81+E(175)^-81, E(175)^38+E(175)^-38, E(175)^47+E(175)^-47, E(175)^23+E(175)^-23, E(175)^62+E(175)^-62, E(175)^66+E(175)^-66, E(175)^54+E(175)^-54, E(175)^27+E(175)^-27], [2, 0, E(175)^35+E(175)^-35, E(175)^70+E(175)^-70, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^21+E(175)^-21, E(175)^56+E(175)^-56, E(175)^28+E(175)^-28, E(175)^14+E(175)^-14, E(175)^63+E(175)^-63, E(175)^84+E(175)^-84, E(175)^7+E(175)^-7, E(175)^42+E(175)^-42, E(175)^77+E(175)^-77, E(175)^49+E(175)^-49, E(175)^85+E(175)^-85, E(175)^45+E(175)^-45, E(175)^10+E(175)^-10, E(175)^55+E(175)^-55, E(175)^30+E(175)^-30, E(175)^60+E(175)^-60, E(175)^40+E(175)^-40, E(175)^20+E(175)^-20, E(175)^65+E(175)^-65, E(175)^5+E(175)^-5, E(175)^80+E(175)^-80, E(175)^15+E(175)^-15, E(175)^87+E(175)^-87, E(175)^72+E(175)^-72, E(175)^36+E(175)^-36, E(175)^71+E(175)^-71, E(175)^47+E(175)^-47, E(175)^32+E(175)^-32, E(175)^17+E(175)^-17, E(175)^18+E(175)^-18, E(175)^64+E(175)^-64, E(175)^2+E(175)^-2, E(175)^26+E(175)^-26, E(175)^53+E(175)^-53, E(175)^43+E(175)^-43, E(175)^8+E(175)^-8, E(175)^57+E(175)^-57, E(175)^81+E(175)^-81, E(175)^79+E(175)^-79, E(175)^13+E(175)^-13, E(175)^39+E(175)^-39, E(175)^62+E(175)^-62, E(175)^58+E(175)^-58, E(175)^73+E(175)^-73, E(175)^6+E(175)^-6, E(175)^4+E(175)^-4, E(175)^16+E(175)^-16, E(175)^31+E(175)^-31, E(175)^23+E(175)^-23, E(175)^41+E(175)^-41, E(175)^12+E(175)^-12, E(175)^27+E(175)^-27, E(175)^76+E(175)^-76, E(175)^51+E(175)^-51, E(175)^44+E(175)^-44, E(175)^68+E(175)^-68, E(175)^67+E(175)^-67, E(175)^59+E(175)^-59, E(175)^78+E(175)^-78, E(175)^24+E(175)^-24, E(175)^46+E(175)^-46, E(175)^22+E(175)^-22, E(175)^34+E(175)^-34, E(175)^66+E(175)^-66, E(175)^29+E(175)^-29, E(175)^3+E(175)^-3, E(175)^61+E(175)^-61, E(175)+E(175)^-1, E(175)^19+E(175)^-19, E(175)^38+E(175)^-38, E(175)^86+E(175)^-86, E(175)^82+E(175)^-82, E(175)^69+E(175)^-69, E(175)^54+E(175)^-54, E(175)^74+E(175)^-74, E(175)^52+E(175)^-52, E(175)^37+E(175)^-37, E(175)^33+E(175)^-33, E(175)^48+E(175)^-48, E(175)^11+E(175)^-11, E(175)^9+E(175)^-9, E(175)^83+E(175)^-83], [2, 0, E(175)^35+E(175)^-35, E(175)^70+E(175)^-70, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^21+E(175)^-21, E(175)^56+E(175)^-56, E(175)^28+E(175)^-28, E(175)^14+E(175)^-14, E(175)^63+E(175)^-63, E(175)^84+E(175)^-84, E(175)^7+E(175)^-7, E(175)^42+E(175)^-42, E(175)^77+E(175)^-77, E(175)^49+E(175)^-49, E(175)^15+E(175)^-15, E(175)^80+E(175)^-80, E(175)^60+E(175)^-60, E(175)^20+E(175)^-20, E(175)^5+E(175)^-5, E(175)^10+E(175)^-10, E(175)^65+E(175)^-65, E(175)^55+E(175)^-55, E(175)^40+E(175)^-40, E(175)^30+E(175)^-30, E(175)^45+E(175)^-45, E(175)^85+E(175)^-85, E(175)^38+E(175)^-38, E(175)^47+E(175)^-47, E(175)^64+E(175)^-64, E(175)^29+E(175)^-29, E(175)^72+E(175)^-72, E(175)^18+E(175)^-18, E(175)^67+E(175)^-67, E(175)^32+E(175)^-32, E(175)^36+E(175)^-36, E(175)^23+E(175)^-23, E(175)^51+E(175)^-51, E(175)^3+E(175)^-3, E(175)^57+E(175)^-57, E(175)^83+E(175)^-83, E(175)^43+E(175)^-43, E(175)^31+E(175)^-31, E(175)^54+E(175)^-54, E(175)^62+E(175)^-62, E(175)^11+E(175)^-11, E(175)^13+E(175)^-13, E(175)^33+E(175)^-33, E(175)^52+E(175)^-52, E(175)^69+E(175)^-69, E(175)^46+E(175)^-46, E(175)^9+E(175)^-9, E(175)^81+E(175)^-81, E(175)^2+E(175)^-2, E(175)^34+E(175)^-34, E(175)^37+E(175)^-37, E(175)^48+E(175)^-48, E(175)+E(175)^-1, E(175)^26+E(175)^-26, E(175)^19+E(175)^-19, E(175)^82+E(175)^-82, E(175)^17+E(175)^-17, E(175)^66+E(175)^-66, E(175)^22+E(175)^-22, E(175)^74+E(175)^-74, E(175)^4+E(175)^-4, E(175)^78+E(175)^-78, E(175)^41+E(175)^-41, E(175)^59+E(175)^-59, E(175)^71+E(175)^-71, E(175)^53+E(175)^-53, E(175)^86+E(175)^-86, E(175)^76+E(175)^-76, E(175)^44+E(175)^-44, E(175)^87+E(175)^-87, E(175)^61+E(175)^-61, E(175)^68+E(175)^-68, E(175)^6+E(175)^-6, E(175)^79+E(175)^-79, E(175)^24+E(175)^-24, E(175)^73+E(175)^-73, E(175)^12+E(175)^-12, E(175)^58+E(175)^-58, E(175)^27+E(175)^-27, E(175)^39+E(175)^-39, E(175)^16+E(175)^-16, E(175)^8+E(175)^-8], [2, 0, E(175)^35+E(175)^-35, E(175)^70+E(175)^-70, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^14+E(175)^-14, E(175)^21+E(175)^-21, E(175)^77+E(175)^-77, E(175)^49+E(175)^-49, E(175)^42+E(175)^-42, E(175)^56+E(175)^-56, E(175)^63+E(175)^-63, E(175)^28+E(175)^-28, E(175)^7+E(175)^-7, E(175)^84+E(175)^-84, E(175)^85+E(175)^-85, E(175)^45+E(175)^-45, E(175)^10+E(175)^-10, E(175)^55+E(175)^-55, E(175)^30+E(175)^-30, E(175)^60+E(175)^-60, E(175)^40+E(175)^-40, E(175)^20+E(175)^-20, E(175)^65+E(175)^-65, E(175)^5+E(175)^-5, E(175)^80+E(175)^-80, E(175)^15+E(175)^-15, E(175)^17+E(175)^-17, E(175)^2+E(175)^-2, E(175)+E(175)^-1, E(175)^36+E(175)^-36, E(175)^23+E(175)^-23, E(175)^38+E(175)^-38, E(175)^53+E(175)^-53, E(175)^87+E(175)^-87, E(175)^76+E(175)^-76, E(175)^68+E(175)^-68, E(175)^9+E(175)^-9, E(175)^52+E(175)^-52, E(175)^62+E(175)^-62, E(175)^78+E(175)^-78, E(175)^13+E(175)^-13, E(175)^46+E(175)^-46, E(175)^61+E(175)^-61, E(175)^83+E(175)^-83, E(175)^74+E(175)^-74, E(175)^8+E(175)^-8, E(175)^47+E(175)^-47, E(175)^32+E(175)^-32, E(175)^29+E(175)^-29, E(175)^39+E(175)^-39, E(175)^19+E(175)^-19, E(175)^4+E(175)^-4, E(175)^82+E(175)^-82, E(175)^6+E(175)^-6, E(175)^58+E(175)^-58, E(175)^43+E(175)^-43, E(175)^41+E(175)^-41, E(175)^16+E(175)^-16, E(175)^79+E(175)^-79, E(175)^37+E(175)^-37, E(175)^3+E(175)^-3, E(175)^81+E(175)^-81, E(175)^27+E(175)^-27, E(175)^59+E(175)^-59, E(175)^11+E(175)^-11, E(175)^48+E(175)^-48, E(175)^69+E(175)^-69, E(175)^31+E(175)^-31, E(175)^64+E(175)^-64, E(175)^73+E(175)^-73, E(175)^26+E(175)^-26, E(175)^34+E(175)^-34, E(175)^54+E(175)^-54, E(175)^67+E(175)^-67, E(175)^51+E(175)^-51, E(175)^12+E(175)^-12, E(175)^71+E(175)^-71, E(175)^86+E(175)^-86, E(175)^66+E(175)^-66, E(175)^18+E(175)^-18, E(175)^33+E(175)^-33, E(175)^72+E(175)^-72, E(175)^57+E(175)^-57, E(175)^24+E(175)^-24, E(175)^44+E(175)^-44, E(175)^22+E(175)^-22], [2, 0, E(175)^35+E(175)^-35, E(175)^70+E(175)^-70, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^14+E(175)^-14, E(175)^21+E(175)^-21, E(175)^77+E(175)^-77, E(175)^49+E(175)^-49, E(175)^42+E(175)^-42, E(175)^56+E(175)^-56, E(175)^63+E(175)^-63, E(175)^28+E(175)^-28, E(175)^7+E(175)^-7, E(175)^84+E(175)^-84, E(175)^15+E(175)^-15, E(175)^80+E(175)^-80, E(175)^60+E(175)^-60, E(175)^20+E(175)^-20, E(175)^5+E(175)^-5, E(175)^10+E(175)^-10, E(175)^65+E(175)^-65, E(175)^55+E(175)^-55, E(175)^40+E(175)^-40, E(175)^30+E(175)^-30, E(175)^45+E(175)^-45, E(175)^85+E(175)^-85, E(175)^67+E(175)^-67, E(175)^23+E(175)^-23, E(175)^76+E(175)^-76, E(175)^64+E(175)^-64, E(175)^2+E(175)^-2, E(175)^87+E(175)^-87, E(175)^3+E(175)^-3, E(175)^38+E(175)^-38, E(175)+E(175)^-1, E(175)^82+E(175)^-82, E(175)^16+E(175)^-16, E(175)^73+E(175)^-73, E(175)^13+E(175)^-13, E(175)^22+E(175)^-22, E(175)^62+E(175)^-62, E(175)^4+E(175)^-4, E(175)^86+E(175)^-86, E(175)^8+E(175)^-8, E(175)^24+E(175)^-24, E(175)^83+E(175)^-83, E(175)^72+E(175)^-72, E(175)^18+E(175)^-18, E(175)^71+E(175)^-71, E(175)^11+E(175)^-11, E(175)^44+E(175)^-44, E(175)^46+E(175)^-46, E(175)^68+E(175)^-68, E(175)^69+E(175)^-69, E(175)^33+E(175)^-33, E(175)^57+E(175)^-57, E(175)^34+E(175)^-34, E(175)^9+E(175)^-9, E(175)^54+E(175)^-54, E(175)^12+E(175)^-12, E(175)^53+E(175)^-53, E(175)^31+E(175)^-31, E(175)^48+E(175)^-48, E(175)^66+E(175)^-66, E(175)^39+E(175)^-39, E(175)^27+E(175)^-27, E(175)^6+E(175)^-6, E(175)^81+E(175)^-81, E(175)^36+E(175)^-36, E(175)^52+E(175)^-52, E(175)^51+E(175)^-51, E(175)^41+E(175)^-41, E(175)^79+E(175)^-79, E(175)^17+E(175)^-17, E(175)^26+E(175)^-26, E(175)^37+E(175)^-37, E(175)^29+E(175)^-29, E(175)^61+E(175)^-61, E(175)^59+E(175)^-59, E(175)^32+E(175)^-32, E(175)^58+E(175)^-58, E(175)^47+E(175)^-47, E(175)^43+E(175)^-43, E(175)^74+E(175)^-74, E(175)^19+E(175)^-19, E(175)^78+E(175)^-78], [2, 0, E(175)^35+E(175)^-35, E(175)^70+E(175)^-70, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^84+E(175)^-84, E(175)^49+E(175)^-49, E(175)^63+E(175)^-63, E(175)^56+E(175)^-56, E(175)^77+E(175)^-77, E(175)^14+E(175)^-14, E(175)^28+E(175)^-28, E(175)^7+E(175)^-7, E(175)^42+E(175)^-42, E(175)^21+E(175)^-21, E(175)^60+E(175)^-60, E(175)^30+E(175)^-30, E(175)^65+E(175)^-65, E(175)^80+E(175)^-80, E(175)^20+E(175)^-20, E(175)^40+E(175)^-40, E(175)^85+E(175)^-85, E(175)^45+E(175)^-45, E(175)^15+E(175)^-15, E(175)^55+E(175)^-55, E(175)^5+E(175)^-5, E(175)^10+E(175)^-10, E(175)^23+E(175)^-23, E(175)^13+E(175)^-13, E(175)^81+E(175)^-81, E(175)^59+E(175)^-59, E(175)^62+E(175)^-62, E(175)^72+E(175)^-72, E(175)^82+E(175)^-82, E(175)^47+E(175)^-47, E(175)^31+E(175)^-31, E(175)^83+E(175)^-83, E(175)^29+E(175)^-29, E(175)^12+E(175)^-12, E(175)^53+E(175)^-53, E(175)^18+E(175)^-18, E(175)^3+E(175)^-3, E(175)^51+E(175)^-51, E(175)^41+E(175)^-41, E(175)^73+E(175)^-73, E(175)^44+E(175)^-44, E(175)^52+E(175)^-52, E(175)^43+E(175)^-43, E(175)^33+E(175)^-33, E(175)^74+E(175)^-74, E(175)^9+E(175)^-9, E(175)^36+E(175)^-36, E(175)^26+E(175)^-26, E(175)^8+E(175)^-8, E(175)^39+E(175)^-39, E(175)^27+E(175)^-27, E(175)^17+E(175)^-17, E(175)^4+E(175)^-4, E(175)^71+E(175)^-71, E(175)^76+E(175)^-76, E(175)^22+E(175)^-22, E(175)^68+E(175)^-68, E(175)^86+E(175)^-86, E(175)^87+E(175)^-87, E(175)^54+E(175)^-54, E(175)^16+E(175)^-16, E(175)^38+E(175)^-38, E(175)^11+E(175)^-11, E(175)^61+E(175)^-61, E(175)^66+E(175)^-66, E(175)^37+E(175)^-37, E(175)^6+E(175)^-6, E(175)^46+E(175)^-46, E(175)+E(175)^-1, E(175)^2+E(175)^-2, E(175)^69+E(175)^-69, E(175)^78+E(175)^-78, E(175)^24+E(175)^-24, E(175)^34+E(175)^-34, E(175)^79+E(175)^-79, E(175)^58+E(175)^-58, E(175)^48+E(175)^-48, E(175)^57+E(175)^-57, E(175)^67+E(175)^-67, E(175)^19+E(175)^-19, E(175)^64+E(175)^-64, E(175)^32+E(175)^-32], [2, 0, E(175)^35+E(175)^-35, E(175)^70+E(175)^-70, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^84+E(175)^-84, E(175)^49+E(175)^-49, E(175)^63+E(175)^-63, E(175)^56+E(175)^-56, E(175)^77+E(175)^-77, E(175)^14+E(175)^-14, E(175)^28+E(175)^-28, E(175)^7+E(175)^-7, E(175)^42+E(175)^-42, E(175)^21+E(175)^-21, E(175)^10+E(175)^-10, E(175)^5+E(175)^-5, E(175)^40+E(175)^-40, E(175)^45+E(175)^-45, E(175)^55+E(175)^-55, E(175)^65+E(175)^-65, E(175)^15+E(175)^-15, E(175)^80+E(175)^-80, E(175)^85+E(175)^-85, E(175)^20+E(175)^-20, E(175)^30+E(175)^-30, E(175)^60+E(175)^-60, E(175)^2+E(175)^-2, E(175)^62+E(175)^-62, E(175)^31+E(175)^-31, E(175)^66+E(175)^-66, E(175)^13+E(175)^-13, E(175)^47+E(175)^-47, E(175)^68+E(175)^-68, E(175)^72+E(175)^-72, E(175)^81+E(175)^-81, E(175)^8+E(175)^-8, E(175)^71+E(175)^-71, E(175)^37+E(175)^-37, E(175)^3+E(175)^-3, E(175)^32+E(175)^-32, E(175)^53+E(175)^-53, E(175)^26+E(175)^-26, E(175)^34+E(175)^-34, E(175)^52+E(175)^-52, E(175)^19+E(175)^-19, E(175)^73+E(175)^-73, E(175)^57+E(175)^-57, E(175)^58+E(175)^-58, E(175)^24+E(175)^-24, E(175)^16+E(175)^-16, E(175)^64+E(175)^-64, E(175)^51+E(175)^-51, E(175)^83+E(175)^-83, E(175)^11+E(175)^-11, E(175)^48+E(175)^-48, E(175)^67+E(175)^-67, E(175)^46+E(175)^-46, E(175)^29+E(175)^-29, E(175)+E(175)^-1, E(175)^78+E(175)^-78, E(175)^82+E(175)^-82, E(175)^61+E(175)^-61, E(175)^38+E(175)^-38, E(175)^79+E(175)^-79, E(175)^9+E(175)^-9, E(175)^87+E(175)^-87, E(175)^39+E(175)^-39, E(175)^86+E(175)^-86, E(175)^59+E(175)^-59, E(175)^12+E(175)^-12, E(175)^69+E(175)^-69, E(175)^4+E(175)^-4, E(175)^76+E(175)^-76, E(175)^23+E(175)^-23, E(175)^6+E(175)^-6, E(175)^22+E(175)^-22, E(175)^74+E(175)^-74, E(175)^41+E(175)^-41, E(175)^54+E(175)^-54, E(175)^33+E(175)^-33, E(175)^27+E(175)^-27, E(175)^43+E(175)^-43, E(175)^17+E(175)^-17, E(175)^44+E(175)^-44, E(175)^36+E(175)^-36, E(175)^18+E(175)^-18], [2, 0, E(175)^35+E(175)^-35, E(175)^70+E(175)^-70, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^56+E(175)^-56, E(175)^84+E(175)^-84, E(175)^42+E(175)^-42, E(175)^21+E(175)^-21, E(175)^7+E(175)^-7, E(175)^49+E(175)^-49, E(175)^77+E(175)^-77, E(175)^63+E(175)^-63, E(175)^28+E(175)^-28, E(175)^14+E(175)^-14, E(175)^60+E(175)^-60, E(175)^30+E(175)^-30, E(175)^65+E(175)^-65, E(175)^80+E(175)^-80, E(175)^20+E(175)^-20, E(175)^40+E(175)^-40, E(175)^85+E(175)^-85, E(175)^45+E(175)^-45, E(175)^15+E(175)^-15, E(175)^55+E(175)^-55, E(175)^5+E(175)^-5, E(175)^10+E(175)^-10, E(175)^82+E(175)^-82, E(175)^83+E(175)^-83, E(175)^46+E(175)^-46, E(175)^81+E(175)^-81, E(175)^8+E(175)^-8, E(175)^2+E(175)^-2, E(175)^12+E(175)^-12, E(175)^23+E(175)^-23, E(175)^4+E(175)^-4, E(175)^22+E(175)^-22, E(175)^64+E(175)^-64, E(175)^58+E(175)^-58, E(175)^52+E(175)^-52, E(175)^87+E(175)^-87, E(175)^73+E(175)^-73, E(175)^16+E(175)^-16, E(175)^6+E(175)^-6, E(175)^32+E(175)^-32, E(175)^79+E(175)^-79, E(175)^18+E(175)^-18, E(175)^62+E(175)^-62, E(175)^72+E(175)^-72, E(175)^66+E(175)^-66, E(175)^44+E(175)^-44, E(175)+E(175)^-1, E(175)^9+E(175)^-9, E(175)^78+E(175)^-78, E(175)^74+E(175)^-74, E(175)^43+E(175)^-43, E(175)^53+E(175)^-53, E(175)^39+E(175)^-39, E(175)^36+E(175)^-36, E(175)^41+E(175)^-41, E(175)^48+E(175)^-48, E(175)^37+E(175)^-37, E(175)^51+E(175)^-51, E(175)^17+E(175)^-17, E(175)^86+E(175)^-86, E(175)^19+E(175)^-19, E(175)^67+E(175)^-67, E(175)^24+E(175)^-24, E(175)^26+E(175)^-26, E(175)^31+E(175)^-31, E(175)^33+E(175)^-33, E(175)^29+E(175)^-29, E(175)^11+E(175)^-11, E(175)^34+E(175)^-34, E(175)^68+E(175)^-68, E(175)^71+E(175)^-71, E(175)^27+E(175)^-27, E(175)^59+E(175)^-59, E(175)^69+E(175)^-69, E(175)^61+E(175)^-61, E(175)^47+E(175)^-47, E(175)^57+E(175)^-57, E(175)^13+E(175)^-13, E(175)^3+E(175)^-3, E(175)^54+E(175)^-54, E(175)^76+E(175)^-76, E(175)^38+E(175)^-38], [2, 0, E(175)^35+E(175)^-35, E(175)^70+E(175)^-70, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^56+E(175)^-56, E(175)^84+E(175)^-84, E(175)^42+E(175)^-42, E(175)^21+E(175)^-21, E(175)^7+E(175)^-7, E(175)^49+E(175)^-49, E(175)^77+E(175)^-77, E(175)^63+E(175)^-63, E(175)^28+E(175)^-28, E(175)^14+E(175)^-14, E(175)^10+E(175)^-10, E(175)^5+E(175)^-5, E(175)^40+E(175)^-40, E(175)^45+E(175)^-45, E(175)^55+E(175)^-55, E(175)^65+E(175)^-65, E(175)^15+E(175)^-15, E(175)^80+E(175)^-80, E(175)^85+E(175)^-85, E(175)^20+E(175)^-20, E(175)^30+E(175)^-30, E(175)^60+E(175)^-60, E(175)^68+E(175)^-68, E(175)^8+E(175)^-8, E(175)^4+E(175)^-4, E(175)^31+E(175)^-31, E(175)^83+E(175)^-83, E(175)^23+E(175)^-23, E(175)^37+E(175)^-37, E(175)^2+E(175)^-2, E(175)^46+E(175)^-46, E(175)^78+E(175)^-78, E(175)^36+E(175)^-36, E(175)^33+E(175)^-33, E(175)^73+E(175)^-73, E(175)^38+E(175)^-38, E(175)^52+E(175)^-52, E(175)^9+E(175)^-9, E(175)^69+E(175)^-69, E(175)^18+E(175)^-18, E(175)^54+E(175)^-54, E(175)^32+E(175)^-32, E(175)^13+E(175)^-13, E(175)^47+E(175)^-47, E(175)^59+E(175)^-59, E(175)^19+E(175)^-19, E(175)^76+E(175)^-76, E(175)^16+E(175)^-16, E(175)^22+E(175)^-22, E(175)^24+E(175)^-24, E(175)^57+E(175)^-57, E(175)^3+E(175)^-3, E(175)^11+E(175)^-11, E(175)^64+E(175)^-64, E(175)^34+E(175)^-34, E(175)^27+E(175)^-27, E(175)^12+E(175)^-12, E(175)^26+E(175)^-26, E(175)^67+E(175)^-67, E(175)^61+E(175)^-61, E(175)^44+E(175)^-44, E(175)^17+E(175)^-17, E(175)^74+E(175)^-74, E(175)^51+E(175)^-51, E(175)^81+E(175)^-81, E(175)^58+E(175)^-58, E(175)^71+E(175)^-71, E(175)^39+E(175)^-39, E(175)^41+E(175)^-41, E(175)^82+E(175)^-82, E(175)^29+E(175)^-29, E(175)^48+E(175)^-48, E(175)^66+E(175)^-66, E(175)^6+E(175)^-6, E(175)^86+E(175)^-86, E(175)^72+E(175)^-72, E(175)^43+E(175)^-43, E(175)^62+E(175)^-62, E(175)^53+E(175)^-53, E(175)^79+E(175)^-79, E(175)+E(175)^-1, E(175)^87+E(175)^-87], [2, 0, E(175)^35+E(175)^-35, E(175)^70+E(175)^-70, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^49+E(175)^-49, E(175)^14+E(175)^-14, E(175)^7+E(175)^-7, E(175)^84+E(175)^-84, E(175)^28+E(175)^-28, E(175)^21+E(175)^-21, E(175)^42+E(175)^-42, E(175)^77+E(175)^-77, E(175)^63+E(175)^-63, E(175)^56+E(175)^-56, E(175)^60+E(175)^-60, E(175)^30+E(175)^-30, E(175)^65+E(175)^-65, E(175)^80+E(175)^-80, E(175)^20+E(175)^-20, E(175)^40+E(175)^-40, E(175)^85+E(175)^-85, E(175)^45+E(175)^-45, E(175)^15+E(175)^-15, E(175)^55+E(175)^-55, E(175)^5+E(175)^-5, E(175)^10+E(175)^-10, E(175)^47+E(175)^-47, E(175)^57+E(175)^-57, E(175)^59+E(175)^-59, E(175)^24+E(175)^-24, E(175)^43+E(175)^-43, E(175)^33+E(175)^-33, E(175)^23+E(175)^-23, E(175)^58+E(175)^-58, E(175)^66+E(175)^-66, E(175)^13+E(175)^-13, E(175)^6+E(175)^-6, E(175)^82+E(175)^-82, E(175)^17+E(175)^-17, E(175)^52+E(175)^-52, E(175)^67+E(175)^-67, E(175)^86+E(175)^-86, E(175)^76+E(175)^-76, E(175)^3+E(175)^-3, E(175)^9+E(175)^-9, E(175)^53+E(175)^-53, E(175)^27+E(175)^-27, E(175)^37+E(175)^-37, E(175)^39+E(175)^-39, E(175)^26+E(175)^-26, E(175)^71+E(175)^-71, E(175)^61+E(175)^-61, E(175)^62+E(175)^-62, E(175)^4+E(175)^-4, E(175)^78+E(175)^-78, E(175)^87+E(175)^-87, E(175)^31+E(175)^-31, E(175)^69+E(175)^-69, E(175)^64+E(175)^-64, E(175)^83+E(175)^-83, E(175)^2+E(175)^-2, E(175)^54+E(175)^-54, E(175)^18+E(175)^-18, E(175)^19+E(175)^-19, E(175)^51+E(175)^-51, E(175)^32+E(175)^-32, E(175)^46+E(175)^-46, E(175)^79+E(175)^-79, E(175)^74+E(175)^-74, E(175)^68+E(175)^-68, E(175)^41+E(175)^-41, E(175)^81+E(175)^-81, E(175)^36+E(175)^-36, E(175)^72+E(175)^-72, E(175)^34+E(175)^-34, E(175)^8+E(175)^-8, E(175)^11+E(175)^-11, E(175)+E(175)^-1, E(175)^44+E(175)^-44, E(175)^12+E(175)^-12, E(175)^22+E(175)^-22, E(175)^48+E(175)^-48, E(175)^38+E(175)^-38, E(175)^16+E(175)^-16, E(175)^29+E(175)^-29, E(175)^73+E(175)^-73], [2, 0, E(175)^35+E(175)^-35, E(175)^70+E(175)^-70, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^49+E(175)^-49, E(175)^14+E(175)^-14, E(175)^7+E(175)^-7, E(175)^84+E(175)^-84, E(175)^28+E(175)^-28, E(175)^21+E(175)^-21, E(175)^42+E(175)^-42, E(175)^77+E(175)^-77, E(175)^63+E(175)^-63, E(175)^56+E(175)^-56, E(175)^10+E(175)^-10, E(175)^5+E(175)^-5, E(175)^40+E(175)^-40, E(175)^45+E(175)^-45, E(175)^55+E(175)^-55, E(175)^65+E(175)^-65, E(175)^15+E(175)^-15, E(175)^80+E(175)^-80, E(175)^85+E(175)^-85, E(175)^20+E(175)^-20, E(175)^30+E(175)^-30, E(175)^60+E(175)^-60, E(175)^72+E(175)^-72, E(175)^43+E(175)^-43, E(175)^66+E(175)^-66, E(175)^74+E(175)^-74, E(175)^57+E(175)^-57, E(175)^58+E(175)^-58, E(175)^2+E(175)^-2, E(175)^33+E(175)^-33, E(175)^59+E(175)^-59, E(175)^62+E(175)^-62, E(175)^69+E(175)^-69, E(175)^68+E(175)^-68, E(175)^67+E(175)^-67, E(175)^73+E(175)^-73, E(175)^17+E(175)^-17, E(175)^61+E(175)^-61, E(175)+E(175)^-1, E(175)^53+E(175)^-53, E(175)^16+E(175)^-16, E(175)^3+E(175)^-3, E(175)^48+E(175)^-48, E(175)^12+E(175)^-12, E(175)^11+E(175)^-11, E(175)^51+E(175)^-51, E(175)^29+E(175)^-29, E(175)^86+E(175)^-86, E(175)^13+E(175)^-13, E(175)^46+E(175)^-46, E(175)^22+E(175)^-22, E(175)^38+E(175)^-38, E(175)^81+E(175)^-81, E(175)^6+E(175)^-6, E(175)^36+E(175)^-36, E(175)^8+E(175)^-8, E(175)^23+E(175)^-23, E(175)^79+E(175)^-79, E(175)^32+E(175)^-32, E(175)^44+E(175)^-44, E(175)^26+E(175)^-26, E(175)^18+E(175)^-18, E(175)^4+E(175)^-4, E(175)^54+E(175)^-54, E(175)^24+E(175)^-24, E(175)^82+E(175)^-82, E(175)^34+E(175)^-34, E(175)^31+E(175)^-31, E(175)^64+E(175)^-64, E(175)^47+E(175)^-47, E(175)^41+E(175)^-41, E(175)^83+E(175)^-83, E(175)^39+E(175)^-39, E(175)^76+E(175)^-76, E(175)^19+E(175)^-19, E(175)^37+E(175)^-37, E(175)^78+E(175)^-78, E(175)^27+E(175)^-27, E(175)^87+E(175)^-87, E(175)^9+E(175)^-9, E(175)^71+E(175)^-71, E(175)^52+E(175)^-52], [2, 0, E(175)^35+E(175)^-35, E(175)^70+E(175)^-70, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^21+E(175)^-21, E(175)^56+E(175)^-56, E(175)^28+E(175)^-28, E(175)^14+E(175)^-14, E(175)^63+E(175)^-63, E(175)^84+E(175)^-84, E(175)^7+E(175)^-7, E(175)^42+E(175)^-42, E(175)^77+E(175)^-77, E(175)^49+E(175)^-49, E(175)^60+E(175)^-60, E(175)^30+E(175)^-30, E(175)^65+E(175)^-65, E(175)^80+E(175)^-80, E(175)^20+E(175)^-20, E(175)^40+E(175)^-40, E(175)^85+E(175)^-85, E(175)^45+E(175)^-45, E(175)^15+E(175)^-15, E(175)^55+E(175)^-55, E(175)^5+E(175)^-5, E(175)^10+E(175)^-10, E(175)^12+E(175)^-12, E(175)^22+E(175)^-22, E(175)^11+E(175)^-11, E(175)^46+E(175)^-46, E(175)^78+E(175)^-78, E(175)^68+E(175)^-68, E(175)^58+E(175)^-58, E(175)^82+E(175)^-82, E(175)^39+E(175)^-39, E(175)^48+E(175)^-48, E(175)^76+E(175)^-76, E(175)^47+E(175)^-47, E(175)^18+E(175)^-18, E(175)^17+E(175)^-17, E(175)^32+E(175)^-32, E(175)^19+E(175)^-19, E(175)^29+E(175)^-29, E(175)^38+E(175)^-38, E(175)^61+E(175)^-61, E(175)^87+E(175)^-87, E(175)^8+E(175)^-8, E(175)^2+E(175)^-2, E(175)^31+E(175)^-31, E(175)^79+E(175)^-79, E(175)^34+E(175)^-34, E(175)^44+E(175)^-44, E(175)^27+E(175)^-27, E(175)^66+E(175)^-66, E(175)^62+E(175)^-62, E(175)^52+E(175)^-52, E(175)^74+E(175)^-74, E(175)+E(175)^-1, E(175)^6+E(175)^-6, E(175)^57+E(175)^-57, E(175)^33+E(175)^-33, E(175)^16+E(175)^-16, E(175)^53+E(175)^-53, E(175)^51+E(175)^-51, E(175)^54+E(175)^-54, E(175)^3+E(175)^-3, E(175)^59+E(175)^-59, E(175)^9+E(175)^-9, E(175)^4+E(175)^-4, E(175)^72+E(175)^-72, E(175)^64+E(175)^-64, E(175)^24+E(175)^-24, E(175)^69+E(175)^-69, E(175)^37+E(175)^-37, E(175)^36+E(175)^-36, E(175)^43+E(175)^-43, E(175)^81+E(175)^-81, E(175)^71+E(175)^-71, E(175)^26+E(175)^-26, E(175)^23+E(175)^-23, E(175)^13+E(175)^-13, E(175)^83+E(175)^-83, E(175)^73+E(175)^-73, E(175)^86+E(175)^-86, E(175)^41+E(175)^-41, E(175)^67+E(175)^-67], [2, 0, E(175)^35+E(175)^-35, E(175)^70+E(175)^-70, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^21+E(175)^-21, E(175)^56+E(175)^-56, E(175)^28+E(175)^-28, E(175)^14+E(175)^-14, E(175)^63+E(175)^-63, E(175)^84+E(175)^-84, E(175)^7+E(175)^-7, E(175)^42+E(175)^-42, E(175)^77+E(175)^-77, E(175)^49+E(175)^-49, E(175)^10+E(175)^-10, E(175)^5+E(175)^-5, E(175)^40+E(175)^-40, E(175)^45+E(175)^-45, E(175)^55+E(175)^-55, E(175)^65+E(175)^-65, E(175)^15+E(175)^-15, E(175)^80+E(175)^-80, E(175)^85+E(175)^-85, E(175)^20+E(175)^-20, E(175)^30+E(175)^-30, E(175)^60+E(175)^-60, E(175)^37+E(175)^-37, E(175)^78+E(175)^-78, E(175)^39+E(175)^-39, E(175)^4+E(175)^-4, E(175)^22+E(175)^-22, E(175)^82+E(175)^-82, E(175)^33+E(175)^-33, E(175)^68+E(175)^-68, E(175)^11+E(175)^-11, E(175)^27+E(175)^-27, E(175)+E(175)^-1, E(175)^72+E(175)^-72, E(175)^32+E(175)^-32, E(175)^67+E(175)^-67, E(175)^18+E(175)^-18, E(175)^44+E(175)^-44, E(175)^71+E(175)^-71, E(175)^87+E(175)^-87, E(175)^86+E(175)^-86, E(175)^38+E(175)^-38, E(175)^83+E(175)^-83, E(175)^23+E(175)^-23, E(175)^81+E(175)^-81, E(175)^54+E(175)^-54, E(175)^41+E(175)^-41, E(175)^19+E(175)^-19, E(175)^48+E(175)^-48, E(175)^59+E(175)^-59, E(175)^13+E(175)^-13, E(175)^73+E(175)^-73, E(175)^24+E(175)^-24, E(175)^76+E(175)^-76, E(175)^69+E(175)^-69, E(175)^43+E(175)^-43, E(175)^58+E(175)^-58, E(175)^9+E(175)^-9, E(175)^3+E(175)^-3, E(175)^26+E(175)^-26, E(175)^79+E(175)^-79, E(175)^53+E(175)^-53, E(175)^66+E(175)^-66, E(175)^16+E(175)^-16, E(175)^46+E(175)^-46, E(175)^47+E(175)^-47, E(175)^36+E(175)^-36, E(175)^74+E(175)^-74, E(175)^6+E(175)^-6, E(175)^12+E(175)^-12, E(175)^64+E(175)^-64, E(175)^57+E(175)^-57, E(175)^31+E(175)^-31, E(175)^29+E(175)^-29, E(175)^51+E(175)^-51, E(175)^2+E(175)^-2, E(175)^62+E(175)^-62, E(175)^8+E(175)^-8, E(175)^52+E(175)^-52, E(175)^61+E(175)^-61, E(175)^34+E(175)^-34, E(175)^17+E(175)^-17], [2, 0, E(175)^35+E(175)^-35, E(175)^70+E(175)^-70, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^14+E(175)^-14, E(175)^21+E(175)^-21, E(175)^77+E(175)^-77, E(175)^49+E(175)^-49, E(175)^42+E(175)^-42, E(175)^56+E(175)^-56, E(175)^63+E(175)^-63, E(175)^28+E(175)^-28, E(175)^7+E(175)^-7, E(175)^84+E(175)^-84, E(175)^60+E(175)^-60, E(175)^30+E(175)^-30, E(175)^65+E(175)^-65, E(175)^80+E(175)^-80, E(175)^20+E(175)^-20, E(175)^40+E(175)^-40, E(175)^85+E(175)^-85, E(175)^45+E(175)^-45, E(175)^15+E(175)^-15, E(175)^55+E(175)^-55, E(175)^5+E(175)^-5, E(175)^10+E(175)^-10, E(175)^58+E(175)^-58, E(175)^48+E(175)^-48, E(175)^24+E(175)^-24, E(175)^11+E(175)^-11, E(175)^27+E(175)^-27, E(175)^37+E(175)^-37, E(175)^47+E(175)^-47, E(175)^12+E(175)^-12, E(175)^74+E(175)^-74, E(175)^57+E(175)^-57, E(175)^41+E(175)^-41, E(175)^23+E(175)^-23, E(175)^87+E(175)^-87, E(175)^53+E(175)^-53, E(175)^38+E(175)^-38, E(175)^54+E(175)^-54, E(175)^64+E(175)^-64, E(175)^67+E(175)^-67, E(175)^26+E(175)^-26, E(175)^17+E(175)^-17, E(175)^78+E(175)^-78, E(175)^68+E(175)^-68, E(175)^4+E(175)^-4, E(175)^61+E(175)^-61, E(175)^69+E(175)^-69, E(175)^79+E(175)^-79, E(175)^43+E(175)^-43, E(175)^31+E(175)^-31, E(175)^8+E(175)^-8, E(175)^18+E(175)^-18, E(175)^66+E(175)^-66, E(175)^34+E(175)^-34, E(175)^29+E(175)^-29, E(175)^13+E(175)^-13, E(175)^72+E(175)^-72, E(175)^19+E(175)^-19, E(175)^52+E(175)^-52, E(175)^16+E(175)^-16, E(175)^86+E(175)^-86, E(175)^73+E(175)^-73, E(175)^81+E(175)^-81, E(175)^44+E(175)^-44, E(175)^39+E(175)^-39, E(175)^2+E(175)^-2, E(175)^76+E(175)^-76, E(175)^59+E(175)^-59, E(175)^71+E(175)^-71, E(175)^33+E(175)^-33, E(175)+E(175)^-1, E(175)^62+E(175)^-62, E(175)^46+E(175)^-46, E(175)^36+E(175)^-36, E(175)^9+E(175)^-9, E(175)^82+E(175)^-82, E(175)^83+E(175)^-83, E(175)^22+E(175)^-22, E(175)^32+E(175)^-32, E(175)^51+E(175)^-51, E(175)^6+E(175)^-6, E(175)^3+E(175)^-3], [2, 0, E(175)^35+E(175)^-35, E(175)^70+E(175)^-70, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^25+E(175)^-25, E(175)^14+E(175)^-14, E(175)^21+E(175)^-21, E(175)^77+E(175)^-77, E(175)^49+E(175)^-49, E(175)^42+E(175)^-42, E(175)^56+E(175)^-56, E(175)^63+E(175)^-63, E(175)^28+E(175)^-28, E(175)^7+E(175)^-7, E(175)^84+E(175)^-84, E(175)^10+E(175)^-10, E(175)^5+E(175)^-5, E(175)^40+E(175)^-40, E(175)^45+E(175)^-45, E(175)^55+E(175)^-55, E(175)^65+E(175)^-65, E(175)^15+E(175)^-15, E(175)^80+E(175)^-80, E(175)^85+E(175)^-85, E(175)^20+E(175)^-20, E(175)^30+E(175)^-30, E(175)^60+E(175)^-60, E(175)^33+E(175)^-33, E(175)^27+E(175)^-27, E(175)^74+E(175)^-74, E(175)^39+E(175)^-39, E(175)^48+E(175)^-48, E(175)^12+E(175)^-12, E(175)^72+E(175)^-72, E(175)^37+E(175)^-37, E(175)^24+E(175)^-24, E(175)^43+E(175)^-43, E(175)^34+E(175)^-34, E(175)^2+E(175)^-2, E(175)^38+E(175)^-38, E(175)^3+E(175)^-3, E(175)^87+E(175)^-87, E(175)^79+E(175)^-79, E(175)^36+E(175)^-36, E(175)^17+E(175)^-17, E(175)^51+E(175)^-51, E(175)^67+E(175)^-67, E(175)^22+E(175)^-22, E(175)^82+E(175)^-82, E(175)^46+E(175)^-46, E(175)^86+E(175)^-86, E(175)^6+E(175)^-6, E(175)^54+E(175)^-54, E(175)^57+E(175)^-57, E(175)^81+E(175)^-81, E(175)^83+E(175)^-83, E(175)^32+E(175)^-32, E(175)^59+E(175)^-59, E(175)^41+E(175)^-41, E(175)^71+E(175)^-71, E(175)^62+E(175)^-62, E(175)^47+E(175)^-47, E(175)^44+E(175)^-44, E(175)^73+E(175)^-73, E(175)^9+E(175)^-9, E(175)^61+E(175)^-61, E(175)^52+E(175)^-52, E(175)^31+E(175)^-31, E(175)^19+E(175)^-19, E(175)^11+E(175)^-11, E(175)^23+E(175)^-23, E(175)+E(175)^-1, E(175)^66+E(175)^-66, E(175)^29+E(175)^-29, E(175)^58+E(175)^-58, E(175)^76+E(175)^-76, E(175)^13+E(175)^-13, E(175)^4+E(175)^-4, E(175)^64+E(175)^-64, E(175)^16+E(175)^-16, E(175)^68+E(175)^-68, E(175)^8+E(175)^-8, E(175)^78+E(175)^-78, E(175)^18+E(175)^-18, E(175)^26+E(175)^-26, E(175)^69+E(175)^-69, E(175)^53+E(175)^-53], [2, 0, E(175)^35+E(175)^-35, E(175)^70+E(175)^-70, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^84+E(175)^-84, E(175)^49+E(175)^-49, E(175)^63+E(175)^-63, E(175)^56+E(175)^-56, E(175)^77+E(175)^-77, E(175)^14+E(175)^-14, E(175)^28+E(175)^-28, E(175)^7+E(175)^-7, E(175)^42+E(175)^-42, E(175)^21+E(175)^-21, E(175)^65+E(175)^-65, E(175)^55+E(175)^-55, E(175)^85+E(175)^-85, E(175)^30+E(175)^-30, E(175)^80+E(175)^-80, E(175)^15+E(175)^-15, E(175)^10+E(175)^-10, E(175)^5+E(175)^-5, E(175)^60+E(175)^-60, E(175)^45+E(175)^-45, E(175)^20+E(175)^-20, E(175)^40+E(175)^-40, E(175)^48+E(175)^-48, E(175)^87+E(175)^-87, E(175)^44+E(175)^-44, E(175)^9+E(175)^-9, E(175)^38+E(175)^-38, E(175)^78+E(175)^-78, E(175)^57+E(175)^-57, E(175)^22+E(175)^-22, E(175)^19+E(175)^-19, E(175)^17+E(175)^-17, E(175)^46+E(175)^-46, E(175)^13+E(175)^-13, E(175)^72+E(175)^-72, E(175)^68+E(175)^-68, E(175)^47+E(175)^-47, E(175)^76+E(175)^-76, E(175)^59+E(175)^-59, E(175)^23+E(175)^-23, E(175)^69+E(175)^-69, E(175)^2+E(175)^-2, E(175)^32+E(175)^-32, E(175)^8+E(175)^-8, E(175)^51+E(175)^-51, E(175)^34+E(175)^-34, E(175)^39+E(175)^-39, E(175)+E(175)^-1, E(175)^67+E(175)^-67, E(175)^86+E(175)^-86, E(175)^73+E(175)^-73, E(175)^33+E(175)^-33, E(175)^54+E(175)^-54, E(175)^4+E(175)^-4, E(175)^24+E(175)^-24, E(175)^53+E(175)^-53, E(175)^43+E(175)^-43, E(175)^64+E(175)^-64, E(175)^37+E(175)^-37, E(175)^29+E(175)^-29, E(175)^41+E(175)^-41, E(175)^12+E(175)^-12, E(175)^61+E(175)^-61, E(175)^36+E(175)^-36, E(175)^16+E(175)^-16, E(175)^62+E(175)^-62, E(175)^81+E(175)^-81, E(175)^79+E(175)^-79, E(175)^74+E(175)^-74, E(175)^27+E(175)^-27, E(175)^31+E(175)^-31, E(175)^3+E(175)^-3, E(175)^26+E(175)^-26, E(175)^66+E(175)^-66, E(175)^71+E(175)^-71, E(175)^83+E(175)^-83, E(175)^52+E(175)^-52, E(175)^18+E(175)^-18, E(175)^58+E(175)^-58, E(175)^6+E(175)^-6, E(175)^11+E(175)^-11, E(175)^82+E(175)^-82], [2, 0, E(175)^35+E(175)^-35, E(175)^70+E(175)^-70, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^84+E(175)^-84, E(175)^49+E(175)^-49, E(175)^63+E(175)^-63, E(175)^56+E(175)^-56, E(175)^77+E(175)^-77, E(175)^14+E(175)^-14, E(175)^28+E(175)^-28, E(175)^7+E(175)^-7, E(175)^42+E(175)^-42, E(175)^21+E(175)^-21, E(175)^40+E(175)^-40, E(175)^20+E(175)^-20, E(175)^15+E(175)^-15, E(175)^5+E(175)^-5, E(175)^45+E(175)^-45, E(175)^85+E(175)^-85, E(175)^60+E(175)^-60, E(175)^30+E(175)^-30, E(175)^10+E(175)^-10, E(175)^80+E(175)^-80, E(175)^55+E(175)^-55, E(175)^65+E(175)^-65, E(175)^27+E(175)^-27, E(175)^38+E(175)^-38, E(175)^19+E(175)^-19, E(175)^16+E(175)^-16, E(175)^87+E(175)^-87, E(175)^22+E(175)^-22, E(175)^43+E(175)^-43, E(175)^78+E(175)^-78, E(175)^44+E(175)^-44, E(175)^67+E(175)^-67, E(175)^4+E(175)^-4, E(175)^62+E(175)^-62, E(175)^47+E(175)^-47, E(175)^82+E(175)^-82, E(175)^72+E(175)^-72, E(175)+E(175)^-1, E(175)^66+E(175)^-66, E(175)^2+E(175)^-2, E(175)^6+E(175)^-6, E(175)^23+E(175)^-23, E(175)^18+E(175)^-18, E(175)^83+E(175)^-83, E(175)^26+E(175)^-26, E(175)^41+E(175)^-41, E(175)^11+E(175)^-11, E(175)^76+E(175)^-76, E(175)^17+E(175)^-17, E(175)^61+E(175)^-61, E(175)^52+E(175)^-52, E(175)^58+E(175)^-58, E(175)^79+E(175)^-79, E(175)^46+E(175)^-46, E(175)^74+E(175)^-74, E(175)^3+E(175)^-3, E(175)^57+E(175)^-57, E(175)^36+E(175)^-36, E(175)^12+E(175)^-12, E(175)^71+E(175)^-71, E(175)^34+E(175)^-34, E(175)^37+E(175)^-37, E(175)^86+E(175)^-86, E(175)^64+E(175)^-64, E(175)^9+E(175)^-9, E(175)^13+E(175)^-13, E(175)^31+E(175)^-31, E(175)^54+E(175)^-54, E(175)^24+E(175)^-24, E(175)^48+E(175)^-48, E(175)^81+E(175)^-81, E(175)^53+E(175)^-53, E(175)^51+E(175)^-51, E(175)^59+E(175)^-59, E(175)^29+E(175)^-29, E(175)^8+E(175)^-8, E(175)^73+E(175)^-73, E(175)^32+E(175)^-32, E(175)^33+E(175)^-33, E(175)^69+E(175)^-69, E(175)^39+E(175)^-39, E(175)^68+E(175)^-68], [2, 0, E(175)^35+E(175)^-35, E(175)^70+E(175)^-70, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^56+E(175)^-56, E(175)^84+E(175)^-84, E(175)^42+E(175)^-42, E(175)^21+E(175)^-21, E(175)^7+E(175)^-7, E(175)^49+E(175)^-49, E(175)^77+E(175)^-77, E(175)^63+E(175)^-63, E(175)^28+E(175)^-28, E(175)^14+E(175)^-14, E(175)^65+E(175)^-65, E(175)^55+E(175)^-55, E(175)^85+E(175)^-85, E(175)^30+E(175)^-30, E(175)^80+E(175)^-80, E(175)^15+E(175)^-15, E(175)^10+E(175)^-10, E(175)^5+E(175)^-5, E(175)^60+E(175)^-60, E(175)^45+E(175)^-45, E(175)^20+E(175)^-20, E(175)^40+E(175)^-40, E(175)^57+E(175)^-57, E(175)^17+E(175)^-17, E(175)^79+E(175)^-79, E(175)^44+E(175)^-44, E(175)^67+E(175)^-67, E(175)^27+E(175)^-27, E(175)^13+E(175)^-13, E(175)^48+E(175)^-48, E(175)^54+E(175)^-54, E(175)^53+E(175)^-53, E(175)^11+E(175)^-11, E(175)^83+E(175)^-83, E(175)^2+E(175)^-2, E(175)^37+E(175)^-37, E(175)^23+E(175)^-23, E(175)^41+E(175)^-41, E(175)^81+E(175)^-81, E(175)^82+E(175)^-82, E(175)^71+E(175)^-71, E(175)^68+E(175)^-68, E(175)^38+E(175)^-38, E(175)^78+E(175)^-78, E(175)^16+E(175)^-16, E(175)^69+E(175)^-69, E(175)^74+E(175)^-74, E(175)^34+E(175)^-34, E(175)^3+E(175)^-3, E(175)^51+E(175)^-51, E(175)^32+E(175)^-32, E(175)^72+E(175)^-72, E(175)^86+E(175)^-86, E(175)^39+E(175)^-39, E(175)^59+E(175)^-59, E(175)^52+E(175)^-52, E(175)^62+E(175)^-62, E(175)^76+E(175)^-76, E(175)^33+E(175)^-33, E(175)^64+E(175)^-64, E(175)^6+E(175)^-6, E(175)^58+E(175)^-58, E(175)^26+E(175)^-26, E(175)+E(175)^-1, E(175)^19+E(175)^-19, E(175)^8+E(175)^-8, E(175)^46+E(175)^-46, E(175)^61+E(175)^-61, E(175)^66+E(175)^-66, E(175)^43+E(175)^-43, E(175)^4+E(175)^-4, E(175)^73+E(175)^-73, E(175)^9+E(175)^-9, E(175)^31+E(175)^-31, E(175)^36+E(175)^-36, E(175)^22+E(175)^-22, E(175)^18+E(175)^-18, E(175)^87+E(175)^-87, E(175)^47+E(175)^-47, E(175)^29+E(175)^-29, E(175)^24+E(175)^-24, E(175)^12+E(175)^-12], [2, 0, E(175)^35+E(175)^-35, E(175)^70+E(175)^-70, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^56+E(175)^-56, E(175)^84+E(175)^-84, E(175)^42+E(175)^-42, E(175)^21+E(175)^-21, E(175)^7+E(175)^-7, E(175)^49+E(175)^-49, E(175)^77+E(175)^-77, E(175)^63+E(175)^-63, E(175)^28+E(175)^-28, E(175)^14+E(175)^-14, E(175)^40+E(175)^-40, E(175)^20+E(175)^-20, E(175)^15+E(175)^-15, E(175)^5+E(175)^-5, E(175)^45+E(175)^-45, E(175)^85+E(175)^-85, E(175)^60+E(175)^-60, E(175)^30+E(175)^-30, E(175)^10+E(175)^-10, E(175)^80+E(175)^-80, E(175)^55+E(175)^-55, E(175)^65+E(175)^-65, E(175)^43+E(175)^-43, E(175)^67+E(175)^-67, E(175)^54+E(175)^-54, E(175)^19+E(175)^-19, E(175)^17+E(175)^-17, E(175)^48+E(175)^-48, E(175)^62+E(175)^-62, E(175)^27+E(175)^-27, E(175)^79+E(175)^-79, E(175)^3+E(175)^-3, E(175)^39+E(175)^-39, E(175)^8+E(175)^-8, E(175)^23+E(175)^-23, E(175)^12+E(175)^-12, E(175)^2+E(175)^-2, E(175)^34+E(175)^-34, E(175)^31+E(175)^-31, E(175)^68+E(175)^-68, E(175)^29+E(175)^-29, E(175)^82+E(175)^-82, E(175)^87+E(175)^-87, E(175)^22+E(175)^-22, E(175)^9+E(175)^-9, E(175)^6+E(175)^-6, E(175)^24+E(175)^-24, E(175)^41+E(175)^-41, E(175)^53+E(175)^-53, E(175)^26+E(175)^-26, E(175)^18+E(175)^-18, E(175)^47+E(175)^-47, E(175)^61+E(175)^-61, E(175)^11+E(175)^-11, E(175)^66+E(175)^-66, E(175)^73+E(175)^-73, E(175)^13+E(175)^-13, E(175)+E(175)^-1, E(175)^58+E(175)^-58, E(175)^36+E(175)^-36, E(175)^69+E(175)^-69, E(175)^33+E(175)^-33, E(175)^51+E(175)^-51, E(175)^76+E(175)^-76, E(175)^44+E(175)^-44, E(175)^83+E(175)^-83, E(175)^4+E(175)^-4, E(175)^86+E(175)^-86, E(175)^59+E(175)^-59, E(175)^57+E(175)^-57, E(175)^46+E(175)^-46, E(175)^52+E(175)^-52, E(175)^16+E(175)^-16, E(175)^81+E(175)^-81, E(175)^64+E(175)^-64, E(175)^78+E(175)^-78, E(175)^32+E(175)^-32, E(175)^38+E(175)^-38, E(175)^72+E(175)^-72, E(175)^71+E(175)^-71, E(175)^74+E(175)^-74, E(175)^37+E(175)^-37], [2, 0, E(175)^35+E(175)^-35, E(175)^70+E(175)^-70, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^49+E(175)^-49, E(175)^14+E(175)^-14, E(175)^7+E(175)^-7, E(175)^84+E(175)^-84, E(175)^28+E(175)^-28, E(175)^21+E(175)^-21, E(175)^42+E(175)^-42, E(175)^77+E(175)^-77, E(175)^63+E(175)^-63, E(175)^56+E(175)^-56, E(175)^65+E(175)^-65, E(175)^55+E(175)^-55, E(175)^85+E(175)^-85, E(175)^30+E(175)^-30, E(175)^80+E(175)^-80, E(175)^15+E(175)^-15, E(175)^10+E(175)^-10, E(175)^5+E(175)^-5, E(175)^60+E(175)^-60, E(175)^45+E(175)^-45, E(175)^20+E(175)^-20, E(175)^40+E(175)^-40, E(175)^22+E(175)^-22, E(175)^18+E(175)^-18, E(175)^9+E(175)^-9, E(175)^26+E(175)^-26, E(175)^32+E(175)^-32, E(175)^8+E(175)^-8, E(175)^48+E(175)^-48, E(175)^83+E(175)^-83, E(175)^16+E(175)^-16, E(175)^87+E(175)^-87, E(175)^81+E(175)^-81, E(175)^57+E(175)^-57, E(175)^33+E(175)^-33, E(175)^2+E(175)^-2, E(175)^58+E(175)^-58, E(175)^64+E(175)^-64, E(175)^24+E(175)^-24, E(175)^47+E(175)^-47, E(175)^34+E(175)^-34, E(175)^72+E(175)^-72, E(175)^73+E(175)^-73, E(175)^62+E(175)^-62, E(175)^86+E(175)^-86, E(175)+E(175)^-1, E(175)^4+E(175)^-4, E(175)^36+E(175)^-36, E(175)^38+E(175)^-38, E(175)^54+E(175)^-54, E(175)^3+E(175)^-3, E(175)^37+E(175)^-37, E(175)^19+E(175)^-19, E(175)^31+E(175)^-31, E(175)^11+E(175)^-11, E(175)^17+E(175)^-17, E(175)^27+E(175)^-27, E(175)^29+E(175)^-29, E(175)^68+E(175)^-68, E(175)^6+E(175)^-6, E(175)^76+E(175)^-76, E(175)^82+E(175)^-82, E(175)^79+E(175)^-79, E(175)^71+E(175)^-71, E(175)^51+E(175)^-51, E(175)^43+E(175)^-43, E(175)^59+E(175)^-59, E(175)^44+E(175)^-44, E(175)^39+E(175)^-39, E(175)^78+E(175)^-78, E(175)^66+E(175)^-66, E(175)^67+E(175)^-67, E(175)^61+E(175)^-61, E(175)^74+E(175)^-74, E(175)^69+E(175)^-69, E(175)^13+E(175)^-13, E(175)^53+E(175)^-53, E(175)^52+E(175)^-52, E(175)^12+E(175)^-12, E(175)^41+E(175)^-41, E(175)^46+E(175)^-46, E(175)^23+E(175)^-23], [2, 0, E(175)^35+E(175)^-35, E(175)^70+E(175)^-70, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^49+E(175)^-49, E(175)^14+E(175)^-14, E(175)^7+E(175)^-7, E(175)^84+E(175)^-84, E(175)^28+E(175)^-28, E(175)^21+E(175)^-21, E(175)^42+E(175)^-42, E(175)^77+E(175)^-77, E(175)^63+E(175)^-63, E(175)^56+E(175)^-56, E(175)^40+E(175)^-40, E(175)^20+E(175)^-20, E(175)^15+E(175)^-15, E(175)^5+E(175)^-5, E(175)^45+E(175)^-45, E(175)^85+E(175)^-85, E(175)^60+E(175)^-60, E(175)^30+E(175)^-30, E(175)^10+E(175)^-10, E(175)^80+E(175)^-80, E(175)^55+E(175)^-55, E(175)^65+E(175)^-65, E(175)^78+E(175)^-78, E(175)^32+E(175)^-32, E(175)^16+E(175)^-16, E(175)^51+E(175)^-51, E(175)^18+E(175)^-18, E(175)^83+E(175)^-83, E(175)^27+E(175)^-27, E(175)^8+E(175)^-8, E(175)^9+E(175)^-9, E(175)^38+E(175)^-38, E(175)^31+E(175)^-31, E(175)^43+E(175)^-43, E(175)^58+E(175)^-58, E(175)^23+E(175)^-23, E(175)^33+E(175)^-33, E(175)^36+E(175)^-36, E(175)^74+E(175)^-74, E(175)^72+E(175)^-72, E(175)^41+E(175)^-41, E(175)^47+E(175)^-47, E(175)^52+E(175)^-52, E(175)^13+E(175)^-13, E(175)^61+E(175)^-61, E(175)^76+E(175)^-76, E(175)^46+E(175)^-46, E(175)^64+E(175)^-64, E(175)^87+E(175)^-87, E(175)^79+E(175)^-79, E(175)^53+E(175)^-53, E(175)^12+E(175)^-12, E(175)^44+E(175)^-44, E(175)^81+E(175)^-81, E(175)^39+E(175)^-39, E(175)^67+E(175)^-67, E(175)^48+E(175)^-48, E(175)^71+E(175)^-71, E(175)^82+E(175)^-82, E(175)^69+E(175)^-69, E(175)+E(175)^-1, E(175)^68+E(175)^-68, E(175)^54+E(175)^-54, E(175)^29+E(175)^-29, E(175)^26+E(175)^-26, E(175)^57+E(175)^-57, E(175)^66+E(175)^-66, E(175)^19+E(175)^-19, E(175)^11+E(175)^-11, E(175)^22+E(175)^-22, E(175)^59+E(175)^-59, E(175)^17+E(175)^-17, E(175)^86+E(175)^-86, E(175)^24+E(175)^-24, E(175)^6+E(175)^-6, E(175)^62+E(175)^-62, E(175)^3+E(175)^-3, E(175)^73+E(175)^-73, E(175)^37+E(175)^-37, E(175)^34+E(175)^-34, E(175)^4+E(175)^-4, E(175)^2+E(175)^-2], [2, 0, E(175)^35+E(175)^-35, E(175)^70+E(175)^-70, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^21+E(175)^-21, E(175)^56+E(175)^-56, E(175)^28+E(175)^-28, E(175)^14+E(175)^-14, E(175)^63+E(175)^-63, E(175)^84+E(175)^-84, E(175)^7+E(175)^-7, E(175)^42+E(175)^-42, E(175)^77+E(175)^-77, E(175)^49+E(175)^-49, E(175)^65+E(175)^-65, E(175)^55+E(175)^-55, E(175)^85+E(175)^-85, E(175)^30+E(175)^-30, E(175)^80+E(175)^-80, E(175)^15+E(175)^-15, E(175)^10+E(175)^-10, E(175)^5+E(175)^-5, E(175)^60+E(175)^-60, E(175)^45+E(175)^-45, E(175)^20+E(175)^-20, E(175)^40+E(175)^-40, E(175)^13+E(175)^-13, E(175)^53+E(175)^-53, E(175)^61+E(175)^-61, E(175)^79+E(175)^-79, E(175)^3+E(175)^-3, E(175)^43+E(175)^-43, E(175)^83+E(175)^-83, E(175)^57+E(175)^-57, E(175)^86+E(175)^-86, E(175)^52+E(175)^-52, E(175)^24+E(175)^-24, E(175)^22+E(175)^-22, E(175)^68+E(175)^-68, E(175)^33+E(175)^-33, E(175)^82+E(175)^-82, E(175)^6+E(175)^-6, E(175)^46+E(175)^-46, E(175)^12+E(175)^-12, E(175)^36+E(175)^-36, E(175)^37+E(175)^-37, E(175)^67+E(175)^-67, E(175)^27+E(175)^-27, E(175)^19+E(175)^-19, E(175)^71+E(175)^-71, E(175)^66+E(175)^-66, E(175)^69+E(175)^-69, E(175)^73+E(175)^-73, E(175)^16+E(175)^-16, E(175)^38+E(175)^-38, E(175)^2+E(175)^-2, E(175)^51+E(175)^-51, E(175)^74+E(175)^-74, E(175)^81+E(175)^-81, E(175)^18+E(175)^-18, E(175)^8+E(175)^-8, E(175)^41+E(175)^-41, E(175)^72+E(175)^-72, E(175)^76+E(175)^-76, E(175)^29+E(175)^-29, E(175)^47+E(175)^-47, E(175)^9+E(175)^-9, E(175)^34+E(175)^-34, E(175)^54+E(175)^-54, E(175)^78+E(175)^-78, E(175)^11+E(175)^-11, E(175)^26+E(175)^-26, E(175)^31+E(175)^-31, E(175)^62+E(175)^-62, E(175)^39+E(175)^-39, E(175)^32+E(175)^-32, E(175)^44+E(175)^-44, E(175)^4+E(175)^-4, E(175)+E(175)^-1, E(175)^48+E(175)^-48, E(175)^87+E(175)^-87, E(175)^17+E(175)^-17, E(175)^23+E(175)^-23, E(175)^64+E(175)^-64, E(175)^59+E(175)^-59, E(175)^58+E(175)^-58], [2, 0, E(175)^35+E(175)^-35, E(175)^70+E(175)^-70, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^21+E(175)^-21, E(175)^56+E(175)^-56, E(175)^28+E(175)^-28, E(175)^14+E(175)^-14, E(175)^63+E(175)^-63, E(175)^84+E(175)^-84, E(175)^7+E(175)^-7, E(175)^42+E(175)^-42, E(175)^77+E(175)^-77, E(175)^49+E(175)^-49, E(175)^40+E(175)^-40, E(175)^20+E(175)^-20, E(175)^15+E(175)^-15, E(175)^5+E(175)^-5, E(175)^45+E(175)^-45, E(175)^85+E(175)^-85, E(175)^60+E(175)^-60, E(175)^30+E(175)^-30, E(175)^10+E(175)^-10, E(175)^80+E(175)^-80, E(175)^55+E(175)^-55, E(175)^65+E(175)^-65, E(175)^62+E(175)^-62, E(175)^3+E(175)^-3, E(175)^86+E(175)^-86, E(175)^54+E(175)^-54, E(175)^53+E(175)^-53, E(175)^57+E(175)^-57, E(175)^8+E(175)^-8, E(175)^43+E(175)^-43, E(175)^61+E(175)^-61, E(175)^73+E(175)^-73, E(175)^74+E(175)^-74, E(175)^78+E(175)^-78, E(175)^82+E(175)^-82, E(175)^58+E(175)^-58, E(175)^68+E(175)^-68, E(175)^69+E(175)^-69, E(175)^4+E(175)^-4, E(175)^37+E(175)^-37, E(175)^64+E(175)^-64, E(175)^12+E(175)^-12, E(175)^17+E(175)^-17, E(175)^48+E(175)^-48, E(175)^44+E(175)^-44, E(175)^29+E(175)^-29, E(175)^59+E(175)^-59, E(175)^6+E(175)^-6, E(175)^52+E(175)^-52, E(175)^9+E(175)^-9, E(175)^87+E(175)^-87, E(175)^23+E(175)^-23, E(175)^26+E(175)^-26, E(175)^24+E(175)^-24, E(175)^31+E(175)^-31, E(175)^32+E(175)^-32, E(175)^83+E(175)^-83, E(175)^34+E(175)^-34, E(175)^47+E(175)^-47, E(175)+E(175)^-1, E(175)^71+E(175)^-71, E(175)^72+E(175)^-72, E(175)^16+E(175)^-16, E(175)^41+E(175)^-41, E(175)^79+E(175)^-79, E(175)^22+E(175)^-22, E(175)^39+E(175)^-39, E(175)^51+E(175)^-51, E(175)^81+E(175)^-81, E(175)^13+E(175)^-13, E(175)^11+E(175)^-11, E(175)^18+E(175)^-18, E(175)^19+E(175)^-19, E(175)^46+E(175)^-46, E(175)^76+E(175)^-76, E(175)^27+E(175)^-27, E(175)^38+E(175)^-38, E(175)^67+E(175)^-67, E(175)^2+E(175)^-2, E(175)^36+E(175)^-36, E(175)^66+E(175)^-66, E(175)^33+E(175)^-33], [2, 0, E(175)^35+E(175)^-35, E(175)^70+E(175)^-70, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^14+E(175)^-14, E(175)^21+E(175)^-21, E(175)^77+E(175)^-77, E(175)^49+E(175)^-49, E(175)^42+E(175)^-42, E(175)^56+E(175)^-56, E(175)^63+E(175)^-63, E(175)^28+E(175)^-28, E(175)^7+E(175)^-7, E(175)^84+E(175)^-84, E(175)^65+E(175)^-65, E(175)^55+E(175)^-55, E(175)^85+E(175)^-85, E(175)^30+E(175)^-30, E(175)^80+E(175)^-80, E(175)^15+E(175)^-15, E(175)^10+E(175)^-10, E(175)^5+E(175)^-5, E(175)^60+E(175)^-60, E(175)^45+E(175)^-45, E(175)^20+E(175)^-20, E(175)^40+E(175)^-40, E(175)^83+E(175)^-83, E(175)^52+E(175)^-52, E(175)^26+E(175)^-26, E(175)^61+E(175)^-61, E(175)^73+E(175)^-73, E(175)^62+E(175)^-62, E(175)^22+E(175)^-22, E(175)^13+E(175)^-13, E(175)^51+E(175)^-51, E(175)^18+E(175)^-18, E(175)^59+E(175)^-59, E(175)^48+E(175)^-48, E(175)^37+E(175)^-37, E(175)^72+E(175)^-72, E(175)^12+E(175)^-12, E(175)^29+E(175)^-29, E(175)^11+E(175)^-11, E(175)^58+E(175)^-58, E(175)+E(175)^-1, E(175)^33+E(175)^-33, E(175)^3+E(175)^-3, E(175)^43+E(175)^-43, E(175)^54+E(175)^-54, E(175)^36+E(175)^-36, E(175)^31+E(175)^-31, E(175)^71+E(175)^-71, E(175)^32+E(175)^-32, E(175)^19+E(175)^-19, E(175)^67+E(175)^-67, E(175)^68+E(175)^-68, E(175)^16+E(175)^-16, E(175)^66+E(175)^-66, E(175)^46+E(175)^-46, E(175)^87+E(175)^-87, E(175)^78+E(175)^-78, E(175)^6+E(175)^-6, E(175)^2+E(175)^-2, E(175)^41+E(175)^-41, E(175)^64+E(175)^-64, E(175)^23+E(175)^-23, E(175)^44+E(175)^-44, E(175)^69+E(175)^-69, E(175)^86+E(175)^-86, E(175)^27+E(175)^-27, E(175)^24+E(175)^-24, E(175)^9+E(175)^-9, E(175)^4+E(175)^-4, E(175)^8+E(175)^-8, E(175)^74+E(175)^-74, E(175)^38+E(175)^-38, E(175)^79+E(175)^-79, E(175)^39+E(175)^-39, E(175)^34+E(175)^-34, E(175)^57+E(175)^-57, E(175)^17+E(175)^-17, E(175)^53+E(175)^-53, E(175)^82+E(175)^-82, E(175)^76+E(175)^-76, E(175)^81+E(175)^-81, E(175)^47+E(175)^-47], [2, 0, E(175)^35+E(175)^-35, E(175)^70+E(175)^-70, E(175)^25+E(175)^-25, E(175)^50+E(175)^-50, E(175)^75+E(175)^-75, E(175)^14+E(175)^-14, E(175)^21+E(175)^-21, E(175)^77+E(175)^-77, E(175)^49+E(175)^-49, E(175)^42+E(175)^-42, E(175)^56+E(175)^-56, E(175)^63+E(175)^-63, E(175)^28+E(175)^-28, E(175)^7+E(175)^-7, E(175)^84+E(175)^-84, E(175)^40+E(175)^-40, E(175)^20+E(175)^-20, E(175)^15+E(175)^-15, E(175)^5+E(175)^-5, E(175)^45+E(175)^-45, E(175)^85+E(175)^-85, E(175)^60+E(175)^-60, E(175)^30+E(175)^-30, E(175)^10+E(175)^-10, E(175)^80+E(175)^-80, E(175)^55+E(175)^-55, E(175)^65+E(175)^-65, E(175)^8+E(175)^-8, E(175)^73+E(175)^-73, E(175)^51+E(175)^-51, E(175)^86+E(175)^-86, E(175)^52+E(175)^-52, E(175)^13+E(175)^-13, E(175)^78+E(175)^-78, E(175)^62+E(175)^-62, E(175)^26+E(175)^-26, E(175)^32+E(175)^-32, E(175)^66+E(175)^-66, E(175)^27+E(175)^-27, E(175)^12+E(175)^-12, E(175)^47+E(175)^-47, E(175)^37+E(175)^-37, E(175)^71+E(175)^-71, E(175)^39+E(175)^-39, E(175)^33+E(175)^-33, E(175)^76+E(175)^-76, E(175)^58+E(175)^-58, E(175)^53+E(175)^-53, E(175)^57+E(175)^-57, E(175)^79+E(175)^-79, E(175)^64+E(175)^-64, E(175)^81+E(175)^-81, E(175)^29+E(175)^-29, E(175)^18+E(175)^-18, E(175)^44+E(175)^-44, E(175)^17+E(175)^-17, E(175)^82+E(175)^-82, E(175)^9+E(175)^-9, E(175)^59+E(175)^-59, E(175)^4+E(175)^-4, E(175)^38+E(175)^-38, E(175)^22+E(175)^-22, E(175)^69+E(175)^-69, E(175)^23+E(175)^-23, E(175)^34+E(175)^-34, E(175)^36+E(175)^-36, E(175)^2+E(175)^-2, E(175)^19+E(175)^-19, E(175)^6+E(175)^-6, E(175)^61+E(175)^-61, E(175)^48+E(175)^-48, E(175)^74+E(175)^-74, E(175)^16+E(175)^-16, E(175)^46+E(175)^-46, E(175)^83+E(175)^-83, E(175)^24+E(175)^-24, E(175)^87+E(175)^-87, E(175)^54+E(175)^-54, E(175)^11+E(175)^-11, E(175)^41+E(175)^-41, E(175)^43+E(175)^-43, E(175)^67+E(175)^-67, E(175)^3+E(175)^-3, E(175)^68+E(175)^-68, E(175)+E(175)^-1, E(175)^31+E(175)^-31, E(175)^72+E(175)^-72]]; ConvertToLibraryCharacterTableNC(chartbl_350_3);