/* Group 288.5 downloaded from the LMFDB on 26 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([7, -2, -2, -2, -2, -2, -3, -3, 2493, 36, 1430, 58, 3811, 80, 9524, 102, 10757, 166, 9414]); a,b := Explode([GPC.1, GPC.2]); AssignNames(~GPC, ["a", "b", "b2", "b4", "b8", "b16", "b48"]); GPerm := PermutationGroup< 25 | (2,6)(7,12)(8,13)(14,16)(18,20)(19,23)(21,22)(24,25), (1,2,3,7,4,8,9,14,5,6,10,12,11,13,15,16), (1,3,4,9,5,10,11,15)(2,7,8,14,6,12,13,16), (1,4,5,11)(2,8,6,13)(3,9,10,15)(7,14,12,16), (1,5)(2,6)(3,10)(4,11)(7,12)(8,13)(9,15)(14,16), (17,18,21,23,25,24,19,22,20), (17,19,23)(18,22,25)(20,24,21) >; GLFp := MatrixGroup< 2, GF(89) | [[1, 0, 0, 88], [82, 19, 36, 82]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_288_5 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := true, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, b^72>,< 2, 18, a*b^136>,< 3, 2, b^48>,< 4, 1, b^36>,< 4, 1, b^108>,< 4, 18, a*b^100>,< 6, 2, b^24>,< 8, 1, b^18>,< 8, 1, b^126>,< 8, 1, b^54>,< 8, 1, b^90>,< 8, 18, a*b^58>,< 8, 18, a*b^22>,< 9, 2, b^16>,< 9, 2, b^32>,< 9, 2, b^64>,< 12, 2, b^12>,< 12, 2, b^132>,< 16, 2, b^9>,< 16, 2, b^135>,< 16, 2, b^27>,< 16, 2, b^117>,< 16, 18, a*b^79>,< 16, 18, a*b^25>,< 16, 18, a*b^133>,< 16, 18, a*b^115>,< 18, 2, b^8>,< 18, 2, b^40>,< 18, 2, b^56>,< 24, 2, b^6>,< 24, 2, b^138>,< 24, 2, b^30>,< 24, 2, b^114>,< 36, 2, b^4>,< 36, 2, b^140>,< 36, 2, b^20>,< 36, 2, b^124>,< 36, 2, b^28>,< 36, 2, b^116>,< 48, 2, b^3>,< 48, 2, b^141>,< 48, 2, b^15>,< 48, 2, b^129>,< 48, 2, b^33>,< 48, 2, b^111>,< 48, 2, b^51>,< 48, 2, b^93>,< 72, 2, b^2>,< 72, 2, b^142>,< 72, 2, b^10>,< 72, 2, b^134>,< 72, 2, b^14>,< 72, 2, b^130>,< 72, 2, b^22>,< 72, 2, b^122>,< 72, 2, b^38>,< 72, 2, b^106>,< 72, 2, b^46>,< 72, 2, b^98>,< 144, 2, b>,< 144, 2, b^55>,< 144, 2, b^5>,< 144, 2, b^131>,< 144, 2, b^7>,< 144, 2, b^97>,< 144, 2, b^11>,< 144, 2, b^29>,< 144, 2, b^17>,< 144, 2, b^71>,< 144, 2, b^19>,< 144, 2, b^37>,< 144, 2, b^23>,< 144, 2, b^113>,< 144, 2, b^65>,< 144, 2, b^119>,< 144, 2, b^35>,< 144, 2, b^53>,< 144, 2, b^49>,< 144, 2, b^103>,< 144, 2, b^83>,< 144, 2, b^101>,< 144, 2, b^67>,< 144, 2, b^85>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,1,1,1,-1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,1,1,1,-1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,-1,1,-1,-1,1,1,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,1,1,1,-1,-1,K.1^3,-1*K.1,K.1,-1*K.1^3,K.1,-1*K.1,-1*K.1^3,K.1^3,1,1,1,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1,-1,-1,-1,-1,-1,K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1,-1*K.1,K.1^3,K.1,K.1^3,-1*K.1^3,K.1,K.1,K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1,K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^3,-1*K.1,K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,-1,1,-1,-1,1,1,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,1,1,1,-1,-1,-1*K.1,K.1^3,-1*K.1^3,K.1,-1*K.1^3,K.1^3,K.1,-1*K.1,1,1,1,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1,-1,-1,-1,-1,-1,-1*K.1^3,K.1,K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1,K.1^3,K.1^3,K.1,-1*K.1^3,-1*K.1,K.1,K.1^3,K.1,K.1,K.1^3,-1*K.1,K.1^3,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,-1,1,-1,-1,1,1,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,1,1,1,-1,-1,-1*K.1^3,K.1,-1*K.1,K.1^3,-1*K.1,K.1,K.1^3,-1*K.1^3,1,1,1,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1,-1,-1,-1,-1,-1,-1*K.1,K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1,K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1,-1*K.1,K.1^3,K.1,K.1,K.1^3,-1*K.1,-1*K.1^3,K.1^3,K.1,K.1^3,K.1^3,K.1,-1*K.1^3,K.1,-1*K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,-1,1,-1,-1,1,1,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,1,1,1,-1,-1,K.1,-1*K.1^3,K.1^3,-1*K.1,K.1^3,-1*K.1^3,-1*K.1,K.1,1,1,1,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1,-1,-1,-1,-1,-1,K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1,K.1^3,K.1,-1*K.1^3,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^3,-1*K.1^3,K.1,K.1^3,K.1,-1*K.1,K.1^3,K.1^3,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^3,K.1,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1,-1*K.1^3,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,1,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,1,1,1,-1,-1,K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1,K.1,K.1^3,-1*K.1^3,1,1,1,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1,-1,-1,-1,-1,-1,K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1,-1*K.1,K.1^3,K.1,K.1^3,-1*K.1^3,K.1,K.1,K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1,K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^3,-1*K.1,K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,1,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,1,1,1,-1,-1,-1*K.1,K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1^3,-1*K.1,K.1,1,1,1,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1,-1,-1,-1,-1,-1,-1*K.1^3,K.1,K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1,K.1^3,K.1^3,K.1,-1*K.1^3,-1*K.1,K.1,K.1^3,K.1,K.1,K.1^3,-1*K.1,K.1^3,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,1,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,1,1,1,-1,-1,-1*K.1^3,K.1,-1*K.1,K.1^3,K.1,-1*K.1,-1*K.1^3,K.1^3,1,1,1,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1,-1,-1,-1,-1,-1,-1*K.1,K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1,K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1,-1*K.1,K.1^3,K.1,K.1,K.1^3,-1*K.1,-1*K.1^3,K.1^3,K.1,K.1^3,K.1^3,K.1,-1*K.1^3,K.1,-1*K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,1,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,1,1,1,-1,-1,K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1^3,K.1,-1*K.1,1,1,1,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1,-1,-1,-1,-1,-1,K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1,K.1^3,K.1,-1*K.1^3,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^3,-1*K.1^3,K.1,K.1^3,K.1,-1*K.1,K.1^3,K.1^3,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^3,K.1,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1,-1*K.1^3,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 2, 2, 0, 0, -1, -1, -1, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, -1, -1, -1, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 2, 2, 0, 0, -1, -1, -1, 2, 2, -2, -2, -2, -2, 0, 0, 0, 0, -1, -1, -1, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -2, -2, -2, -2, -2, -2, -2, -2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,0,2,2,2,0,2,-2,-2,-2,-2,0,0,-1,-1,-1,2,2,-2*K.1,2*K.1,2*K.1,-2*K.1,0,0,0,0,-1,-1,-1,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,0,2,2,2,0,2,-2,-2,-2,-2,0,0,-1,-1,-1,2,2,2*K.1,-2*K.1,-2*K.1,2*K.1,0,0,0,0,-1,-1,-1,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(9: Sparse := true); S := [ K |2,2,0,-1,2,2,0,-1,2,2,2,2,0,0,K.1^4+K.1^-4,K.1+K.1^-1,K.1^2+K.1^-2,-1,-1,2,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^4+K.1^-4,-1,-1,-1,-1,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1,-1,-1,-1,-1,-1,-1,-1,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1+K.1^-1,K.1+K.1^-1,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1+K.1^-1,K.1^4+K.1^-4,K.1+K.1^-1,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(9: Sparse := true); S := [ K |2,2,0,-1,2,2,0,-1,2,2,2,2,0,0,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1+K.1^-1,-1,-1,2,2,2,2,0,0,0,0,K.1+K.1^-1,K.1^4+K.1^-4,K.1^2+K.1^-2,-1,-1,-1,-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1+K.1^-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1+K.1^-1,K.1+K.1^-1,K.1^4+K.1^-4,K.1+K.1^-1,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1+K.1^-1,K.1^4+K.1^-4,K.1+K.1^-1,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^4+K.1^-4,K.1+K.1^-1,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(9: Sparse := true); S := [ K |2,2,0,-1,2,2,0,-1,2,2,2,2,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^4+K.1^-4,-1,-1,2,2,2,2,0,0,0,0,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1+K.1^-1,-1,-1,-1,-1,K.1^4+K.1^-4,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1,-1,-1,-1,-1,-1,-1,-1,K.1^4+K.1^-4,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1+K.1^-1,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1+K.1^-1,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(9: Sparse := true); S := [ K |2,2,0,-1,2,2,0,-1,2,2,2,2,0,0,K.1^4+K.1^-4,K.1+K.1^-1,K.1^2+K.1^-2,-1,-1,-2,-2,-2,-2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^4+K.1^-4,-1,-1,-1,-1,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,1,1,1,1,1,1,1,1,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1+K.1^-1,K.1+K.1^-1,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(9: Sparse := true); S := [ K |2,2,0,-1,2,2,0,-1,2,2,2,2,0,0,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1+K.1^-1,-1,-1,-2,-2,-2,-2,0,0,0,0,K.1+K.1^-1,K.1^4+K.1^-4,K.1^2+K.1^-2,-1,-1,-1,-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1+K.1^-1,1,1,1,1,1,1,1,1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1+K.1^-1,K.1+K.1^-1,K.1^4+K.1^-4,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(9: Sparse := true); S := [ K |2,2,0,-1,2,2,0,-1,2,2,2,2,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^4+K.1^-4,-1,-1,-2,-2,-2,-2,0,0,0,0,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1+K.1^-1,-1,-1,-1,-1,K.1^4+K.1^-4,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,1,1,1,1,1,1,1,1,K.1^4+K.1^-4,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,0,2,-2*K.1^2,2*K.1^2,0,-2,2*K.1^3,-2*K.1,2*K.1,-2*K.1^3,0,0,2,2,2,2*K.1^2,-2*K.1^2,0,0,0,0,0,0,0,0,-2,-2,-2,-2*K.1,2*K.1,-2*K.1^3,2*K.1^3,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1,2*K.1^3,-2*K.1,2*K.1,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1,-2*K.1^3,2*K.1,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,0,2,2*K.1^2,-2*K.1^2,0,-2,-2*K.1,2*K.1^3,-2*K.1^3,2*K.1,0,0,2,2,2,-2*K.1^2,2*K.1^2,0,0,0,0,0,0,0,0,-2,-2,-2,2*K.1^3,-2*K.1^3,2*K.1,-2*K.1,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,0,0,0,0,0,0,0,0,2*K.1^3,2*K.1^3,-2*K.1,2*K.1^3,-2*K.1^3,2*K.1,-2*K.1,2*K.1,-2*K.1^3,2*K.1,-2*K.1^3,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,0,2,-2*K.1^2,2*K.1^2,0,-2,-2*K.1^3,2*K.1,-2*K.1,2*K.1^3,0,0,2,2,2,2*K.1^2,-2*K.1^2,0,0,0,0,0,0,0,0,-2,-2,-2,2*K.1,-2*K.1,2*K.1^3,-2*K.1^3,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,0,0,0,0,0,0,0,0,2*K.1,2*K.1,-2*K.1^3,2*K.1,-2*K.1,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1,2*K.1^3,-2*K.1,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,0,2,2*K.1^2,-2*K.1^2,0,-2,2*K.1,-2*K.1^3,2*K.1^3,-2*K.1,0,0,2,2,2,-2*K.1^2,2*K.1^2,0,0,0,0,0,0,0,0,-2,-2,-2,-2*K.1^3,2*K.1^3,-2*K.1,2*K.1,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,0,0,0,0,0,0,0,0,-2*K.1^3,-2*K.1^3,2*K.1,-2*K.1^3,2*K.1^3,-2*K.1,2*K.1,-2*K.1,2*K.1^3,-2*K.1,2*K.1^3,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,0,2,-2,-2,0,2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,0,0,-1,-1,-1,-2,-2,2*K.1^3,-2*K.1,2*K.1,-2*K.1^3,0,0,0,0,-1,-1,-1,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,1,1,1,1,1,1,2*K.1,-2*K.1^3,-2*K.1,2*K.1^3,-2*K.1^3,2*K.1,2*K.1^3,-2*K.1,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1,K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1,-1*K.1,K.1^3,K.1,K.1,K.1^3,-1*K.1,-1*K.1^3,K.1^3,K.1,K.1^3,K.1^3,K.1,-1*K.1^3,K.1,-1*K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,0,2,-2,-2,0,2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,0,0,-1,-1,-1,-2,-2,-2*K.1,2*K.1^3,-2*K.1^3,2*K.1,0,0,0,0,-1,-1,-1,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,1,1,1,1,1,1,-2*K.1^3,2*K.1,2*K.1^3,-2*K.1,2*K.1,-2*K.1^3,-2*K.1,2*K.1^3,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^3,-1*K.1^3,K.1,K.1^3,K.1,-1*K.1,K.1^3,K.1^3,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^3,K.1,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1,-1*K.1^3,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,0,2,-2,-2,0,2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,0,0,-1,-1,-1,-2,-2,-2*K.1^3,2*K.1,-2*K.1,2*K.1^3,0,0,0,0,-1,-1,-1,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,1,1,1,1,1,1,-2*K.1,2*K.1^3,2*K.1,-2*K.1^3,2*K.1^3,-2*K.1,-2*K.1^3,2*K.1,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1,-1*K.1,K.1^3,K.1,K.1^3,-1*K.1^3,K.1,K.1,K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1,K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^3,-1*K.1,K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,0,2,-2,-2,0,2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,0,0,-1,-1,-1,-2,-2,2*K.1,-2*K.1^3,2*K.1^3,-2*K.1,0,0,0,0,-1,-1,-1,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,1,1,1,1,1,1,2*K.1^3,-2*K.1,-2*K.1^3,2*K.1,-2*K.1,2*K.1^3,2*K.1,-2*K.1^3,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1,K.1^3,K.1^3,K.1,-1*K.1^3,-1*K.1,K.1,K.1^3,K.1,K.1,K.1^3,-1*K.1,K.1^3,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(36: Sparse := true); S := [ K |2,2,0,-1,2,2,0,-1,-2,-2,-2,-2,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^8+K.1^-8,-1,-1,-2*K.1^9,2*K.1^9,2*K.1^9,-2*K.1^9,0,0,0,0,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,1,1,1,1,K.1^8+K.1^-8,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^8+K.1^-8,-1*K.1^9,K.1^9,-1*K.1^9,K.1^9,K.1^9,-1*K.1^9,K.1^9,-1*K.1^9,-1*K.1^8-K.1^-8,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^7-K.1^11,-1*K.1+K.1^5+K.1^7,-1*K.1+K.1^5-K.1^11,-1*K.1+K.1^5+K.1^7,-1*K.1+K.1^5-K.1^11,K.1-K.1^5-K.1^7,-1*K.1^7-K.1^11,K.1-K.1^5+K.1^11,K.1-K.1^5+K.1^11,-1*K.1+K.1^5-K.1^11,-1*K.1^7-K.1^11,-1*K.1+K.1^5+K.1^7,K.1^7+K.1^11,-1*K.1+K.1^5+K.1^7,K.1^7+K.1^11,K.1^7+K.1^11,K.1-K.1^5+K.1^11,-1*K.1+K.1^5-K.1^11,K.1-K.1^5-K.1^7,K.1-K.1^5+K.1^11,K.1-K.1^5-K.1^7,-1*K.1^7-K.1^11,K.1^7+K.1^11,K.1-K.1^5-K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(36: Sparse := true); S := [ K |2,2,0,-1,2,2,0,-1,-2,-2,-2,-2,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^8+K.1^-8,-1,-1,2*K.1^9,-2*K.1^9,-2*K.1^9,2*K.1^9,0,0,0,0,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,1,1,1,1,K.1^8+K.1^-8,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^8+K.1^-8,K.1^9,-1*K.1^9,K.1^9,-1*K.1^9,-1*K.1^9,K.1^9,-1*K.1^9,K.1^9,-1*K.1^8-K.1^-8,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,K.1^7+K.1^11,K.1-K.1^5-K.1^7,K.1-K.1^5+K.1^11,K.1-K.1^5-K.1^7,K.1-K.1^5+K.1^11,-1*K.1+K.1^5+K.1^7,K.1^7+K.1^11,-1*K.1+K.1^5-K.1^11,-1*K.1+K.1^5-K.1^11,K.1-K.1^5+K.1^11,K.1^7+K.1^11,K.1-K.1^5-K.1^7,-1*K.1^7-K.1^11,K.1-K.1^5-K.1^7,-1*K.1^7-K.1^11,-1*K.1^7-K.1^11,-1*K.1+K.1^5-K.1^11,K.1-K.1^5+K.1^11,-1*K.1+K.1^5+K.1^7,-1*K.1+K.1^5-K.1^11,-1*K.1+K.1^5+K.1^7,K.1^7+K.1^11,-1*K.1^7-K.1^11,-1*K.1+K.1^5+K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(36: Sparse := true); S := [ K |2,2,0,-1,2,2,0,-1,-2,-2,-2,-2,0,0,K.1^8+K.1^-8,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1,-1,-2*K.1^9,2*K.1^9,2*K.1^9,-2*K.1^9,0,0,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^8+K.1^-8,1,1,1,1,K.1^4+K.1^-4,K.1^8+K.1^-8,K.1^8+K.1^-8,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^9,K.1^9,-1*K.1^9,K.1^9,K.1^9,-1*K.1^9,K.1^9,-1*K.1^9,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1-K.1^5+K.1^11,-1*K.1^7-K.1^11,K.1-K.1^5-K.1^7,-1*K.1^7-K.1^11,K.1-K.1^5-K.1^7,K.1^7+K.1^11,K.1-K.1^5+K.1^11,-1*K.1+K.1^5+K.1^7,-1*K.1+K.1^5+K.1^7,K.1-K.1^5-K.1^7,K.1-K.1^5+K.1^11,-1*K.1^7-K.1^11,-1*K.1+K.1^5-K.1^11,-1*K.1^7-K.1^11,-1*K.1+K.1^5-K.1^11,-1*K.1+K.1^5-K.1^11,-1*K.1+K.1^5+K.1^7,K.1-K.1^5-K.1^7,K.1^7+K.1^11,-1*K.1+K.1^5+K.1^7,K.1^7+K.1^11,K.1-K.1^5+K.1^11,-1*K.1+K.1^5-K.1^11,K.1^7+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(36: Sparse := true); S := [ K |2,2,0,-1,2,2,0,-1,-2,-2,-2,-2,0,0,K.1^8+K.1^-8,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1,-1,2*K.1^9,-2*K.1^9,-2*K.1^9,2*K.1^9,0,0,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^8+K.1^-8,1,1,1,1,K.1^4+K.1^-4,K.1^8+K.1^-8,K.1^8+K.1^-8,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^9,-1*K.1^9,K.1^9,-1*K.1^9,-1*K.1^9,K.1^9,-1*K.1^9,K.1^9,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1+K.1^5-K.1^11,K.1^7+K.1^11,-1*K.1+K.1^5+K.1^7,K.1^7+K.1^11,-1*K.1+K.1^5+K.1^7,-1*K.1^7-K.1^11,-1*K.1+K.1^5-K.1^11,K.1-K.1^5-K.1^7,K.1-K.1^5-K.1^7,-1*K.1+K.1^5+K.1^7,-1*K.1+K.1^5-K.1^11,K.1^7+K.1^11,K.1-K.1^5+K.1^11,K.1^7+K.1^11,K.1-K.1^5+K.1^11,K.1-K.1^5+K.1^11,K.1-K.1^5-K.1^7,-1*K.1+K.1^5+K.1^7,-1*K.1^7-K.1^11,K.1-K.1^5-K.1^7,-1*K.1^7-K.1^11,-1*K.1+K.1^5-K.1^11,K.1-K.1^5+K.1^11,-1*K.1^7-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(36: Sparse := true); S := [ K |2,2,0,-1,2,2,0,-1,-2,-2,-2,-2,0,0,K.1^4+K.1^-4,K.1^8+K.1^-8,-1*K.1^2-K.1^-2,-1,-1,-2*K.1^9,2*K.1^9,2*K.1^9,-2*K.1^9,0,0,0,0,-1*K.1^2-K.1^-2,K.1^8+K.1^-8,K.1^4+K.1^-4,1,1,1,1,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^8+K.1^-8,K.1^8+K.1^-8,-1*K.1^2-K.1^-2,-1*K.1^9,K.1^9,-1*K.1^9,K.1^9,K.1^9,-1*K.1^9,K.1^9,-1*K.1^9,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^8-K.1^-8,K.1^2+K.1^-2,-1*K.1+K.1^5+K.1^7,K.1-K.1^5+K.1^11,K.1^7+K.1^11,K.1-K.1^5+K.1^11,K.1^7+K.1^11,-1*K.1+K.1^5-K.1^11,-1*K.1+K.1^5+K.1^7,-1*K.1^7-K.1^11,-1*K.1^7-K.1^11,K.1^7+K.1^11,-1*K.1+K.1^5+K.1^7,K.1-K.1^5+K.1^11,K.1-K.1^5-K.1^7,K.1-K.1^5+K.1^11,K.1-K.1^5-K.1^7,K.1-K.1^5-K.1^7,-1*K.1^7-K.1^11,K.1^7+K.1^11,-1*K.1+K.1^5-K.1^11,-1*K.1^7-K.1^11,-1*K.1+K.1^5-K.1^11,-1*K.1+K.1^5+K.1^7,K.1-K.1^5-K.1^7,-1*K.1+K.1^5-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(36: Sparse := true); S := [ K |2,2,0,-1,2,2,0,-1,-2,-2,-2,-2,0,0,K.1^4+K.1^-4,K.1^8+K.1^-8,-1*K.1^2-K.1^-2,-1,-1,2*K.1^9,-2*K.1^9,-2*K.1^9,2*K.1^9,0,0,0,0,-1*K.1^2-K.1^-2,K.1^8+K.1^-8,K.1^4+K.1^-4,1,1,1,1,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^8+K.1^-8,K.1^8+K.1^-8,-1*K.1^2-K.1^-2,K.1^9,-1*K.1^9,K.1^9,-1*K.1^9,-1*K.1^9,K.1^9,-1*K.1^9,K.1^9,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^8-K.1^-8,K.1^2+K.1^-2,K.1-K.1^5-K.1^7,-1*K.1+K.1^5-K.1^11,-1*K.1^7-K.1^11,-1*K.1+K.1^5-K.1^11,-1*K.1^7-K.1^11,K.1-K.1^5+K.1^11,K.1-K.1^5-K.1^7,K.1^7+K.1^11,K.1^7+K.1^11,-1*K.1^7-K.1^11,K.1-K.1^5-K.1^7,-1*K.1+K.1^5-K.1^11,-1*K.1+K.1^5+K.1^7,-1*K.1+K.1^5-K.1^11,-1*K.1+K.1^5+K.1^7,-1*K.1+K.1^5+K.1^7,K.1^7+K.1^11,-1*K.1^7-K.1^11,K.1-K.1^5+K.1^11,K.1^7+K.1^11,K.1-K.1^5+K.1^11,K.1-K.1^5-K.1^7,-1*K.1+K.1^5+K.1^7,K.1-K.1^5+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |2,-2,0,2,-2*K.1^12,2*K.1^12,0,-2,2*K.1^18,-2*K.1^6,2*K.1^6,-2*K.1^18,0,0,-1,-1,-1,2*K.1^12,-2*K.1^12,0,0,0,0,0,0,0,0,1,1,1,-2*K.1^6,2*K.1^6,-2*K.1^18,2*K.1^18,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,0,0,0,0,0,0,0,0,K.1^6,K.1^6,-1*K.1^18,K.1^6,-1*K.1^6,K.1^18,-1*K.1^18,K.1^18,-1*K.1^6,K.1^18,-1*K.1^6,-1*K.1^18,-1*K.1^3+2*K.1^11,2*K.1^7-K.1^15,-2*K.1+K.1^9,-1*K.1^3+2*K.1^11,2*K.1-K.1^9,K.1^5+K.1^13,K.1^3-2*K.1^11,-1*K.1^3+2*K.1^11,K.1^3-2*K.1^11,K.1^5+K.1^13,2*K.1^7-K.1^15,-2*K.1^7+K.1^15,-1*K.1^5-K.1^13,K.1^3-2*K.1^11,2*K.1-K.1^9,K.1^5+K.1^13,-2*K.1^7+K.1^15,-1*K.1^5-K.1^13,-1*K.1^5-K.1^13,2*K.1^7-K.1^15,-2*K.1+K.1^9,-2*K.1^7+K.1^15,-2*K.1+K.1^9,2*K.1-K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |2,-2,0,2,2*K.1^12,-2*K.1^12,0,-2,-2*K.1^6,2*K.1^18,-2*K.1^18,2*K.1^6,0,0,-1,-1,-1,-2*K.1^12,2*K.1^12,0,0,0,0,0,0,0,0,1,1,1,2*K.1^18,-2*K.1^18,2*K.1^6,-2*K.1^6,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,0,0,0,0,0,0,0,0,-1*K.1^18,-1*K.1^18,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,K.1^6,-1*K.1^6,K.1^18,-1*K.1^6,K.1^18,K.1^6,-1*K.1^5-K.1^13,2*K.1-K.1^9,-2*K.1^7+K.1^15,-1*K.1^5-K.1^13,2*K.1^7-K.1^15,K.1^3-2*K.1^11,K.1^5+K.1^13,-1*K.1^5-K.1^13,K.1^5+K.1^13,K.1^3-2*K.1^11,2*K.1-K.1^9,-2*K.1+K.1^9,-1*K.1^3+2*K.1^11,K.1^5+K.1^13,2*K.1^7-K.1^15,K.1^3-2*K.1^11,-2*K.1+K.1^9,-1*K.1^3+2*K.1^11,-1*K.1^3+2*K.1^11,2*K.1-K.1^9,-2*K.1^7+K.1^15,-2*K.1+K.1^9,-2*K.1^7+K.1^15,2*K.1^7-K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |2,-2,0,2,-2*K.1^12,2*K.1^12,0,-2,2*K.1^18,-2*K.1^6,2*K.1^6,-2*K.1^18,0,0,-1,-1,-1,2*K.1^12,-2*K.1^12,0,0,0,0,0,0,0,0,1,1,1,-2*K.1^6,2*K.1^6,-2*K.1^18,2*K.1^18,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,0,0,0,0,0,0,0,0,K.1^6,K.1^6,-1*K.1^18,K.1^6,-1*K.1^6,K.1^18,-1*K.1^18,K.1^18,-1*K.1^6,K.1^18,-1*K.1^6,-1*K.1^18,K.1^3-2*K.1^11,-2*K.1^7+K.1^15,2*K.1-K.1^9,K.1^3-2*K.1^11,-2*K.1+K.1^9,-1*K.1^5-K.1^13,-1*K.1^3+2*K.1^11,K.1^3-2*K.1^11,-1*K.1^3+2*K.1^11,-1*K.1^5-K.1^13,-2*K.1^7+K.1^15,2*K.1^7-K.1^15,K.1^5+K.1^13,-1*K.1^3+2*K.1^11,-2*K.1+K.1^9,-1*K.1^5-K.1^13,2*K.1^7-K.1^15,K.1^5+K.1^13,K.1^5+K.1^13,-2*K.1^7+K.1^15,2*K.1-K.1^9,2*K.1^7-K.1^15,2*K.1-K.1^9,-2*K.1+K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |2,-2,0,2,2*K.1^12,-2*K.1^12,0,-2,-2*K.1^6,2*K.1^18,-2*K.1^18,2*K.1^6,0,0,-1,-1,-1,-2*K.1^12,2*K.1^12,0,0,0,0,0,0,0,0,1,1,1,2*K.1^18,-2*K.1^18,2*K.1^6,-2*K.1^6,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,0,0,0,0,0,0,0,0,-1*K.1^18,-1*K.1^18,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,K.1^6,-1*K.1^6,K.1^18,-1*K.1^6,K.1^18,K.1^6,K.1^5+K.1^13,-2*K.1+K.1^9,2*K.1^7-K.1^15,K.1^5+K.1^13,-2*K.1^7+K.1^15,-1*K.1^3+2*K.1^11,-1*K.1^5-K.1^13,K.1^5+K.1^13,-1*K.1^5-K.1^13,-1*K.1^3+2*K.1^11,-2*K.1+K.1^9,2*K.1-K.1^9,K.1^3-2*K.1^11,-1*K.1^5-K.1^13,-2*K.1^7+K.1^15,-1*K.1^3+2*K.1^11,2*K.1-K.1^9,K.1^3-2*K.1^11,K.1^3-2*K.1^11,-2*K.1+K.1^9,2*K.1^7-K.1^15,2*K.1-K.1^9,2*K.1^7-K.1^15,-2*K.1^7+K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |2,-2,0,2,-2*K.1^12,2*K.1^12,0,-2,-2*K.1^18,2*K.1^6,-2*K.1^6,2*K.1^18,0,0,-1,-1,-1,2*K.1^12,-2*K.1^12,0,0,0,0,0,0,0,0,1,1,1,2*K.1^6,-2*K.1^6,2*K.1^18,-2*K.1^18,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,0,0,0,0,0,0,0,0,-1*K.1^6,-1*K.1^6,K.1^18,-1*K.1^6,K.1^6,-1*K.1^18,K.1^18,-1*K.1^18,K.1^6,-1*K.1^18,K.1^6,K.1^18,-2*K.1^7+K.1^15,-1*K.1^3+2*K.1^11,K.1^5+K.1^13,-2*K.1^7+K.1^15,-1*K.1^5-K.1^13,2*K.1-K.1^9,2*K.1^7-K.1^15,-2*K.1^7+K.1^15,2*K.1^7-K.1^15,2*K.1-K.1^9,-1*K.1^3+2*K.1^11,K.1^3-2*K.1^11,-2*K.1+K.1^9,2*K.1^7-K.1^15,-1*K.1^5-K.1^13,2*K.1-K.1^9,K.1^3-2*K.1^11,-2*K.1+K.1^9,-2*K.1+K.1^9,-1*K.1^3+2*K.1^11,K.1^5+K.1^13,K.1^3-2*K.1^11,K.1^5+K.1^13,-1*K.1^5-K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |2,-2,0,2,2*K.1^12,-2*K.1^12,0,-2,2*K.1^6,-2*K.1^18,2*K.1^18,-2*K.1^6,0,0,-1,-1,-1,-2*K.1^12,2*K.1^12,0,0,0,0,0,0,0,0,1,1,1,-2*K.1^18,2*K.1^18,-2*K.1^6,2*K.1^6,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,0,0,0,0,0,0,0,0,K.1^18,K.1^18,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,-1*K.1^6,K.1^6,-1*K.1^18,K.1^6,-1*K.1^18,-1*K.1^6,-2*K.1+K.1^9,-1*K.1^5-K.1^13,K.1^3-2*K.1^11,-2*K.1+K.1^9,-1*K.1^3+2*K.1^11,2*K.1^7-K.1^15,2*K.1-K.1^9,-2*K.1+K.1^9,2*K.1-K.1^9,2*K.1^7-K.1^15,-1*K.1^5-K.1^13,K.1^5+K.1^13,-2*K.1^7+K.1^15,2*K.1-K.1^9,-1*K.1^3+2*K.1^11,2*K.1^7-K.1^15,K.1^5+K.1^13,-2*K.1^7+K.1^15,-2*K.1^7+K.1^15,-1*K.1^5-K.1^13,K.1^3-2*K.1^11,K.1^5+K.1^13,K.1^3-2*K.1^11,-1*K.1^3+2*K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |2,-2,0,2,-2*K.1^12,2*K.1^12,0,-2,-2*K.1^18,2*K.1^6,-2*K.1^6,2*K.1^18,0,0,-1,-1,-1,2*K.1^12,-2*K.1^12,0,0,0,0,0,0,0,0,1,1,1,2*K.1^6,-2*K.1^6,2*K.1^18,-2*K.1^18,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,0,0,0,0,0,0,0,0,-1*K.1^6,-1*K.1^6,K.1^18,-1*K.1^6,K.1^6,-1*K.1^18,K.1^18,-1*K.1^18,K.1^6,-1*K.1^18,K.1^6,K.1^18,2*K.1^7-K.1^15,K.1^3-2*K.1^11,-1*K.1^5-K.1^13,2*K.1^7-K.1^15,K.1^5+K.1^13,-2*K.1+K.1^9,-2*K.1^7+K.1^15,2*K.1^7-K.1^15,-2*K.1^7+K.1^15,-2*K.1+K.1^9,K.1^3-2*K.1^11,-1*K.1^3+2*K.1^11,2*K.1-K.1^9,-2*K.1^7+K.1^15,K.1^5+K.1^13,-2*K.1+K.1^9,-1*K.1^3+2*K.1^11,2*K.1-K.1^9,2*K.1-K.1^9,K.1^3-2*K.1^11,-1*K.1^5-K.1^13,-1*K.1^3+2*K.1^11,-1*K.1^5-K.1^13,K.1^5+K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |2,-2,0,2,2*K.1^12,-2*K.1^12,0,-2,2*K.1^6,-2*K.1^18,2*K.1^18,-2*K.1^6,0,0,-1,-1,-1,-2*K.1^12,2*K.1^12,0,0,0,0,0,0,0,0,1,1,1,-2*K.1^18,2*K.1^18,-2*K.1^6,2*K.1^6,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,0,0,0,0,0,0,0,0,K.1^18,K.1^18,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,-1*K.1^6,K.1^6,-1*K.1^18,K.1^6,-1*K.1^18,-1*K.1^6,2*K.1-K.1^9,K.1^5+K.1^13,-1*K.1^3+2*K.1^11,2*K.1-K.1^9,K.1^3-2*K.1^11,-2*K.1^7+K.1^15,-2*K.1+K.1^9,2*K.1-K.1^9,-2*K.1+K.1^9,-2*K.1^7+K.1^15,K.1^5+K.1^13,-1*K.1^5-K.1^13,2*K.1^7-K.1^15,-2*K.1+K.1^9,K.1^3-2*K.1^11,-2*K.1^7+K.1^15,-1*K.1^5-K.1^13,2*K.1^7-K.1^15,2*K.1^7-K.1^15,K.1^5+K.1^13,-1*K.1^3+2*K.1^11,-1*K.1^5-K.1^13,-1*K.1^3+2*K.1^11,K.1^3-2*K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(72: Sparse := true); S := [ K |2,2,0,-1,-2,-2,0,-1,-2*K.1^18,2*K.1^18,2*K.1^18,-2*K.1^18,0,0,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,K.1^16+K.1^-16,1,1,2*K.1^27,-2*K.1^9,2*K.1^9,-2*K.1^27,0,0,0,0,K.1^16+K.1^-16,K.1^8+K.1^-8,-1*K.1^4-K.1^-4,-1*K.1^18,-1*K.1^18,K.1^18,K.1^18,-1*K.1^16-K.1^-16,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^16-K.1^-16,-1*K.1^9,K.1^27,K.1^9,-1*K.1^27,K.1^27,-1*K.1^9,-1*K.1^27,K.1^9,K.1^2-K.1^10+K.1^22,-1*K.1^14-K.1^22,K.1^2-K.1^10-K.1^14,-1*K.1^2+K.1^10+K.1^14,-1*K.1^14-K.1^22,K.1^14+K.1^22,K.1^14+K.1^22,K.1^2-K.1^10-K.1^14,K.1^2-K.1^10+K.1^22,-1*K.1^2+K.1^10-K.1^22,-1*K.1^2+K.1^10+K.1^14,-1*K.1^2+K.1^10-K.1^22,-1*K.1^5-K.1^13,-1*K.1-K.1^17,-1*K.1^7+K.1^11,K.1+K.1^17,-1*K.1^7+K.1^11,K.1^11-K.1^19-K.1^23,-1*K.1^5-K.1^13,-1*K.1+K.1^5+K.1^13-K.1^17,-1*K.1+K.1^5+K.1^13-K.1^17,K.1^7-K.1^11,K.1^5+K.1^13,-1*K.1-K.1^17,-1*K.1^7+K.1^19+K.1^23,K.1+K.1^17,K.1^7-K.1^19-K.1^23,-1*K.1^7+K.1^19+K.1^23,K.1-K.1^5-K.1^13+K.1^17,K.1^7-K.1^11,K.1^11-K.1^19-K.1^23,K.1-K.1^5-K.1^13+K.1^17,-1*K.1^11+K.1^19+K.1^23,K.1^5+K.1^13,K.1^7-K.1^19-K.1^23,-1*K.1^11+K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(72: Sparse := true); S := [ K |2,2,0,-1,-2,-2,0,-1,2*K.1^18,-2*K.1^18,-2*K.1^18,2*K.1^18,0,0,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,K.1^16+K.1^-16,1,1,-2*K.1^9,2*K.1^27,-2*K.1^27,2*K.1^9,0,0,0,0,K.1^16+K.1^-16,K.1^8+K.1^-8,-1*K.1^4-K.1^-4,K.1^18,K.1^18,-1*K.1^18,-1*K.1^18,-1*K.1^16-K.1^-16,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^16-K.1^-16,K.1^27,-1*K.1^9,-1*K.1^27,K.1^9,-1*K.1^9,K.1^27,K.1^9,-1*K.1^27,-1*K.1^2+K.1^10-K.1^22,K.1^14+K.1^22,-1*K.1^2+K.1^10+K.1^14,K.1^2-K.1^10-K.1^14,K.1^14+K.1^22,-1*K.1^14-K.1^22,-1*K.1^14-K.1^22,-1*K.1^2+K.1^10+K.1^14,-1*K.1^2+K.1^10-K.1^22,K.1^2-K.1^10+K.1^22,K.1^2-K.1^10-K.1^14,K.1^2-K.1^10+K.1^22,-1*K.1^7+K.1^19+K.1^23,-1*K.1^11+K.1^19+K.1^23,K.1-K.1^5-K.1^13+K.1^17,K.1^11-K.1^19-K.1^23,K.1-K.1^5-K.1^13+K.1^17,K.1+K.1^17,-1*K.1^7+K.1^19+K.1^23,K.1^7-K.1^11,K.1^7-K.1^11,-1*K.1+K.1^5+K.1^13-K.1^17,K.1^7-K.1^19-K.1^23,-1*K.1^11+K.1^19+K.1^23,-1*K.1^5-K.1^13,K.1^11-K.1^19-K.1^23,K.1^5+K.1^13,-1*K.1^5-K.1^13,-1*K.1^7+K.1^11,-1*K.1+K.1^5+K.1^13-K.1^17,K.1+K.1^17,-1*K.1^7+K.1^11,-1*K.1-K.1^17,K.1^7-K.1^19-K.1^23,K.1^5+K.1^13,-1*K.1-K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(72: Sparse := true); S := [ K |2,2,0,-1,-2,-2,0,-1,-2*K.1^18,2*K.1^18,2*K.1^18,-2*K.1^18,0,0,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,K.1^16+K.1^-16,1,1,-2*K.1^27,2*K.1^9,-2*K.1^9,2*K.1^27,0,0,0,0,K.1^16+K.1^-16,K.1^8+K.1^-8,-1*K.1^4-K.1^-4,-1*K.1^18,-1*K.1^18,K.1^18,K.1^18,-1*K.1^16-K.1^-16,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^16-K.1^-16,K.1^9,-1*K.1^27,-1*K.1^9,K.1^27,-1*K.1^27,K.1^9,K.1^27,-1*K.1^9,K.1^2-K.1^10+K.1^22,-1*K.1^14-K.1^22,K.1^2-K.1^10-K.1^14,-1*K.1^2+K.1^10+K.1^14,-1*K.1^14-K.1^22,K.1^14+K.1^22,K.1^14+K.1^22,K.1^2-K.1^10-K.1^14,K.1^2-K.1^10+K.1^22,-1*K.1^2+K.1^10-K.1^22,-1*K.1^2+K.1^10+K.1^14,-1*K.1^2+K.1^10-K.1^22,K.1^5+K.1^13,K.1+K.1^17,K.1^7-K.1^11,-1*K.1-K.1^17,K.1^7-K.1^11,-1*K.1^11+K.1^19+K.1^23,K.1^5+K.1^13,K.1-K.1^5-K.1^13+K.1^17,K.1-K.1^5-K.1^13+K.1^17,-1*K.1^7+K.1^11,-1*K.1^5-K.1^13,K.1+K.1^17,K.1^7-K.1^19-K.1^23,-1*K.1-K.1^17,-1*K.1^7+K.1^19+K.1^23,K.1^7-K.1^19-K.1^23,-1*K.1+K.1^5+K.1^13-K.1^17,-1*K.1^7+K.1^11,-1*K.1^11+K.1^19+K.1^23,-1*K.1+K.1^5+K.1^13-K.1^17,K.1^11-K.1^19-K.1^23,-1*K.1^5-K.1^13,-1*K.1^7+K.1^19+K.1^23,K.1^11-K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(72: Sparse := true); S := [ K |2,2,0,-1,-2,-2,0,-1,2*K.1^18,-2*K.1^18,-2*K.1^18,2*K.1^18,0,0,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,K.1^16+K.1^-16,1,1,2*K.1^9,-2*K.1^27,2*K.1^27,-2*K.1^9,0,0,0,0,K.1^16+K.1^-16,K.1^8+K.1^-8,-1*K.1^4-K.1^-4,K.1^18,K.1^18,-1*K.1^18,-1*K.1^18,-1*K.1^16-K.1^-16,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^16-K.1^-16,-1*K.1^27,K.1^9,K.1^27,-1*K.1^9,K.1^9,-1*K.1^27,-1*K.1^9,K.1^27,-1*K.1^2+K.1^10-K.1^22,K.1^14+K.1^22,-1*K.1^2+K.1^10+K.1^14,K.1^2-K.1^10-K.1^14,K.1^14+K.1^22,-1*K.1^14-K.1^22,-1*K.1^14-K.1^22,-1*K.1^2+K.1^10+K.1^14,-1*K.1^2+K.1^10-K.1^22,K.1^2-K.1^10+K.1^22,K.1^2-K.1^10-K.1^14,K.1^2-K.1^10+K.1^22,K.1^7-K.1^19-K.1^23,K.1^11-K.1^19-K.1^23,-1*K.1+K.1^5+K.1^13-K.1^17,-1*K.1^11+K.1^19+K.1^23,-1*K.1+K.1^5+K.1^13-K.1^17,-1*K.1-K.1^17,K.1^7-K.1^19-K.1^23,-1*K.1^7+K.1^11,-1*K.1^7+K.1^11,K.1-K.1^5-K.1^13+K.1^17,-1*K.1^7+K.1^19+K.1^23,K.1^11-K.1^19-K.1^23,K.1^5+K.1^13,-1*K.1^11+K.1^19+K.1^23,-1*K.1^5-K.1^13,K.1^5+K.1^13,K.1^7-K.1^11,K.1-K.1^5-K.1^13+K.1^17,-1*K.1-K.1^17,K.1^7-K.1^11,K.1+K.1^17,-1*K.1^7+K.1^19+K.1^23,-1*K.1^5-K.1^13,K.1+K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(72: Sparse := true); S := [ K |2,2,0,-1,-2,-2,0,-1,-2*K.1^18,2*K.1^18,2*K.1^18,-2*K.1^18,0,0,K.1^16+K.1^-16,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,1,1,2*K.1^27,-2*K.1^9,2*K.1^9,-2*K.1^27,0,0,0,0,K.1^8+K.1^-8,-1*K.1^4-K.1^-4,K.1^16+K.1^-16,-1*K.1^18,-1*K.1^18,K.1^18,K.1^18,-1*K.1^8-K.1^-8,-1*K.1^16-K.1^-16,-1*K.1^16-K.1^-16,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^9,K.1^27,K.1^9,-1*K.1^27,K.1^27,-1*K.1^9,-1*K.1^27,K.1^9,-1*K.1^2+K.1^10+K.1^14,K.1^2-K.1^10+K.1^22,K.1^14+K.1^22,-1*K.1^14-K.1^22,K.1^2-K.1^10+K.1^22,-1*K.1^2+K.1^10-K.1^22,-1*K.1^2+K.1^10-K.1^22,K.1^14+K.1^22,-1*K.1^2+K.1^10+K.1^14,K.1^2-K.1^10-K.1^14,-1*K.1^14-K.1^22,K.1^2-K.1^10-K.1^14,-1*K.1+K.1^5+K.1^13-K.1^17,K.1^5+K.1^13,-1*K.1^11+K.1^19+K.1^23,-1*K.1^5-K.1^13,-1*K.1^11+K.1^19+K.1^23,-1*K.1^7+K.1^19+K.1^23,-1*K.1+K.1^5+K.1^13-K.1^17,K.1+K.1^17,K.1+K.1^17,K.1^11-K.1^19-K.1^23,K.1-K.1^5-K.1^13+K.1^17,K.1^5+K.1^13,K.1^7-K.1^11,-1*K.1^5-K.1^13,-1*K.1^7+K.1^11,K.1^7-K.1^11,-1*K.1-K.1^17,K.1^11-K.1^19-K.1^23,-1*K.1^7+K.1^19+K.1^23,-1*K.1-K.1^17,K.1^7-K.1^19-K.1^23,K.1-K.1^5-K.1^13+K.1^17,-1*K.1^7+K.1^11,K.1^7-K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(72: Sparse := true); S := [ K |2,2,0,-1,-2,-2,0,-1,2*K.1^18,-2*K.1^18,-2*K.1^18,2*K.1^18,0,0,K.1^16+K.1^-16,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,1,1,-2*K.1^9,2*K.1^27,-2*K.1^27,2*K.1^9,0,0,0,0,K.1^8+K.1^-8,-1*K.1^4-K.1^-4,K.1^16+K.1^-16,K.1^18,K.1^18,-1*K.1^18,-1*K.1^18,-1*K.1^8-K.1^-8,-1*K.1^16-K.1^-16,-1*K.1^16-K.1^-16,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^27,-1*K.1^9,-1*K.1^27,K.1^9,-1*K.1^9,K.1^27,K.1^9,-1*K.1^27,K.1^2-K.1^10-K.1^14,-1*K.1^2+K.1^10-K.1^22,-1*K.1^14-K.1^22,K.1^14+K.1^22,-1*K.1^2+K.1^10-K.1^22,K.1^2-K.1^10+K.1^22,K.1^2-K.1^10+K.1^22,-1*K.1^14-K.1^22,K.1^2-K.1^10-K.1^14,-1*K.1^2+K.1^10+K.1^14,K.1^14+K.1^22,-1*K.1^2+K.1^10+K.1^14,K.1^7-K.1^11,K.1^7-K.1^19-K.1^23,-1*K.1-K.1^17,-1*K.1^7+K.1^19+K.1^23,-1*K.1-K.1^17,-1*K.1^5-K.1^13,K.1^7-K.1^11,K.1^11-K.1^19-K.1^23,K.1^11-K.1^19-K.1^23,K.1+K.1^17,-1*K.1^7+K.1^11,K.1^7-K.1^19-K.1^23,-1*K.1+K.1^5+K.1^13-K.1^17,-1*K.1^7+K.1^19+K.1^23,K.1-K.1^5-K.1^13+K.1^17,-1*K.1+K.1^5+K.1^13-K.1^17,-1*K.1^11+K.1^19+K.1^23,K.1+K.1^17,-1*K.1^5-K.1^13,-1*K.1^11+K.1^19+K.1^23,K.1^5+K.1^13,-1*K.1^7+K.1^11,K.1-K.1^5-K.1^13+K.1^17,K.1^5+K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(72: Sparse := true); S := [ K |2,2,0,-1,-2,-2,0,-1,-2*K.1^18,2*K.1^18,2*K.1^18,-2*K.1^18,0,0,K.1^16+K.1^-16,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,1,1,-2*K.1^27,2*K.1^9,-2*K.1^9,2*K.1^27,0,0,0,0,K.1^8+K.1^-8,-1*K.1^4-K.1^-4,K.1^16+K.1^-16,-1*K.1^18,-1*K.1^18,K.1^18,K.1^18,-1*K.1^8-K.1^-8,-1*K.1^16-K.1^-16,-1*K.1^16-K.1^-16,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^9,-1*K.1^27,-1*K.1^9,K.1^27,-1*K.1^27,K.1^9,K.1^27,-1*K.1^9,-1*K.1^2+K.1^10+K.1^14,K.1^2-K.1^10+K.1^22,K.1^14+K.1^22,-1*K.1^14-K.1^22,K.1^2-K.1^10+K.1^22,-1*K.1^2+K.1^10-K.1^22,-1*K.1^2+K.1^10-K.1^22,K.1^14+K.1^22,-1*K.1^2+K.1^10+K.1^14,K.1^2-K.1^10-K.1^14,-1*K.1^14-K.1^22,K.1^2-K.1^10-K.1^14,K.1-K.1^5-K.1^13+K.1^17,-1*K.1^5-K.1^13,K.1^11-K.1^19-K.1^23,K.1^5+K.1^13,K.1^11-K.1^19-K.1^23,K.1^7-K.1^19-K.1^23,K.1-K.1^5-K.1^13+K.1^17,-1*K.1-K.1^17,-1*K.1-K.1^17,-1*K.1^11+K.1^19+K.1^23,-1*K.1+K.1^5+K.1^13-K.1^17,-1*K.1^5-K.1^13,-1*K.1^7+K.1^11,K.1^5+K.1^13,K.1^7-K.1^11,-1*K.1^7+K.1^11,K.1+K.1^17,-1*K.1^11+K.1^19+K.1^23,K.1^7-K.1^19-K.1^23,K.1+K.1^17,-1*K.1^7+K.1^19+K.1^23,-1*K.1+K.1^5+K.1^13-K.1^17,K.1^7-K.1^11,-1*K.1^7+K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(72: Sparse := true); S := [ K |2,2,0,-1,-2,-2,0,-1,2*K.1^18,-2*K.1^18,-2*K.1^18,2*K.1^18,0,0,K.1^16+K.1^-16,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,1,1,2*K.1^9,-2*K.1^27,2*K.1^27,-2*K.1^9,0,0,0,0,K.1^8+K.1^-8,-1*K.1^4-K.1^-4,K.1^16+K.1^-16,K.1^18,K.1^18,-1*K.1^18,-1*K.1^18,-1*K.1^8-K.1^-8,-1*K.1^16-K.1^-16,-1*K.1^16-K.1^-16,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^27,K.1^9,K.1^27,-1*K.1^9,K.1^9,-1*K.1^27,-1*K.1^9,K.1^27,K.1^2-K.1^10-K.1^14,-1*K.1^2+K.1^10-K.1^22,-1*K.1^14-K.1^22,K.1^14+K.1^22,-1*K.1^2+K.1^10-K.1^22,K.1^2-K.1^10+K.1^22,K.1^2-K.1^10+K.1^22,-1*K.1^14-K.1^22,K.1^2-K.1^10-K.1^14,-1*K.1^2+K.1^10+K.1^14,K.1^14+K.1^22,-1*K.1^2+K.1^10+K.1^14,-1*K.1^7+K.1^11,-1*K.1^7+K.1^19+K.1^23,K.1+K.1^17,K.1^7-K.1^19-K.1^23,K.1+K.1^17,K.1^5+K.1^13,-1*K.1^7+K.1^11,-1*K.1^11+K.1^19+K.1^23,-1*K.1^11+K.1^19+K.1^23,-1*K.1-K.1^17,K.1^7-K.1^11,-1*K.1^7+K.1^19+K.1^23,K.1-K.1^5-K.1^13+K.1^17,K.1^7-K.1^19-K.1^23,-1*K.1+K.1^5+K.1^13-K.1^17,K.1-K.1^5-K.1^13+K.1^17,K.1^11-K.1^19-K.1^23,-1*K.1-K.1^17,K.1^5+K.1^13,K.1^11-K.1^19-K.1^23,-1*K.1^5-K.1^13,K.1^7-K.1^11,-1*K.1+K.1^5+K.1^13-K.1^17,-1*K.1^5-K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(72: Sparse := true); S := [ K |2,2,0,-1,-2,-2,0,-1,-2*K.1^18,2*K.1^18,2*K.1^18,-2*K.1^18,0,0,K.1^8+K.1^-8,K.1^16+K.1^-16,-1*K.1^4-K.1^-4,1,1,2*K.1^27,-2*K.1^9,2*K.1^9,-2*K.1^27,0,0,0,0,-1*K.1^4-K.1^-4,K.1^16+K.1^-16,K.1^8+K.1^-8,-1*K.1^18,-1*K.1^18,K.1^18,K.1^18,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^16-K.1^-16,-1*K.1^16-K.1^-16,K.1^4+K.1^-4,-1*K.1^9,K.1^27,K.1^9,-1*K.1^27,K.1^27,-1*K.1^9,-1*K.1^27,K.1^9,-1*K.1^14-K.1^22,-1*K.1^2+K.1^10+K.1^14,-1*K.1^2+K.1^10-K.1^22,K.1^2-K.1^10+K.1^22,-1*K.1^2+K.1^10+K.1^14,K.1^2-K.1^10-K.1^14,K.1^2-K.1^10-K.1^14,-1*K.1^2+K.1^10-K.1^22,-1*K.1^14-K.1^22,K.1^14+K.1^22,K.1^2-K.1^10+K.1^22,K.1^14+K.1^22,K.1+K.1^17,K.1-K.1^5-K.1^13+K.1^17,K.1^7-K.1^19-K.1^23,-1*K.1+K.1^5+K.1^13-K.1^17,K.1^7-K.1^19-K.1^23,K.1^7-K.1^11,K.1+K.1^17,-1*K.1^5-K.1^13,-1*K.1^5-K.1^13,-1*K.1^7+K.1^19+K.1^23,-1*K.1-K.1^17,K.1-K.1^5-K.1^13+K.1^17,K.1^11-K.1^19-K.1^23,-1*K.1+K.1^5+K.1^13-K.1^17,-1*K.1^11+K.1^19+K.1^23,K.1^11-K.1^19-K.1^23,K.1^5+K.1^13,-1*K.1^7+K.1^19+K.1^23,K.1^7-K.1^11,K.1^5+K.1^13,-1*K.1^7+K.1^11,-1*K.1-K.1^17,-1*K.1^11+K.1^19+K.1^23,-1*K.1^7+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(72: Sparse := true); S := [ K |2,2,0,-1,-2,-2,0,-1,2*K.1^18,-2*K.1^18,-2*K.1^18,2*K.1^18,0,0,K.1^8+K.1^-8,K.1^16+K.1^-16,-1*K.1^4-K.1^-4,1,1,-2*K.1^9,2*K.1^27,-2*K.1^27,2*K.1^9,0,0,0,0,-1*K.1^4-K.1^-4,K.1^16+K.1^-16,K.1^8+K.1^-8,K.1^18,K.1^18,-1*K.1^18,-1*K.1^18,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^16-K.1^-16,-1*K.1^16-K.1^-16,K.1^4+K.1^-4,K.1^27,-1*K.1^9,-1*K.1^27,K.1^9,-1*K.1^9,K.1^27,K.1^9,-1*K.1^27,K.1^14+K.1^22,K.1^2-K.1^10-K.1^14,K.1^2-K.1^10+K.1^22,-1*K.1^2+K.1^10-K.1^22,K.1^2-K.1^10-K.1^14,-1*K.1^2+K.1^10+K.1^14,-1*K.1^2+K.1^10+K.1^14,K.1^2-K.1^10+K.1^22,K.1^14+K.1^22,-1*K.1^14-K.1^22,-1*K.1^2+K.1^10-K.1^22,-1*K.1^14-K.1^22,K.1^11-K.1^19-K.1^23,-1*K.1^7+K.1^11,K.1^5+K.1^13,K.1^7-K.1^11,K.1^5+K.1^13,-1*K.1+K.1^5+K.1^13-K.1^17,K.1^11-K.1^19-K.1^23,-1*K.1^7+K.1^19+K.1^23,-1*K.1^7+K.1^19+K.1^23,-1*K.1^5-K.1^13,-1*K.1^11+K.1^19+K.1^23,-1*K.1^7+K.1^11,K.1+K.1^17,K.1^7-K.1^11,-1*K.1-K.1^17,K.1+K.1^17,K.1^7-K.1^19-K.1^23,-1*K.1^5-K.1^13,-1*K.1+K.1^5+K.1^13-K.1^17,K.1^7-K.1^19-K.1^23,K.1-K.1^5-K.1^13+K.1^17,-1*K.1^11+K.1^19+K.1^23,-1*K.1-K.1^17,K.1-K.1^5-K.1^13+K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(72: Sparse := true); S := [ K |2,2,0,-1,-2,-2,0,-1,-2*K.1^18,2*K.1^18,2*K.1^18,-2*K.1^18,0,0,K.1^8+K.1^-8,K.1^16+K.1^-16,-1*K.1^4-K.1^-4,1,1,-2*K.1^27,2*K.1^9,-2*K.1^9,2*K.1^27,0,0,0,0,-1*K.1^4-K.1^-4,K.1^16+K.1^-16,K.1^8+K.1^-8,-1*K.1^18,-1*K.1^18,K.1^18,K.1^18,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^16-K.1^-16,-1*K.1^16-K.1^-16,K.1^4+K.1^-4,K.1^9,-1*K.1^27,-1*K.1^9,K.1^27,-1*K.1^27,K.1^9,K.1^27,-1*K.1^9,-1*K.1^14-K.1^22,-1*K.1^2+K.1^10+K.1^14,-1*K.1^2+K.1^10-K.1^22,K.1^2-K.1^10+K.1^22,-1*K.1^2+K.1^10+K.1^14,K.1^2-K.1^10-K.1^14,K.1^2-K.1^10-K.1^14,-1*K.1^2+K.1^10-K.1^22,-1*K.1^14-K.1^22,K.1^14+K.1^22,K.1^2-K.1^10+K.1^22,K.1^14+K.1^22,-1*K.1-K.1^17,-1*K.1+K.1^5+K.1^13-K.1^17,-1*K.1^7+K.1^19+K.1^23,K.1-K.1^5-K.1^13+K.1^17,-1*K.1^7+K.1^19+K.1^23,-1*K.1^7+K.1^11,-1*K.1-K.1^17,K.1^5+K.1^13,K.1^5+K.1^13,K.1^7-K.1^19-K.1^23,K.1+K.1^17,-1*K.1+K.1^5+K.1^13-K.1^17,-1*K.1^11+K.1^19+K.1^23,K.1-K.1^5-K.1^13+K.1^17,K.1^11-K.1^19-K.1^23,-1*K.1^11+K.1^19+K.1^23,-1*K.1^5-K.1^13,K.1^7-K.1^19-K.1^23,-1*K.1^7+K.1^11,-1*K.1^5-K.1^13,K.1^7-K.1^11,K.1+K.1^17,K.1^11-K.1^19-K.1^23,K.1^7-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(72: Sparse := true); S := [ K |2,2,0,-1,-2,-2,0,-1,2*K.1^18,-2*K.1^18,-2*K.1^18,2*K.1^18,0,0,K.1^8+K.1^-8,K.1^16+K.1^-16,-1*K.1^4-K.1^-4,1,1,2*K.1^9,-2*K.1^27,2*K.1^27,-2*K.1^9,0,0,0,0,-1*K.1^4-K.1^-4,K.1^16+K.1^-16,K.1^8+K.1^-8,K.1^18,K.1^18,-1*K.1^18,-1*K.1^18,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^16-K.1^-16,-1*K.1^16-K.1^-16,K.1^4+K.1^-4,-1*K.1^27,K.1^9,K.1^27,-1*K.1^9,K.1^9,-1*K.1^27,-1*K.1^9,K.1^27,K.1^14+K.1^22,K.1^2-K.1^10-K.1^14,K.1^2-K.1^10+K.1^22,-1*K.1^2+K.1^10-K.1^22,K.1^2-K.1^10-K.1^14,-1*K.1^2+K.1^10+K.1^14,-1*K.1^2+K.1^10+K.1^14,K.1^2-K.1^10+K.1^22,K.1^14+K.1^22,-1*K.1^14-K.1^22,-1*K.1^2+K.1^10-K.1^22,-1*K.1^14-K.1^22,-1*K.1^11+K.1^19+K.1^23,K.1^7-K.1^11,-1*K.1^5-K.1^13,-1*K.1^7+K.1^11,-1*K.1^5-K.1^13,K.1-K.1^5-K.1^13+K.1^17,-1*K.1^11+K.1^19+K.1^23,K.1^7-K.1^19-K.1^23,K.1^7-K.1^19-K.1^23,K.1^5+K.1^13,K.1^11-K.1^19-K.1^23,K.1^7-K.1^11,-1*K.1-K.1^17,-1*K.1^7+K.1^11,K.1+K.1^17,-1*K.1-K.1^17,-1*K.1^7+K.1^19+K.1^23,K.1^5+K.1^13,K.1-K.1^5-K.1^13+K.1^17,-1*K.1^7+K.1^19+K.1^23,-1*K.1+K.1^5+K.1^13-K.1^17,K.1^11-K.1^19-K.1^23,K.1+K.1^17,-1*K.1+K.1^5+K.1^13-K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(144: Sparse := true); S := [ K |2,-2,0,-1,-2*K.1^36,2*K.1^36,0,1,2*K.1^54,-2*K.1^18,2*K.1^18,-2*K.1^54,0,0,-1*K.1^8-K.1^-8,K.1^16+K.1^-16,K.1^32+K.1^-32,-1*K.1^36,K.1^36,0,0,0,0,0,0,0,0,-1*K.1^32-K.1^-32,-1*K.1^16-K.1^-16,K.1^8+K.1^-8,K.1^18,-1*K.1^18,K.1^54,-1*K.1^54,K.1^4-K.1^20+K.1^44,K.1^28+K.1^44,-1*K.1^28-K.1^44,K.1^4-K.1^20-K.1^28,-1*K.1^4+K.1^20+K.1^28,-1*K.1^4+K.1^20-K.1^44,-1*K.1^9+2*K.1^33,K.1^15+K.1^39,2*K.1^21-K.1^45,2*K.1^3-K.1^27,-1*K.1^15-K.1^39,K.1^9-2*K.1^33,-2*K.1^3+K.1^27,-2*K.1^21+K.1^45,K.1^2-K.1^10-K.1^26+K.1^34,K.1^10+K.1^26,-1*K.1^22+K.1^38+K.1^46,-1*K.1^2-K.1^34,-1*K.1^10-K.1^26,-1*K.1^14+K.1^38+K.1^46,K.1^14-K.1^38-K.1^46,K.1^22-K.1^38-K.1^46,-1*K.1^2+K.1^10+K.1^26-K.1^34,K.1^14-K.1^22,K.1^2+K.1^34,-1*K.1^14+K.1^22,K.1-K.1^17,-1*K.1^13-K.1^29+K.1^37,-1*K.1^11-K.1^19+K.1^35+K.1^43,K.1^17-K.1^25-K.1^41,K.1^11+K.1^19-K.1^35-K.1^43,-1*K.1^7-K.1^47,-1*K.1+K.1^17,-1*K.1+K.1^25+K.1^41,K.1-K.1^25-K.1^41,K.1^23+K.1^31,-1*K.1^5+K.1^29-K.1^37,K.1^13+K.1^29-K.1^37,-1*K.1^7+K.1^23+K.1^31-K.1^47,-1*K.1^17+K.1^25+K.1^41,-1*K.1^19+K.1^35,K.1^7-K.1^23-K.1^31+K.1^47,-1*K.1^5-K.1^13,-1*K.1^23-K.1^31,K.1^7+K.1^47,K.1^5+K.1^13,K.1^11-K.1^43,K.1^5-K.1^29+K.1^37,K.1^19-K.1^35,-1*K.1^11+K.1^43]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(144: Sparse := true); S := [ K |2,-2,0,-1,2*K.1^36,-2*K.1^36,0,1,-2*K.1^18,2*K.1^54,-2*K.1^54,2*K.1^18,0,0,-1*K.1^8-K.1^-8,K.1^16+K.1^-16,K.1^32+K.1^-32,K.1^36,-1*K.1^36,0,0,0,0,0,0,0,0,-1*K.1^32-K.1^-32,-1*K.1^16-K.1^-16,K.1^8+K.1^-8,-1*K.1^54,K.1^54,-1*K.1^18,K.1^18,-1*K.1^4+K.1^20-K.1^44,-1*K.1^28-K.1^44,K.1^28+K.1^44,-1*K.1^4+K.1^20+K.1^28,K.1^4-K.1^20-K.1^28,K.1^4-K.1^20+K.1^44,-1*K.1^15-K.1^39,K.1^9-2*K.1^33,2*K.1^3-K.1^27,2*K.1^21-K.1^45,-1*K.1^9+2*K.1^33,K.1^15+K.1^39,-2*K.1^21+K.1^45,-2*K.1^3+K.1^27,-1*K.1^14+K.1^22,K.1^14-K.1^38-K.1^46,-1*K.1^2-K.1^34,-1*K.1^22+K.1^38+K.1^46,-1*K.1^14+K.1^38+K.1^46,-1*K.1^10-K.1^26,K.1^10+K.1^26,K.1^2+K.1^34,K.1^14-K.1^22,-1*K.1^2+K.1^10+K.1^26-K.1^34,K.1^22-K.1^38-K.1^46,K.1^2-K.1^10-K.1^26+K.1^34,-1*K.1^7+K.1^23+K.1^31-K.1^47,-1*K.1^11+K.1^43,-1*K.1^5-K.1^13,K.1^7+K.1^47,K.1^5+K.1^13,-1*K.1^17+K.1^25+K.1^41,K.1^7-K.1^23-K.1^31+K.1^47,-1*K.1^23-K.1^31,K.1^23+K.1^31,K.1-K.1^25-K.1^41,-1*K.1^19+K.1^35,K.1^11-K.1^43,K.1-K.1^17,-1*K.1^7-K.1^47,-1*K.1^5+K.1^29-K.1^37,-1*K.1+K.1^17,-1*K.1^11-K.1^19+K.1^35+K.1^43,-1*K.1+K.1^25+K.1^41,K.1^17-K.1^25-K.1^41,K.1^11+K.1^19-K.1^35-K.1^43,K.1^13+K.1^29-K.1^37,K.1^19-K.1^35,K.1^5-K.1^29+K.1^37,-1*K.1^13-K.1^29+K.1^37]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(144: Sparse := true); S := [ K |2,-2,0,-1,-2*K.1^36,2*K.1^36,0,1,2*K.1^54,-2*K.1^18,2*K.1^18,-2*K.1^54,0,0,-1*K.1^8-K.1^-8,K.1^16+K.1^-16,K.1^32+K.1^-32,-1*K.1^36,K.1^36,0,0,0,0,0,0,0,0,-1*K.1^32-K.1^-32,-1*K.1^16-K.1^-16,K.1^8+K.1^-8,K.1^18,-1*K.1^18,K.1^54,-1*K.1^54,K.1^4-K.1^20+K.1^44,K.1^28+K.1^44,-1*K.1^28-K.1^44,K.1^4-K.1^20-K.1^28,-1*K.1^4+K.1^20+K.1^28,-1*K.1^4+K.1^20-K.1^44,K.1^9-2*K.1^33,-1*K.1^15-K.1^39,-2*K.1^21+K.1^45,-2*K.1^3+K.1^27,K.1^15+K.1^39,-1*K.1^9+2*K.1^33,2*K.1^3-K.1^27,2*K.1^21-K.1^45,K.1^2-K.1^10-K.1^26+K.1^34,K.1^10+K.1^26,-1*K.1^22+K.1^38+K.1^46,-1*K.1^2-K.1^34,-1*K.1^10-K.1^26,-1*K.1^14+K.1^38+K.1^46,K.1^14-K.1^38-K.1^46,K.1^22-K.1^38-K.1^46,-1*K.1^2+K.1^10+K.1^26-K.1^34,K.1^14-K.1^22,K.1^2+K.1^34,-1*K.1^14+K.1^22,-1*K.1+K.1^17,K.1^13+K.1^29-K.1^37,K.1^11+K.1^19-K.1^35-K.1^43,-1*K.1^17+K.1^25+K.1^41,-1*K.1^11-K.1^19+K.1^35+K.1^43,K.1^7+K.1^47,K.1-K.1^17,K.1-K.1^25-K.1^41,-1*K.1+K.1^25+K.1^41,-1*K.1^23-K.1^31,K.1^5-K.1^29+K.1^37,-1*K.1^13-K.1^29+K.1^37,K.1^7-K.1^23-K.1^31+K.1^47,K.1^17-K.1^25-K.1^41,K.1^19-K.1^35,-1*K.1^7+K.1^23+K.1^31-K.1^47,K.1^5+K.1^13,K.1^23+K.1^31,-1*K.1^7-K.1^47,-1*K.1^5-K.1^13,-1*K.1^11+K.1^43,-1*K.1^5+K.1^29-K.1^37,-1*K.1^19+K.1^35,K.1^11-K.1^43]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(144: Sparse := true); S := [ K |2,-2,0,-1,2*K.1^36,-2*K.1^36,0,1,-2*K.1^18,2*K.1^54,-2*K.1^54,2*K.1^18,0,0,-1*K.1^8-K.1^-8,K.1^16+K.1^-16,K.1^32+K.1^-32,K.1^36,-1*K.1^36,0,0,0,0,0,0,0,0,-1*K.1^32-K.1^-32,-1*K.1^16-K.1^-16,K.1^8+K.1^-8,-1*K.1^54,K.1^54,-1*K.1^18,K.1^18,-1*K.1^4+K.1^20-K.1^44,-1*K.1^28-K.1^44,K.1^28+K.1^44,-1*K.1^4+K.1^20+K.1^28,K.1^4-K.1^20-K.1^28,K.1^4-K.1^20+K.1^44,K.1^15+K.1^39,-1*K.1^9+2*K.1^33,-2*K.1^3+K.1^27,-2*K.1^21+K.1^45,K.1^9-2*K.1^33,-1*K.1^15-K.1^39,2*K.1^21-K.1^45,2*K.1^3-K.1^27,-1*K.1^14+K.1^22,K.1^14-K.1^38-K.1^46,-1*K.1^2-K.1^34,-1*K.1^22+K.1^38+K.1^46,-1*K.1^14+K.1^38+K.1^46,-1*K.1^10-K.1^26,K.1^10+K.1^26,K.1^2+K.1^34,K.1^14-K.1^22,-1*K.1^2+K.1^10+K.1^26-K.1^34,K.1^22-K.1^38-K.1^46,K.1^2-K.1^10-K.1^26+K.1^34,K.1^7-K.1^23-K.1^31+K.1^47,K.1^11-K.1^43,K.1^5+K.1^13,-1*K.1^7-K.1^47,-1*K.1^5-K.1^13,K.1^17-K.1^25-K.1^41,-1*K.1^7+K.1^23+K.1^31-K.1^47,K.1^23+K.1^31,-1*K.1^23-K.1^31,-1*K.1+K.1^25+K.1^41,K.1^19-K.1^35,-1*K.1^11+K.1^43,-1*K.1+K.1^17,K.1^7+K.1^47,K.1^5-K.1^29+K.1^37,K.1-K.1^17,K.1^11+K.1^19-K.1^35-K.1^43,K.1-K.1^25-K.1^41,-1*K.1^17+K.1^25+K.1^41,-1*K.1^11-K.1^19+K.1^35+K.1^43,-1*K.1^13-K.1^29+K.1^37,-1*K.1^19+K.1^35,-1*K.1^5+K.1^29-K.1^37,K.1^13+K.1^29-K.1^37]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(144: Sparse := true); S := [ K |2,-2,0,-1,-2*K.1^36,2*K.1^36,0,1,2*K.1^54,-2*K.1^18,2*K.1^18,-2*K.1^54,0,0,K.1^32+K.1^-32,-1*K.1^8-K.1^-8,K.1^16+K.1^-16,-1*K.1^36,K.1^36,0,0,0,0,0,0,0,0,-1*K.1^16-K.1^-16,K.1^8+K.1^-8,-1*K.1^32-K.1^-32,K.1^18,-1*K.1^18,K.1^54,-1*K.1^54,-1*K.1^4+K.1^20+K.1^28,-1*K.1^4+K.1^20-K.1^44,K.1^4-K.1^20+K.1^44,K.1^28+K.1^44,-1*K.1^28-K.1^44,K.1^4-K.1^20-K.1^28,-1*K.1^9+2*K.1^33,K.1^15+K.1^39,2*K.1^21-K.1^45,2*K.1^3-K.1^27,-1*K.1^15-K.1^39,K.1^9-2*K.1^33,-2*K.1^3+K.1^27,-2*K.1^21+K.1^45,-1*K.1^2-K.1^34,K.1^2-K.1^10-K.1^26+K.1^34,K.1^14-K.1^38-K.1^46,K.1^10+K.1^26,-1*K.1^2+K.1^10+K.1^26-K.1^34,K.1^14-K.1^22,-1*K.1^14+K.1^22,-1*K.1^14+K.1^38+K.1^46,K.1^2+K.1^34,K.1^22-K.1^38-K.1^46,-1*K.1^10-K.1^26,-1*K.1^22+K.1^38+K.1^46,-1*K.1+K.1^25+K.1^41,-1*K.1^5+K.1^29-K.1^37,K.1^11-K.1^43,K.1-K.1^17,-1*K.1^11+K.1^43,K.1^7-K.1^23-K.1^31+K.1^47,K.1-K.1^25-K.1^41,K.1^17-K.1^25-K.1^41,-1*K.1^17+K.1^25+K.1^41,-1*K.1^7-K.1^47,K.1^5+K.1^13,K.1^5-K.1^29+K.1^37,-1*K.1^23-K.1^31,-1*K.1+K.1^17,K.1^11+K.1^19-K.1^35-K.1^43,K.1^23+K.1^31,K.1^13+K.1^29-K.1^37,K.1^7+K.1^47,-1*K.1^7+K.1^23+K.1^31-K.1^47,-1*K.1^13-K.1^29+K.1^37,K.1^19-K.1^35,-1*K.1^5-K.1^13,-1*K.1^11-K.1^19+K.1^35+K.1^43,-1*K.1^19+K.1^35]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(144: Sparse := true); S := [ K |2,-2,0,-1,2*K.1^36,-2*K.1^36,0,1,-2*K.1^18,2*K.1^54,-2*K.1^54,2*K.1^18,0,0,K.1^32+K.1^-32,-1*K.1^8-K.1^-8,K.1^16+K.1^-16,K.1^36,-1*K.1^36,0,0,0,0,0,0,0,0,-1*K.1^16-K.1^-16,K.1^8+K.1^-8,-1*K.1^32-K.1^-32,-1*K.1^54,K.1^54,-1*K.1^18,K.1^18,K.1^4-K.1^20-K.1^28,K.1^4-K.1^20+K.1^44,-1*K.1^4+K.1^20-K.1^44,-1*K.1^28-K.1^44,K.1^28+K.1^44,-1*K.1^4+K.1^20+K.1^28,-1*K.1^15-K.1^39,K.1^9-2*K.1^33,2*K.1^3-K.1^27,2*K.1^21-K.1^45,-1*K.1^9+2*K.1^33,K.1^15+K.1^39,-2*K.1^21+K.1^45,-2*K.1^3+K.1^27,-1*K.1^22+K.1^38+K.1^46,-1*K.1^14+K.1^22,K.1^10+K.1^26,K.1^14-K.1^38-K.1^46,K.1^14-K.1^22,-1*K.1^2+K.1^10+K.1^26-K.1^34,K.1^2-K.1^10-K.1^26+K.1^34,-1*K.1^10-K.1^26,K.1^22-K.1^38-K.1^46,K.1^2+K.1^34,-1*K.1^14+K.1^38+K.1^46,-1*K.1^2-K.1^34,-1*K.1^23-K.1^31,-1*K.1^19+K.1^35,K.1^13+K.1^29-K.1^37,-1*K.1^7+K.1^23+K.1^31-K.1^47,-1*K.1^13-K.1^29+K.1^37,-1*K.1+K.1^17,K.1^23+K.1^31,K.1^7+K.1^47,-1*K.1^7-K.1^47,-1*K.1^17+K.1^25+K.1^41,K.1^11+K.1^19-K.1^35-K.1^43,K.1^19-K.1^35,-1*K.1+K.1^25+K.1^41,K.1^7-K.1^23-K.1^31+K.1^47,K.1^5+K.1^13,K.1-K.1^25-K.1^41,K.1^11-K.1^43,K.1^17-K.1^25-K.1^41,K.1-K.1^17,-1*K.1^11+K.1^43,K.1^5-K.1^29+K.1^37,-1*K.1^11-K.1^19+K.1^35+K.1^43,-1*K.1^5-K.1^13,-1*K.1^5+K.1^29-K.1^37]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(144: Sparse := true); S := [ K |2,-2,0,-1,-2*K.1^36,2*K.1^36,0,1,2*K.1^54,-2*K.1^18,2*K.1^18,-2*K.1^54,0,0,K.1^32+K.1^-32,-1*K.1^8-K.1^-8,K.1^16+K.1^-16,-1*K.1^36,K.1^36,0,0,0,0,0,0,0,0,-1*K.1^16-K.1^-16,K.1^8+K.1^-8,-1*K.1^32-K.1^-32,K.1^18,-1*K.1^18,K.1^54,-1*K.1^54,-1*K.1^4+K.1^20+K.1^28,-1*K.1^4+K.1^20-K.1^44,K.1^4-K.1^20+K.1^44,K.1^28+K.1^44,-1*K.1^28-K.1^44,K.1^4-K.1^20-K.1^28,K.1^9-2*K.1^33,-1*K.1^15-K.1^39,-2*K.1^21+K.1^45,-2*K.1^3+K.1^27,K.1^15+K.1^39,-1*K.1^9+2*K.1^33,2*K.1^3-K.1^27,2*K.1^21-K.1^45,-1*K.1^2-K.1^34,K.1^2-K.1^10-K.1^26+K.1^34,K.1^14-K.1^38-K.1^46,K.1^10+K.1^26,-1*K.1^2+K.1^10+K.1^26-K.1^34,K.1^14-K.1^22,-1*K.1^14+K.1^22,-1*K.1^14+K.1^38+K.1^46,K.1^2+K.1^34,K.1^22-K.1^38-K.1^46,-1*K.1^10-K.1^26,-1*K.1^22+K.1^38+K.1^46,K.1-K.1^25-K.1^41,K.1^5-K.1^29+K.1^37,-1*K.1^11+K.1^43,-1*K.1+K.1^17,K.1^11-K.1^43,-1*K.1^7+K.1^23+K.1^31-K.1^47,-1*K.1+K.1^25+K.1^41,-1*K.1^17+K.1^25+K.1^41,K.1^17-K.1^25-K.1^41,K.1^7+K.1^47,-1*K.1^5-K.1^13,-1*K.1^5+K.1^29-K.1^37,K.1^23+K.1^31,K.1-K.1^17,-1*K.1^11-K.1^19+K.1^35+K.1^43,-1*K.1^23-K.1^31,-1*K.1^13-K.1^29+K.1^37,-1*K.1^7-K.1^47,K.1^7-K.1^23-K.1^31+K.1^47,K.1^13+K.1^29-K.1^37,-1*K.1^19+K.1^35,K.1^5+K.1^13,K.1^11+K.1^19-K.1^35-K.1^43,K.1^19-K.1^35]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(144: Sparse := true); S := [ K |2,-2,0,-1,2*K.1^36,-2*K.1^36,0,1,-2*K.1^18,2*K.1^54,-2*K.1^54,2*K.1^18,0,0,K.1^32+K.1^-32,-1*K.1^8-K.1^-8,K.1^16+K.1^-16,K.1^36,-1*K.1^36,0,0,0,0,0,0,0,0,-1*K.1^16-K.1^-16,K.1^8+K.1^-8,-1*K.1^32-K.1^-32,-1*K.1^54,K.1^54,-1*K.1^18,K.1^18,K.1^4-K.1^20-K.1^28,K.1^4-K.1^20+K.1^44,-1*K.1^4+K.1^20-K.1^44,-1*K.1^28-K.1^44,K.1^28+K.1^44,-1*K.1^4+K.1^20+K.1^28,K.1^15+K.1^39,-1*K.1^9+2*K.1^33,-2*K.1^3+K.1^27,-2*K.1^21+K.1^45,K.1^9-2*K.1^33,-1*K.1^15-K.1^39,2*K.1^21-K.1^45,2*K.1^3-K.1^27,-1*K.1^22+K.1^38+K.1^46,-1*K.1^14+K.1^22,K.1^10+K.1^26,K.1^14-K.1^38-K.1^46,K.1^14-K.1^22,-1*K.1^2+K.1^10+K.1^26-K.1^34,K.1^2-K.1^10-K.1^26+K.1^34,-1*K.1^10-K.1^26,K.1^22-K.1^38-K.1^46,K.1^2+K.1^34,-1*K.1^14+K.1^38+K.1^46,-1*K.1^2-K.1^34,K.1^23+K.1^31,K.1^19-K.1^35,-1*K.1^13-K.1^29+K.1^37,K.1^7-K.1^23-K.1^31+K.1^47,K.1^13+K.1^29-K.1^37,K.1-K.1^17,-1*K.1^23-K.1^31,-1*K.1^7-K.1^47,K.1^7+K.1^47,K.1^17-K.1^25-K.1^41,-1*K.1^11-K.1^19+K.1^35+K.1^43,-1*K.1^19+K.1^35,K.1-K.1^25-K.1^41,-1*K.1^7+K.1^23+K.1^31-K.1^47,-1*K.1^5-K.1^13,-1*K.1+K.1^25+K.1^41,-1*K.1^11+K.1^43,-1*K.1^17+K.1^25+K.1^41,-1*K.1+K.1^17,K.1^11-K.1^43,-1*K.1^5+K.1^29-K.1^37,K.1^11+K.1^19-K.1^35-K.1^43,K.1^5+K.1^13,K.1^5-K.1^29+K.1^37]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(144: Sparse := true); S := [ K |2,-2,0,-1,-2*K.1^36,2*K.1^36,0,1,2*K.1^54,-2*K.1^18,2*K.1^18,-2*K.1^54,0,0,K.1^16+K.1^-16,K.1^32+K.1^-32,-1*K.1^8-K.1^-8,-1*K.1^36,K.1^36,0,0,0,0,0,0,0,0,K.1^8+K.1^-8,-1*K.1^32-K.1^-32,-1*K.1^16-K.1^-16,K.1^18,-1*K.1^18,K.1^54,-1*K.1^54,-1*K.1^28-K.1^44,K.1^4-K.1^20-K.1^28,-1*K.1^4+K.1^20+K.1^28,-1*K.1^4+K.1^20-K.1^44,K.1^4-K.1^20+K.1^44,K.1^28+K.1^44,-1*K.1^9+2*K.1^33,K.1^15+K.1^39,2*K.1^21-K.1^45,2*K.1^3-K.1^27,-1*K.1^15-K.1^39,K.1^9-2*K.1^33,-2*K.1^3+K.1^27,-2*K.1^21+K.1^45,K.1^10+K.1^26,-1*K.1^2-K.1^34,-1*K.1^14+K.1^22,K.1^2-K.1^10-K.1^26+K.1^34,K.1^2+K.1^34,K.1^22-K.1^38-K.1^46,-1*K.1^22+K.1^38+K.1^46,K.1^14-K.1^22,-1*K.1^10-K.1^26,-1*K.1^14+K.1^38+K.1^46,-1*K.1^2+K.1^10+K.1^26-K.1^34,K.1^14-K.1^38-K.1^46,K.1^17-K.1^25-K.1^41,K.1^5+K.1^13,K.1^19-K.1^35,-1*K.1+K.1^25+K.1^41,-1*K.1^19+K.1^35,K.1^23+K.1^31,-1*K.1^17+K.1^25+K.1^41,K.1-K.1^17,-1*K.1+K.1^17,K.1^7-K.1^23-K.1^31+K.1^47,-1*K.1^13-K.1^29+K.1^37,-1*K.1^5-K.1^13,K.1^7+K.1^47,K.1-K.1^25-K.1^41,-1*K.1^11+K.1^43,-1*K.1^7-K.1^47,K.1^5-K.1^29+K.1^37,-1*K.1^7+K.1^23+K.1^31-K.1^47,-1*K.1^23-K.1^31,-1*K.1^5+K.1^29-K.1^37,-1*K.1^11-K.1^19+K.1^35+K.1^43,K.1^13+K.1^29-K.1^37,K.1^11-K.1^43,K.1^11+K.1^19-K.1^35-K.1^43]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(144: Sparse := true); S := [ K |2,-2,0,-1,2*K.1^36,-2*K.1^36,0,1,-2*K.1^18,2*K.1^54,-2*K.1^54,2*K.1^18,0,0,K.1^16+K.1^-16,K.1^32+K.1^-32,-1*K.1^8-K.1^-8,K.1^36,-1*K.1^36,0,0,0,0,0,0,0,0,K.1^8+K.1^-8,-1*K.1^32-K.1^-32,-1*K.1^16-K.1^-16,-1*K.1^54,K.1^54,-1*K.1^18,K.1^18,K.1^28+K.1^44,-1*K.1^4+K.1^20+K.1^28,K.1^4-K.1^20-K.1^28,K.1^4-K.1^20+K.1^44,-1*K.1^4+K.1^20-K.1^44,-1*K.1^28-K.1^44,-1*K.1^15-K.1^39,K.1^9-2*K.1^33,2*K.1^3-K.1^27,2*K.1^21-K.1^45,-1*K.1^9+2*K.1^33,K.1^15+K.1^39,-2*K.1^21+K.1^45,-2*K.1^3+K.1^27,K.1^14-K.1^38-K.1^46,-1*K.1^22+K.1^38+K.1^46,K.1^2-K.1^10-K.1^26+K.1^34,-1*K.1^14+K.1^22,K.1^22-K.1^38-K.1^46,K.1^2+K.1^34,-1*K.1^2-K.1^34,-1*K.1^2+K.1^10+K.1^26-K.1^34,-1*K.1^14+K.1^38+K.1^46,-1*K.1^10-K.1^26,K.1^14-K.1^22,K.1^10+K.1^26,K.1^7+K.1^47,K.1^11+K.1^19-K.1^35-K.1^43,K.1^5-K.1^29+K.1^37,-1*K.1^23-K.1^31,-1*K.1^5+K.1^29-K.1^37,K.1-K.1^25-K.1^41,-1*K.1^7-K.1^47,-1*K.1^7+K.1^23+K.1^31-K.1^47,K.1^7-K.1^23-K.1^31+K.1^47,-1*K.1+K.1^17,-1*K.1^11+K.1^43,-1*K.1^11-K.1^19+K.1^35+K.1^43,K.1^17-K.1^25-K.1^41,K.1^23+K.1^31,-1*K.1^13-K.1^29+K.1^37,-1*K.1^17+K.1^25+K.1^41,K.1^19-K.1^35,K.1-K.1^17,-1*K.1+K.1^25+K.1^41,-1*K.1^19+K.1^35,-1*K.1^5-K.1^13,K.1^11-K.1^43,K.1^13+K.1^29-K.1^37,K.1^5+K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(144: Sparse := true); S := [ K |2,-2,0,-1,-2*K.1^36,2*K.1^36,0,1,2*K.1^54,-2*K.1^18,2*K.1^18,-2*K.1^54,0,0,K.1^16+K.1^-16,K.1^32+K.1^-32,-1*K.1^8-K.1^-8,-1*K.1^36,K.1^36,0,0,0,0,0,0,0,0,K.1^8+K.1^-8,-1*K.1^32-K.1^-32,-1*K.1^16-K.1^-16,K.1^18,-1*K.1^18,K.1^54,-1*K.1^54,-1*K.1^28-K.1^44,K.1^4-K.1^20-K.1^28,-1*K.1^4+K.1^20+K.1^28,-1*K.1^4+K.1^20-K.1^44,K.1^4-K.1^20+K.1^44,K.1^28+K.1^44,K.1^9-2*K.1^33,-1*K.1^15-K.1^39,-2*K.1^21+K.1^45,-2*K.1^3+K.1^27,K.1^15+K.1^39,-1*K.1^9+2*K.1^33,2*K.1^3-K.1^27,2*K.1^21-K.1^45,K.1^10+K.1^26,-1*K.1^2-K.1^34,-1*K.1^14+K.1^22,K.1^2-K.1^10-K.1^26+K.1^34,K.1^2+K.1^34,K.1^22-K.1^38-K.1^46,-1*K.1^22+K.1^38+K.1^46,K.1^14-K.1^22,-1*K.1^10-K.1^26,-1*K.1^14+K.1^38+K.1^46,-1*K.1^2+K.1^10+K.1^26-K.1^34,K.1^14-K.1^38-K.1^46,-1*K.1^17+K.1^25+K.1^41,-1*K.1^5-K.1^13,-1*K.1^19+K.1^35,K.1-K.1^25-K.1^41,K.1^19-K.1^35,-1*K.1^23-K.1^31,K.1^17-K.1^25-K.1^41,-1*K.1+K.1^17,K.1-K.1^17,-1*K.1^7+K.1^23+K.1^31-K.1^47,K.1^13+K.1^29-K.1^37,K.1^5+K.1^13,-1*K.1^7-K.1^47,-1*K.1+K.1^25+K.1^41,K.1^11-K.1^43,K.1^7+K.1^47,-1*K.1^5+K.1^29-K.1^37,K.1^7-K.1^23-K.1^31+K.1^47,K.1^23+K.1^31,K.1^5-K.1^29+K.1^37,K.1^11+K.1^19-K.1^35-K.1^43,-1*K.1^13-K.1^29+K.1^37,-1*K.1^11+K.1^43,-1*K.1^11-K.1^19+K.1^35+K.1^43]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(144: Sparse := true); S := [ K |2,-2,0,-1,2*K.1^36,-2*K.1^36,0,1,-2*K.1^18,2*K.1^54,-2*K.1^54,2*K.1^18,0,0,K.1^16+K.1^-16,K.1^32+K.1^-32,-1*K.1^8-K.1^-8,K.1^36,-1*K.1^36,0,0,0,0,0,0,0,0,K.1^8+K.1^-8,-1*K.1^32-K.1^-32,-1*K.1^16-K.1^-16,-1*K.1^54,K.1^54,-1*K.1^18,K.1^18,K.1^28+K.1^44,-1*K.1^4+K.1^20+K.1^28,K.1^4-K.1^20-K.1^28,K.1^4-K.1^20+K.1^44,-1*K.1^4+K.1^20-K.1^44,-1*K.1^28-K.1^44,K.1^15+K.1^39,-1*K.1^9+2*K.1^33,-2*K.1^3+K.1^27,-2*K.1^21+K.1^45,K.1^9-2*K.1^33,-1*K.1^15-K.1^39,2*K.1^21-K.1^45,2*K.1^3-K.1^27,K.1^14-K.1^38-K.1^46,-1*K.1^22+K.1^38+K.1^46,K.1^2-K.1^10-K.1^26+K.1^34,-1*K.1^14+K.1^22,K.1^22-K.1^38-K.1^46,K.1^2+K.1^34,-1*K.1^2-K.1^34,-1*K.1^2+K.1^10+K.1^26-K.1^34,-1*K.1^14+K.1^38+K.1^46,-1*K.1^10-K.1^26,K.1^14-K.1^22,K.1^10+K.1^26,-1*K.1^7-K.1^47,-1*K.1^11-K.1^19+K.1^35+K.1^43,-1*K.1^5+K.1^29-K.1^37,K.1^23+K.1^31,K.1^5-K.1^29+K.1^37,-1*K.1+K.1^25+K.1^41,K.1^7+K.1^47,K.1^7-K.1^23-K.1^31+K.1^47,-1*K.1^7+K.1^23+K.1^31-K.1^47,K.1-K.1^17,K.1^11-K.1^43,K.1^11+K.1^19-K.1^35-K.1^43,-1*K.1^17+K.1^25+K.1^41,-1*K.1^23-K.1^31,K.1^13+K.1^29-K.1^37,K.1^17-K.1^25-K.1^41,-1*K.1^19+K.1^35,-1*K.1+K.1^17,K.1-K.1^25-K.1^41,K.1^19-K.1^35,K.1^5+K.1^13,-1*K.1^11+K.1^43,-1*K.1^13-K.1^29+K.1^37,-1*K.1^5-K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(144: Sparse := true); S := [ K |2,-2,0,-1,-2*K.1^36,2*K.1^36,0,1,-2*K.1^54,2*K.1^18,-2*K.1^18,2*K.1^54,0,0,-1*K.1^8-K.1^-8,K.1^16+K.1^-16,K.1^32+K.1^-32,-1*K.1^36,K.1^36,0,0,0,0,0,0,0,0,-1*K.1^32-K.1^-32,-1*K.1^16-K.1^-16,K.1^8+K.1^-8,-1*K.1^18,K.1^18,-1*K.1^54,K.1^54,K.1^4-K.1^20+K.1^44,K.1^28+K.1^44,-1*K.1^28-K.1^44,K.1^4-K.1^20-K.1^28,-1*K.1^4+K.1^20+K.1^28,-1*K.1^4+K.1^20-K.1^44,-2*K.1^21+K.1^45,2*K.1^3-K.1^27,-1*K.1^9+2*K.1^33,-1*K.1^15-K.1^39,-2*K.1^3+K.1^27,2*K.1^21-K.1^45,K.1^15+K.1^39,K.1^9-2*K.1^33,-1*K.1^2+K.1^10+K.1^26-K.1^34,-1*K.1^10-K.1^26,K.1^22-K.1^38-K.1^46,K.1^2+K.1^34,K.1^10+K.1^26,K.1^14-K.1^38-K.1^46,-1*K.1^14+K.1^38+K.1^46,-1*K.1^22+K.1^38+K.1^46,K.1^2-K.1^10-K.1^26+K.1^34,-1*K.1^14+K.1^22,-1*K.1^2-K.1^34,K.1^14-K.1^22,K.1^5-K.1^29+K.1^37,K.1^17-K.1^25-K.1^41,K.1^23+K.1^31,K.1^13+K.1^29-K.1^37,-1*K.1^23-K.1^31,-1*K.1^11+K.1^43,-1*K.1^5+K.1^29-K.1^37,-1*K.1^5-K.1^13,K.1^5+K.1^13,K.1^11+K.1^19-K.1^35-K.1^43,K.1-K.1^17,-1*K.1^17+K.1^25+K.1^41,K.1^19-K.1^35,-1*K.1^13-K.1^29+K.1^37,-1*K.1^7+K.1^23+K.1^31-K.1^47,-1*K.1^19+K.1^35,K.1-K.1^25-K.1^41,-1*K.1^11-K.1^19+K.1^35+K.1^43,K.1^11-K.1^43,-1*K.1+K.1^25+K.1^41,-1*K.1^7-K.1^47,-1*K.1+K.1^17,K.1^7-K.1^23-K.1^31+K.1^47,K.1^7+K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(144: Sparse := true); S := [ K |2,-2,0,-1,2*K.1^36,-2*K.1^36,0,1,2*K.1^18,-2*K.1^54,2*K.1^54,-2*K.1^18,0,0,-1*K.1^8-K.1^-8,K.1^16+K.1^-16,K.1^32+K.1^-32,K.1^36,-1*K.1^36,0,0,0,0,0,0,0,0,-1*K.1^32-K.1^-32,-1*K.1^16-K.1^-16,K.1^8+K.1^-8,K.1^54,-1*K.1^54,K.1^18,-1*K.1^18,-1*K.1^4+K.1^20-K.1^44,-1*K.1^28-K.1^44,K.1^28+K.1^44,-1*K.1^4+K.1^20+K.1^28,K.1^4-K.1^20-K.1^28,K.1^4-K.1^20+K.1^44,-2*K.1^3+K.1^27,2*K.1^21-K.1^45,-1*K.1^15-K.1^39,-1*K.1^9+2*K.1^33,-2*K.1^21+K.1^45,2*K.1^3-K.1^27,K.1^9-2*K.1^33,K.1^15+K.1^39,K.1^14-K.1^22,-1*K.1^14+K.1^38+K.1^46,K.1^2+K.1^34,K.1^22-K.1^38-K.1^46,K.1^14-K.1^38-K.1^46,K.1^10+K.1^26,-1*K.1^10-K.1^26,-1*K.1^2-K.1^34,-1*K.1^14+K.1^22,K.1^2-K.1^10-K.1^26+K.1^34,-1*K.1^22+K.1^38+K.1^46,-1*K.1^2+K.1^10+K.1^26-K.1^34,K.1^19-K.1^35,K.1^7+K.1^47,K.1-K.1^25-K.1^41,K.1^11-K.1^43,-1*K.1+K.1^25+K.1^41,-1*K.1^13-K.1^29+K.1^37,-1*K.1^19+K.1^35,-1*K.1^11-K.1^19+K.1^35+K.1^43,K.1^11+K.1^19-K.1^35-K.1^43,K.1^5+K.1^13,-1*K.1^7+K.1^23+K.1^31-K.1^47,-1*K.1^7-K.1^47,K.1^5-K.1^29+K.1^37,-1*K.1^11+K.1^43,K.1-K.1^17,-1*K.1^5+K.1^29-K.1^37,K.1^23+K.1^31,-1*K.1^5-K.1^13,K.1^13+K.1^29-K.1^37,-1*K.1^23-K.1^31,-1*K.1^17+K.1^25+K.1^41,K.1^7-K.1^23-K.1^31+K.1^47,-1*K.1+K.1^17,K.1^17-K.1^25-K.1^41]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(144: Sparse := true); S := [ K |2,-2,0,-1,-2*K.1^36,2*K.1^36,0,1,-2*K.1^54,2*K.1^18,-2*K.1^18,2*K.1^54,0,0,-1*K.1^8-K.1^-8,K.1^16+K.1^-16,K.1^32+K.1^-32,-1*K.1^36,K.1^36,0,0,0,0,0,0,0,0,-1*K.1^32-K.1^-32,-1*K.1^16-K.1^-16,K.1^8+K.1^-8,-1*K.1^18,K.1^18,-1*K.1^54,K.1^54,K.1^4-K.1^20+K.1^44,K.1^28+K.1^44,-1*K.1^28-K.1^44,K.1^4-K.1^20-K.1^28,-1*K.1^4+K.1^20+K.1^28,-1*K.1^4+K.1^20-K.1^44,2*K.1^21-K.1^45,-2*K.1^3+K.1^27,K.1^9-2*K.1^33,K.1^15+K.1^39,2*K.1^3-K.1^27,-2*K.1^21+K.1^45,-1*K.1^15-K.1^39,-1*K.1^9+2*K.1^33,-1*K.1^2+K.1^10+K.1^26-K.1^34,-1*K.1^10-K.1^26,K.1^22-K.1^38-K.1^46,K.1^2+K.1^34,K.1^10+K.1^26,K.1^14-K.1^38-K.1^46,-1*K.1^14+K.1^38+K.1^46,-1*K.1^22+K.1^38+K.1^46,K.1^2-K.1^10-K.1^26+K.1^34,-1*K.1^14+K.1^22,-1*K.1^2-K.1^34,K.1^14-K.1^22,-1*K.1^5+K.1^29-K.1^37,-1*K.1^17+K.1^25+K.1^41,-1*K.1^23-K.1^31,-1*K.1^13-K.1^29+K.1^37,K.1^23+K.1^31,K.1^11-K.1^43,K.1^5-K.1^29+K.1^37,K.1^5+K.1^13,-1*K.1^5-K.1^13,-1*K.1^11-K.1^19+K.1^35+K.1^43,-1*K.1+K.1^17,K.1^17-K.1^25-K.1^41,-1*K.1^19+K.1^35,K.1^13+K.1^29-K.1^37,K.1^7-K.1^23-K.1^31+K.1^47,K.1^19-K.1^35,-1*K.1+K.1^25+K.1^41,K.1^11+K.1^19-K.1^35-K.1^43,-1*K.1^11+K.1^43,K.1-K.1^25-K.1^41,K.1^7+K.1^47,K.1-K.1^17,-1*K.1^7+K.1^23+K.1^31-K.1^47,-1*K.1^7-K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(144: Sparse := true); S := [ K |2,-2,0,-1,2*K.1^36,-2*K.1^36,0,1,2*K.1^18,-2*K.1^54,2*K.1^54,-2*K.1^18,0,0,-1*K.1^8-K.1^-8,K.1^16+K.1^-16,K.1^32+K.1^-32,K.1^36,-1*K.1^36,0,0,0,0,0,0,0,0,-1*K.1^32-K.1^-32,-1*K.1^16-K.1^-16,K.1^8+K.1^-8,K.1^54,-1*K.1^54,K.1^18,-1*K.1^18,-1*K.1^4+K.1^20-K.1^44,-1*K.1^28-K.1^44,K.1^28+K.1^44,-1*K.1^4+K.1^20+K.1^28,K.1^4-K.1^20-K.1^28,K.1^4-K.1^20+K.1^44,2*K.1^3-K.1^27,-2*K.1^21+K.1^45,K.1^15+K.1^39,K.1^9-2*K.1^33,2*K.1^21-K.1^45,-2*K.1^3+K.1^27,-1*K.1^9+2*K.1^33,-1*K.1^15-K.1^39,K.1^14-K.1^22,-1*K.1^14+K.1^38+K.1^46,K.1^2+K.1^34,K.1^22-K.1^38-K.1^46,K.1^14-K.1^38-K.1^46,K.1^10+K.1^26,-1*K.1^10-K.1^26,-1*K.1^2-K.1^34,-1*K.1^14+K.1^22,K.1^2-K.1^10-K.1^26+K.1^34,-1*K.1^22+K.1^38+K.1^46,-1*K.1^2+K.1^10+K.1^26-K.1^34,-1*K.1^19+K.1^35,-1*K.1^7-K.1^47,-1*K.1+K.1^25+K.1^41,-1*K.1^11+K.1^43,K.1-K.1^25-K.1^41,K.1^13+K.1^29-K.1^37,K.1^19-K.1^35,K.1^11+K.1^19-K.1^35-K.1^43,-1*K.1^11-K.1^19+K.1^35+K.1^43,-1*K.1^5-K.1^13,K.1^7-K.1^23-K.1^31+K.1^47,K.1^7+K.1^47,-1*K.1^5+K.1^29-K.1^37,K.1^11-K.1^43,-1*K.1+K.1^17,K.1^5-K.1^29+K.1^37,-1*K.1^23-K.1^31,K.1^5+K.1^13,-1*K.1^13-K.1^29+K.1^37,K.1^23+K.1^31,K.1^17-K.1^25-K.1^41,-1*K.1^7+K.1^23+K.1^31-K.1^47,K.1-K.1^17,-1*K.1^17+K.1^25+K.1^41]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(144: Sparse := true); S := [ K |2,-2,0,-1,-2*K.1^36,2*K.1^36,0,1,-2*K.1^54,2*K.1^18,-2*K.1^18,2*K.1^54,0,0,K.1^32+K.1^-32,-1*K.1^8-K.1^-8,K.1^16+K.1^-16,-1*K.1^36,K.1^36,0,0,0,0,0,0,0,0,-1*K.1^16-K.1^-16,K.1^8+K.1^-8,-1*K.1^32-K.1^-32,-1*K.1^18,K.1^18,-1*K.1^54,K.1^54,-1*K.1^4+K.1^20+K.1^28,-1*K.1^4+K.1^20-K.1^44,K.1^4-K.1^20+K.1^44,K.1^28+K.1^44,-1*K.1^28-K.1^44,K.1^4-K.1^20-K.1^28,-2*K.1^21+K.1^45,2*K.1^3-K.1^27,-1*K.1^9+2*K.1^33,-1*K.1^15-K.1^39,-2*K.1^3+K.1^27,2*K.1^21-K.1^45,K.1^15+K.1^39,K.1^9-2*K.1^33,K.1^2+K.1^34,-1*K.1^2+K.1^10+K.1^26-K.1^34,-1*K.1^14+K.1^38+K.1^46,-1*K.1^10-K.1^26,K.1^2-K.1^10-K.1^26+K.1^34,-1*K.1^14+K.1^22,K.1^14-K.1^22,K.1^14-K.1^38-K.1^46,-1*K.1^2-K.1^34,-1*K.1^22+K.1^38+K.1^46,K.1^10+K.1^26,K.1^22-K.1^38-K.1^46,-1*K.1^5-K.1^13,K.1-K.1^17,-1*K.1^7-K.1^47,K.1^5-K.1^29+K.1^37,K.1^7+K.1^47,-1*K.1^19+K.1^35,K.1^5+K.1^13,K.1^13+K.1^29-K.1^37,-1*K.1^13-K.1^29+K.1^37,-1*K.1^11+K.1^43,-1*K.1+K.1^25+K.1^41,-1*K.1+K.1^17,-1*K.1^11-K.1^19+K.1^35+K.1^43,-1*K.1^5+K.1^29-K.1^37,-1*K.1^23-K.1^31,K.1^11+K.1^19-K.1^35-K.1^43,-1*K.1^17+K.1^25+K.1^41,K.1^11-K.1^43,K.1^19-K.1^35,K.1^17-K.1^25-K.1^41,K.1^7-K.1^23-K.1^31+K.1^47,K.1-K.1^25-K.1^41,K.1^23+K.1^31,-1*K.1^7+K.1^23+K.1^31-K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(144: Sparse := true); S := [ K |2,-2,0,-1,2*K.1^36,-2*K.1^36,0,1,2*K.1^18,-2*K.1^54,2*K.1^54,-2*K.1^18,0,0,K.1^32+K.1^-32,-1*K.1^8-K.1^-8,K.1^16+K.1^-16,K.1^36,-1*K.1^36,0,0,0,0,0,0,0,0,-1*K.1^16-K.1^-16,K.1^8+K.1^-8,-1*K.1^32-K.1^-32,K.1^54,-1*K.1^54,K.1^18,-1*K.1^18,K.1^4-K.1^20-K.1^28,K.1^4-K.1^20+K.1^44,-1*K.1^4+K.1^20-K.1^44,-1*K.1^28-K.1^44,K.1^28+K.1^44,-1*K.1^4+K.1^20+K.1^28,-2*K.1^3+K.1^27,2*K.1^21-K.1^45,-1*K.1^15-K.1^39,-1*K.1^9+2*K.1^33,-2*K.1^21+K.1^45,2*K.1^3-K.1^27,K.1^9-2*K.1^33,K.1^15+K.1^39,K.1^22-K.1^38-K.1^46,K.1^14-K.1^22,-1*K.1^10-K.1^26,-1*K.1^14+K.1^38+K.1^46,-1*K.1^14+K.1^22,K.1^2-K.1^10-K.1^26+K.1^34,-1*K.1^2+K.1^10+K.1^26-K.1^34,K.1^10+K.1^26,-1*K.1^22+K.1^38+K.1^46,-1*K.1^2-K.1^34,K.1^14-K.1^38-K.1^46,K.1^2+K.1^34,-1*K.1^11-K.1^19+K.1^35+K.1^43,-1*K.1^7+K.1^23+K.1^31-K.1^47,-1*K.1^17+K.1^25+K.1^41,K.1^19-K.1^35,K.1^17-K.1^25-K.1^41,-1*K.1^5+K.1^29-K.1^37,K.1^11+K.1^19-K.1^35-K.1^43,K.1^11-K.1^43,-1*K.1^11+K.1^43,-1*K.1^13-K.1^29+K.1^37,-1*K.1^23-K.1^31,K.1^7-K.1^23-K.1^31+K.1^47,-1*K.1^5-K.1^13,-1*K.1^19+K.1^35,-1*K.1+K.1^25+K.1^41,K.1^5+K.1^13,-1*K.1^7-K.1^47,K.1^13+K.1^29-K.1^37,K.1^5-K.1^29+K.1^37,K.1^7+K.1^47,-1*K.1+K.1^17,K.1^23+K.1^31,K.1-K.1^25-K.1^41,K.1-K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(144: Sparse := true); S := [ K |2,-2,0,-1,-2*K.1^36,2*K.1^36,0,1,-2*K.1^54,2*K.1^18,-2*K.1^18,2*K.1^54,0,0,K.1^32+K.1^-32,-1*K.1^8-K.1^-8,K.1^16+K.1^-16,-1*K.1^36,K.1^36,0,0,0,0,0,0,0,0,-1*K.1^16-K.1^-16,K.1^8+K.1^-8,-1*K.1^32-K.1^-32,-1*K.1^18,K.1^18,-1*K.1^54,K.1^54,-1*K.1^4+K.1^20+K.1^28,-1*K.1^4+K.1^20-K.1^44,K.1^4-K.1^20+K.1^44,K.1^28+K.1^44,-1*K.1^28-K.1^44,K.1^4-K.1^20-K.1^28,2*K.1^21-K.1^45,-2*K.1^3+K.1^27,K.1^9-2*K.1^33,K.1^15+K.1^39,2*K.1^3-K.1^27,-2*K.1^21+K.1^45,-1*K.1^15-K.1^39,-1*K.1^9+2*K.1^33,K.1^2+K.1^34,-1*K.1^2+K.1^10+K.1^26-K.1^34,-1*K.1^14+K.1^38+K.1^46,-1*K.1^10-K.1^26,K.1^2-K.1^10-K.1^26+K.1^34,-1*K.1^14+K.1^22,K.1^14-K.1^22,K.1^14-K.1^38-K.1^46,-1*K.1^2-K.1^34,-1*K.1^22+K.1^38+K.1^46,K.1^10+K.1^26,K.1^22-K.1^38-K.1^46,K.1^5+K.1^13,-1*K.1+K.1^17,K.1^7+K.1^47,-1*K.1^5+K.1^29-K.1^37,-1*K.1^7-K.1^47,K.1^19-K.1^35,-1*K.1^5-K.1^13,-1*K.1^13-K.1^29+K.1^37,K.1^13+K.1^29-K.1^37,K.1^11-K.1^43,K.1-K.1^25-K.1^41,K.1-K.1^17,K.1^11+K.1^19-K.1^35-K.1^43,K.1^5-K.1^29+K.1^37,K.1^23+K.1^31,-1*K.1^11-K.1^19+K.1^35+K.1^43,K.1^17-K.1^25-K.1^41,-1*K.1^11+K.1^43,-1*K.1^19+K.1^35,-1*K.1^17+K.1^25+K.1^41,-1*K.1^7+K.1^23+K.1^31-K.1^47,-1*K.1+K.1^25+K.1^41,-1*K.1^23-K.1^31,K.1^7-K.1^23-K.1^31+K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(144: Sparse := true); S := [ K |2,-2,0,-1,2*K.1^36,-2*K.1^36,0,1,2*K.1^18,-2*K.1^54,2*K.1^54,-2*K.1^18,0,0,K.1^32+K.1^-32,-1*K.1^8-K.1^-8,K.1^16+K.1^-16,K.1^36,-1*K.1^36,0,0,0,0,0,0,0,0,-1*K.1^16-K.1^-16,K.1^8+K.1^-8,-1*K.1^32-K.1^-32,K.1^54,-1*K.1^54,K.1^18,-1*K.1^18,K.1^4-K.1^20-K.1^28,K.1^4-K.1^20+K.1^44,-1*K.1^4+K.1^20-K.1^44,-1*K.1^28-K.1^44,K.1^28+K.1^44,-1*K.1^4+K.1^20+K.1^28,2*K.1^3-K.1^27,-2*K.1^21+K.1^45,K.1^15+K.1^39,K.1^9-2*K.1^33,2*K.1^21-K.1^45,-2*K.1^3+K.1^27,-1*K.1^9+2*K.1^33,-1*K.1^15-K.1^39,K.1^22-K.1^38-K.1^46,K.1^14-K.1^22,-1*K.1^10-K.1^26,-1*K.1^14+K.1^38+K.1^46,-1*K.1^14+K.1^22,K.1^2-K.1^10-K.1^26+K.1^34,-1*K.1^2+K.1^10+K.1^26-K.1^34,K.1^10+K.1^26,-1*K.1^22+K.1^38+K.1^46,-1*K.1^2-K.1^34,K.1^14-K.1^38-K.1^46,K.1^2+K.1^34,K.1^11+K.1^19-K.1^35-K.1^43,K.1^7-K.1^23-K.1^31+K.1^47,K.1^17-K.1^25-K.1^41,-1*K.1^19+K.1^35,-1*K.1^17+K.1^25+K.1^41,K.1^5-K.1^29+K.1^37,-1*K.1^11-K.1^19+K.1^35+K.1^43,-1*K.1^11+K.1^43,K.1^11-K.1^43,K.1^13+K.1^29-K.1^37,K.1^23+K.1^31,-1*K.1^7+K.1^23+K.1^31-K.1^47,K.1^5+K.1^13,K.1^19-K.1^35,K.1-K.1^25-K.1^41,-1*K.1^5-K.1^13,K.1^7+K.1^47,-1*K.1^13-K.1^29+K.1^37,-1*K.1^5+K.1^29-K.1^37,-1*K.1^7-K.1^47,K.1-K.1^17,-1*K.1^23-K.1^31,-1*K.1+K.1^25+K.1^41,-1*K.1+K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(144: Sparse := true); S := [ K |2,-2,0,-1,-2*K.1^36,2*K.1^36,0,1,-2*K.1^54,2*K.1^18,-2*K.1^18,2*K.1^54,0,0,K.1^16+K.1^-16,K.1^32+K.1^-32,-1*K.1^8-K.1^-8,-1*K.1^36,K.1^36,0,0,0,0,0,0,0,0,K.1^8+K.1^-8,-1*K.1^32-K.1^-32,-1*K.1^16-K.1^-16,-1*K.1^18,K.1^18,-1*K.1^54,K.1^54,-1*K.1^28-K.1^44,K.1^4-K.1^20-K.1^28,-1*K.1^4+K.1^20+K.1^28,-1*K.1^4+K.1^20-K.1^44,K.1^4-K.1^20+K.1^44,K.1^28+K.1^44,-2*K.1^21+K.1^45,2*K.1^3-K.1^27,-1*K.1^9+2*K.1^33,-1*K.1^15-K.1^39,-2*K.1^3+K.1^27,2*K.1^21-K.1^45,K.1^15+K.1^39,K.1^9-2*K.1^33,-1*K.1^10-K.1^26,K.1^2+K.1^34,K.1^14-K.1^22,-1*K.1^2+K.1^10+K.1^26-K.1^34,-1*K.1^2-K.1^34,-1*K.1^22+K.1^38+K.1^46,K.1^22-K.1^38-K.1^46,-1*K.1^14+K.1^22,K.1^10+K.1^26,K.1^14-K.1^38-K.1^46,K.1^2-K.1^10-K.1^26+K.1^34,-1*K.1^14+K.1^38+K.1^46,K.1^13+K.1^29-K.1^37,-1*K.1+K.1^25+K.1^41,K.1^7-K.1^23-K.1^31+K.1^47,-1*K.1^5-K.1^13,-1*K.1^7+K.1^23+K.1^31-K.1^47,K.1^11+K.1^19-K.1^35-K.1^43,-1*K.1^13-K.1^29+K.1^37,K.1^5-K.1^29+K.1^37,-1*K.1^5+K.1^29-K.1^37,-1*K.1^19+K.1^35,K.1^17-K.1^25-K.1^41,K.1-K.1^25-K.1^41,K.1^11-K.1^43,K.1^5+K.1^13,K.1^7+K.1^47,-1*K.1^11+K.1^43,-1*K.1+K.1^17,K.1^19-K.1^35,-1*K.1^11-K.1^19+K.1^35+K.1^43,K.1-K.1^17,K.1^23+K.1^31,-1*K.1^17+K.1^25+K.1^41,-1*K.1^7-K.1^47,-1*K.1^23-K.1^31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(144: Sparse := true); S := [ K |2,-2,0,-1,2*K.1^36,-2*K.1^36,0,1,2*K.1^18,-2*K.1^54,2*K.1^54,-2*K.1^18,0,0,K.1^16+K.1^-16,K.1^32+K.1^-32,-1*K.1^8-K.1^-8,K.1^36,-1*K.1^36,0,0,0,0,0,0,0,0,K.1^8+K.1^-8,-1*K.1^32-K.1^-32,-1*K.1^16-K.1^-16,K.1^54,-1*K.1^54,K.1^18,-1*K.1^18,K.1^28+K.1^44,-1*K.1^4+K.1^20+K.1^28,K.1^4-K.1^20-K.1^28,K.1^4-K.1^20+K.1^44,-1*K.1^4+K.1^20-K.1^44,-1*K.1^28-K.1^44,-2*K.1^3+K.1^27,2*K.1^21-K.1^45,-1*K.1^15-K.1^39,-1*K.1^9+2*K.1^33,-2*K.1^21+K.1^45,2*K.1^3-K.1^27,K.1^9-2*K.1^33,K.1^15+K.1^39,-1*K.1^14+K.1^38+K.1^46,K.1^22-K.1^38-K.1^46,-1*K.1^2+K.1^10+K.1^26-K.1^34,K.1^14-K.1^22,-1*K.1^22+K.1^38+K.1^46,-1*K.1^2-K.1^34,K.1^2+K.1^34,K.1^2-K.1^10-K.1^26+K.1^34,K.1^14-K.1^38-K.1^46,K.1^10+K.1^26,-1*K.1^14+K.1^22,-1*K.1^10-K.1^26,K.1^11-K.1^43,-1*K.1^23-K.1^31,-1*K.1+K.1^17,-1*K.1^11-K.1^19+K.1^35+K.1^43,K.1-K.1^17,K.1^5+K.1^13,-1*K.1^11+K.1^43,K.1^19-K.1^35,-1*K.1^19+K.1^35,-1*K.1^5+K.1^29-K.1^37,K.1^7+K.1^47,K.1^23+K.1^31,K.1^13+K.1^29-K.1^37,K.1^11+K.1^19-K.1^35-K.1^43,K.1^17-K.1^25-K.1^41,-1*K.1^13-K.1^29+K.1^37,K.1^7-K.1^23-K.1^31+K.1^47,K.1^5-K.1^29+K.1^37,-1*K.1^5-K.1^13,-1*K.1^7+K.1^23+K.1^31-K.1^47,K.1-K.1^25-K.1^41,-1*K.1^7-K.1^47,-1*K.1^17+K.1^25+K.1^41,-1*K.1+K.1^25+K.1^41]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(144: Sparse := true); S := [ K |2,-2,0,-1,-2*K.1^36,2*K.1^36,0,1,-2*K.1^54,2*K.1^18,-2*K.1^18,2*K.1^54,0,0,K.1^16+K.1^-16,K.1^32+K.1^-32,-1*K.1^8-K.1^-8,-1*K.1^36,K.1^36,0,0,0,0,0,0,0,0,K.1^8+K.1^-8,-1*K.1^32-K.1^-32,-1*K.1^16-K.1^-16,-1*K.1^18,K.1^18,-1*K.1^54,K.1^54,-1*K.1^28-K.1^44,K.1^4-K.1^20-K.1^28,-1*K.1^4+K.1^20+K.1^28,-1*K.1^4+K.1^20-K.1^44,K.1^4-K.1^20+K.1^44,K.1^28+K.1^44,2*K.1^21-K.1^45,-2*K.1^3+K.1^27,K.1^9-2*K.1^33,K.1^15+K.1^39,2*K.1^3-K.1^27,-2*K.1^21+K.1^45,-1*K.1^15-K.1^39,-1*K.1^9+2*K.1^33,-1*K.1^10-K.1^26,K.1^2+K.1^34,K.1^14-K.1^22,-1*K.1^2+K.1^10+K.1^26-K.1^34,-1*K.1^2-K.1^34,-1*K.1^22+K.1^38+K.1^46,K.1^22-K.1^38-K.1^46,-1*K.1^14+K.1^22,K.1^10+K.1^26,K.1^14-K.1^38-K.1^46,K.1^2-K.1^10-K.1^26+K.1^34,-1*K.1^14+K.1^38+K.1^46,-1*K.1^13-K.1^29+K.1^37,K.1-K.1^25-K.1^41,-1*K.1^7+K.1^23+K.1^31-K.1^47,K.1^5+K.1^13,K.1^7-K.1^23-K.1^31+K.1^47,-1*K.1^11-K.1^19+K.1^35+K.1^43,K.1^13+K.1^29-K.1^37,-1*K.1^5+K.1^29-K.1^37,K.1^5-K.1^29+K.1^37,K.1^19-K.1^35,-1*K.1^17+K.1^25+K.1^41,-1*K.1+K.1^25+K.1^41,-1*K.1^11+K.1^43,-1*K.1^5-K.1^13,-1*K.1^7-K.1^47,K.1^11-K.1^43,K.1-K.1^17,-1*K.1^19+K.1^35,K.1^11+K.1^19-K.1^35-K.1^43,-1*K.1+K.1^17,-1*K.1^23-K.1^31,K.1^17-K.1^25-K.1^41,K.1^7+K.1^47,K.1^23+K.1^31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(144: Sparse := true); S := [ K |2,-2,0,-1,2*K.1^36,-2*K.1^36,0,1,2*K.1^18,-2*K.1^54,2*K.1^54,-2*K.1^18,0,0,K.1^16+K.1^-16,K.1^32+K.1^-32,-1*K.1^8-K.1^-8,K.1^36,-1*K.1^36,0,0,0,0,0,0,0,0,K.1^8+K.1^-8,-1*K.1^32-K.1^-32,-1*K.1^16-K.1^-16,K.1^54,-1*K.1^54,K.1^18,-1*K.1^18,K.1^28+K.1^44,-1*K.1^4+K.1^20+K.1^28,K.1^4-K.1^20-K.1^28,K.1^4-K.1^20+K.1^44,-1*K.1^4+K.1^20-K.1^44,-1*K.1^28-K.1^44,2*K.1^3-K.1^27,-2*K.1^21+K.1^45,K.1^15+K.1^39,K.1^9-2*K.1^33,2*K.1^21-K.1^45,-2*K.1^3+K.1^27,-1*K.1^9+2*K.1^33,-1*K.1^15-K.1^39,-1*K.1^14+K.1^38+K.1^46,K.1^22-K.1^38-K.1^46,-1*K.1^2+K.1^10+K.1^26-K.1^34,K.1^14-K.1^22,-1*K.1^22+K.1^38+K.1^46,-1*K.1^2-K.1^34,K.1^2+K.1^34,K.1^2-K.1^10-K.1^26+K.1^34,K.1^14-K.1^38-K.1^46,K.1^10+K.1^26,-1*K.1^14+K.1^22,-1*K.1^10-K.1^26,-1*K.1^11+K.1^43,K.1^23+K.1^31,K.1-K.1^17,K.1^11+K.1^19-K.1^35-K.1^43,-1*K.1+K.1^17,-1*K.1^5-K.1^13,K.1^11-K.1^43,-1*K.1^19+K.1^35,K.1^19-K.1^35,K.1^5-K.1^29+K.1^37,-1*K.1^7-K.1^47,-1*K.1^23-K.1^31,-1*K.1^13-K.1^29+K.1^37,-1*K.1^11-K.1^19+K.1^35+K.1^43,-1*K.1^17+K.1^25+K.1^41,K.1^13+K.1^29-K.1^37,-1*K.1^7+K.1^23+K.1^31-K.1^47,-1*K.1^5+K.1^29-K.1^37,K.1^5+K.1^13,K.1^7-K.1^23-K.1^31+K.1^47,-1*K.1+K.1^25+K.1^41,K.1^7+K.1^47,K.1^17-K.1^25-K.1^41,K.1-K.1^25-K.1^41]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_288_5:= KnownIrreducibles(CR);