# Group 331776.ce downloaded from the LMFDB on 08 November 2025. ## Various presentations of this group are stored in this file: # GPC is polycyclic presentation GPerm is permutation group # GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups # Many characteristics of the group are stored as booleans in a record: # Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, # metacyclic, monomial, nilpotent, perfect, quasisimple, rational, # solvable, supersolvable # Constructions GPC := PcGroupCode(361768878684617008600121590533859986103616443952964506960690324026983171595710780435217916834751354722654208596903923492675630406382786962805807121285228922329281611861403488156884939537314571166809842732961396501936544212074026320280282037188705785148151320430697428942942216884558621728497627150315496250801367067228770128167358478700535451994054446407121503601719277123507588465466236514858078447329778568008933202261943100263469458469366400,331776); a := GPC.1; b := GPC.2; c := GPC.4; d := GPC.6; e := GPC.8; f := GPC.10; g := GPC.11; h := GPC.12; i := GPC.13; j := GPC.14; k := GPC.15; l := GPC.16; GPerm := Group( (1,2,3)(6,7)(9,10,12)(11,15)(14,16), (1,4,3,7)(2,6,5,8)(9,11,12,15)(10,14,13,16), (1,3,2,5)(4,6,7)(10,13)(11,16,14,15) ); # Booleans booleans_331776_ce := rec( Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := false, metacyclic := false, nilpotent := false, perfect := false, quasisimple := false, rational := true, solvable := true, supersolvable := false);