# Group 3168.c downloaded from the LMFDB on 21 November 2025. ## Various presentations of this group are stored in this file: # GPC is polycyclic presentation GPerm is permutation group # GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups # Many characteristics of the group are stored as booleans in a record: # Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, # metacyclic, monomial, nilpotent, perfect, quasisimple, rational, # solvable, supersolvable # Constructions GPC := PcGroupCode(3976166881536833915045964957510993751887459000011900,3168); a := GPC.1; b := GPC.2; c := GPC.7; GPerm := Group( (2,4)(3,5)(6,9)(7,8)(10,11)(21,22)(23,25)(24,27)(26,28), (1,2,5,8,9,10,11,6,7,3,4)(12,13,14,15,16,17,18,19,20)(21,23,26,24), (1,3,6,10,8,2,4,7,11,9,5)(21,24,26,23)(22,25,28,27) ); GLFp := Group([[[ Z(397), 0*Z(397) ], [ 0*Z(397), Z(397)^10 ]], [[ Z(397)^9, 0*Z(397) ], [ 0*Z(397), Z(397)^387 ]], [[ 0*Z(397), Z(397)^0 ], [ Z(397)^0, 0*Z(397) ]]]); # Booleans booleans_3168_c := rec( Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true);