/* Group 320.586 downloaded from the LMFDB on 14 November 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([7, -2, -2, -2, -2, -2, -2, -5, 2325, 36, 4707, 346, 80, 1538, 124, 1595]); a,b,c,d := Explode([GPC.1, GPC.2, GPC.4, GPC.6]); AssignNames(~GPC, ["a", "b", "b2", "c", "c2", "d", "d2"]); GPerm := PermutationGroup< 17 | (2,3)(4,5)(8,9)(10,11)(12,13)(14,15)(16,17), (6,7)(8,9)(10,11)(12,13)(15,16), (6,8)(7,9)(11,13)(14,16,17,15), (6,7)(8,9)(10,12)(11,13)(14,17)(15,16), (14,17)(15,16), (10,12)(11,13)(14,17)(15,16), (1,2,4,5,3) >; GLZN := MatrixGroup< 2, Integers(40) | [[11, 30, 30, 1], [1, 20, 0, 1], [11, 35, 30, 1], [21, 10, 10, 31], [21, 0, 0, 21], [31, 2, 20, 39], [1, 8, 0, 1]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_320_586 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, c^2>,< 2, 1, c^2*d^5>,< 2, 1, b^2*d^5>,< 2, 1, b^2*c^2>,< 2, 1, b^2*c^2*d^5>,< 2, 1, b^2>,< 2, 1, d^5>,< 2, 4, a>,< 2, 4, a*c^2>,< 2, 20, a*b^3*c^3*d>,< 2, 20, a*b*c*d>,< 4, 4, b>,< 4, 4, b^3>,< 4, 4, a*b>,< 4, 4, a*b*d^5>,< 4, 20, b^3*c*d^2>,< 4, 20, c^3*d^3>,< 4, 20, b*c*d>,< 4, 20, b^2*c^3*d^9>,< 4, 20, a*b^2*c^3*d^4>,< 4, 20, a*b^2*c*d^9>,< 5, 2, d^4>,< 5, 2, d^8>,< 10, 2, c^2*d^2>,< 10, 2, c^2*d^4>,< 10, 2, c^2*d>,< 10, 2, c^2*d^3>,< 10, 2, b^2*d>,< 10, 2, b^2*d^3>,< 10, 2, b^2*c^2*d^2>,< 10, 2, b^2*c^2*d^4>,< 10, 2, b^2*c^2*d>,< 10, 2, b^2*c^2*d^3>,< 10, 2, b^2*d^4>,< 10, 2, b^2*d^2>,< 10, 2, d^9>,< 10, 2, d^7>,< 10, 4, a*d^2>,< 10, 4, a*d^8>,< 10, 4, a*d^6>,< 10, 4, a*d>,< 10, 4, a*c^2*d^2>,< 10, 4, a*c^2*d^8>,< 10, 4, a*c^2*d^6>,< 10, 4, a*c^2*d>,< 20, 4, b*d^2>,< 20, 4, b*d^3>,< 20, 4, b*d>,< 20, 4, b*d^4>,< 20, 4, b*c^2*d>,< 20, 4, b*d^6>,< 20, 4, b*d^8>,< 20, 4, b^3*d^2>,< 20, 4, a*b*d^2>,< 20, 4, a*b*d^3>,< 20, 4, a*b*d>,< 20, 4, a*b*d^4>,< 20, 4, a*b^3*d^4>,< 20, 4, a*b*d^6>,< 20, 4, a*b*d^8>,< 20, 4, a*b^3*d^2>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, 2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 2, 0, 0, 2, 2, -2, -2, 2, 2, -2, -2, -2, 2, 2, -2, 2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, 2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, -2, 0, 0, 2, 2, -2, -2, 2, 2, -2, -2, -2, 2, 2, -2, 2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, -2, -2, 2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, 2, -2, -2, 2, 2, 2, 2, -2, -2, -2, -2, 2, -2, 2, 2, -2, -2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, -2, -2, 2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, 2, -2, -2, 2, 2, 2, 2, -2, -2, -2, -2, 2, -2, -2, -2, 2, 2, 2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, -2, 2, 2, -2, 0, 0, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, -2, -2, -2, -2, -2, -2, 2, -2, 2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, -2, 2, 2, -2, 0, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, -2, -2, -2, -2, -2, -2, 2, -2, 2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, 2, -2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 2, 2, 2, -2, 2, -2, -2, -2, -2, 2, -2, 2, -2, 2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, 2, -2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, -2, 2, 2, -2, 2, -2, -2, -2, -2, 2, -2, 2, -2, 2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,2,2,0,0,2,2,2,2,0,0,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,2,2,0,0,2,2,2,2,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,-2,2,2,-2,2,0,0,0,0,0,0,0,0,0,-2*K.1,0,0,2*K.1,0,2,2,2,2,2,2,-2,-2,2,-2,-2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,-2,2,2,-2,2,0,0,0,0,0,0,0,0,0,2*K.1,0,0,-2*K.1,0,2,2,2,2,2,2,-2,-2,2,-2,-2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,2,2,-2,2,-2,-2,0,0,0,0,0,0,-2*K.1,2*K.1,0,0,0,0,0,0,2,2,2,-2,-2,-2,2,2,-2,-2,2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1,-2*K.1,0,0,2*K.1,0,-2*K.1,0,0,2*K.1,-2*K.1,0,-2*K.1,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,2,2,-2,2,-2,-2,0,0,0,0,0,0,2*K.1,-2*K.1,0,0,0,0,0,0,2,2,2,-2,-2,-2,2,2,-2,-2,2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1,2*K.1,0,0,-2*K.1,0,2*K.1,0,0,-2*K.1,2*K.1,0,2*K.1,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,2,-2,2,-2,-2,-2,0,0,0,0,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,2,2,-2,-2,2,2,2,2,-2,-2,-2,-2,-2,2,-2,2,0,0,0,0,0,0,0,0,-2*K.1,0,0,0,-2*K.1,-2*K.1,0,2*K.1,0,2*K.1,2*K.1,0,0,2*K.1,0,-2*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,2,-2,2,-2,-2,-2,0,0,0,0,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,2,2,-2,-2,2,2,2,2,-2,-2,-2,-2,-2,2,-2,2,0,0,0,0,0,0,0,0,2*K.1,0,0,0,2*K.1,2*K.1,0,-2*K.1,0,-2*K.1,-2*K.1,0,0,-2*K.1,0,2*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-2,-2,0,0,-2,-2,2,2,0,0,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-2,-2,0,0,-2,-2,2,2,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-2,-2,0,0,2,2,-2,-2,0,0,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-2,-2,0,0,2,2,-2,-2,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,2,2,0,0,-2,-2,-2,-2,0,0,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,2,2,0,0,-2,-2,-2,-2,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,2,-2,-2,-2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1*K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,2,-2,-2,-2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1*K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,2,-2,-2,-2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1-2*K.1-K.1^2-K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1*K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,2,-2,-2,-2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,1+2*K.1+K.1^2+K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1*K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,2,-2,-2,-2,2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,2,-2,-2,-2,2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,2,-2,-2,-2,2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1*K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,2,-2,-2,-2,2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,2,-2,2,-2,-2,0,0,0,0,0,0,-2*K.1^5,2*K.1^5,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^6,K.1^4+K.1^6,-1+2*K.1^2-K.1^4+K.1^6,1-2*K.1^2+K.1^4-K.1^6,-1*K.1^4-K.1^6,K.1^4+K.1^6,-1+2*K.1^2-K.1^4+K.1^6,1-2*K.1^2+K.1^4-K.1^6,-1*K.1^3-K.1^-3,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^7,K.1^3+K.1^-3,K.1^3+K.1^7,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3-K.1^5+K.1^7,K.1^3+K.1^7,K.1+K.1^-1,-1*K.1^3+K.1^5-K.1^7,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,2,-2,2,-2,-2,0,0,0,0,0,0,2*K.1^5,-2*K.1^5,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^6,-1*K.1^4-K.1^6,1-2*K.1^2+K.1^4-K.1^6,-1+2*K.1^2-K.1^4+K.1^6,K.1^4+K.1^6,-1*K.1^4-K.1^6,1-2*K.1^2+K.1^4-K.1^6,-1+2*K.1^2-K.1^4+K.1^6,-1*K.1^3-K.1^-3,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,K.1^3-K.1^5+K.1^7,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^7,K.1^3+K.1^-3,-1*K.1^3-K.1^7,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^7,K.1+K.1^-1,K.1^3-K.1^5+K.1^7,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,2,-2,2,-2,-2,0,0,0,0,0,0,-2*K.1^5,2*K.1^5,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^6,-1*K.1^4-K.1^6,1-2*K.1^2+K.1^4-K.1^6,-1+2*K.1^2-K.1^4+K.1^6,K.1^4+K.1^6,-1*K.1^4-K.1^6,1-2*K.1^2+K.1^4-K.1^6,-1+2*K.1^2-K.1^4+K.1^6,K.1^3+K.1^-3,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^7,-1*K.1^3-K.1^-3,K.1^3+K.1^7,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3-K.1^5+K.1^7,K.1^3+K.1^7,-1*K.1-K.1^-1,-1*K.1^3+K.1^5-K.1^7,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,2,-2,2,-2,-2,0,0,0,0,0,0,2*K.1^5,-2*K.1^5,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^6,K.1^4+K.1^6,-1+2*K.1^2-K.1^4+K.1^6,1-2*K.1^2+K.1^4-K.1^6,-1*K.1^4-K.1^6,K.1^4+K.1^6,-1+2*K.1^2-K.1^4+K.1^6,1-2*K.1^2+K.1^4-K.1^6,K.1^3+K.1^-3,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^7,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^7,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^7,-1*K.1-K.1^-1,K.1^3-K.1^5+K.1^7,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,2,-2,2,-2,-2,0,0,0,0,0,0,-2*K.1^5,2*K.1^5,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,1-2*K.1^2+K.1^4-K.1^6,-1+2*K.1^2-K.1^4+K.1^6,-1*K.1^4-K.1^6,K.1^4+K.1^6,1-2*K.1^2+K.1^4-K.1^6,-1+2*K.1^2-K.1^4+K.1^6,-1*K.1^4-K.1^6,K.1^4+K.1^6,K.1+K.1^-1,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,K.1^3+K.1^7,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3-K.1^5+K.1^7,-1*K.1-K.1^-1,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^-3,K.1^3+K.1^7,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,2,-2,2,-2,-2,0,0,0,0,0,0,2*K.1^5,-2*K.1^5,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1+2*K.1^2-K.1^4+K.1^6,1-2*K.1^2+K.1^4-K.1^6,K.1^4+K.1^6,-1*K.1^4-K.1^6,-1+2*K.1^2-K.1^4+K.1^6,1-2*K.1^2+K.1^4-K.1^6,K.1^4+K.1^6,-1*K.1^4-K.1^6,K.1+K.1^-1,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^7,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3+K.1^5-K.1^7,-1*K.1-K.1^-1,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^7,K.1^3-K.1^5+K.1^7,K.1^3+K.1^-3,-1*K.1^3-K.1^7,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,2,-2,2,-2,-2,0,0,0,0,0,0,-2*K.1^5,2*K.1^5,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1+2*K.1^2-K.1^4+K.1^6,1-2*K.1^2+K.1^4-K.1^6,K.1^4+K.1^6,-1*K.1^4-K.1^6,-1+2*K.1^2-K.1^4+K.1^6,1-2*K.1^2+K.1^4-K.1^6,K.1^4+K.1^6,-1*K.1^4-K.1^6,-1*K.1-K.1^-1,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,K.1^3+K.1^7,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3-K.1^5+K.1^7,K.1+K.1^-1,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^-3,K.1^3+K.1^7,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,2,-2,2,-2,-2,0,0,0,0,0,0,2*K.1^5,-2*K.1^5,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,1-2*K.1^2+K.1^4-K.1^6,-1+2*K.1^2-K.1^4+K.1^6,-1*K.1^4-K.1^6,K.1^4+K.1^6,1-2*K.1^2+K.1^4-K.1^6,-1+2*K.1^2-K.1^4+K.1^6,-1*K.1^4-K.1^6,K.1^4+K.1^6,-1*K.1-K.1^-1,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^7,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3+K.1^5-K.1^7,K.1+K.1^-1,K.1^3-K.1^5+K.1^7,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^7,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,2,-2,2,-2,-2,-2,0,0,0,0,-2*K.1^5,2*K.1^5,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^6,K.1^4+K.1^6,1-2*K.1^2+K.1^4-K.1^6,-1+2*K.1^2-K.1^4+K.1^6,K.1^4+K.1^6,-1*K.1^4-K.1^6,-1+2*K.1^2-K.1^4+K.1^6,1-2*K.1^2+K.1^4-K.1^6,K.1^3+K.1^7,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^7,K.1^3+K.1^-3,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3-K.1^5+K.1^7,K.1+K.1^-1,-1*K.1^3+K.1^5-K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,2,-2,2,-2,-2,-2,0,0,0,0,2*K.1^5,-2*K.1^5,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^6,-1*K.1^4-K.1^6,-1+2*K.1^2-K.1^4+K.1^6,1-2*K.1^2+K.1^4-K.1^6,-1*K.1^4-K.1^6,K.1^4+K.1^6,1-2*K.1^2+K.1^4-K.1^6,-1+2*K.1^2-K.1^4+K.1^6,-1*K.1^3-K.1^7,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^-3,K.1^3+K.1^7,K.1^3+K.1^-3,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3+K.1^5-K.1^7,K.1+K.1^-1,K.1^3-K.1^5+K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,2,-2,2,-2,-2,-2,0,0,0,0,-2*K.1^5,2*K.1^5,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^6,-1*K.1^4-K.1^6,-1+2*K.1^2-K.1^4+K.1^6,1-2*K.1^2+K.1^4-K.1^6,-1*K.1^4-K.1^6,K.1^4+K.1^6,1-2*K.1^2+K.1^4-K.1^6,-1+2*K.1^2-K.1^4+K.1^6,K.1^3+K.1^7,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^-3,-1*K.1^3-K.1^7,-1*K.1^3-K.1^-3,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3-K.1^5+K.1^7,-1*K.1-K.1^-1,-1*K.1^3+K.1^5-K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,2,-2,2,-2,-2,-2,0,0,0,0,2*K.1^5,-2*K.1^5,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^6,K.1^4+K.1^6,1-2*K.1^2+K.1^4-K.1^6,-1+2*K.1^2-K.1^4+K.1^6,K.1^4+K.1^6,-1*K.1^4-K.1^6,-1+2*K.1^2-K.1^4+K.1^6,1-2*K.1^2+K.1^4-K.1^6,-1*K.1^3-K.1^7,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,K.1^3+K.1^-3,K.1^3+K.1^7,-1*K.1^3-K.1^-3,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3+K.1^5-K.1^7,-1*K.1-K.1^-1,K.1^3-K.1^5+K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,2,-2,2,-2,-2,-2,0,0,0,0,-2*K.1^5,2*K.1^5,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,1-2*K.1^2+K.1^4-K.1^6,-1+2*K.1^2-K.1^4+K.1^6,K.1^4+K.1^6,-1*K.1^4-K.1^6,-1+2*K.1^2-K.1^4+K.1^6,1-2*K.1^2+K.1^4-K.1^6,-1*K.1^4-K.1^6,K.1^4+K.1^6,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,K.1+K.1^-1,K.1^3-K.1^5+K.1^7,-1*K.1-K.1^-1,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^7,K.1^3+K.1^-3,K.1^3+K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,2,-2,2,-2,-2,-2,0,0,0,0,2*K.1^5,-2*K.1^5,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1+2*K.1^2-K.1^4+K.1^6,1-2*K.1^2+K.1^4-K.1^6,-1*K.1^4-K.1^6,K.1^4+K.1^6,1-2*K.1^2+K.1^4-K.1^6,-1+2*K.1^2-K.1^4+K.1^6,K.1^4+K.1^6,-1*K.1^4-K.1^6,K.1^3-K.1^5+K.1^7,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,K.1+K.1^-1,-1*K.1^3+K.1^5-K.1^7,-1*K.1-K.1^-1,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^7,K.1^3+K.1^-3,-1*K.1^3-K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,2,-2,2,-2,-2,-2,0,0,0,0,-2*K.1^5,2*K.1^5,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1+2*K.1^2-K.1^4+K.1^6,1-2*K.1^2+K.1^4-K.1^6,-1*K.1^4-K.1^6,K.1^4+K.1^6,1-2*K.1^2+K.1^4-K.1^6,-1+2*K.1^2-K.1^4+K.1^6,K.1^4+K.1^6,-1*K.1^4-K.1^6,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,-1*K.1-K.1^-1,K.1^3-K.1^5+K.1^7,K.1+K.1^-1,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^7,-1*K.1^3-K.1^-3,K.1^3+K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,2,-2,2,-2,-2,-2,0,0,0,0,2*K.1^5,-2*K.1^5,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,1-2*K.1^2+K.1^4-K.1^6,-1+2*K.1^2-K.1^4+K.1^6,K.1^4+K.1^6,-1*K.1^4-K.1^6,-1+2*K.1^2-K.1^4+K.1^6,1-2*K.1^2+K.1^4-K.1^6,-1*K.1^4-K.1^6,K.1^4+K.1^6,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,-1*K.1-K.1^-1,-1*K.1^3+K.1^5-K.1^7,K.1+K.1^-1,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^7,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |4,-4,-4,4,4,-4,4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |4,-4,-4,4,4,-4,4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |4,4,-4,-4,-4,4,4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |4,4,-4,-4,-4,4,4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |4,4,-4,4,-4,-4,-4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |4,4,-4,4,-4,-4,-4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |4,-4,-4,-4,4,4,-4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |4,-4,-4,-4,4,4,-4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_320_586:= KnownIrreducibles(CR);