/* Group 32.26 downloaded from the LMFDB on 26 September 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([5, 2, 2, 2, 2, 2, 100, 26, 248, 58]); a,b,c := Explode([GPC.1, GPC.2, GPC.4]); AssignNames(~GPC, ["a", "b", "b2", "c", "c2"]); GPerm := PermutationGroup< 12 | (1,2,4,6)(3,7,8,5)(9,10,11,12), (1,3,4,8)(2,5,6,7)(9,11)(10,12), (9,10,11,12), (1,4)(2,6)(3,8)(5,7), (1,4)(2,6)(3,8)(5,7)(9,11)(10,12) >; GLZ := MatrixGroup< 6, Integers() | [[0, 1, 0, 1, 0, 0, -1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, -1, -1, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1], [0, 0, -1, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0], [-1, 1, 1, 0, 0, 0, -1, 0, 0, -1, 0, 0, -1, 1, 1, 1, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1]] >; GLFp := MatrixGroup< 3, GF(5) | [[3, 0, 0, 0, 3, 0, 0, 0, 3], [1, 0, 0, 4, 1, 1, 1, 3, 4], [4, 0, 0, 1, 1, 0, 3, 0, 1], [4, 0, 0, 0, 4, 0, 0, 0, 4], [3, 0, 0, 3, 4, 0, 3, 2, 1]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_32_26 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := true, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, b^2*c^2>,< 2, 1, c^2>,< 2, 1, b^2>,< 4, 1, a>,< 4, 1, a*b^2*c^2>,< 4, 1, a*c^2>,< 4, 1, a*b^2>,< 4, 2, c>,< 4, 2, b^2*c>,< 4, 2, a*b>,< 4, 2, a*b*c>,< 4, 2, a*b^3>,< 4, 2, a*b^3*c>,< 4, 2, b>,< 4, 2, b^3>,< 4, 2, b*c>,< 4, 2, b^3*c>,< 4, 2, a*c>,< 4, 2, a*b^2*c>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,-1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1,-1*K.1,-1,K.1,1,-1*K.1,-1,1,K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,-1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1,K.1,-1,-1*K.1,1,K.1,-1,1,-1*K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,-1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1,K.1,1,-1*K.1,-1,-1*K.1,1,-1,-1*K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,-1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1,-1*K.1,1,K.1,-1,K.1,1,-1,K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,-1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,1,-1*K.1,-1,-1*K.1,1,K.1,1,-1,K.1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,-1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,1,K.1,-1,K.1,1,-1*K.1,1,-1,-1*K.1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,-1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,1,K.1,1,K.1,-1,K.1,-1,1,-1*K.1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,-1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,1,-1*K.1,1,-1*K.1,-1,-1*K.1,-1,1,K.1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, 2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,2,-2,-2*K.1,2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,2,-2,2*K.1,-2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_32_26:= KnownIrreducibles(CR);