/* Group 3456.qs downloaded from the LMFDB on 11 November 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([10, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 8640, 14101, 51, 64982, 65883, 22573, 22103, 113, 16745, 24855, 20545, 223656, 59236, 15146, 4236, 346, 52567, 28817, 45387, 5797, 1017, 547, 237, 141309, 104419, 51329, 1269]); a,b,c,d,e,f,g := Explode([GPC.1, GPC.2, GPC.4, GPC.6, GPC.7, GPC.8, GPC.10]); AssignNames(~GPC, ["a", "b", "b2", "c", "c2", "d", "e", "f", "f2", "g"]); GPerm := PermutationGroup< 15 | (1,3,2)(4,6,5)(8,14)(9,13,10,11,15,12), (4,5,7), (4,6)(5,7)(8,14)(9,11)(10,12)(13,15), (1,2,3)(8,11)(9,14)(10,15)(12,13), (4,5)(6,7), (4,7)(5,6), (1,3,2)(4,5,7)(8,10,14,12)(9,13,11,15), (1,3,2), (5,7,6)(8,13)(9,12)(10,11)(14,15), (1,3,2)(4,6,5)(8,12)(9,15)(10,14)(11,13) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_3456_qs := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := false, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := false>; /* Character Table */ G:= GPerm; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, G!(8,14)(9,11)(10,12)(13,15)>,< 2, 3, G!(4,5)(6,7)>,< 2, 3, G!(4,5)(6,7)(8,14)(9,11)(10,12)(13,15)>,< 2, 6, G!(10,12)(13,15)>,< 2, 6, G!(8,9)(10,13)(11,14)(12,15)>,< 2, 6, G!(8,9)(10,15)(11,14)(12,13)>,< 2, 18, G!(4,5)(6,7)(10,12)(13,15)>,< 2, 18, G!(4,5)(6,7)(8,9)(10,13)(11,14)(12,15)>,< 2, 18, G!(4,5)(6,7)(8,9)(10,15)(11,14)(12,13)>,< 3, 1, G!(1,3,2)>,< 3, 1, G!(1,2,3)>,< 3, 4, G!(5,7,6)>,< 3, 4, G!(5,6,7)>,< 3, 4, G!(1,3,2)(5,7,6)>,< 3, 4, G!(1,2,3)(5,6,7)>,< 3, 4, G!(1,3,2)(5,6,7)>,< 3, 4, G!(1,2,3)(5,7,6)>,< 3, 16, G!(8,10,11)(9,14,12)>,< 3, 16, G!(8,11,10)(9,12,14)>,< 3, 16, G!(1,3,2)(8,10,11)(9,14,12)>,< 3, 16, G!(1,2,3)(8,11,10)(9,12,14)>,< 3, 16, G!(1,3,2)(8,13,11)(9,14,15)>,< 3, 16, G!(1,2,3)(8,11,13)(9,15,14)>,< 3, 64, G!(4,7,5)(8,12,11)(9,14,10)>,< 3, 64, G!(4,5,7)(8,11,12)(9,10,14)>,< 3, 64, G!(1,3,2)(4,6,5)(8,9,13)(11,15,14)>,< 3, 64, G!(1,2,3)(4,5,6)(8,13,9)(11,14,15)>,< 3, 64, G!(1,2,3)(4,5,7)(8,15,10)(12,14,13)>,< 3, 64, G!(1,3,2)(4,7,5)(8,10,15)(12,13,14)>,< 3, 64, G!(4,5,6)(8,9,10)(11,12,14)>,< 3, 64, G!(4,6,5)(8,10,9)(11,14,12)>,< 3, 64, G!(1,2,3)(4,7,6)(8,13,9)(11,14,15)>,< 3, 64, G!(1,3,2)(4,6,7)(8,9,13)(11,15,14)>,< 3, 64, G!(1,2,3)(5,7,6)(8,15,12)(10,14,13)>,< 3, 64, G!(1,3,2)(5,6,7)(8,12,15)(10,13,14)>,< 4, 6, G!(8,11,14,9)(10,15,12,13)>,< 4, 6, G!(8,11,14,9)(10,13,12,15)>,< 4, 18, G!(4,5)(6,7)(8,11,14,9)(10,15,12,13)>,< 4, 18, G!(4,5)(6,7)(8,11,14,9)(10,13,12,15)>,< 6, 1, G!(1,3,2)(8,14)(9,11)(10,12)(13,15)>,< 6, 1, G!(1,2,3)(8,14)(9,11)(10,12)(13,15)>,< 6, 3, G!(1,2,3)(4,5)(6,7)>,< 6, 3, G!(1,3,2)(4,5)(6,7)>,< 6, 3, G!(1,2,3)(4,5)(6,7)(8,14)(9,11)(10,12)(13,15)>,< 6, 3, G!(1,3,2)(4,5)(6,7)(8,14)(9,11)(10,12)(13,15)>,< 6, 4, G!(5,7,6)(8,14)(9,11)(10,12)(13,15)>,< 6, 4, G!(5,6,7)(8,14)(9,11)(10,12)(13,15)>,< 6, 4, G!(1,3,2)(5,7,6)(8,14)(9,11)(10,12)(13,15)>,< 6, 4, G!(1,2,3)(5,6,7)(8,14)(9,11)(10,12)(13,15)>,< 6, 4, G!(1,3,2)(5,6,7)(8,14)(9,11)(10,12)(13,15)>,< 6, 4, G!(1,2,3)(5,7,6)(8,14)(9,11)(10,12)(13,15)>,< 6, 6, G!(1,2,3)(10,12)(13,15)>,< 6, 6, G!(1,3,2)(10,12)(13,15)>,< 6, 6, G!(1,2,3)(8,9)(10,13)(11,14)(12,15)>,< 6, 6, G!(1,3,2)(8,9)(10,13)(11,14)(12,15)>,< 6, 6, G!(1,2,3)(8,9)(10,15)(11,14)(12,13)>,< 6, 6, G!(1,3,2)(8,9)(10,15)(11,14)(12,13)>,< 6, 16, G!(8,9,10,14,11,12)(13,15)>,< 6, 16, G!(8,9,13,14,11,15)(10,12)>,< 6, 16, G!(1,2,3)(8,9,10,14,11,12)(13,15)>,< 6, 16, G!(1,3,2)(8,9,13,14,11,15)(10,12)>,< 6, 16, G!(1,2,3)(8,9,13,14,11,15)(10,12)>,< 6, 16, G!(1,3,2)(8,9,10,14,11,12)(13,15)>,< 6, 18, G!(1,2,3)(4,5)(6,7)(10,12)(13,15)>,< 6, 18, G!(1,3,2)(4,5)(6,7)(10,12)(13,15)>,< 6, 18, G!(1,2,3)(4,5)(6,7)(8,9)(10,13)(11,14)(12,15)>,< 6, 18, G!(1,3,2)(4,5)(6,7)(8,9)(10,13)(11,14)(12,15)>,< 6, 18, G!(1,2,3)(4,5)(6,7)(8,9)(10,15)(11,14)(12,13)>,< 6, 18, G!(1,3,2)(4,5)(6,7)(8,9)(10,15)(11,14)(12,13)>,< 6, 24, G!(5,6,7)(10,12)(13,15)>,< 6, 24, G!(5,7,6)(10,12)(13,15)>,< 6, 24, G!(5,6,7)(8,9)(10,13)(11,14)(12,15)>,< 6, 24, G!(5,7,6)(8,9)(10,13)(11,14)(12,15)>,< 6, 24, G!(5,6,7)(8,9)(10,15)(11,14)(12,13)>,< 6, 24, G!(5,7,6)(8,9)(10,15)(11,14)(12,13)>,< 6, 24, G!(1,2,3)(5,6,7)(10,12)(13,15)>,< 6, 24, G!(1,3,2)(5,7,6)(10,12)(13,15)>,< 6, 24, G!(1,2,3)(5,6,7)(8,9)(10,13)(11,14)(12,15)>,< 6, 24, G!(1,3,2)(5,7,6)(8,9)(10,13)(11,14)(12,15)>,< 6, 24, G!(1,2,3)(5,6,7)(8,9)(10,15)(11,14)(12,13)>,< 6, 24, G!(1,3,2)(5,7,6)(8,9)(10,15)(11,14)(12,13)>,< 6, 24, G!(1,2,3)(5,7,6)(10,12)(13,15)>,< 6, 24, G!(1,3,2)(5,6,7)(10,12)(13,15)>,< 6, 24, G!(1,2,3)(5,7,6)(8,9)(10,13)(11,14)(12,15)>,< 6, 24, G!(1,3,2)(5,6,7)(8,9)(10,13)(11,14)(12,15)>,< 6, 24, G!(1,2,3)(5,7,6)(8,9)(10,15)(11,14)(12,13)>,< 6, 24, G!(1,3,2)(5,6,7)(8,9)(10,15)(11,14)(12,13)>,< 6, 48, G!(4,5)(6,7)(9,10,13)(11,12,15)>,< 6, 48, G!(4,5)(6,7)(9,13,10)(11,15,12)>,< 6, 48, G!(4,5)(6,7)(8,9,10,14,11,12)(13,15)>,< 6, 48, G!(4,5)(6,7)(8,9,13,14,11,15)(10,12)>,< 6, 48, G!(1,2,3)(4,5)(6,7)(9,10,13)(11,12,15)>,< 6, 48, G!(1,3,2)(4,5)(6,7)(9,13,10)(11,15,12)>,< 6, 48, G!(1,2,3)(4,5)(6,7)(9,13,10)(11,15,12)>,< 6, 48, G!(1,3,2)(4,5)(6,7)(9,10,13)(11,12,15)>,< 6, 48, G!(1,2,3)(4,5)(6,7)(8,9,10,14,11,12)(13,15)>,< 6, 48, G!(1,3,2)(4,5)(6,7)(8,9,13,14,11,15)(10,12)>,< 6, 48, G!(1,2,3)(4,5)(6,7)(8,9,13,14,11,15)(10,12)>,< 6, 48, G!(1,3,2)(4,5)(6,7)(8,9,10,14,11,12)(13,15)>,< 6, 64, G!(4,5,7)(8,9,12,14,11,10)(13,15)>,< 6, 64, G!(4,7,5)(8,10,11,14,12,9)(13,15)>,< 6, 64, G!(1,2,3)(4,5,6)(8,15,9,14,13,11)(10,12)>,< 6, 64, G!(1,3,2)(4,6,5)(8,11,13,14,9,15)(10,12)>,< 6, 64, G!(1,3,2)(4,7,5)(8,12,15,14,10,13)(9,11)>,< 6, 64, G!(1,2,3)(4,5,7)(8,13,10,14,15,12)(9,11)>,< 6, 64, G!(4,6,5)(8,12,9,14,10,11)(13,15)>,< 6, 64, G!(4,5,6)(8,11,10,14,9,12)(13,15)>,< 6, 64, G!(1,3,2)(4,6,7)(8,11,13,14,9,15)(10,12)>,< 6, 64, G!(1,2,3)(4,7,6)(8,15,9,14,13,11)(10,12)>,< 6, 64, G!(1,3,2)(5,6,7)(8,10,15,14,12,13)(9,11)>,< 6, 64, G!(1,2,3)(5,7,6)(8,13,12,14,15,10)(9,11)>,< 12, 6, G!(1,2,3)(8,9,14,11)(10,13,12,15)>,< 12, 6, G!(1,3,2)(8,9,14,11)(10,13,12,15)>,< 12, 6, G!(1,2,3)(8,9,14,11)(10,15,12,13)>,< 12, 6, G!(1,3,2)(8,9,14,11)(10,15,12,13)>,< 12, 18, G!(1,2,3)(4,5)(6,7)(8,9,14,11)(10,13,12,15)>,< 12, 18, G!(1,3,2)(4,5)(6,7)(8,9,14,11)(10,13,12,15)>,< 12, 18, G!(1,2,3)(4,5)(6,7)(8,9,14,11)(10,15,12,13)>,< 12, 18, G!(1,3,2)(4,5)(6,7)(8,9,14,11)(10,15,12,13)>,< 12, 24, G!(5,6,7)(8,9,14,11)(10,13,12,15)>,< 12, 24, G!(5,7,6)(8,9,14,11)(10,13,12,15)>,< 12, 24, G!(5,6,7)(8,9,14,11)(10,15,12,13)>,< 12, 24, G!(5,7,6)(8,9,14,11)(10,15,12,13)>,< 12, 24, G!(1,2,3)(5,6,7)(8,9,14,11)(10,13,12,15)>,< 12, 24, G!(1,3,2)(5,7,6)(8,9,14,11)(10,13,12,15)>,< 12, 24, G!(1,2,3)(5,6,7)(8,9,14,11)(10,15,12,13)>,< 12, 24, G!(1,3,2)(5,7,6)(8,9,14,11)(10,15,12,13)>,< 12, 24, G!(1,2,3)(5,7,6)(8,9,14,11)(10,13,12,15)>,< 12, 24, G!(1,3,2)(5,6,7)(8,9,14,11)(10,13,12,15)>,< 12, 24, G!(1,2,3)(5,7,6)(8,9,14,11)(10,15,12,13)>,< 12, 24, G!(1,3,2)(5,6,7)(8,9,14,11)(10,15,12,13)>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1,K.1^-1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1^-1,K.1,1,1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1^-1,K.1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1,K.1^-1,1,1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1,K.1^-1,1,1,K.1^-1,K.1,1,1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1^-1,K.1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1^-1,K.1,1,1,K.1,K.1^-1,1,1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1,K.1^-1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1^-1,K.1,1,1,K.1,K.1^-1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1^-1,K.1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1,K.1^-1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1,K.1^-1,1,1,K.1^-1,K.1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1,K.1^-1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1^-1,K.1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,K.1^-1,K.1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1,K.1^-1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1,K.1^-1,1,1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,K.1,K.1^-1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1^-1,K.1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1^-1,K.1,1,1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1^-1,K.1,1,1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1,K.1^-1,1,1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,K.1^-1,K.1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1,K.1^-1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,K.1,K.1^-1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1^-1,K.1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1,K.1^-1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1^-1,K.1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1,K.1^-1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1^-1,K.1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1^-1,K.1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1,K.1^-1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[3, 3, -1, -1, 3, 3, 3, -1, -1, -1, 3, 3, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, -1, -1, 3, 3, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -1, -1, -1, -1, -1, -1, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 3, -1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 3, 3, -1, -1, 3, 3, 3, 3, 3, 3, -1, -1, 3, 3, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -1, -1, -1, -1, -1, -1, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, -1, 3, -1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, -1, -1, 3, 3, -1, -1, -1, -1, -1, -1, 3, 3, -1, -1, 3, 3, 3, 3]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -1, -1, 3, -1, -1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, -1, -1, 3, 3, -1, -1, 0, 0, 0, 0, 0, 0, -1, -1, 3, 3, -1, -1, 3, 3, -1, -1, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, 3, 3, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -1, 3, -1, -1, 3, -1, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 3, 3, -1, -1, -1, -1, -1, -1, 3, 3, -1, -1, -1, -1, 3, 3, 3, 3, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, 3, -1, -1, 3, -1, -1, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, -1, -1, -1, -1, 3, 3, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 3, 3, -1, -1, -1, -1, -1, -1, 3, 3, -1, -1, -1, -1, 3, 3, -1, -1, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,-1,-1,3,3,3,-1,-1,-1,3*K.1^-1,3*K.1,0,0,0,0,0,0,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3,3,0,0,0,0,0,0,0,0,0,0,0,0,3,3,-1,-1,3*K.1^-1,3*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3,3,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,-1,-1,3,3,3,-1,-1,-1,3*K.1,3*K.1^-1,0,0,0,0,0,0,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3,3,0,0,0,0,0,0,0,0,0,0,0,0,3,3,-1,-1,3*K.1,3*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3,3,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,-1,-1,3,3,3,-1,-1,-1,3*K.1^-1,3*K.1,0,0,0,0,0,0,3*K.1,3*K.1^-1,3,3,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,3,3,-1,-1,3*K.1^-1,3*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3,3,3*K.1,3*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,-1,-1,3,3,3,-1,-1,-1,3*K.1,3*K.1^-1,0,0,0,0,0,0,3*K.1^-1,3*K.1,3,3,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,3,3,-1,-1,3*K.1,3*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3,3,3*K.1^-1,3*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,-1,-1,3,3,3,-1,-1,-1,3*K.1^-1,3*K.1,0,0,0,0,0,0,3,3,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,3,3,-1,-1,3*K.1^-1,3*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3,3,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,-1,-1,3,3,3,-1,-1,-1,3*K.1,3*K.1^-1,0,0,0,0,0,0,3,3,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,3,3,-1,-1,3*K.1,3*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3,3,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,-1,-1,3,3,3,-1,-1,-1,3,3,0,0,0,0,0,0,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,3,3,-1,-1,3,3,-1,-1,-1,-1,0,0,0,0,0,0,3,3,3,3,3,3,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,-1,-1,3,3,3,-1,-1,-1,3,3,0,0,0,0,0,0,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,3,3,-1,-1,3,3,-1,-1,-1,-1,0,0,0,0,0,0,3,3,3,3,3,3,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,-1,-1,-1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,3,-1,3,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3,3,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,3*K.1,3*K.1^-1,-1*K.1,-1*K.1^-1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3,3,-1*K.1,-1*K.1^-1,3*K.1^-1,3*K.1,-1*K.1^-1,-1*K.1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,-1,-1,-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,3,-1,3,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3,3,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,3*K.1^-1,3*K.1,-1*K.1^-1,-1*K.1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3,3,-1*K.1^-1,-1*K.1,3*K.1,3*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,-1,-1,-1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-1,3,-1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3,3,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1,3*K.1^-1,-1*K.1,-1*K.1^-1,3*K.1,3*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,3*K.1,3*K.1^-1,-1*K.1^-1,-1*K.1,3*K.1^-1,3*K.1,3,3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,-1,-1,-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-1,3,-1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3,3,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-1,3*K.1,-1*K.1^-1,-1*K.1,3*K.1^-1,3*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1,3*K.1^-1,3*K.1,-1*K.1,-1*K.1^-1,3*K.1,3*K.1^-1,3,3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,-1,-1,-1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3,3,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,3,-1,3,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3,3,3*K.1^-1,3*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,3*K.1,3*K.1^-1,-1*K.1,-1*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,-1*K.1^-1,-1*K.1,3,3,-1,-1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,-1,-1,-1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3,3,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,3,-1,3,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3,3,3*K.1,3*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,3*K.1^-1,3*K.1,-1*K.1^-1,-1*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,-1*K.1,-1*K.1^-1,3,3,-1,-1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,-1,-1,-1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3,3,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-1,3,-1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3,3,3*K.1^-1,3*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1,3*K.1^-1,-1*K.1,-1*K.1^-1,3*K.1,3*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,3*K.1^-1,3*K.1,-1,-1,3,3,3*K.1,3*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,-1,-1,-1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3,3,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-1,3,-1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3,3,3*K.1,3*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-1,3*K.1,-1*K.1^-1,-1*K.1,3*K.1^-1,3*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,3*K.1,3*K.1^-1,-1,-1,3,3,3*K.1^-1,3*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,-1,-1,-1,3*K.1^-1,3*K.1,3,3,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,3,-1,3,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3,3,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,3*K.1,3*K.1^-1,-1*K.1,-1*K.1^-1,3*K.1,3*K.1^-1,3,3,3*K.1,3*K.1^-1,-1,-1,3*K.1,3*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,-1,-1,-1,3*K.1,3*K.1^-1,3,3,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,3,-1,3,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3,3,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,3*K.1^-1,3*K.1,-1*K.1^-1,-1*K.1,3*K.1^-1,3*K.1,3,3,3*K.1^-1,3*K.1,-1,-1,3*K.1^-1,3*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,-1,-1,-1,3*K.1^-1,3*K.1,3,3,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-1,3,-1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3,3,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1,3*K.1^-1,-1*K.1,-1*K.1^-1,3*K.1,3*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1,-1*K.1^-1,3,3,-1*K.1,-1*K.1^-1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,-1,-1,-1,3*K.1,3*K.1^-1,3,3,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-1,3,-1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3,3,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-1,3*K.1,-1*K.1^-1,-1*K.1,3*K.1^-1,3*K.1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1^-1,-1*K.1,3,3,-1*K.1^-1,-1*K.1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,-1,-1,-1,3,3,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,3,-1,3,3,3,3,3,3,3,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,3,3,-1,-1,3,3,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,-1*K.1,-1*K.1^-1,3*K.1,3*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,-1,-1,-1,3,3,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,3,-1,3,3,3,3,3,3,3,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,3,3,-1,-1,3,3,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,-1*K.1^-1,-1*K.1,3*K.1^-1,3*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,-1,-1,-1,3,3,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-1,3,-1,3,3,3,3,3,3,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,-1,-1,3,3,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,3*K.1,3*K.1^-1,-1*K.1,-1*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,-1,-1,-1,3,3,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-1,3,-1,3,3,3,3,3,3,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,-1,-1,3,3,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,3*K.1^-1,3*K.1,-1*K.1^-1,-1*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,-1,-1,3,-1,-1,3,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3,3,-1*K.1^-1,-1*K.1,3*K.1^-1,3*K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,3*K.1^-1,3*K.1,-1*K.1,-1*K.1^-1,3,3,-1*K.1,-1*K.1^-1,3*K.1^-1,3*K.1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1^-1,-1*K.1,-1,-1,3*K.1^-1,3*K.1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,-1,-1,3,-1,-1,3,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3,3,-1*K.1,-1*K.1^-1,3*K.1,3*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,3*K.1,3*K.1^-1,-1*K.1^-1,-1*K.1,3,3,-1*K.1^-1,-1*K.1,3*K.1,3*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1,-1*K.1^-1,-1,-1,3*K.1,3*K.1^-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,-1,-1,3,-1,-1,3,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3,3,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3,3,3*K.1^-1,3*K.1,-1*K.1^-1,-1*K.1,3*K.1^-1,3*K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,3*K.1^-1,3*K.1,-1*K.1,-1*K.1^-1,3*K.1^-1,3*K.1,-1,-1,3*K.1,3*K.1^-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,3,3,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1,-1,-1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,-1,-1,3,-1,-1,3,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3,3,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3,3,3*K.1,3*K.1^-1,-1*K.1,-1*K.1^-1,3*K.1,3*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,3*K.1,3*K.1^-1,-1*K.1^-1,-1*K.1,3*K.1,3*K.1^-1,-1,-1,3*K.1^-1,3*K.1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,3,3,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1,-1,-1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,-1,-1,3,-1,-1,3,3*K.1^-1,3*K.1,3,3,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3,3,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,-1*K.1^-1,-1*K.1,3*K.1^-1,3*K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,3*K.1^-1,3*K.1,-1*K.1,-1*K.1^-1,3*K.1,3*K.1^-1,-1*K.1^-1,-1*K.1,3,3,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1,-1*K.1^-1,3*K.1,3*K.1^-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,-1,-1,3,-1,-1,3,3*K.1,3*K.1^-1,3,3,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3,3,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,-1*K.1,-1*K.1^-1,3*K.1,3*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,3*K.1,3*K.1^-1,-1*K.1^-1,-1*K.1,3*K.1^-1,3*K.1,-1*K.1,-1*K.1^-1,3,3,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1^-1,-1*K.1,3*K.1^-1,3*K.1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,-1,-1,3,-1,-1,3,3,3,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,3,3,3,3,3,3,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,-1,-1,3,3,-1,-1,0,0,0,0,0,0,-1,-1,3,3,-1,-1,3*K.1^-1,3*K.1,-1*K.1^-1,-1*K.1,3*K.1^-1,3*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,3*K.1,3*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,-1,-1,3,-1,-1,3,3,3,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,3,3,3,3,3,3,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,-1,-1,3,3,-1,-1,0,0,0,0,0,0,-1,-1,3,3,-1,-1,3*K.1,3*K.1^-1,-1*K.1,-1*K.1^-1,3*K.1,3*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,3*K.1^-1,3*K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,-1,3,-1,-1,3,-1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3,3,3*K.1^-1,3*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,3*K.1^-1,3*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1,3*K.1,3*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,3,3,3*K.1^-1,3*K.1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,-1,3,-1,-1,3,-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3,3,3*K.1,3*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,3*K.1,3*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,3*K.1^-1,3*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,3,3,3*K.1,3*K.1^-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,-1,3,-1,-1,3,-1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3,3,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3,3,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,3*K.1^-1,3*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,3,3,-1*K.1,-1*K.1^-1,-1,-1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1,-1,-1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,-1,3,-1,-1,3,-1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3,3,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3,3,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,3*K.1,3*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,3,3,-1*K.1^-1,-1*K.1,-1,-1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1,-1,-1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,-1,3,-1,-1,3,-1,3*K.1^-1,3*K.1,3,3,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3,3,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,3*K.1^-1,3*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,3*K.1^-1,3*K.1,-1,-1,-1*K.1,-1*K.1^-1,3*K.1,3*K.1^-1,3,3,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,-1,3,-1,-1,3,-1,3*K.1,3*K.1^-1,3,3,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3,3,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,3*K.1,3*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,3*K.1,3*K.1^-1,-1,-1,-1*K.1^-1,-1*K.1,3*K.1^-1,3*K.1,3,3,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,-1,3,-1,-1,3,-1,3,3,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,3,3,3,3,3,3,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3,3,-1,-1,-1,-1,0,0,0,0,0,0,3,3,-1,-1,-1,-1,-1*K.1^-1,-1*K.1,3*K.1^-1,3*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,-1,3,-1,-1,3,-1,3,3,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,3,3,3,3,3,3,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3,3,-1,-1,-1,-1,0,0,0,0,0,0,3,3,-1,-1,-1,-1,-1*K.1,-1*K.1^-1,3*K.1,3*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,3,-1,-1,3,-1,-1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3,3,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,3*K.1,3*K.1^-1,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,3*K.1,3*K.1^-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,3*K.1^-1,3*K.1,-1,-1,-1*K.1^-1,-1*K.1,3,3,-1*K.1^-1,-1*K.1,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,3,-1,-1,3,-1,-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3,3,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,3*K.1^-1,3*K.1,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,3*K.1^-1,3*K.1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,3*K.1,3*K.1^-1,-1,-1,-1*K.1,-1*K.1^-1,3,3,-1*K.1,-1*K.1^-1,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,3,-1,-1,3,-1,-1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3,3,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3,3,3*K.1^-1,3*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,3*K.1,3*K.1^-1,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,3*K.1,3*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1,-1*K.1^-1,3,3,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,3*K.1^-1,3*K.1,-1,-1,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1,-1,-1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,3,-1,-1,3,-1,-1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3,3,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3,3,3*K.1,3*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,3*K.1^-1,3*K.1,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,3*K.1^-1,3*K.1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1^-1,-1*K.1,3,3,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,3*K.1,3*K.1^-1,-1,-1,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1,-1,-1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,3,-1,-1,3,-1,-1,3*K.1^-1,3*K.1,3,3,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3,3,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,3*K.1,3*K.1^-1,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,3*K.1,3*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,3*K.1,3*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1,3*K.1,3*K.1^-1,-1*K.1,-1*K.1^-1,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,3,-1,-1,3,-1,-1,3*K.1,3*K.1^-1,3,3,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3,3,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,3*K.1^-1,3*K.1,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,3*K.1^-1,3*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1,3*K.1^-1,3*K.1,-1*K.1^-1,-1*K.1,-1,-1,3*K.1^-1,3*K.1,-1*K.1^-1,-1*K.1,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,3,-1,-1,3,-1,-1,3,3,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,3,3,3,3,3,3,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,-1,-1,-1,-1,3,3,0,0,0,0,0,0,-1,-1,-1,-1,3,3,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,3*K.1,3*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,3*K.1^-1,3*K.1,-1*K.1,-1*K.1^-1,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,3,-1,-1,3,-1,-1,3,3,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,3,3,3,3,3,3,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,-1,-1,-1,-1,3,3,0,0,0,0,0,0,-1,-1,-1,-1,3,3,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,3*K.1^-1,3*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,3*K.1,3*K.1^-1,-1*K.1^-1,-1*K.1,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[4, -4, 4, -4, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, -4, -4, 4, 4, -4, -4, -4, -4, -4, -4, -4, -4, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,4,4,4,4,4,4,4,4,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,0,0,0,0,-4,-4,4,4,-4,-4,-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,4,4,4,4,4,4,4,4,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,0,0,0,0,-4,-4,4,4,-4,-4,-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,4*K.1^-1,4*K.1,4*K.1^-1,4*K.1,4*K.1^-1,4*K.1,4,4,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1,K.1^-1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,1,1,0,0,0,0,-4*K.1^-1,-4*K.1,4*K.1,4*K.1^-1,-4*K.1,-4*K.1^-1,-4*K.1,-4*K.1^-1,-4*K.1,-4*K.1^-1,-4,-4,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1,-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,4*K.1,4*K.1^-1,4*K.1,4*K.1^-1,4*K.1,4*K.1^-1,4,4,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1^-1,K.1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,1,1,0,0,0,0,-4*K.1,-4*K.1^-1,4*K.1^-1,4*K.1,-4*K.1^-1,-4*K.1,-4*K.1^-1,-4*K.1,-4*K.1^-1,-4*K.1,-4,-4,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,4*K.1^-1,4*K.1,4*K.1^-1,4*K.1,4*K.1^-1,4*K.1,4,4,K.1,K.1^-1,1,1,K.1^-1,K.1,1,1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1^-1,K.1,K.1^-1,K.1,0,0,0,0,-4*K.1^-1,-4*K.1,4*K.1,4*K.1^-1,-4*K.1,-4*K.1^-1,-4*K.1,-4*K.1^-1,-4*K.1,-4*K.1^-1,-4,-4,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1,K.1^-1,-1*K.1^-1,-1*K.1,1,1,-1,-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,4*K.1,4*K.1^-1,4*K.1,4*K.1^-1,4*K.1,4*K.1^-1,4,4,K.1^-1,K.1,1,1,K.1,K.1^-1,1,1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1,K.1^-1,K.1,K.1^-1,0,0,0,0,-4*K.1,-4*K.1^-1,4*K.1^-1,4*K.1,-4*K.1^-1,-4*K.1,-4*K.1^-1,-4*K.1,-4*K.1^-1,-4*K.1,-4,-4,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-1,K.1,-1*K.1,-1*K.1^-1,1,1,-1,-1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,4*K.1^-1,4*K.1,4*K.1^-1,4*K.1,4*K.1^-1,4*K.1,4,4,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1^-1,K.1,1,1,K.1,K.1^-1,0,0,0,0,-4*K.1^-1,-4*K.1,4*K.1,4*K.1^-1,-4*K.1,-4*K.1^-1,-4*K.1,-4*K.1^-1,-4*K.1,-4*K.1^-1,-4,-4,0,0,0,0,0,0,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-1,K.1,-1,-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,1,1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,4*K.1,4*K.1^-1,4*K.1,4*K.1^-1,4*K.1,4*K.1^-1,4,4,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1,K.1^-1,1,1,K.1^-1,K.1,0,0,0,0,-4*K.1,-4*K.1^-1,4*K.1^-1,4*K.1,-4*K.1^-1,-4*K.1,-4*K.1^-1,-4*K.1,-4*K.1^-1,-4*K.1,-4,-4,0,0,0,0,0,0,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1,K.1^-1,-1,-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,1,1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,4*K.1^-1,4*K.1,4*K.1,4*K.1^-1,4,4,4*K.1^-1,4*K.1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,K.1^-1,K.1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,0,0,0,0,-4*K.1^-1,-4*K.1,4*K.1,4*K.1^-1,-4*K.1,-4*K.1^-1,-4*K.1^-1,-4*K.1,-4,-4,-4*K.1^-1,-4*K.1,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1,-1,K.1,K.1^-1,-1,-1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,4*K.1,4*K.1^-1,4*K.1^-1,4*K.1,4,4,4*K.1,4*K.1^-1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,K.1,K.1^-1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,0,0,0,0,-4*K.1,-4*K.1^-1,4*K.1^-1,4*K.1,-4*K.1^-1,-4*K.1,-4*K.1,-4*K.1^-1,-4,-4,-4*K.1,-4*K.1^-1,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,K.1^-1,K.1,-1,-1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,4*K.1^-1,4*K.1,4*K.1,4*K.1^-1,4,4,4*K.1^-1,4*K.1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,0,0,0,0,-4*K.1^-1,-4*K.1,4*K.1,4*K.1^-1,-4*K.1,-4*K.1^-1,-4*K.1^-1,-4*K.1,-4,-4,-4*K.1^-1,-4*K.1,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1,K.1^-1,-1*K.1^-1,-1*K.1,1,1,-1,-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,4*K.1,4*K.1^-1,4*K.1^-1,4*K.1,4,4,4*K.1,4*K.1^-1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,0,0,0,0,-4*K.1,-4*K.1^-1,4*K.1^-1,4*K.1,-4*K.1^-1,-4*K.1,-4*K.1,-4*K.1^-1,-4,-4,-4*K.1,-4*K.1^-1,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-1,K.1,-1*K.1,-1*K.1^-1,1,1,-1,-1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,4*K.1^-1,4*K.1,4*K.1,4*K.1^-1,4,4,4*K.1^-1,4*K.1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1^-1,K.1,0,0,0,0,-4*K.1^-1,-4*K.1,4*K.1,4*K.1^-1,-4*K.1,-4*K.1^-1,-4*K.1^-1,-4*K.1,-4,-4,-4*K.1^-1,-4*K.1,0,0,0,0,0,0,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-1,K.1,-1,-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,1,1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,4*K.1,4*K.1^-1,4*K.1^-1,4*K.1,4,4,4*K.1,4*K.1^-1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1,K.1^-1,0,0,0,0,-4*K.1,-4*K.1^-1,4*K.1^-1,4*K.1,-4*K.1^-1,-4*K.1,-4*K.1,-4*K.1^-1,-4,-4,-4*K.1,-4*K.1^-1,0,0,0,0,0,0,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1,K.1^-1,-1,-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,1,1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,4*K.1^-1,4*K.1,4,4,4*K.1,4*K.1^-1,4*K.1,4*K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,K.1^-1,K.1,0,0,0,0,-4*K.1^-1,-4*K.1,4*K.1,4*K.1^-1,-4*K.1,-4*K.1^-1,-4,-4,-4*K.1^-1,-4*K.1,-4*K.1,-4*K.1^-1,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1,-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1,-1,-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,4*K.1,4*K.1^-1,4,4,4*K.1^-1,4*K.1,4*K.1^-1,4*K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,K.1,K.1^-1,0,0,0,0,-4*K.1,-4*K.1^-1,4*K.1^-1,4*K.1,-4*K.1^-1,-4*K.1,-4,-4,-4*K.1,-4*K.1^-1,-4*K.1^-1,-4*K.1,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1,-1,-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,4*K.1^-1,4*K.1,4,4,4*K.1,4*K.1^-1,4*K.1,4*K.1^-1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,0,0,0,0,-4*K.1^-1,-4*K.1,4*K.1,4*K.1^-1,-4*K.1,-4*K.1^-1,-4,-4,-4*K.1^-1,-4*K.1,-4*K.1,-4*K.1^-1,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1,K.1^-1,-1*K.1^-1,-1*K.1,1,1,-1,-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1,-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,4*K.1,4*K.1^-1,4,4,4*K.1^-1,4*K.1,4*K.1^-1,4*K.1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,0,0,0,0,-4*K.1,-4*K.1^-1,4*K.1^-1,4*K.1,-4*K.1^-1,-4*K.1,-4,-4,-4*K.1,-4*K.1^-1,-4*K.1^-1,-4*K.1,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-1,K.1,-1*K.1,-1*K.1^-1,1,1,-1,-1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1,-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,4*K.1^-1,4*K.1,4,4,4*K.1,4*K.1^-1,4*K.1,4*K.1^-1,1,1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,1,0,0,0,0,-4*K.1^-1,-4*K.1,4*K.1,4*K.1^-1,-4*K.1,-4*K.1^-1,-4,-4,-4*K.1^-1,-4*K.1,-4*K.1,-4*K.1^-1,0,0,0,0,0,0,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-1,K.1,-1,-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,1,1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,4*K.1,4*K.1^-1,4,4,4*K.1^-1,4*K.1,4*K.1^-1,4*K.1,1,1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,1,1,0,0,0,0,-4*K.1,-4*K.1^-1,4*K.1^-1,4*K.1,-4*K.1^-1,-4*K.1,-4,-4,-4*K.1,-4*K.1^-1,-4*K.1^-1,-4*K.1,0,0,0,0,0,0,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1,K.1^-1,-1,-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,1,1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,4,4,4*K.1^-1,4*K.1,4*K.1,4*K.1^-1,4*K.1^-1,4*K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,K.1^-1,K.1,1,1,0,0,0,0,-4,-4,4,4,-4,-4,-4*K.1,-4*K.1^-1,-4*K.1^-1,-4*K.1,-4*K.1^-1,-4*K.1,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1,-1,-1,-1*K.1,-1*K.1^-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,4,4,4*K.1,4*K.1^-1,4*K.1^-1,4*K.1,4*K.1,4*K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,K.1,K.1^-1,1,1,0,0,0,0,-4,-4,4,4,-4,-4,-4*K.1^-1,-4*K.1,-4*K.1,-4*K.1^-1,-4*K.1,-4*K.1^-1,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,-1,-1,-1*K.1^-1,-1*K.1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,4,4,4*K.1^-1,4*K.1,4*K.1,4*K.1^-1,4*K.1^-1,4*K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1^-1,K.1,0,0,0,0,-4,-4,4,4,-4,-4,-4*K.1,-4*K.1^-1,-4*K.1^-1,-4*K.1,-4*K.1^-1,-4*K.1,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,-1,-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,4,4,4*K.1,4*K.1^-1,4*K.1^-1,4*K.1,4*K.1,4*K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1,K.1^-1,0,0,0,0,-4,-4,4,4,-4,-4,-4*K.1^-1,-4*K.1,-4*K.1,-4*K.1^-1,-4*K.1,-4*K.1^-1,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,-1,-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,4,4,4*K.1^-1,4*K.1,4*K.1,4*K.1^-1,4*K.1^-1,4*K.1,1,1,1,1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,0,0,0,0,-4,-4,4,4,-4,-4,-4*K.1,-4*K.1^-1,-4*K.1^-1,-4*K.1,-4*K.1^-1,-4*K.1,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,4,4,4*K.1,4*K.1^-1,4*K.1^-1,4*K.1,4*K.1,4*K.1^-1,1,1,1,1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,0,0,0,0,-4,-4,4,4,-4,-4,-4*K.1^-1,-4*K.1,-4*K.1,-4*K.1^-1,-4*K.1,-4*K.1^-1,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[9, 9, -3, -3, -3, -3, -3, 1, 1, 1, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 9, 1, -3, 9, 9, -3, -3, -3, -3, 0, 0, 0, 0, 0, 0, -3, -3, -3, -3, -3, -3, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, -3, 9, 9, 1, 1, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[9, 9, -3, -3, -3, -3, -3, 1, 1, 1, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, -3, -3, 1, 9, 9, -3, -3, -3, -3, 0, 0, 0, 0, 0, 0, -3, -3, -3, -3, -3, -3, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, -3, -3, -3, -3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[9, 9, -3, -3, -3, -3, 9, 1, 1, -3, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, -3, 1, 1, 9, 9, -3, -3, -3, -3, 0, 0, 0, 0, 0, 0, -3, -3, 9, 9, -3, -3, 0, 0, 0, 0, 0, 0, 1, 1, -3, -3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, -3, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[9, 9, -3, -3, -3, 9, -3, 1, -3, 1, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, -3, 1, 1, 9, 9, -3, -3, -3, -3, 0, 0, 0, 0, 0, 0, 9, 9, -3, -3, -3, -3, 0, 0, 0, 0, 0, 0, -3, -3, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, -3, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[9, 9, -3, -3, 9, -3, -3, -3, 1, 1, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, -3, 1, 1, 9, 9, -3, -3, -3, -3, 0, 0, 0, 0, 0, 0, -3, -3, -3, -3, 9, 9, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, -3, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,9,-3,-3,-3,-3,-3,1,1,1,9*K.1^-1,9*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,9,1,-3,9*K.1^-1,9*K.1,-3*K.1,-3*K.1^-1,-3*K.1,-3*K.1^-1,0,0,0,0,0,0,-3*K.1^-1,-3*K.1,-3*K.1^-1,-3*K.1,-3*K.1,-3*K.1^-1,0,0,0,0,0,0,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1,-3*K.1^-1,9*K.1,9*K.1^-1,K.1,K.1^-1,-3*K.1,-3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,9,-3,-3,-3,-3,-3,1,1,1,9*K.1,9*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,9,1,-3,9*K.1,9*K.1^-1,-3*K.1^-1,-3*K.1,-3*K.1^-1,-3*K.1,0,0,0,0,0,0,-3*K.1,-3*K.1^-1,-3*K.1,-3*K.1^-1,-3*K.1^-1,-3*K.1,0,0,0,0,0,0,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1^-1,-3*K.1,9*K.1^-1,9*K.1,K.1^-1,K.1,-3*K.1^-1,-3*K.1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,9,-3,-3,-3,-3,-3,1,1,1,9*K.1^-1,9*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,-3,-3,1,9*K.1^-1,9*K.1,-3*K.1,-3*K.1^-1,-3*K.1,-3*K.1^-1,0,0,0,0,0,0,-3*K.1^-1,-3*K.1,-3*K.1^-1,-3*K.1,-3*K.1,-3*K.1^-1,0,0,0,0,0,0,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9*K.1,9*K.1^-1,-3*K.1,-3*K.1^-1,-3*K.1,-3*K.1^-1,K.1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,9,-3,-3,-3,-3,-3,1,1,1,9*K.1,9*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,-3,-3,1,9*K.1,9*K.1^-1,-3*K.1^-1,-3*K.1,-3*K.1^-1,-3*K.1,0,0,0,0,0,0,-3*K.1,-3*K.1^-1,-3*K.1,-3*K.1^-1,-3*K.1^-1,-3*K.1,0,0,0,0,0,0,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9*K.1^-1,9*K.1,-3*K.1^-1,-3*K.1,-3*K.1^-1,-3*K.1,K.1^-1,K.1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,9,-3,-3,-3,-3,9,1,1,-3,9*K.1^-1,9*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,1,1,9*K.1^-1,9*K.1,-3*K.1,-3*K.1^-1,-3*K.1,-3*K.1^-1,0,0,0,0,0,0,-3*K.1^-1,-3*K.1,9*K.1^-1,9*K.1,-3*K.1,-3*K.1^-1,0,0,0,0,0,0,K.1^-1,K.1,-3*K.1^-1,-3*K.1,K.1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1,-3*K.1^-1,-3*K.1,-3*K.1^-1,K.1,K.1^-1,K.1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,9,-3,-3,-3,-3,9,1,1,-3,9*K.1,9*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,1,1,9*K.1,9*K.1^-1,-3*K.1^-1,-3*K.1,-3*K.1^-1,-3*K.1,0,0,0,0,0,0,-3*K.1,-3*K.1^-1,9*K.1,9*K.1^-1,-3*K.1^-1,-3*K.1,0,0,0,0,0,0,K.1,K.1^-1,-3*K.1,-3*K.1^-1,K.1^-1,K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1^-1,-3*K.1,-3*K.1^-1,-3*K.1,K.1^-1,K.1,K.1^-1,K.1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,9,-3,-3,-3,9,-3,1,-3,1,9*K.1^-1,9*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,1,1,9*K.1^-1,9*K.1,-3*K.1,-3*K.1^-1,-3*K.1,-3*K.1^-1,0,0,0,0,0,0,9*K.1^-1,9*K.1,-3*K.1^-1,-3*K.1,-3*K.1,-3*K.1^-1,0,0,0,0,0,0,-3*K.1^-1,-3*K.1,K.1^-1,K.1,K.1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1,-3*K.1^-1,-3*K.1,-3*K.1^-1,K.1,K.1^-1,K.1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,9,-3,-3,-3,9,-3,1,-3,1,9*K.1,9*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,1,1,9*K.1,9*K.1^-1,-3*K.1^-1,-3*K.1,-3*K.1^-1,-3*K.1,0,0,0,0,0,0,9*K.1,9*K.1^-1,-3*K.1,-3*K.1^-1,-3*K.1^-1,-3*K.1,0,0,0,0,0,0,-3*K.1,-3*K.1^-1,K.1,K.1^-1,K.1^-1,K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1^-1,-3*K.1,-3*K.1^-1,-3*K.1,K.1^-1,K.1,K.1^-1,K.1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,9,-3,-3,9,-3,-3,-3,1,1,9*K.1^-1,9*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,1,1,9*K.1^-1,9*K.1,-3*K.1,-3*K.1^-1,-3*K.1,-3*K.1^-1,0,0,0,0,0,0,-3*K.1^-1,-3*K.1,-3*K.1^-1,-3*K.1,9*K.1,9*K.1^-1,0,0,0,0,0,0,K.1^-1,K.1,K.1^-1,K.1,-3*K.1,-3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1,-3*K.1^-1,-3*K.1,-3*K.1^-1,K.1,K.1^-1,K.1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,9,-3,-3,9,-3,-3,-3,1,1,9*K.1,9*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,1,1,9*K.1,9*K.1^-1,-3*K.1^-1,-3*K.1,-3*K.1^-1,-3*K.1,0,0,0,0,0,0,-3*K.1,-3*K.1^-1,-3*K.1,-3*K.1^-1,9*K.1^-1,9*K.1,0,0,0,0,0,0,K.1,K.1^-1,K.1,K.1^-1,-3*K.1^-1,-3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1^-1,-3*K.1,-3*K.1^-1,-3*K.1,K.1^-1,K.1,K.1^-1,K.1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[12, -12, -4, 4, 0, 0, 0, 0, 0, 0, 12, 12, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -12, -12, -4, -4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, -3, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |12,-12,-4,4,0,0,0,0,0,0,12*K.1^-1,12*K.1,0,0,0,0,0,0,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-12*K.1^-1,-12*K.1,-4*K.1,-4*K.1^-1,4*K.1,4*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1,-3*K.1^-1,-3*K.1,-3*K.1^-1,-3,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,1,1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |12,-12,-4,4,0,0,0,0,0,0,12*K.1,12*K.1^-1,0,0,0,0,0,0,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-12*K.1,-12*K.1^-1,-4*K.1^-1,-4*K.1,4*K.1^-1,4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1^-1,-3*K.1,-3*K.1^-1,-3*K.1,-3,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,1,1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |12,-12,-4,4,0,0,0,0,0,0,12*K.1^-1,12*K.1,0,0,0,0,0,0,3*K.1,3*K.1^-1,3,3,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-12*K.1^-1,-12*K.1,-4*K.1,-4*K.1^-1,4*K.1,4*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1^-1,-3*K.1,-3,-3,-3*K.1,-3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,K.1^-1,K.1,-1,-1,1,1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |12,-12,-4,4,0,0,0,0,0,0,12*K.1,12*K.1^-1,0,0,0,0,0,0,3*K.1^-1,3*K.1,3,3,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-12*K.1,-12*K.1^-1,-4*K.1^-1,-4*K.1,4*K.1^-1,4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1,-3*K.1^-1,-3,-3,-3*K.1^-1,-3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,K.1,K.1^-1,-1,-1,1,1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |12,-12,-4,4,0,0,0,0,0,0,12*K.1^-1,12*K.1,0,0,0,0,0,0,3,3,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-12*K.1^-1,-12*K.1,-4*K.1,-4*K.1^-1,4*K.1,4*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,-3*K.1^-1,-3*K.1,-3*K.1^-1,-3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,1,1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1^-1,K.1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |12,-12,-4,4,0,0,0,0,0,0,12*K.1,12*K.1^-1,0,0,0,0,0,0,3,3,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-12*K.1,-12*K.1^-1,-4*K.1^-1,-4*K.1,4*K.1^-1,4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,-3*K.1,-3*K.1^-1,-3*K.1,-3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,1,1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1,K.1^-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |12,-12,-4,4,0,0,0,0,0,0,12,12,0,0,0,0,0,0,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-12,-12,-4,-4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1,-3*K.1^-1,-3*K.1^-1,-3*K.1,-3*K.1,-3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |12,-12,-4,4,0,0,0,0,0,0,12,12,0,0,0,0,0,0,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-12,-12,-4,-4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1^-1,-3*K.1,-3*K.1,-3*K.1^-1,-3*K.1^-1,-3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_3456_qs:= KnownIrreducibles(CR);