/* Group 26620.bw downloaded from the LMFDB on 18 November 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([6, -2, -5, -11, -11, -2, -11, 12, 9542, 161738, 425043, 180849, 29319, 689704, 163360, 88, 696965, 392051]); a,b,c,d := Explode([GPC.1, GPC.3, GPC.4, GPC.5]); AssignNames(~GPC, ["a", "a2", "b", "c", "d", "d2"]); GPerm := PermutationGroup< 123 | (1,2,12,66,88,32,8,34,4,30,7)(3,21,85,89,103,35,57,54,63,10,26)(5,37,111,93,22,38,105,68,58,48,29)(6,16,69,65,18,51,45,24,19,76,44)(9,15,71,42,97,117,41,79,115,94,59)(11,20,73,114,82,95,56,17,36,84,53)(13,74,27,104,101,55,121,72,62,83,25)(14,78,77,33,98,120,96,91,108,109,81)(23,47,90,113,110,92,70,80,67,61,40)(28,49,50,52,106,107,102,116,112,99,39)(31,46,86,75,118,100,60,64,119,43,87)(122,123), (1,3,22,96,104,47,27,98,37,54,8)(2,13,55,32,53,15,76,58,19,59,17)(4,31,92,20,21,57,95,67,86,30,9)(5,38,113,78,18,84,46,36,69,109,40)(6,25,35,90,52,114,50,23,85,121,45)(7,48,64,10,60,68,34,16,28,107,51)(11,29,79,99,103,120,89,116,97,105,56)(12,49,33,42,115,91,106,88,80,65,70)(14,66,81,73,74,102,118,43,39,101,82)(24,87,108,77,75,44,26,41,62,117,63)(61,71,119,83,93,112,111,72,100,94,110)(122,123), (1,4,32,59,101,24,99,54,41,5,10,61,60,113,63,22,97,26,102,76,13,9)(2,14,56,114,38,50,29,73,53,109,88,16,52,8,47,57,27,3,23,7,49,18)(6,36,51,31,106,34,96,105,93,42,62,77,117,91,72,79,37,48,33,30,28,46)(11,19,95,68,35,100,83,121,64,21,58)(12,67,92,82,87,104,45,120,55,89,25,98,44,74,86,20,80,110,66,115,81,71)(15,40,84,108,65,43,70,75,69,78,17,90,94,103,118,112,107,111,39,116,119,85), (1,5,39,49,10)(2,15,84,67,19)(3,24,47,6,28)(4,33,26,103,35)(7,50,102,86,52)(8,25,37,112,55)(9,57,108,91,17)(11,45,113,100,65)(12,68,63,98,72)(13,75,97,58,77)(14,79,89,16,83)(18,93,119,60,94)(20,88,76,22,81)(21,95,85,114,38)(27,105,48,64,106)(29,92,66,107,42)(30,44,36,54,99)(31,73,69,116,59)(32,109,120,61,110)(34,62,115,118,51)(40,96,41,53,111)(43,56,71,74,46)(70,87,90,104,78)(80,101,117,121,82), (1,6,43,115,38,57,55,107,77,61,11)(2,16,87,94,105,54,121,102,33,40,20)(3,25,39,91,113,95,32,51,75,71,29)(4,19,60,117,111,89,27,50,81,70,36)(5,21,13,28,108,110,56,8,45,118,42)(7,44,119,79,22,35,101,106,78,67,53)(9,58,10,62,112,120,47,114,66,65,46)(12,69,31,59,68,63,72,116,98,23,73)(14,80,84,30,76,64,41,93,103,104,52)(15,48,26,83,99,96,90,82,88,18,86)(17,34,24,100,97,37,85,74,49,109,92), (122,123) >; GLFp := MatrixGroup< 4, GF(11) | [[2, 2, 0, 10, 2, 7, 2, 8, 2, 3, 9, 1, 5, 9, 4, 4], [8, 8, 0, 4, 9, 5, 2, 8, 10, 2, 10, 6, 8, 1, 5, 7], [8, 0, 1, 1, 8, 0, 8, 1, 8, 3, 9, 0, 10, 8, 3, 1], [0, 8, 5, 0, 1, 4, 8, 5, 7, 8, 5, 3, 3, 7, 10, 9], [6, 9, 1, 4, 4, 6, 3, 1, 8, 10, 7, 2, 2, 8, 7, 7], [10, 0, 0, 0, 0, 10, 0, 0, 0, 0, 10, 0, 0, 0, 0, 10]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_26620_bw := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := false, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, d^11>,< 2, 121, a^5*c^2*d>,< 2, 121, a^5*c^7*d^16>,< 5, 1331, a^6*c^8*d^2>,< 5, 1331, a^4*c^9*d^12>,< 5, 1331, a^2*c^7*d^6>,< 5, 1331, a^8*c^3*d^10>,< 10, 1331, a^3*c^10*d^13>,< 10, 1331, a^7*c^6*d^17>,< 10, 1331, a^9*c^4*d^11>,< 10, 1331, a*c^5*d^21>,< 10, 1331, a^2*b^8*c^10*d^17>,< 10, 1331, a^8*b^9*c^6*d^11>,< 10, 1331, a^6*b^3*c^7*d^17>,< 10, 1331, a^4*b^7*d^13>,< 10, 1331, a*b^6*c^2*d^18>,< 10, 1331, a^9*b^3*c^9*d^16>,< 10, 1331, a^3*b^7*c^5*d^20>,< 10, 1331, a^7*b^5*c^9*d^14>,< 11, 10, d^2>,< 11, 55, b^2*c^4>,< 11, 55, b^9*c^7*d^14>,< 11, 110, c^2*d^2>,< 11, 110, b^2*d^2>,< 11, 110, b^9*d^20>,< 11, 110, b^4*d^4>,< 11, 110, b^7*d^18>,< 11, 110, b^6*d^6>,< 11, 110, b^5*d^16>,< 11, 110, b^8*d^8>,< 11, 110, b^3*d^14>,< 11, 110, b^10*d^10>,< 11, 110, b*d^12>,< 22, 10, d>,< 22, 55, b*c^2*d>,< 22, 55, b^2*c^4*d>,< 22, 110, c*d>,< 22, 110, b*d>,< 22, 110, b^10*d>,< 22, 110, b^3*d>,< 22, 110, b^8*d>,< 22, 110, b^5*d>,< 22, 110, b^6*d>,< 22, 110, b^7*d>,< 22, 110, b^4*d>,< 22, 110, b^9*d>,< 22, 110, b^2*d>,< 22, 605, a^5*b^8*c^9*d>,< 22, 605, a^5*b^3*c^10*d>,< 22, 605, a^5*b^2*c^8*d^2>,< 22, 605, a^5*b^9*d^2>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1,K.1^2,K.1^-1,K.1,K.1^-2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,K.1^2,K.1^-2,K.1^-1,K.1,K.1^2,K.1,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1,K.1,K.1^2,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,K.1,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,-1,-1,1,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-2,-1*K.1^-1,K.1,-1*K.1^-2,K.1^2,-1*K.1^2,K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,-1,-1,1,K.1^2,K.1^-2,K.1^-1,K.1,K.1^2,-1*K.1,K.1^-1,-1*K.1^2,K.1^-2,-1*K.1^-2,K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,-1,-1,1,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-1,-1*K.1^2,K.1^-2,-1*K.1^-1,K.1,-1*K.1,K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,-1,-1,1,K.1,K.1^-1,K.1^2,K.1^-2,K.1,-1*K.1^-2,K.1^2,-1*K.1,K.1^-1,-1*K.1^-1,K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,-1,1,-1,K.1^-2,K.1^2,K.1,K.1^-1,-1*K.1^-2,K.1^-1,-1*K.1,K.1^-2,-1*K.1^2,K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-1,K.1,-1*K.1^-2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,-1,1,-1,K.1^2,K.1^-2,K.1^-1,K.1,-1*K.1^2,K.1,-1*K.1^-1,K.1^2,-1*K.1^-2,K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1,K.1^-1,-1*K.1^2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,-1,1,-1,K.1^-1,K.1,K.1^-2,K.1^2,-1*K.1^-1,K.1^2,-1*K.1^-2,K.1^-1,-1*K.1,K.1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^2,K.1^-2,-1*K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,-1,1,-1,K.1,K.1^-1,K.1^2,K.1^-2,-1*K.1,K.1^-2,-1*K.1^2,K.1,-1*K.1^-1,K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,K.1^2,-1*K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,K.1^-2,K.1^2,K.1,K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,K.1,K.1^2,K.1^-1,-1*K.1,K.1^-2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,K.1^2,K.1^-2,K.1^-1,K.1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1,K.1^-1,K.1^-2,K.1,-1*K.1^-1,K.1^2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,K.1^-1,K.1,K.1^-2,K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^2,K.1^-2,K.1,K.1^2,-1*K.1^-2,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,K.1,K.1^-1,K.1^2,K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,K.1^2,K.1^-1,K.1^-2,-1*K.1^2,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |5,5,5,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,5,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,5,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,5,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |5,5,5,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,5,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,5,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,5,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |5,-5,-5,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,5,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,-5,-1*K.1-K.1^3-K.1^4-K.1^5-K.1^-2,1+K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1*K.1-K.1^3-K.1^4-K.1^5-K.1^-2,-1*K.1-K.1^3-K.1^4-K.1^5-K.1^-2,1+K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1*K.1-K.1^3-K.1^4-K.1^5-K.1^-2,1+K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1*K.1-K.1^3-K.1^4-K.1^5-K.1^-2,1+K.1+K.1^3+K.1^4+K.1^5+K.1^-2,1+K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1*K.1-K.1^3-K.1^4-K.1^5-K.1^-2,1+K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-5,1+K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1*K.1-K.1^3-K.1^4-K.1^5-K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |5,-5,-5,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,5,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-5,1+K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1*K.1-K.1^3-K.1^4-K.1^5-K.1^-2,1+K.1+K.1^3+K.1^4+K.1^5+K.1^-2,1+K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1*K.1-K.1^3-K.1^4-K.1^5-K.1^-2,1+K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1*K.1-K.1^3-K.1^4-K.1^5-K.1^-2,1+K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1*K.1-K.1^3-K.1^4-K.1^5-K.1^-2,-1*K.1-K.1^3-K.1^4-K.1^5-K.1^-2,1+K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1*K.1-K.1^3-K.1^4-K.1^5-K.1^-2,-5,-1*K.1-K.1^3-K.1^4-K.1^5-K.1^-2,1+K.1+K.1^3+K.1^4+K.1^5+K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |5,-5,5,-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,5,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,-5,-1*K.1-K.1^3-K.1^4-K.1^5-K.1^-2,1+K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1*K.1-K.1^3-K.1^4-K.1^5-K.1^-2,-1*K.1-K.1^3-K.1^4-K.1^5-K.1^-2,1+K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1*K.1-K.1^3-K.1^4-K.1^5-K.1^-2,1+K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1*K.1-K.1^3-K.1^4-K.1^5-K.1^-2,1+K.1+K.1^3+K.1^4+K.1^5+K.1^-2,1+K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1*K.1-K.1^3-K.1^4-K.1^5-K.1^-2,1+K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-5,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,1+K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1*K.1-K.1^3-K.1^4-K.1^5-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |5,-5,5,-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,5,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-5,1+K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1*K.1-K.1^3-K.1^4-K.1^5-K.1^-2,1+K.1+K.1^3+K.1^4+K.1^5+K.1^-2,1+K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1*K.1-K.1^3-K.1^4-K.1^5-K.1^-2,1+K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1*K.1-K.1^3-K.1^4-K.1^5-K.1^-2,1+K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1*K.1-K.1^3-K.1^4-K.1^5-K.1^-2,-1*K.1-K.1^3-K.1^4-K.1^5-K.1^-2,1+K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1*K.1-K.1^3-K.1^4-K.1^5-K.1^-2,-5,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,-1*K.1-K.1^3-K.1^4-K.1^5-K.1^-2,1+K.1+K.1^3+K.1^4+K.1^5+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |5,5,-5,-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,5,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,5,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,5,1+K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1*K.1-K.1^3-K.1^4-K.1^5-K.1^-2,1+K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1*K.1-K.1^3-K.1^4-K.1^5-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |5,5,-5,-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,5,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,5,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1-K.1-K.1^3-K.1^4-K.1^5-K.1^-2,K.1+K.1^3+K.1^4+K.1^5+K.1^-2,5,-1*K.1-K.1^3-K.1^4-K.1^5-K.1^-2,1+K.1+K.1^3+K.1^4+K.1^5+K.1^-2,-1*K.1-K.1^3-K.1^4-K.1^5-K.1^-2,1+K.1+K.1^3+K.1^4+K.1^5+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[10, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 10, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 10, 10, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[10, -10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 10, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -10, -10, -10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |10,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,-2-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,1+K.1^2+K.1^3+2*K.1^4+K.1^5+3*K.1^-5+K.1^-3,-1*K.1-K.1^2-K.1^5-K.1^-5+2*K.1^-3+K.1^-2,-2-2*K.1-3*K.1^2-K.1^3-3*K.1^4-2*K.1^5-2*K.1^-5-2*K.1^-4-3*K.1^-3-3*K.1^-2,-1-2*K.1-K.1^2-2*K.1^3+K.1^4-K.1^5-2*K.1^-5-K.1^-4-2*K.1^-3-K.1^-2,1+K.1+2*K.1^2+3*K.1^3+K.1^4+K.1^-4+K.1^-3,2*K.1-K.1^2-K.1^3-K.1^-4+K.1^-3-K.1^-2,1+2*K.1+K.1^2+K.1^4+K.1^-5+3*K.1^-4+K.1^-2,2*K.1^2-K.1^3-K.1^4+K.1^5-K.1^-5-K.1^-4,1+K.1^3+3*K.1^5+K.1^-5+2*K.1^-4+K.1^-3+K.1^-2,-1,-1*K.1^4-K.1^5+K.1^-5-K.1^-4-K.1^-3+2*K.1^-2,10,2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,-2-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,-1*K.1-K.1^2-K.1^5-K.1^-5+2*K.1^-3+K.1^-2,2*K.1^2-K.1^3-K.1^4+K.1^5-K.1^-5-K.1^-4,-1*K.1^4-K.1^5+K.1^-5-K.1^-4-K.1^-3+2*K.1^-2,1+2*K.1+K.1^2+K.1^4+K.1^-5+3*K.1^-4+K.1^-2,-1-2*K.1-K.1^2-2*K.1^3+K.1^4-K.1^5-2*K.1^-5-K.1^-4-2*K.1^-3-K.1^-2,-2-2*K.1-3*K.1^2-K.1^3-3*K.1^4-2*K.1^5-2*K.1^-5-2*K.1^-4-3*K.1^-3-3*K.1^-2,2*K.1-K.1^2-K.1^3-K.1^-4+K.1^-3-K.1^-2,1+K.1^3+3*K.1^5+K.1^-5+2*K.1^-4+K.1^-3+K.1^-2,1+K.1^2+K.1^3+2*K.1^4+K.1^5+3*K.1^-5+K.1^-3,1+K.1+2*K.1^2+3*K.1^3+K.1^4+K.1^-4+K.1^-3,-1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |10,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,-2-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,1+K.1^3+3*K.1^5+K.1^-5+2*K.1^-4+K.1^-3+K.1^-2,1+K.1+2*K.1^2+3*K.1^3+K.1^4+K.1^-4+K.1^-3,2*K.1-K.1^2-K.1^3-K.1^-4+K.1^-3-K.1^-2,1+2*K.1+K.1^2+K.1^4+K.1^-5+3*K.1^-4+K.1^-2,-1*K.1-K.1^2-K.1^5-K.1^-5+2*K.1^-3+K.1^-2,-2-2*K.1-3*K.1^2-K.1^3-3*K.1^4-2*K.1^5-2*K.1^-5-2*K.1^-4-3*K.1^-3-3*K.1^-2,-1-2*K.1-K.1^2-2*K.1^3+K.1^4-K.1^5-2*K.1^-5-K.1^-4-2*K.1^-3-K.1^-2,-1*K.1^4-K.1^5+K.1^-5-K.1^-4-K.1^-3+2*K.1^-2,1+K.1^2+K.1^3+2*K.1^4+K.1^5+3*K.1^-5+K.1^-3,-1,2*K.1^2-K.1^3-K.1^4+K.1^5-K.1^-5-K.1^-4,10,-2-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,1+K.1+2*K.1^2+3*K.1^3+K.1^4+K.1^-4+K.1^-3,-1*K.1^4-K.1^5+K.1^-5-K.1^-4-K.1^-3+2*K.1^-2,2*K.1^2-K.1^3-K.1^4+K.1^5-K.1^-5-K.1^-4,-1-2*K.1-K.1^2-2*K.1^3+K.1^4-K.1^5-2*K.1^-5-K.1^-4-2*K.1^-3-K.1^-2,1+2*K.1+K.1^2+K.1^4+K.1^-5+3*K.1^-4+K.1^-2,2*K.1-K.1^2-K.1^3-K.1^-4+K.1^-3-K.1^-2,-2-2*K.1-3*K.1^2-K.1^3-3*K.1^4-2*K.1^5-2*K.1^-5-2*K.1^-4-3*K.1^-3-3*K.1^-2,1+K.1^2+K.1^3+2*K.1^4+K.1^5+3*K.1^-5+K.1^-3,1+K.1^3+3*K.1^5+K.1^-5+2*K.1^-4+K.1^-3+K.1^-2,-1*K.1-K.1^2-K.1^5-K.1^-5+2*K.1^-3+K.1^-2,-1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |10,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,-2-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,1+2*K.1+K.1^2+K.1^4+K.1^-5+3*K.1^-4+K.1^-2,2*K.1^2-K.1^3-K.1^4+K.1^5-K.1^-5-K.1^-4,-1*K.1-K.1^2-K.1^5-K.1^-5+2*K.1^-3+K.1^-2,2*K.1-K.1^2-K.1^3-K.1^-4+K.1^-3-K.1^-2,-1*K.1^4-K.1^5+K.1^-5-K.1^-4-K.1^-3+2*K.1^-2,1+K.1+2*K.1^2+3*K.1^3+K.1^4+K.1^-4+K.1^-3,-2-2*K.1-3*K.1^2-K.1^3-3*K.1^4-2*K.1^5-2*K.1^-5-2*K.1^-4-3*K.1^-3-3*K.1^-2,1+K.1^2+K.1^3+2*K.1^4+K.1^5+3*K.1^-5+K.1^-3,-1-2*K.1-K.1^2-2*K.1^3+K.1^4-K.1^5-2*K.1^-5-K.1^-4-2*K.1^-3-K.1^-2,-1,1+K.1^3+3*K.1^5+K.1^-5+2*K.1^-4+K.1^-3+K.1^-2,10,2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,-2-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,2*K.1^2-K.1^3-K.1^4+K.1^5-K.1^-5-K.1^-4,1+K.1^2+K.1^3+2*K.1^4+K.1^5+3*K.1^-5+K.1^-3,1+K.1^3+3*K.1^5+K.1^-5+2*K.1^-4+K.1^-3+K.1^-2,-2-2*K.1-3*K.1^2-K.1^3-3*K.1^4-2*K.1^5-2*K.1^-5-2*K.1^-4-3*K.1^-3-3*K.1^-2,2*K.1-K.1^2-K.1^3-K.1^-4+K.1^-3-K.1^-2,-1*K.1-K.1^2-K.1^5-K.1^-5+2*K.1^-3+K.1^-2,1+K.1+2*K.1^2+3*K.1^3+K.1^4+K.1^-4+K.1^-3,-1-2*K.1-K.1^2-2*K.1^3+K.1^4-K.1^5-2*K.1^-5-K.1^-4-2*K.1^-3-K.1^-2,1+2*K.1+K.1^2+K.1^4+K.1^-5+3*K.1^-4+K.1^-2,-1*K.1^4-K.1^5+K.1^-5-K.1^-4-K.1^-3+2*K.1^-2,-1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |10,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,-2-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,-1-2*K.1-K.1^2-2*K.1^3+K.1^4-K.1^5-2*K.1^-5-K.1^-4-2*K.1^-3-K.1^-2,-1*K.1^4-K.1^5+K.1^-5-K.1^-4-K.1^-3+2*K.1^-2,1+K.1+2*K.1^2+3*K.1^3+K.1^4+K.1^-4+K.1^-3,-2-2*K.1-3*K.1^2-K.1^3-3*K.1^4-2*K.1^5-2*K.1^-5-2*K.1^-4-3*K.1^-3-3*K.1^-2,2*K.1^2-K.1^3-K.1^4+K.1^5-K.1^-5-K.1^-4,-1*K.1-K.1^2-K.1^5-K.1^-5+2*K.1^-3+K.1^-2,2*K.1-K.1^2-K.1^3-K.1^-4+K.1^-3-K.1^-2,1+K.1^3+3*K.1^5+K.1^-5+2*K.1^-4+K.1^-3+K.1^-2,1+2*K.1+K.1^2+K.1^4+K.1^-5+3*K.1^-4+K.1^-2,-1,1+K.1^2+K.1^3+2*K.1^4+K.1^5+3*K.1^-5+K.1^-3,10,-2-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,-1*K.1^4-K.1^5+K.1^-5-K.1^-4-K.1^-3+2*K.1^-2,1+K.1^3+3*K.1^5+K.1^-5+2*K.1^-4+K.1^-3+K.1^-2,1+K.1^2+K.1^3+2*K.1^4+K.1^5+3*K.1^-5+K.1^-3,2*K.1-K.1^2-K.1^3-K.1^-4+K.1^-3-K.1^-2,-2-2*K.1-3*K.1^2-K.1^3-3*K.1^4-2*K.1^5-2*K.1^-5-2*K.1^-4-3*K.1^-3-3*K.1^-2,1+K.1+2*K.1^2+3*K.1^3+K.1^4+K.1^-4+K.1^-3,-1*K.1-K.1^2-K.1^5-K.1^-5+2*K.1^-3+K.1^-2,1+2*K.1+K.1^2+K.1^4+K.1^-5+3*K.1^-4+K.1^-2,-1-2*K.1-K.1^2-2*K.1^3+K.1^4-K.1^5-2*K.1^-5-K.1^-4-2*K.1^-3-K.1^-2,2*K.1^2-K.1^3-K.1^4+K.1^5-K.1^-5-K.1^-4,-1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |10,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,-2-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,-1*K.1-K.1^2-K.1^5-K.1^-5+2*K.1^-3+K.1^-2,1+2*K.1+K.1^2+K.1^4+K.1^-5+3*K.1^-4+K.1^-2,1+K.1^2+K.1^3+2*K.1^4+K.1^5+3*K.1^-5+K.1^-3,-1*K.1^4-K.1^5+K.1^-5-K.1^-4-K.1^-3+2*K.1^-2,-1-2*K.1-K.1^2-2*K.1^3+K.1^4-K.1^5-2*K.1^-5-K.1^-4-2*K.1^-3-K.1^-2,1+K.1^3+3*K.1^5+K.1^-5+2*K.1^-4+K.1^-3+K.1^-2,2*K.1^2-K.1^3-K.1^4+K.1^5-K.1^-5-K.1^-4,-2-2*K.1-3*K.1^2-K.1^3-3*K.1^4-2*K.1^5-2*K.1^-5-2*K.1^-4-3*K.1^-3-3*K.1^-2,1+K.1+2*K.1^2+3*K.1^3+K.1^4+K.1^-4+K.1^-3,-1,2*K.1-K.1^2-K.1^3-K.1^-4+K.1^-3-K.1^-2,10,2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,-2-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,1+2*K.1+K.1^2+K.1^4+K.1^-5+3*K.1^-4+K.1^-2,-2-2*K.1-3*K.1^2-K.1^3-3*K.1^4-2*K.1^5-2*K.1^-5-2*K.1^-4-3*K.1^-3-3*K.1^-2,2*K.1-K.1^2-K.1^3-K.1^-4+K.1^-3-K.1^-2,2*K.1^2-K.1^3-K.1^4+K.1^5-K.1^-5-K.1^-4,-1*K.1^4-K.1^5+K.1^-5-K.1^-4-K.1^-3+2*K.1^-2,1+K.1^2+K.1^3+2*K.1^4+K.1^5+3*K.1^-5+K.1^-3,1+K.1^3+3*K.1^5+K.1^-5+2*K.1^-4+K.1^-3+K.1^-2,1+K.1+2*K.1^2+3*K.1^3+K.1^4+K.1^-4+K.1^-3,-1*K.1-K.1^2-K.1^5-K.1^-5+2*K.1^-3+K.1^-2,-1-2*K.1-K.1^2-2*K.1^3+K.1^4-K.1^5-2*K.1^-5-K.1^-4-2*K.1^-3-K.1^-2,-1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |10,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,-2-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,1+K.1+2*K.1^2+3*K.1^3+K.1^4+K.1^-4+K.1^-3,-1-2*K.1-K.1^2-2*K.1^3+K.1^4-K.1^5-2*K.1^-5-K.1^-4-2*K.1^-3-K.1^-2,1+K.1^3+3*K.1^5+K.1^-5+2*K.1^-4+K.1^-3+K.1^-2,2*K.1^2-K.1^3-K.1^4+K.1^5-K.1^-5-K.1^-4,1+2*K.1+K.1^2+K.1^4+K.1^-5+3*K.1^-4+K.1^-2,1+K.1^2+K.1^3+2*K.1^4+K.1^5+3*K.1^-5+K.1^-3,-1*K.1^4-K.1^5+K.1^-5-K.1^-4-K.1^-3+2*K.1^-2,2*K.1-K.1^2-K.1^3-K.1^-4+K.1^-3-K.1^-2,-1*K.1-K.1^2-K.1^5-K.1^-5+2*K.1^-3+K.1^-2,-1,-2-2*K.1-3*K.1^2-K.1^3-3*K.1^4-2*K.1^5-2*K.1^-5-2*K.1^-4-3*K.1^-3-3*K.1^-2,10,-2-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,-1-2*K.1-K.1^2-2*K.1^3+K.1^4-K.1^5-2*K.1^-5-K.1^-4-2*K.1^-3-K.1^-2,2*K.1-K.1^2-K.1^3-K.1^-4+K.1^-3-K.1^-2,-2-2*K.1-3*K.1^2-K.1^3-3*K.1^4-2*K.1^5-2*K.1^-5-2*K.1^-4-3*K.1^-3-3*K.1^-2,-1*K.1^4-K.1^5+K.1^-5-K.1^-4-K.1^-3+2*K.1^-2,2*K.1^2-K.1^3-K.1^4+K.1^5-K.1^-5-K.1^-4,1+K.1^3+3*K.1^5+K.1^-5+2*K.1^-4+K.1^-3+K.1^-2,1+K.1^2+K.1^3+2*K.1^4+K.1^5+3*K.1^-5+K.1^-3,-1*K.1-K.1^2-K.1^5-K.1^-5+2*K.1^-3+K.1^-2,1+K.1+2*K.1^2+3*K.1^3+K.1^4+K.1^-4+K.1^-3,1+2*K.1+K.1^2+K.1^4+K.1^-5+3*K.1^-4+K.1^-2,-1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |10,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,-2-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,-2-2*K.1-3*K.1^2-K.1^3-3*K.1^4-2*K.1^5-2*K.1^-5-2*K.1^-4-3*K.1^-3-3*K.1^-2,1+K.1^2+K.1^3+2*K.1^4+K.1^5+3*K.1^-5+K.1^-3,2*K.1^2-K.1^3-K.1^4+K.1^5-K.1^-5-K.1^-4,1+K.1+2*K.1^2+3*K.1^3+K.1^4+K.1^-4+K.1^-3,1+K.1^3+3*K.1^5+K.1^-5+2*K.1^-4+K.1^-3+K.1^-2,-1*K.1^4-K.1^5+K.1^-5-K.1^-4-K.1^-3+2*K.1^-2,-1*K.1-K.1^2-K.1^5-K.1^-5+2*K.1^-3+K.1^-2,1+2*K.1+K.1^2+K.1^4+K.1^-5+3*K.1^-4+K.1^-2,2*K.1-K.1^2-K.1^3-K.1^-4+K.1^-3-K.1^-2,-1,-1-2*K.1-K.1^2-2*K.1^3+K.1^4-K.1^5-2*K.1^-5-K.1^-4-2*K.1^-3-K.1^-2,10,2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,-2-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,1+K.1^2+K.1^3+2*K.1^4+K.1^5+3*K.1^-5+K.1^-3,1+2*K.1+K.1^2+K.1^4+K.1^-5+3*K.1^-4+K.1^-2,-1-2*K.1-K.1^2-2*K.1^3+K.1^4-K.1^5-2*K.1^-5-K.1^-4-2*K.1^-3-K.1^-2,-1*K.1-K.1^2-K.1^5-K.1^-5+2*K.1^-3+K.1^-2,1+K.1+2*K.1^2+3*K.1^3+K.1^4+K.1^-4+K.1^-3,2*K.1^2-K.1^3-K.1^4+K.1^5-K.1^-5-K.1^-4,-1*K.1^4-K.1^5+K.1^-5-K.1^-4-K.1^-3+2*K.1^-2,2*K.1-K.1^2-K.1^3-K.1^-4+K.1^-3-K.1^-2,-2-2*K.1-3*K.1^2-K.1^3-3*K.1^4-2*K.1^5-2*K.1^-5-2*K.1^-4-3*K.1^-3-3*K.1^-2,1+K.1^3+3*K.1^5+K.1^-5+2*K.1^-4+K.1^-3+K.1^-2,-1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |10,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,-2-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,2*K.1-K.1^2-K.1^3-K.1^-4+K.1^-3-K.1^-2,1+K.1^3+3*K.1^5+K.1^-5+2*K.1^-4+K.1^-3+K.1^-2,-1*K.1^4-K.1^5+K.1^-5-K.1^-4-K.1^-3+2*K.1^-2,-1*K.1-K.1^2-K.1^5-K.1^-5+2*K.1^-3+K.1^-2,1+K.1^2+K.1^3+2*K.1^4+K.1^5+3*K.1^-5+K.1^-3,2*K.1^2-K.1^3-K.1^4+K.1^5-K.1^-5-K.1^-4,1+K.1+2*K.1^2+3*K.1^3+K.1^4+K.1^-4+K.1^-3,-1-2*K.1-K.1^2-2*K.1^3+K.1^4-K.1^5-2*K.1^-5-K.1^-4-2*K.1^-3-K.1^-2,-2-2*K.1-3*K.1^2-K.1^3-3*K.1^4-2*K.1^5-2*K.1^-5-2*K.1^-4-3*K.1^-3-3*K.1^-2,-1,1+2*K.1+K.1^2+K.1^4+K.1^-5+3*K.1^-4+K.1^-2,10,-2-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,1+K.1^3+3*K.1^5+K.1^-5+2*K.1^-4+K.1^-3+K.1^-2,-1-2*K.1-K.1^2-2*K.1^3+K.1^4-K.1^5-2*K.1^-5-K.1^-4-2*K.1^-3-K.1^-2,1+2*K.1+K.1^2+K.1^4+K.1^-5+3*K.1^-4+K.1^-2,1+K.1+2*K.1^2+3*K.1^3+K.1^4+K.1^-4+K.1^-3,-1*K.1-K.1^2-K.1^5-K.1^-5+2*K.1^-3+K.1^-2,-1*K.1^4-K.1^5+K.1^-5-K.1^-4-K.1^-3+2*K.1^-2,2*K.1^2-K.1^3-K.1^4+K.1^5-K.1^-5-K.1^-4,-2-2*K.1-3*K.1^2-K.1^3-3*K.1^4-2*K.1^5-2*K.1^-5-2*K.1^-4-3*K.1^-3-3*K.1^-2,2*K.1-K.1^2-K.1^3-K.1^-4+K.1^-3-K.1^-2,1+K.1^2+K.1^3+2*K.1^4+K.1^5+3*K.1^-5+K.1^-3,-1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |10,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,-2-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,2*K.1^2-K.1^3-K.1^4+K.1^5-K.1^-5-K.1^-4,-2-2*K.1-3*K.1^2-K.1^3-3*K.1^4-2*K.1^5-2*K.1^-5-2*K.1^-4-3*K.1^-3-3*K.1^-2,1+2*K.1+K.1^2+K.1^4+K.1^-5+3*K.1^-4+K.1^-2,1+K.1^3+3*K.1^5+K.1^-5+2*K.1^-4+K.1^-3+K.1^-2,2*K.1-K.1^2-K.1^3-K.1^-4+K.1^-3-K.1^-2,-1-2*K.1-K.1^2-2*K.1^3+K.1^4-K.1^5-2*K.1^-5-K.1^-4-2*K.1^-3-K.1^-2,1+K.1^2+K.1^3+2*K.1^4+K.1^5+3*K.1^-5+K.1^-3,-1*K.1-K.1^2-K.1^5-K.1^-5+2*K.1^-3+K.1^-2,-1*K.1^4-K.1^5+K.1^-5-K.1^-4-K.1^-3+2*K.1^-2,-1,1+K.1+2*K.1^2+3*K.1^3+K.1^4+K.1^-4+K.1^-3,10,2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,-2-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,-2-2*K.1-3*K.1^2-K.1^3-3*K.1^4-2*K.1^5-2*K.1^-5-2*K.1^-4-3*K.1^-3-3*K.1^-2,-1*K.1-K.1^2-K.1^5-K.1^-5+2*K.1^-3+K.1^-2,1+K.1+2*K.1^2+3*K.1^3+K.1^4+K.1^-4+K.1^-3,1+K.1^2+K.1^3+2*K.1^4+K.1^5+3*K.1^-5+K.1^-3,1+K.1^3+3*K.1^5+K.1^-5+2*K.1^-4+K.1^-3+K.1^-2,1+2*K.1+K.1^2+K.1^4+K.1^-5+3*K.1^-4+K.1^-2,-1-2*K.1-K.1^2-2*K.1^3+K.1^4-K.1^5-2*K.1^-5-K.1^-4-2*K.1^-3-K.1^-2,-1*K.1^4-K.1^5+K.1^-5-K.1^-4-K.1^-3+2*K.1^-2,2*K.1^2-K.1^3-K.1^4+K.1^5-K.1^-5-K.1^-4,2*K.1-K.1^2-K.1^3-K.1^-4+K.1^-3-K.1^-2,-1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |10,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,-2-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,-1*K.1^4-K.1^5+K.1^-5-K.1^-4-K.1^-3+2*K.1^-2,2*K.1-K.1^2-K.1^3-K.1^-4+K.1^-3-K.1^-2,-1-2*K.1-K.1^2-2*K.1^3+K.1^4-K.1^5-2*K.1^-5-K.1^-4-2*K.1^-3-K.1^-2,1+K.1^2+K.1^3+2*K.1^4+K.1^5+3*K.1^-5+K.1^-3,-2-2*K.1-3*K.1^2-K.1^3-3*K.1^4-2*K.1^5-2*K.1^-5-2*K.1^-4-3*K.1^-3-3*K.1^-2,1+2*K.1+K.1^2+K.1^4+K.1^-5+3*K.1^-4+K.1^-2,1+K.1^3+3*K.1^5+K.1^-5+2*K.1^-4+K.1^-3+K.1^-2,1+K.1+2*K.1^2+3*K.1^3+K.1^4+K.1^-4+K.1^-3,2*K.1^2-K.1^3-K.1^4+K.1^5-K.1^-5-K.1^-4,-1,-1*K.1-K.1^2-K.1^5-K.1^-5+2*K.1^-3+K.1^-2,10,-2-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,2*K.1-K.1^2-K.1^3-K.1^-4+K.1^-3-K.1^-2,1+K.1+2*K.1^2+3*K.1^3+K.1^4+K.1^-4+K.1^-3,-1*K.1-K.1^2-K.1^5-K.1^-5+2*K.1^-3+K.1^-2,1+K.1^3+3*K.1^5+K.1^-5+2*K.1^-4+K.1^-3+K.1^-2,1+K.1^2+K.1^3+2*K.1^4+K.1^5+3*K.1^-5+K.1^-3,-1-2*K.1-K.1^2-2*K.1^3+K.1^4-K.1^5-2*K.1^-5-K.1^-4-2*K.1^-3-K.1^-2,1+2*K.1+K.1^2+K.1^4+K.1^-5+3*K.1^-4+K.1^-2,2*K.1^2-K.1^3-K.1^4+K.1^5-K.1^-5-K.1^-4,-1*K.1^4-K.1^5+K.1^-5-K.1^-4-K.1^-3+2*K.1^-2,-2-2*K.1-3*K.1^2-K.1^3-3*K.1^4-2*K.1^5-2*K.1^-5-2*K.1^-4-3*K.1^-3-3*K.1^-2,-1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |10,-10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,-2-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,1+K.1^2+K.1^3+2*K.1^4+K.1^5+3*K.1^-5+K.1^-3,-1*K.1-K.1^2-K.1^5-K.1^-5+2*K.1^-3+K.1^-2,-2-2*K.1-3*K.1^2-K.1^3-3*K.1^4-2*K.1^5-2*K.1^-5-2*K.1^-4-3*K.1^-3-3*K.1^-2,-1-2*K.1-K.1^2-2*K.1^3+K.1^4-K.1^5-2*K.1^-5-K.1^-4-2*K.1^-3-K.1^-2,1+K.1+2*K.1^2+3*K.1^3+K.1^4+K.1^-4+K.1^-3,2*K.1-K.1^2-K.1^3-K.1^-4+K.1^-3-K.1^-2,1+2*K.1+K.1^2+K.1^4+K.1^-5+3*K.1^-4+K.1^-2,2*K.1^2-K.1^3-K.1^4+K.1^5-K.1^-5-K.1^-4,1+K.1^3+3*K.1^5+K.1^-5+2*K.1^-4+K.1^-3+K.1^-2,-1,-1*K.1^4-K.1^5+K.1^-5-K.1^-4-K.1^-3+2*K.1^-2,-10,-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,2+2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,K.1+K.1^2+K.1^5+K.1^-5-2*K.1^-3-K.1^-2,-2*K.1^2+K.1^3+K.1^4-K.1^5+K.1^-5+K.1^-4,K.1^4+K.1^5-K.1^-5+K.1^-4+K.1^-3-2*K.1^-2,-1-2*K.1-K.1^2-K.1^4-K.1^-5-3*K.1^-4-K.1^-2,1+2*K.1+K.1^2+2*K.1^3-K.1^4+K.1^5+2*K.1^-5+K.1^-4+2*K.1^-3+K.1^-2,2+2*K.1+3*K.1^2+K.1^3+3*K.1^4+2*K.1^5+2*K.1^-5+2*K.1^-4+3*K.1^-3+3*K.1^-2,-2*K.1+K.1^2+K.1^3+K.1^-4-K.1^-3+K.1^-2,-1-K.1^3-3*K.1^5-K.1^-5-2*K.1^-4-K.1^-3-K.1^-2,-1-K.1^2-K.1^3-2*K.1^4-K.1^5-3*K.1^-5-K.1^-3,-1-K.1-2*K.1^2-3*K.1^3-K.1^4-K.1^-4-K.1^-3,1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |10,-10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,-2-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,1+K.1^3+3*K.1^5+K.1^-5+2*K.1^-4+K.1^-3+K.1^-2,1+K.1+2*K.1^2+3*K.1^3+K.1^4+K.1^-4+K.1^-3,2*K.1-K.1^2-K.1^3-K.1^-4+K.1^-3-K.1^-2,1+2*K.1+K.1^2+K.1^4+K.1^-5+3*K.1^-4+K.1^-2,-1*K.1-K.1^2-K.1^5-K.1^-5+2*K.1^-3+K.1^-2,-2-2*K.1-3*K.1^2-K.1^3-3*K.1^4-2*K.1^5-2*K.1^-5-2*K.1^-4-3*K.1^-3-3*K.1^-2,-1-2*K.1-K.1^2-2*K.1^3+K.1^4-K.1^5-2*K.1^-5-K.1^-4-2*K.1^-3-K.1^-2,-1*K.1^4-K.1^5+K.1^-5-K.1^-4-K.1^-3+2*K.1^-2,1+K.1^2+K.1^3+2*K.1^4+K.1^5+3*K.1^-5+K.1^-3,-1,2*K.1^2-K.1^3-K.1^4+K.1^5-K.1^-5-K.1^-4,-10,2+2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,-1-K.1-2*K.1^2-3*K.1^3-K.1^4-K.1^-4-K.1^-3,K.1^4+K.1^5-K.1^-5+K.1^-4+K.1^-3-2*K.1^-2,-2*K.1^2+K.1^3+K.1^4-K.1^5+K.1^-5+K.1^-4,1+2*K.1+K.1^2+2*K.1^3-K.1^4+K.1^5+2*K.1^-5+K.1^-4+2*K.1^-3+K.1^-2,-1-2*K.1-K.1^2-K.1^4-K.1^-5-3*K.1^-4-K.1^-2,-2*K.1+K.1^2+K.1^3+K.1^-4-K.1^-3+K.1^-2,2+2*K.1+3*K.1^2+K.1^3+3*K.1^4+2*K.1^5+2*K.1^-5+2*K.1^-4+3*K.1^-3+3*K.1^-2,-1-K.1^2-K.1^3-2*K.1^4-K.1^5-3*K.1^-5-K.1^-3,-1-K.1^3-3*K.1^5-K.1^-5-2*K.1^-4-K.1^-3-K.1^-2,K.1+K.1^2+K.1^5+K.1^-5-2*K.1^-3-K.1^-2,1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |10,-10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,-2-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,1+2*K.1+K.1^2+K.1^4+K.1^-5+3*K.1^-4+K.1^-2,2*K.1^2-K.1^3-K.1^4+K.1^5-K.1^-5-K.1^-4,-1*K.1-K.1^2-K.1^5-K.1^-5+2*K.1^-3+K.1^-2,2*K.1-K.1^2-K.1^3-K.1^-4+K.1^-3-K.1^-2,-1*K.1^4-K.1^5+K.1^-5-K.1^-4-K.1^-3+2*K.1^-2,1+K.1+2*K.1^2+3*K.1^3+K.1^4+K.1^-4+K.1^-3,-2-2*K.1-3*K.1^2-K.1^3-3*K.1^4-2*K.1^5-2*K.1^-5-2*K.1^-4-3*K.1^-3-3*K.1^-2,1+K.1^2+K.1^3+2*K.1^4+K.1^5+3*K.1^-5+K.1^-3,-1-2*K.1-K.1^2-2*K.1^3+K.1^4-K.1^5-2*K.1^-5-K.1^-4-2*K.1^-3-K.1^-2,-1,1+K.1^3+3*K.1^5+K.1^-5+2*K.1^-4+K.1^-3+K.1^-2,-10,-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,2+2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,-2*K.1^2+K.1^3+K.1^4-K.1^5+K.1^-5+K.1^-4,-1-K.1^2-K.1^3-2*K.1^4-K.1^5-3*K.1^-5-K.1^-3,-1-K.1^3-3*K.1^5-K.1^-5-2*K.1^-4-K.1^-3-K.1^-2,2+2*K.1+3*K.1^2+K.1^3+3*K.1^4+2*K.1^5+2*K.1^-5+2*K.1^-4+3*K.1^-3+3*K.1^-2,-2*K.1+K.1^2+K.1^3+K.1^-4-K.1^-3+K.1^-2,K.1+K.1^2+K.1^5+K.1^-5-2*K.1^-3-K.1^-2,-1-K.1-2*K.1^2-3*K.1^3-K.1^4-K.1^-4-K.1^-3,1+2*K.1+K.1^2+2*K.1^3-K.1^4+K.1^5+2*K.1^-5+K.1^-4+2*K.1^-3+K.1^-2,-1-2*K.1-K.1^2-K.1^4-K.1^-5-3*K.1^-4-K.1^-2,K.1^4+K.1^5-K.1^-5+K.1^-4+K.1^-3-2*K.1^-2,1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |10,-10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,-2-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,-1-2*K.1-K.1^2-2*K.1^3+K.1^4-K.1^5-2*K.1^-5-K.1^-4-2*K.1^-3-K.1^-2,-1*K.1^4-K.1^5+K.1^-5-K.1^-4-K.1^-3+2*K.1^-2,1+K.1+2*K.1^2+3*K.1^3+K.1^4+K.1^-4+K.1^-3,-2-2*K.1-3*K.1^2-K.1^3-3*K.1^4-2*K.1^5-2*K.1^-5-2*K.1^-4-3*K.1^-3-3*K.1^-2,2*K.1^2-K.1^3-K.1^4+K.1^5-K.1^-5-K.1^-4,-1*K.1-K.1^2-K.1^5-K.1^-5+2*K.1^-3+K.1^-2,2*K.1-K.1^2-K.1^3-K.1^-4+K.1^-3-K.1^-2,1+K.1^3+3*K.1^5+K.1^-5+2*K.1^-4+K.1^-3+K.1^-2,1+2*K.1+K.1^2+K.1^4+K.1^-5+3*K.1^-4+K.1^-2,-1,1+K.1^2+K.1^3+2*K.1^4+K.1^5+3*K.1^-5+K.1^-3,-10,2+2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,K.1^4+K.1^5-K.1^-5+K.1^-4+K.1^-3-2*K.1^-2,-1-K.1^3-3*K.1^5-K.1^-5-2*K.1^-4-K.1^-3-K.1^-2,-1-K.1^2-K.1^3-2*K.1^4-K.1^5-3*K.1^-5-K.1^-3,-2*K.1+K.1^2+K.1^3+K.1^-4-K.1^-3+K.1^-2,2+2*K.1+3*K.1^2+K.1^3+3*K.1^4+2*K.1^5+2*K.1^-5+2*K.1^-4+3*K.1^-3+3*K.1^-2,-1-K.1-2*K.1^2-3*K.1^3-K.1^4-K.1^-4-K.1^-3,K.1+K.1^2+K.1^5+K.1^-5-2*K.1^-3-K.1^-2,-1-2*K.1-K.1^2-K.1^4-K.1^-5-3*K.1^-4-K.1^-2,1+2*K.1+K.1^2+2*K.1^3-K.1^4+K.1^5+2*K.1^-5+K.1^-4+2*K.1^-3+K.1^-2,-2*K.1^2+K.1^3+K.1^4-K.1^5+K.1^-5+K.1^-4,1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |10,-10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,-2-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,-1*K.1-K.1^2-K.1^5-K.1^-5+2*K.1^-3+K.1^-2,1+2*K.1+K.1^2+K.1^4+K.1^-5+3*K.1^-4+K.1^-2,1+K.1^2+K.1^3+2*K.1^4+K.1^5+3*K.1^-5+K.1^-3,-1*K.1^4-K.1^5+K.1^-5-K.1^-4-K.1^-3+2*K.1^-2,-1-2*K.1-K.1^2-2*K.1^3+K.1^4-K.1^5-2*K.1^-5-K.1^-4-2*K.1^-3-K.1^-2,1+K.1^3+3*K.1^5+K.1^-5+2*K.1^-4+K.1^-3+K.1^-2,2*K.1^2-K.1^3-K.1^4+K.1^5-K.1^-5-K.1^-4,-2-2*K.1-3*K.1^2-K.1^3-3*K.1^4-2*K.1^5-2*K.1^-5-2*K.1^-4-3*K.1^-3-3*K.1^-2,1+K.1+2*K.1^2+3*K.1^3+K.1^4+K.1^-4+K.1^-3,-1,2*K.1-K.1^2-K.1^3-K.1^-4+K.1^-3-K.1^-2,-10,-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,2+2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,-1-2*K.1-K.1^2-K.1^4-K.1^-5-3*K.1^-4-K.1^-2,2+2*K.1+3*K.1^2+K.1^3+3*K.1^4+2*K.1^5+2*K.1^-5+2*K.1^-4+3*K.1^-3+3*K.1^-2,-2*K.1+K.1^2+K.1^3+K.1^-4-K.1^-3+K.1^-2,-2*K.1^2+K.1^3+K.1^4-K.1^5+K.1^-5+K.1^-4,K.1^4+K.1^5-K.1^-5+K.1^-4+K.1^-3-2*K.1^-2,-1-K.1^2-K.1^3-2*K.1^4-K.1^5-3*K.1^-5-K.1^-3,-1-K.1^3-3*K.1^5-K.1^-5-2*K.1^-4-K.1^-3-K.1^-2,-1-K.1-2*K.1^2-3*K.1^3-K.1^4-K.1^-4-K.1^-3,K.1+K.1^2+K.1^5+K.1^-5-2*K.1^-3-K.1^-2,1+2*K.1+K.1^2+2*K.1^3-K.1^4+K.1^5+2*K.1^-5+K.1^-4+2*K.1^-3+K.1^-2,1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |10,-10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,-2-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,1+K.1+2*K.1^2+3*K.1^3+K.1^4+K.1^-4+K.1^-3,-1-2*K.1-K.1^2-2*K.1^3+K.1^4-K.1^5-2*K.1^-5-K.1^-4-2*K.1^-3-K.1^-2,1+K.1^3+3*K.1^5+K.1^-5+2*K.1^-4+K.1^-3+K.1^-2,2*K.1^2-K.1^3-K.1^4+K.1^5-K.1^-5-K.1^-4,1+2*K.1+K.1^2+K.1^4+K.1^-5+3*K.1^-4+K.1^-2,1+K.1^2+K.1^3+2*K.1^4+K.1^5+3*K.1^-5+K.1^-3,-1*K.1^4-K.1^5+K.1^-5-K.1^-4-K.1^-3+2*K.1^-2,2*K.1-K.1^2-K.1^3-K.1^-4+K.1^-3-K.1^-2,-1*K.1-K.1^2-K.1^5-K.1^-5+2*K.1^-3+K.1^-2,-1,-2-2*K.1-3*K.1^2-K.1^3-3*K.1^4-2*K.1^5-2*K.1^-5-2*K.1^-4-3*K.1^-3-3*K.1^-2,-10,2+2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,1+2*K.1+K.1^2+2*K.1^3-K.1^4+K.1^5+2*K.1^-5+K.1^-4+2*K.1^-3+K.1^-2,-2*K.1+K.1^2+K.1^3+K.1^-4-K.1^-3+K.1^-2,2+2*K.1+3*K.1^2+K.1^3+3*K.1^4+2*K.1^5+2*K.1^-5+2*K.1^-4+3*K.1^-3+3*K.1^-2,K.1^4+K.1^5-K.1^-5+K.1^-4+K.1^-3-2*K.1^-2,-2*K.1^2+K.1^3+K.1^4-K.1^5+K.1^-5+K.1^-4,-1-K.1^3-3*K.1^5-K.1^-5-2*K.1^-4-K.1^-3-K.1^-2,-1-K.1^2-K.1^3-2*K.1^4-K.1^5-3*K.1^-5-K.1^-3,K.1+K.1^2+K.1^5+K.1^-5-2*K.1^-3-K.1^-2,-1-K.1-2*K.1^2-3*K.1^3-K.1^4-K.1^-4-K.1^-3,-1-2*K.1-K.1^2-K.1^4-K.1^-5-3*K.1^-4-K.1^-2,1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |10,-10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,-2-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,-2-2*K.1-3*K.1^2-K.1^3-3*K.1^4-2*K.1^5-2*K.1^-5-2*K.1^-4-3*K.1^-3-3*K.1^-2,1+K.1^2+K.1^3+2*K.1^4+K.1^5+3*K.1^-5+K.1^-3,2*K.1^2-K.1^3-K.1^4+K.1^5-K.1^-5-K.1^-4,1+K.1+2*K.1^2+3*K.1^3+K.1^4+K.1^-4+K.1^-3,1+K.1^3+3*K.1^5+K.1^-5+2*K.1^-4+K.1^-3+K.1^-2,-1*K.1^4-K.1^5+K.1^-5-K.1^-4-K.1^-3+2*K.1^-2,-1*K.1-K.1^2-K.1^5-K.1^-5+2*K.1^-3+K.1^-2,1+2*K.1+K.1^2+K.1^4+K.1^-5+3*K.1^-4+K.1^-2,2*K.1-K.1^2-K.1^3-K.1^-4+K.1^-3-K.1^-2,-1,-1-2*K.1-K.1^2-2*K.1^3+K.1^4-K.1^5-2*K.1^-5-K.1^-4-2*K.1^-3-K.1^-2,-10,-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,2+2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,-1-K.1^2-K.1^3-2*K.1^4-K.1^5-3*K.1^-5-K.1^-3,-1-2*K.1-K.1^2-K.1^4-K.1^-5-3*K.1^-4-K.1^-2,1+2*K.1+K.1^2+2*K.1^3-K.1^4+K.1^5+2*K.1^-5+K.1^-4+2*K.1^-3+K.1^-2,K.1+K.1^2+K.1^5+K.1^-5-2*K.1^-3-K.1^-2,-1-K.1-2*K.1^2-3*K.1^3-K.1^4-K.1^-4-K.1^-3,-2*K.1^2+K.1^3+K.1^4-K.1^5+K.1^-5+K.1^-4,K.1^4+K.1^5-K.1^-5+K.1^-4+K.1^-3-2*K.1^-2,-2*K.1+K.1^2+K.1^3+K.1^-4-K.1^-3+K.1^-2,2+2*K.1+3*K.1^2+K.1^3+3*K.1^4+2*K.1^5+2*K.1^-5+2*K.1^-4+3*K.1^-3+3*K.1^-2,-1-K.1^3-3*K.1^5-K.1^-5-2*K.1^-4-K.1^-3-K.1^-2,1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |10,-10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,-2-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,2*K.1-K.1^2-K.1^3-K.1^-4+K.1^-3-K.1^-2,1+K.1^3+3*K.1^5+K.1^-5+2*K.1^-4+K.1^-3+K.1^-2,-1*K.1^4-K.1^5+K.1^-5-K.1^-4-K.1^-3+2*K.1^-2,-1*K.1-K.1^2-K.1^5-K.1^-5+2*K.1^-3+K.1^-2,1+K.1^2+K.1^3+2*K.1^4+K.1^5+3*K.1^-5+K.1^-3,2*K.1^2-K.1^3-K.1^4+K.1^5-K.1^-5-K.1^-4,1+K.1+2*K.1^2+3*K.1^3+K.1^4+K.1^-4+K.1^-3,-1-2*K.1-K.1^2-2*K.1^3+K.1^4-K.1^5-2*K.1^-5-K.1^-4-2*K.1^-3-K.1^-2,-2-2*K.1-3*K.1^2-K.1^3-3*K.1^4-2*K.1^5-2*K.1^-5-2*K.1^-4-3*K.1^-3-3*K.1^-2,-1,1+2*K.1+K.1^2+K.1^4+K.1^-5+3*K.1^-4+K.1^-2,-10,2+2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,-1-K.1^3-3*K.1^5-K.1^-5-2*K.1^-4-K.1^-3-K.1^-2,1+2*K.1+K.1^2+2*K.1^3-K.1^4+K.1^5+2*K.1^-5+K.1^-4+2*K.1^-3+K.1^-2,-1-2*K.1-K.1^2-K.1^4-K.1^-5-3*K.1^-4-K.1^-2,-1-K.1-2*K.1^2-3*K.1^3-K.1^4-K.1^-4-K.1^-3,K.1+K.1^2+K.1^5+K.1^-5-2*K.1^-3-K.1^-2,K.1^4+K.1^5-K.1^-5+K.1^-4+K.1^-3-2*K.1^-2,-2*K.1^2+K.1^3+K.1^4-K.1^5+K.1^-5+K.1^-4,2+2*K.1+3*K.1^2+K.1^3+3*K.1^4+2*K.1^5+2*K.1^-5+2*K.1^-4+3*K.1^-3+3*K.1^-2,-2*K.1+K.1^2+K.1^3+K.1^-4-K.1^-3+K.1^-2,-1-K.1^2-K.1^3-2*K.1^4-K.1^5-3*K.1^-5-K.1^-3,1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |10,-10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,-2-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,2*K.1^2-K.1^3-K.1^4+K.1^5-K.1^-5-K.1^-4,-2-2*K.1-3*K.1^2-K.1^3-3*K.1^4-2*K.1^5-2*K.1^-5-2*K.1^-4-3*K.1^-3-3*K.1^-2,1+2*K.1+K.1^2+K.1^4+K.1^-5+3*K.1^-4+K.1^-2,1+K.1^3+3*K.1^5+K.1^-5+2*K.1^-4+K.1^-3+K.1^-2,2*K.1-K.1^2-K.1^3-K.1^-4+K.1^-3-K.1^-2,-1-2*K.1-K.1^2-2*K.1^3+K.1^4-K.1^5-2*K.1^-5-K.1^-4-2*K.1^-3-K.1^-2,1+K.1^2+K.1^3+2*K.1^4+K.1^5+3*K.1^-5+K.1^-3,-1*K.1-K.1^2-K.1^5-K.1^-5+2*K.1^-3+K.1^-2,-1*K.1^4-K.1^5+K.1^-5-K.1^-4-K.1^-3+2*K.1^-2,-1,1+K.1+2*K.1^2+3*K.1^3+K.1^4+K.1^-4+K.1^-3,-10,-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,2+2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,2+2*K.1+3*K.1^2+K.1^3+3*K.1^4+2*K.1^5+2*K.1^-5+2*K.1^-4+3*K.1^-3+3*K.1^-2,K.1+K.1^2+K.1^5+K.1^-5-2*K.1^-3-K.1^-2,-1-K.1-2*K.1^2-3*K.1^3-K.1^4-K.1^-4-K.1^-3,-1-K.1^2-K.1^3-2*K.1^4-K.1^5-3*K.1^-5-K.1^-3,-1-K.1^3-3*K.1^5-K.1^-5-2*K.1^-4-K.1^-3-K.1^-2,-1-2*K.1-K.1^2-K.1^4-K.1^-5-3*K.1^-4-K.1^-2,1+2*K.1+K.1^2+2*K.1^3-K.1^4+K.1^5+2*K.1^-5+K.1^-4+2*K.1^-3+K.1^-2,K.1^4+K.1^5-K.1^-5+K.1^-4+K.1^-3-2*K.1^-2,-2*K.1^2+K.1^3+K.1^4-K.1^5+K.1^-5+K.1^-4,-2*K.1+K.1^2+K.1^3+K.1^-4-K.1^-3+K.1^-2,1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |10,-10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,-2-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,-1*K.1^4-K.1^5+K.1^-5-K.1^-4-K.1^-3+2*K.1^-2,2*K.1-K.1^2-K.1^3-K.1^-4+K.1^-3-K.1^-2,-1-2*K.1-K.1^2-2*K.1^3+K.1^4-K.1^5-2*K.1^-5-K.1^-4-2*K.1^-3-K.1^-2,1+K.1^2+K.1^3+2*K.1^4+K.1^5+3*K.1^-5+K.1^-3,-2-2*K.1-3*K.1^2-K.1^3-3*K.1^4-2*K.1^5-2*K.1^-5-2*K.1^-4-3*K.1^-3-3*K.1^-2,1+2*K.1+K.1^2+K.1^4+K.1^-5+3*K.1^-4+K.1^-2,1+K.1^3+3*K.1^5+K.1^-5+2*K.1^-4+K.1^-3+K.1^-2,1+K.1+2*K.1^2+3*K.1^3+K.1^4+K.1^-4+K.1^-3,2*K.1^2-K.1^3-K.1^4+K.1^5-K.1^-5-K.1^-4,-1,-1*K.1-K.1^2-K.1^5-K.1^-5+2*K.1^-3+K.1^-2,-10,2+2*K.1+2*K.1^3+2*K.1^4+2*K.1^5+2*K.1^-2,-2*K.1-2*K.1^3-2*K.1^4-2*K.1^5-2*K.1^-2,-2*K.1+K.1^2+K.1^3+K.1^-4-K.1^-3+K.1^-2,-1-K.1-2*K.1^2-3*K.1^3-K.1^4-K.1^-4-K.1^-3,K.1+K.1^2+K.1^5+K.1^-5-2*K.1^-3-K.1^-2,-1-K.1^3-3*K.1^5-K.1^-5-2*K.1^-4-K.1^-3-K.1^-2,-1-K.1^2-K.1^3-2*K.1^4-K.1^5-3*K.1^-5-K.1^-3,1+2*K.1+K.1^2+2*K.1^3-K.1^4+K.1^5+2*K.1^-5+K.1^-4+2*K.1^-3+K.1^-2,-1-2*K.1-K.1^2-K.1^4-K.1^-5-3*K.1^-4-K.1^-2,-2*K.1^2+K.1^3+K.1^4-K.1^5+K.1^-5+K.1^-4,K.1^4+K.1^5-K.1^-5+K.1^-4+K.1^-3-2*K.1^-2,2+2*K.1+3*K.1^2+K.1^3+3*K.1^4+2*K.1^5+2*K.1^-5+2*K.1^-4+3*K.1^-3+3*K.1^-2,1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[110, 110, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[110, -110, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_26620_bw:= KnownIrreducibles(CR);