# Group 28.1 downloaded from the LMFDB on 23 September 2025. ## Various presentations of this group are stored in this file: # GPC is polycyclic presentation GPerm is permutation group # GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups # Many characteristics of the group are stored as booleans in a record: # Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, # metacyclic, monomial, nilpotent, perfect, quasisimple, rational, # solvable, supersolvable # The character table is stored as a record chartbl_n_i where n is the order # of the group and i is which group of that order it is. The record is # converted to a character table using ConvertToLibraryCharacterTableNC # Constructions GPC := PcGroupCode(1018013,28); a := GPC.1; b := GPC.3; GPerm := Group( (2,3)(4,5)(6,7)(8,9,10,11), (8,10)(9,11), (1,2,4,6,7,5,3) ); GLFp := Group([[[ Z(13)^11, Z(13)^4 ], [ Z(13)^9, Z(13)^5 ]], [[ Z(13)^8, Z(13) ], [ Z(13)^0, Z(13)^8 ]]]); # Booleans booleans_28_1 := rec( Agroup := true, Zgroup := true, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := true, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true); # Character Table chartbl_28_1:=rec(); chartbl_28_1.IsFinite:= true; chartbl_28_1.UnderlyingCharacteristic:= 0; chartbl_28_1.UnderlyingGroup:= GPC; chartbl_28_1.Size:= 28; chartbl_28_1.InfoText:= "Character table for group 28.1 downloaded from the LMFDB."; chartbl_28_1.Identifier:= " C7:C4 "; chartbl_28_1.NrConjugacyClasses:= 10; chartbl_28_1.ConjugacyClasses:= [ of ..., f2, f1*f2, f1, f3^2, f3^4, f3^6, f2*f3, f2*f3^3, f2*f3^2]; chartbl_28_1.IdentificationOfConjugacyClasses:= [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; chartbl_28_1.ComputedPowerMaps:= [ , [1, 1, 2, 2, 6, 7, 5, 5, 7, 6], [1, 2, 4, 3, 7, 5, 6, 9, 10, 8]]; chartbl_28_1.SizesCentralizers:= [28, 28, 4, 4, 14, 14, 14, 14, 14, 14]; chartbl_28_1.ClassNames:= ["1A", "2A", "4A1", "4A-1", "7A1", "7A2", "7A3", "14A1", "14A3", "14A5"]; chartbl_28_1.OrderClassRepresentatives:= [1, 2, 4, 4, 7, 7, 7, 14, 14, 14]; chartbl_28_1.Irr:= [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, -1, -1, 1, 1, 1, 1, 1, 1], [1, -1, -1*E(4), E(4), 1, 1, 1, -1, -1, -1], [1, -1, E(4), -1*E(4), 1, 1, 1, -1, -1, -1], [2, 2, 0, 0, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2], [2, 2, 0, 0, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1], [2, 2, 0, 0, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3], [2, -2, 0, 0, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2], [2, -2, 0, 0, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1], [2, -2, 0, 0, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3]]; ConvertToLibraryCharacterTableNC(chartbl_28_1);