/* Group 32.44 downloaded from the LMFDB on 11 September 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([5, -2, 2, 2, -2, -2, 86, 302, 97, 42, 248, 58]); a,b,c := Explode([GPC.1, GPC.2, GPC.3]); AssignNames(~GPC, ["a", "b", "c", "c2", "c4"]); GPerm := PermutationGroup< 16 | (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16), (1,6,2,5)(3,8,4,7)(9,16,10,15)(11,13,12,14), (9,10)(11,12)(13,14)(15,16), (1,4,2,3)(5,7,6,8)(9,11,10,12)(13,16,14,15), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16) >; GLFp := MatrixGroup< 4, GF(3) | [[2, 1, 1, 0, 2, 2, 1, 2, 2, 2, 0, 1, 1, 0, 1, 2], [1, 1, 1, 0, 1, 0, 1, 2, 0, 2, 1, 1, 1, 1, 2, 1], [2, 0, 0, 0, 1, 0, 1, 2, 1, 1, 0, 1, 0, 0, 0, 1], [0, 1, 2, 1, 1, 1, 2, 0, 1, 0, 1, 1, 2, 2, 2, 1], [2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_32_44 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := true, perfect := false, quasisimple := false, rational := true, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, c^4>,< 2, 2, a>,< 2, 4, b*c>,< 4, 2, a*c^2>,< 4, 2, c^2>,< 4, 4, b>,< 4, 4, a*b>,< 4, 4, a*b*c>,< 8, 4, c>,< 8, 4, a*c>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, -1, 1, 1, -1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, 0, 2, -2, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 0, -2, -2, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_32_44:= KnownIrreducibles(CR);