/* Group 29400.d downloaded from the LMFDB on 27 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable */ /* Constructions */ GPC := PCGroup([8, -2, -5, -7, -2, -2, -3, -5, -7, 16, 89, 23538, 781763, 91, 778404, 116, 456965, 189, 1599366, 334, 1612807]); a,b := Explode([GPC.1, GPC.4]); AssignNames(~GPC, ["a", "a2", "a10", "b", "b2", "b4", "b12", "b60"]); GPerm := PermutationGroup< 31 | (2,3)(4,5)(9,10)(11,13)(12,15), (1,2,4,5,3)(9,11,14,13,10,12,15)(21,22)(23,24), (6,7,8)(16,17,18,19,20)(21,23,22,24)(25,26,27,28,29,30,31) >; GLFp := MatrixGroup< 2, GF(421) | [[2, 0, 0, 2], [64, 0, 0, 125], [0, 1, 1, 0]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_29400_d := rec< RF | Agroup := true, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := true, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>;