/* Group 29400.c downloaded from the LMFDB on 23 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable */ /* Constructions */ GPC := PCGroup([8, -2, -5, -7, -2, -2, -3, -5, -7, 16, 89, 35298, 468163, 91, 1170404, 116, 1397765, 189, 1599366, 334, 1612807]); a,b := Explode([GPC.1, GPC.4]); AssignNames(~GPC, ["a", "a2", "a10", "b", "b2", "b4", "b12", "b60"]); GPerm := PermutationGroup< 31 | (2,3)(4,5)(7,8)(10,11)(12,13)(14,15), (1,2,4,5,3)(6,7,8)(9,10,12,14,15,13,11)(23,24)(25,26), (1,3,5,4,2)(6,8,7)(9,11,13,15,14,12,10)(16,17,18,19,20,21,22)(23,25,24,26)(27,28,29,30,31) >; GLFp := MatrixGroup< 2, GF(421) | [[4, 0, 0, 316], [0, 1, 1, 0], [2, 0, 0, 32]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_29400_c := rec< RF | Agroup := true, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := true, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>;