/* Group 264.1 downloaded from the LMFDB on 20 November 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([5, -2, -2, -2, -3, -11, 10, 26, 3683, 78]); a,b := Explode([GPC.1, GPC.4]); AssignNames(~GPC, ["a", "a2", "a4", "b", "b3"]); GPerm := PermutationGroup< 22 | (1,2,3,5,4,6,7,8)(10,11), (12,13,14,15,16,17,18,19,20,21,22), (1,3,4,7)(2,5,6,8), (1,4)(2,6)(3,7)(5,8), (9,10,11) >; GLFp := MatrixGroup< 2, GF(89) | [[6, 9, 86, 83], [20, 7, 32, 20]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_264_1 := rec< RF | Agroup := true, Zgroup := true, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := true, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, a^4>,< 3, 2, b^11>,< 4, 1, a^6>,< 4, 1, a^2>,< 6, 2, a^4*b^22>,< 8, 3, a^3>,< 8, 3, a^5>,< 8, 3, a>,< 8, 3, a^7>,< 11, 1, b^24>,< 11, 1, b^9>,< 11, 1, b^15>,< 11, 1, b^18>,< 11, 1, b^6>,< 11, 1, b^27>,< 11, 1, b^30>,< 11, 1, b^3>,< 11, 1, b^21>,< 11, 1, b^12>,< 12, 2, a^6*b^11>,< 12, 2, a^2*b^22>,< 22, 1, a^4*b^12>,< 22, 1, a^4*b^21>,< 22, 1, a^4*b^3>,< 22, 1, a^4*b^30>,< 22, 1, a^4*b^27>,< 22, 1, a^4*b^6>,< 22, 1, a^4*b^18>,< 22, 1, a^4*b^15>,< 22, 1, a^4*b^9>,< 22, 1, a^4*b^24>,< 33, 2, b^4>,< 33, 2, b^29>,< 33, 2, b^8>,< 33, 2, b^25>,< 33, 2, b^16>,< 33, 2, b^17>,< 33, 2, b^20>,< 33, 2, b^13>,< 33, 2, b^32>,< 33, 2, b>,< 44, 1, a^2*b^6>,< 44, 1, a^6*b^27>,< 44, 1, a^6*b^18>,< 44, 1, a^2*b^15>,< 44, 1, a^2*b^30>,< 44, 1, a^6*b^3>,< 44, 1, a^6*b^9>,< 44, 1, a^2*b^24>,< 44, 1, a^2*b^21>,< 44, 1, a^6*b^12>,< 44, 1, a^2*b^12>,< 44, 1, a^6*b^21>,< 44, 1, a^6*b^24>,< 44, 1, a^2*b^9>,< 44, 1, a^2*b^3>,< 44, 1, a^6*b^30>,< 44, 1, a^6*b^15>,< 44, 1, a^2*b^18>,< 44, 1, a^2*b^27>,< 44, 1, a^6*b^6>,< 66, 2, a^4*b^2>,< 66, 2, a^4*b^31>,< 66, 2, a^4*b^10>,< 66, 2, a^4*b^23>,< 66, 2, a^4*b^14>,< 66, 2, a^4*b^19>,< 66, 2, a^4*b^26>,< 66, 2, a^4*b^7>,< 66, 2, a^4*b^5>,< 66, 2, a^4*b^28>,< 88, 3, a*b^3>,< 88, 3, a^7*b^30>,< 88, 3, a^3*b^9>,< 88, 3, a^5*b^2>,< 88, 3, a^5*b^15>,< 88, 3, a^3*b^18>,< 88, 3, a^7*b^21>,< 88, 3, a*b>,< 88, 3, a*b^27>,< 88, 3, a^7*b^6>,< 88, 3, a^5*b^6>,< 88, 3, a^3*b^27>,< 88, 3, a^7*b>,< 88, 3, a*b^21>,< 88, 3, a*b^18>,< 88, 3, a^7*b^15>,< 88, 3, a^3*b^2>,< 88, 3, a^5*b^9>,< 88, 3, a^5*b^30>,< 88, 3, a^3*b^3>,< 88, 3, a^7*b^3>,< 88, 3, a*b^30>,< 88, 3, a*b^9>,< 88, 3, a^7*b^2>,< 88, 3, a^3*b^15>,< 88, 3, a^5*b^18>,< 88, 3, a^5*b^21>,< 88, 3, a^3*b>,< 88, 3, a^7*b^27>,< 88, 3, a*b^6>,< 88, 3, a^3*b^6>,< 88, 3, a^5*b^27>,< 88, 3, a^5*b>,< 88, 3, a^3*b^21>,< 88, 3, a^7*b^18>,< 88, 3, a*b^15>,< 88, 3, a*b^2>,< 88, 3, a^7*b^9>,< 88, 3, a^3*b^30>,< 88, 3, a^5*b^3>,< 132, 2, a^2*b>,< 132, 2, a^6*b^10>,< 132, 2, a^2*b^5>,< 132, 2, a^6*b^17>,< 132, 2, a^6*b^7>,< 132, 2, a^2*b^4>,< 132, 2, a^2*b^2>,< 132, 2, a^6*b^20>,< 132, 2, a^2*b^17>,< 132, 2, a^6*b^5>,< 132, 2, a^6*b^8>,< 132, 2, a^2*b^14>,< 132, 2, a^6*b>,< 132, 2, a^2*b^10>,< 132, 2, a^2*b^7>,< 132, 2, a^6*b^4>,< 132, 2, a^6*b^2>,< 132, 2, a^2*b^20>,< 132, 2, a^2*b^8>,< 132, 2, a^6*b^14>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,-1,-1,1,-1*K.1,K.1,K.1,-1*K.1,1,1,1,1,1,1,1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,-1,-1,1,K.1,-1*K.1,-1*K.1,K.1,1,1,1,1,1,1,1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,-1,1,-1*K.1^2,K.1^2,-1,K.1^3,-1*K.1,K.1,-1*K.1^3,1,1,1,1,1,1,1,1,1,1,-1*K.1^2,K.1^2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,K.1^3,K.1^3,K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1,K.1^3,K.1,-1*K.1,-1*K.1,-1*K.1^3,K.1,K.1^3,K.1^3,K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1,K.1^3,K.1^3,K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1^3,K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1,K.1^3,K.1^3,-1*K.1^3,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,-1,1,K.1^2,-1*K.1^2,-1,-1*K.1,K.1^3,-1*K.1^3,K.1,1,1,1,1,1,1,1,1,1,1,K.1^2,-1*K.1^2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1,K.1^3,K.1^3,K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1^3,K.1^3,K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1,K.1^3,K.1^3,K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1,K.1^3,K.1^3,K.1,-1*K.1,-1*K.1^3,K.1,K.1^3,K.1^3,K.1,-1*K.1^3,-1*K.1,-1*K.1,K.1,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,-1,1,-1*K.1^2,K.1^2,-1,-1*K.1^3,K.1,-1*K.1,K.1^3,1,1,1,1,1,1,1,1,1,1,-1*K.1^2,K.1^2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^3,K.1,K.1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1,K.1,K.1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^3,K.1,K.1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^3,K.1,K.1,K.1^3,-1*K.1^3,-1*K.1,K.1^3,K.1,K.1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,-1,1,K.1^2,-1*K.1^2,-1,K.1,-1*K.1^3,K.1^3,-1*K.1,1,1,1,1,1,1,1,1,1,1,K.1^2,-1*K.1^2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^3,K.1,K.1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^3,K.1,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^3,K.1,K.1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^3,K.1,K.1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^3,K.1,K.1,-1*K.1,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1^-5,K.1^4,K.1^-3,K.1^5,K.1^-1,K.1^2,K.1^-2,K.1^3,K.1,K.1^-4,1,1,K.1^4,K.1,K.1^-2,K.1^2,K.1^3,K.1^-3,K.1^-1,K.1^5,K.1^-5,K.1^-4,K.1^2,K.1^5,K.1^-4,K.1^-5,K.1,K.1^3,K.1^-2,K.1^4,K.1^-1,K.1^-3,K.1^3,K.1^4,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-3,K.1^-5,K.1^-5,K.1,K.1^4,K.1^3,K.1^2,K.1^-4,K.1^5,K.1^-1,K.1^5,K.1^-4,K.1^-3,K.1^-2,K.1^3,K.1^5,K.1^-3,K.1^-4,K.1^2,K.1,K.1^-5,K.1^4,K.1^-1,K.1^-2,K.1,K.1^-3,K.1^3,K.1^5,K.1^-5,K.1^-4,K.1^4,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1^3,K.1^-3,K.1^-5,K.1^5,K.1^4,K.1^-4,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-3,K.1^3,K.1^-5,K.1^5,K.1^-4,K.1^4,K.1^-2,K.1^2,K.1^-1,K.1,K.1^3,K.1^-3,K.1^5,K.1^-5,K.1^4,K.1^-4,K.1^2,K.1,K.1^3,K.1^-2,K.1^-1,K.1^4,K.1^-4,K.1^-2,K.1^3,K.1,K.1^5,K.1^2,K.1^4,K.1^-4,K.1^5,K.1^2,K.1^-3,K.1^-1,K.1,K.1^-3,K.1^-5,K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1^5,K.1^-4,K.1^3,K.1^-5,K.1,K.1^-2,K.1^2,K.1^-3,K.1^-1,K.1^4,1,1,K.1^-4,K.1^-1,K.1^2,K.1^-2,K.1^-3,K.1^3,K.1,K.1^-5,K.1^5,K.1^4,K.1^-2,K.1^-5,K.1^4,K.1^5,K.1^-1,K.1^-3,K.1^2,K.1^-4,K.1,K.1^3,K.1^-3,K.1^-4,K.1^2,K.1^-1,K.1^2,K.1,K.1^-2,K.1^3,K.1^5,K.1^5,K.1^-1,K.1^-4,K.1^-3,K.1^-2,K.1^4,K.1^-5,K.1,K.1^-5,K.1^4,K.1^3,K.1^2,K.1^-3,K.1^-5,K.1^3,K.1^4,K.1^-2,K.1^-1,K.1^5,K.1^-4,K.1,K.1^2,K.1^-1,K.1^3,K.1^-3,K.1^-5,K.1^5,K.1^4,K.1^-4,K.1^-2,K.1^2,K.1,K.1,K.1^-3,K.1^3,K.1^5,K.1^-5,K.1^-4,K.1^4,K.1^2,K.1^-2,K.1^-1,K.1,K.1^3,K.1^-3,K.1^5,K.1^-5,K.1^4,K.1^-4,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-3,K.1^3,K.1^-5,K.1^5,K.1^-4,K.1^4,K.1^-2,K.1^-1,K.1^-3,K.1^2,K.1,K.1^-4,K.1^4,K.1^2,K.1^-3,K.1^-1,K.1^-5,K.1^-2,K.1^-4,K.1^4,K.1^-5,K.1^-2,K.1^3,K.1,K.1^-1,K.1^3,K.1^5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1^-4,K.1,K.1^2,K.1^4,K.1^-3,K.1^-5,K.1^5,K.1^-2,K.1^3,K.1^-1,1,1,K.1,K.1^3,K.1^5,K.1^-5,K.1^-2,K.1^2,K.1^-3,K.1^4,K.1^-4,K.1^-1,K.1^-5,K.1^4,K.1^-1,K.1^-4,K.1^3,K.1^-2,K.1^5,K.1,K.1^-3,K.1^2,K.1^-2,K.1,K.1^5,K.1^3,K.1^5,K.1^-3,K.1^-5,K.1^2,K.1^-4,K.1^-4,K.1^3,K.1,K.1^-2,K.1^-5,K.1^-1,K.1^4,K.1^-3,K.1^4,K.1^-1,K.1^2,K.1^5,K.1^-2,K.1^4,K.1^2,K.1^-1,K.1^-5,K.1^3,K.1^-4,K.1,K.1^-3,K.1^5,K.1^3,K.1^2,K.1^-2,K.1^4,K.1^-4,K.1^-1,K.1,K.1^-5,K.1^5,K.1^-3,K.1^-3,K.1^-2,K.1^2,K.1^-4,K.1^4,K.1,K.1^-1,K.1^5,K.1^-5,K.1^3,K.1^-3,K.1^2,K.1^-2,K.1^-4,K.1^4,K.1^-1,K.1,K.1^5,K.1^-5,K.1^-3,K.1^3,K.1^-2,K.1^2,K.1^4,K.1^-4,K.1,K.1^-1,K.1^-5,K.1^3,K.1^-2,K.1^5,K.1^-3,K.1,K.1^-1,K.1^5,K.1^-2,K.1^3,K.1^4,K.1^-5,K.1,K.1^-1,K.1^4,K.1^-5,K.1^2,K.1^-3,K.1^3,K.1^2,K.1^-4,K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1^4,K.1^-1,K.1^-2,K.1^-4,K.1^3,K.1^5,K.1^-5,K.1^2,K.1^-3,K.1,1,1,K.1^-1,K.1^-3,K.1^-5,K.1^5,K.1^2,K.1^-2,K.1^3,K.1^-4,K.1^4,K.1,K.1^5,K.1^-4,K.1,K.1^4,K.1^-3,K.1^2,K.1^-5,K.1^-1,K.1^3,K.1^-2,K.1^2,K.1^-1,K.1^-5,K.1^-3,K.1^-5,K.1^3,K.1^5,K.1^-2,K.1^4,K.1^4,K.1^-3,K.1^-1,K.1^2,K.1^5,K.1,K.1^-4,K.1^3,K.1^-4,K.1,K.1^-2,K.1^-5,K.1^2,K.1^-4,K.1^-2,K.1,K.1^5,K.1^-3,K.1^4,K.1^-1,K.1^3,K.1^-5,K.1^-3,K.1^-2,K.1^2,K.1^-4,K.1^4,K.1,K.1^-1,K.1^5,K.1^-5,K.1^3,K.1^3,K.1^2,K.1^-2,K.1^4,K.1^-4,K.1^-1,K.1,K.1^-5,K.1^5,K.1^-3,K.1^3,K.1^-2,K.1^2,K.1^4,K.1^-4,K.1,K.1^-1,K.1^-5,K.1^5,K.1^3,K.1^-3,K.1^2,K.1^-2,K.1^-4,K.1^4,K.1^-1,K.1,K.1^5,K.1^-3,K.1^2,K.1^-5,K.1^3,K.1^-1,K.1,K.1^-5,K.1^2,K.1^-3,K.1^-4,K.1^5,K.1^-1,K.1,K.1^-4,K.1^5,K.1^-2,K.1^3,K.1^-3,K.1^-2,K.1^4,K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1^-3,K.1^-2,K.1^-4,K.1^3,K.1^-5,K.1^-1,K.1,K.1^4,K.1^5,K.1^2,1,1,K.1^-2,K.1^5,K.1,K.1^-1,K.1^4,K.1^-4,K.1^-5,K.1^3,K.1^-3,K.1^2,K.1^-1,K.1^3,K.1^2,K.1^-3,K.1^5,K.1^4,K.1,K.1^-2,K.1^-5,K.1^-4,K.1^4,K.1^-2,K.1,K.1^5,K.1,K.1^-5,K.1^-1,K.1^-4,K.1^-3,K.1^-3,K.1^5,K.1^-2,K.1^4,K.1^-1,K.1^2,K.1^3,K.1^-5,K.1^3,K.1^2,K.1^-4,K.1,K.1^4,K.1^3,K.1^-4,K.1^2,K.1^-1,K.1^5,K.1^-3,K.1^-2,K.1^-5,K.1,K.1^5,K.1^-4,K.1^4,K.1^3,K.1^-3,K.1^2,K.1^-2,K.1^-1,K.1,K.1^-5,K.1^-5,K.1^4,K.1^-4,K.1^-3,K.1^3,K.1^-2,K.1^2,K.1,K.1^-1,K.1^5,K.1^-5,K.1^-4,K.1^4,K.1^-3,K.1^3,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-5,K.1^5,K.1^4,K.1^-4,K.1^3,K.1^-3,K.1^-2,K.1^2,K.1^-1,K.1^5,K.1^4,K.1,K.1^-5,K.1^-2,K.1^2,K.1,K.1^4,K.1^5,K.1^3,K.1^-1,K.1^-2,K.1^2,K.1^3,K.1^-1,K.1^-4,K.1^-5,K.1^5,K.1^-4,K.1^-3,K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1^3,K.1^2,K.1^4,K.1^-3,K.1^5,K.1,K.1^-1,K.1^-4,K.1^-5,K.1^-2,1,1,K.1^2,K.1^-5,K.1^-1,K.1,K.1^-4,K.1^4,K.1^5,K.1^-3,K.1^3,K.1^-2,K.1,K.1^-3,K.1^-2,K.1^3,K.1^-5,K.1^-4,K.1^-1,K.1^2,K.1^5,K.1^4,K.1^-4,K.1^2,K.1^-1,K.1^-5,K.1^-1,K.1^5,K.1,K.1^4,K.1^3,K.1^3,K.1^-5,K.1^2,K.1^-4,K.1,K.1^-2,K.1^-3,K.1^5,K.1^-3,K.1^-2,K.1^4,K.1^-1,K.1^-4,K.1^-3,K.1^4,K.1^-2,K.1,K.1^-5,K.1^3,K.1^2,K.1^5,K.1^-1,K.1^-5,K.1^4,K.1^-4,K.1^-3,K.1^3,K.1^-2,K.1^2,K.1,K.1^-1,K.1^5,K.1^5,K.1^-4,K.1^4,K.1^3,K.1^-3,K.1^2,K.1^-2,K.1^-1,K.1,K.1^-5,K.1^5,K.1^4,K.1^-4,K.1^3,K.1^-3,K.1^-2,K.1^2,K.1^-1,K.1,K.1^5,K.1^-5,K.1^-4,K.1^4,K.1^-3,K.1^3,K.1^2,K.1^-2,K.1,K.1^-5,K.1^-4,K.1^-1,K.1^5,K.1^2,K.1^-2,K.1^-1,K.1^-4,K.1^-5,K.1^-3,K.1,K.1^2,K.1^-2,K.1^-3,K.1,K.1^4,K.1^5,K.1^-5,K.1^4,K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1^-2,K.1^-5,K.1,K.1^2,K.1^4,K.1^3,K.1^-3,K.1^-1,K.1^-4,K.1^5,1,1,K.1^-5,K.1^-4,K.1^-3,K.1^3,K.1^-1,K.1,K.1^4,K.1^2,K.1^-2,K.1^5,K.1^3,K.1^2,K.1^5,K.1^-2,K.1^-4,K.1^-1,K.1^-3,K.1^-5,K.1^4,K.1,K.1^-1,K.1^-5,K.1^-3,K.1^-4,K.1^-3,K.1^4,K.1^3,K.1,K.1^-2,K.1^-2,K.1^-4,K.1^-5,K.1^-1,K.1^3,K.1^5,K.1^2,K.1^4,K.1^2,K.1^5,K.1,K.1^-3,K.1^-1,K.1^2,K.1,K.1^5,K.1^3,K.1^-4,K.1^-2,K.1^-5,K.1^4,K.1^-3,K.1^-4,K.1,K.1^-1,K.1^2,K.1^-2,K.1^5,K.1^-5,K.1^3,K.1^-3,K.1^4,K.1^4,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-5,K.1^5,K.1^-3,K.1^3,K.1^-4,K.1^4,K.1,K.1^-1,K.1^-2,K.1^2,K.1^5,K.1^-5,K.1^-3,K.1^3,K.1^4,K.1^-4,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-5,K.1^5,K.1^3,K.1^-4,K.1^-1,K.1^-3,K.1^4,K.1^-5,K.1^5,K.1^-3,K.1^-1,K.1^-4,K.1^2,K.1^3,K.1^-5,K.1^5,K.1^2,K.1^3,K.1,K.1^4,K.1^-4,K.1,K.1^-2,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1^2,K.1^5,K.1^-1,K.1^-2,K.1^-4,K.1^-3,K.1^3,K.1,K.1^4,K.1^-5,1,1,K.1^5,K.1^4,K.1^3,K.1^-3,K.1,K.1^-1,K.1^-4,K.1^-2,K.1^2,K.1^-5,K.1^-3,K.1^-2,K.1^-5,K.1^2,K.1^4,K.1,K.1^3,K.1^5,K.1^-4,K.1^-1,K.1,K.1^5,K.1^3,K.1^4,K.1^3,K.1^-4,K.1^-3,K.1^-1,K.1^2,K.1^2,K.1^4,K.1^5,K.1,K.1^-3,K.1^-5,K.1^-2,K.1^-4,K.1^-2,K.1^-5,K.1^-1,K.1^3,K.1,K.1^-2,K.1^-1,K.1^-5,K.1^-3,K.1^4,K.1^2,K.1^5,K.1^-4,K.1^3,K.1^4,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-5,K.1^5,K.1^-3,K.1^3,K.1^-4,K.1^-4,K.1,K.1^-1,K.1^2,K.1^-2,K.1^5,K.1^-5,K.1^3,K.1^-3,K.1^4,K.1^-4,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-5,K.1^5,K.1^3,K.1^-3,K.1^-4,K.1^4,K.1,K.1^-1,K.1^-2,K.1^2,K.1^5,K.1^-5,K.1^-3,K.1^4,K.1,K.1^3,K.1^-4,K.1^5,K.1^-5,K.1^3,K.1,K.1^4,K.1^-2,K.1^-3,K.1^5,K.1^-5,K.1^-2,K.1^-3,K.1^-1,K.1^-4,K.1^4,K.1^-1,K.1^2,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1^3,K.1^-5,K.1,K.1^2,K.1^-4,K.1^4,K.1^5,K.1^-2,K.1^-3,1,1,K.1^3,K.1^-2,K.1^4,K.1^-4,K.1^5,K.1^-5,K.1^2,K.1,K.1^-1,K.1^-3,K.1^-4,K.1,K.1^-3,K.1^-1,K.1^-2,K.1^5,K.1^4,K.1^3,K.1^2,K.1^-5,K.1^5,K.1^3,K.1^4,K.1^-2,K.1^4,K.1^2,K.1^-4,K.1^-5,K.1^-1,K.1^-1,K.1^-2,K.1^3,K.1^5,K.1^-4,K.1^-3,K.1,K.1^2,K.1,K.1^-3,K.1^-5,K.1^4,K.1^5,K.1,K.1^-5,K.1^-3,K.1^-4,K.1^-2,K.1^-1,K.1^3,K.1^2,K.1^4,K.1^-2,K.1^-5,K.1^5,K.1,K.1^-1,K.1^-3,K.1^3,K.1^-4,K.1^4,K.1^2,K.1^2,K.1^5,K.1^-5,K.1^-1,K.1,K.1^3,K.1^-3,K.1^4,K.1^-4,K.1^-2,K.1^2,K.1^-5,K.1^5,K.1^-1,K.1,K.1^-3,K.1^3,K.1^4,K.1^-4,K.1^2,K.1^-2,K.1^5,K.1^-5,K.1,K.1^-1,K.1^3,K.1^-3,K.1^-4,K.1^-2,K.1^5,K.1^4,K.1^2,K.1^3,K.1^-3,K.1^4,K.1^5,K.1^-2,K.1,K.1^-4,K.1^3,K.1^-3,K.1,K.1^-4,K.1^-5,K.1^2,K.1^-2,K.1^-5,K.1^-1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1,K.1^-3,K.1^5,K.1^-1,K.1^-2,K.1^4,K.1^-4,K.1^-5,K.1^2,K.1^3,1,1,K.1^-3,K.1^2,K.1^-4,K.1^4,K.1^-5,K.1^5,K.1^-2,K.1^-1,K.1,K.1^3,K.1^4,K.1^-1,K.1^3,K.1,K.1^2,K.1^-5,K.1^-4,K.1^-3,K.1^-2,K.1^5,K.1^-5,K.1^-3,K.1^-4,K.1^2,K.1^-4,K.1^-2,K.1^4,K.1^5,K.1,K.1,K.1^2,K.1^-3,K.1^-5,K.1^4,K.1^3,K.1^-1,K.1^-2,K.1^-1,K.1^3,K.1^5,K.1^-4,K.1^-5,K.1^-1,K.1^5,K.1^3,K.1^4,K.1^2,K.1,K.1^-3,K.1^-2,K.1^-4,K.1^2,K.1^5,K.1^-5,K.1^-1,K.1,K.1^3,K.1^-3,K.1^4,K.1^-4,K.1^-2,K.1^-2,K.1^-5,K.1^5,K.1,K.1^-1,K.1^-3,K.1^3,K.1^-4,K.1^4,K.1^2,K.1^-2,K.1^5,K.1^-5,K.1,K.1^-1,K.1^3,K.1^-3,K.1^-4,K.1^4,K.1^-2,K.1^2,K.1^-5,K.1^5,K.1^-1,K.1,K.1^-3,K.1^3,K.1^4,K.1^2,K.1^-5,K.1^-4,K.1^-2,K.1^-3,K.1^3,K.1^-4,K.1^-5,K.1^2,K.1^-1,K.1^4,K.1^-3,K.1^3,K.1^-1,K.1^4,K.1^5,K.1^-2,K.1^2,K.1^5,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,K.1^-5,K.1^4,K.1^-3,K.1^5,K.1^-1,K.1^2,K.1^-2,K.1^3,K.1,K.1^-4,1,1,K.1^4,K.1,K.1^-2,K.1^2,K.1^3,K.1^-3,K.1^-1,K.1^5,K.1^-5,K.1^-4,K.1^2,K.1^5,K.1^-4,K.1^-5,K.1,K.1^3,K.1^-2,K.1^4,K.1^-1,K.1^-3,K.1^3,K.1^4,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-3,K.1^-5,K.1^-5,K.1,K.1^4,K.1^3,K.1^2,K.1^-4,K.1^5,K.1^-1,K.1^5,K.1^-4,K.1^-3,K.1^-2,K.1^3,K.1^5,K.1^-3,K.1^-4,K.1^2,K.1,K.1^-5,K.1^4,K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-3,-1*K.1^3,-1*K.1^5,-1*K.1^-5,-1*K.1^-4,-1*K.1^4,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^3,-1*K.1^-3,-1*K.1^-5,-1*K.1^5,-1*K.1^4,-1*K.1^-4,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-3,-1*K.1^3,-1*K.1^-5,-1*K.1^5,-1*K.1^-4,-1*K.1^4,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^3,-1*K.1^-3,-1*K.1^5,-1*K.1^-5,-1*K.1^4,-1*K.1^-4,-1*K.1^2,-1*K.1,K.1^3,K.1^-2,K.1^-1,K.1^4,K.1^-4,K.1^-2,K.1^3,K.1,K.1^5,K.1^2,K.1^4,K.1^-4,K.1^5,K.1^2,K.1^-3,K.1^-1,K.1,K.1^-3,K.1^-5,K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,K.1^5,K.1^-4,K.1^3,K.1^-5,K.1,K.1^-2,K.1^2,K.1^-3,K.1^-1,K.1^4,1,1,K.1^-4,K.1^-1,K.1^2,K.1^-2,K.1^-3,K.1^3,K.1,K.1^-5,K.1^5,K.1^4,K.1^-2,K.1^-5,K.1^4,K.1^5,K.1^-1,K.1^-3,K.1^2,K.1^-4,K.1,K.1^3,K.1^-3,K.1^-4,K.1^2,K.1^-1,K.1^2,K.1,K.1^-2,K.1^3,K.1^5,K.1^5,K.1^-1,K.1^-4,K.1^-3,K.1^-2,K.1^4,K.1^-5,K.1,K.1^-5,K.1^4,K.1^3,K.1^2,K.1^-3,K.1^-5,K.1^3,K.1^4,K.1^-2,K.1^-1,K.1^5,K.1^-4,K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^3,-1*K.1^-3,-1*K.1^-5,-1*K.1^5,-1*K.1^4,-1*K.1^-4,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-3,-1*K.1^3,-1*K.1^5,-1*K.1^-5,-1*K.1^-4,-1*K.1^4,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^3,-1*K.1^-3,-1*K.1^5,-1*K.1^-5,-1*K.1^4,-1*K.1^-4,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-3,-1*K.1^3,-1*K.1^-5,-1*K.1^5,-1*K.1^-4,-1*K.1^4,-1*K.1^-2,-1*K.1^-1,K.1^-3,K.1^2,K.1,K.1^-4,K.1^4,K.1^2,K.1^-3,K.1^-1,K.1^-5,K.1^-2,K.1^-4,K.1^4,K.1^-5,K.1^-2,K.1^3,K.1,K.1^-1,K.1^3,K.1^5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,K.1^-4,K.1,K.1^2,K.1^4,K.1^-3,K.1^-5,K.1^5,K.1^-2,K.1^3,K.1^-1,1,1,K.1,K.1^3,K.1^5,K.1^-5,K.1^-2,K.1^2,K.1^-3,K.1^4,K.1^-4,K.1^-1,K.1^-5,K.1^4,K.1^-1,K.1^-4,K.1^3,K.1^-2,K.1^5,K.1,K.1^-3,K.1^2,K.1^-2,K.1,K.1^5,K.1^3,K.1^5,K.1^-3,K.1^-5,K.1^2,K.1^-4,K.1^-4,K.1^3,K.1,K.1^-2,K.1^-5,K.1^-1,K.1^4,K.1^-3,K.1^4,K.1^-1,K.1^2,K.1^5,K.1^-2,K.1^4,K.1^2,K.1^-1,K.1^-5,K.1^3,K.1^-4,K.1,K.1^-3,-1*K.1^5,-1*K.1^3,-1*K.1^2,-1*K.1^-2,-1*K.1^4,-1*K.1^-4,-1*K.1^-1,-1*K.1,-1*K.1^-5,-1*K.1^5,-1*K.1^-3,-1*K.1^-3,-1*K.1^-2,-1*K.1^2,-1*K.1^-4,-1*K.1^4,-1*K.1,-1*K.1^-1,-1*K.1^5,-1*K.1^-5,-1*K.1^3,-1*K.1^-3,-1*K.1^2,-1*K.1^-2,-1*K.1^-4,-1*K.1^4,-1*K.1^-1,-1*K.1,-1*K.1^5,-1*K.1^-5,-1*K.1^-3,-1*K.1^3,-1*K.1^-2,-1*K.1^2,-1*K.1^4,-1*K.1^-4,-1*K.1,-1*K.1^-1,-1*K.1^-5,-1*K.1^3,K.1^-2,K.1^5,K.1^-3,K.1,K.1^-1,K.1^5,K.1^-2,K.1^3,K.1^4,K.1^-5,K.1,K.1^-1,K.1^4,K.1^-5,K.1^2,K.1^-3,K.1^3,K.1^2,K.1^-4,K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,K.1^4,K.1^-1,K.1^-2,K.1^-4,K.1^3,K.1^5,K.1^-5,K.1^2,K.1^-3,K.1,1,1,K.1^-1,K.1^-3,K.1^-5,K.1^5,K.1^2,K.1^-2,K.1^3,K.1^-4,K.1^4,K.1,K.1^5,K.1^-4,K.1,K.1^4,K.1^-3,K.1^2,K.1^-5,K.1^-1,K.1^3,K.1^-2,K.1^2,K.1^-1,K.1^-5,K.1^-3,K.1^-5,K.1^3,K.1^5,K.1^-2,K.1^4,K.1^4,K.1^-3,K.1^-1,K.1^2,K.1^5,K.1,K.1^-4,K.1^3,K.1^-4,K.1,K.1^-2,K.1^-5,K.1^2,K.1^-4,K.1^-2,K.1,K.1^5,K.1^-3,K.1^4,K.1^-1,K.1^3,-1*K.1^-5,-1*K.1^-3,-1*K.1^-2,-1*K.1^2,-1*K.1^-4,-1*K.1^4,-1*K.1,-1*K.1^-1,-1*K.1^5,-1*K.1^-5,-1*K.1^3,-1*K.1^3,-1*K.1^2,-1*K.1^-2,-1*K.1^4,-1*K.1^-4,-1*K.1^-1,-1*K.1,-1*K.1^-5,-1*K.1^5,-1*K.1^-3,-1*K.1^3,-1*K.1^-2,-1*K.1^2,-1*K.1^4,-1*K.1^-4,-1*K.1,-1*K.1^-1,-1*K.1^-5,-1*K.1^5,-1*K.1^3,-1*K.1^-3,-1*K.1^2,-1*K.1^-2,-1*K.1^-4,-1*K.1^4,-1*K.1^-1,-1*K.1,-1*K.1^5,-1*K.1^-3,K.1^2,K.1^-5,K.1^3,K.1^-1,K.1,K.1^-5,K.1^2,K.1^-3,K.1^-4,K.1^5,K.1^-1,K.1,K.1^-4,K.1^5,K.1^-2,K.1^3,K.1^-3,K.1^-2,K.1^4,K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,K.1^-3,K.1^-2,K.1^-4,K.1^3,K.1^-5,K.1^-1,K.1,K.1^4,K.1^5,K.1^2,1,1,K.1^-2,K.1^5,K.1,K.1^-1,K.1^4,K.1^-4,K.1^-5,K.1^3,K.1^-3,K.1^2,K.1^-1,K.1^3,K.1^2,K.1^-3,K.1^5,K.1^4,K.1,K.1^-2,K.1^-5,K.1^-4,K.1^4,K.1^-2,K.1,K.1^5,K.1,K.1^-5,K.1^-1,K.1^-4,K.1^-3,K.1^-3,K.1^5,K.1^-2,K.1^4,K.1^-1,K.1^2,K.1^3,K.1^-5,K.1^3,K.1^2,K.1^-4,K.1,K.1^4,K.1^3,K.1^-4,K.1^2,K.1^-1,K.1^5,K.1^-3,K.1^-2,K.1^-5,-1*K.1,-1*K.1^5,-1*K.1^-4,-1*K.1^4,-1*K.1^3,-1*K.1^-3,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-5,-1*K.1^-5,-1*K.1^4,-1*K.1^-4,-1*K.1^-3,-1*K.1^3,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^5,-1*K.1^-5,-1*K.1^-4,-1*K.1^4,-1*K.1^-3,-1*K.1^3,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-5,-1*K.1^5,-1*K.1^4,-1*K.1^-4,-1*K.1^3,-1*K.1^-3,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^5,K.1^4,K.1,K.1^-5,K.1^-2,K.1^2,K.1,K.1^4,K.1^5,K.1^3,K.1^-1,K.1^-2,K.1^2,K.1^3,K.1^-1,K.1^-4,K.1^-5,K.1^5,K.1^-4,K.1^-3,K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,K.1^3,K.1^2,K.1^4,K.1^-3,K.1^5,K.1,K.1^-1,K.1^-4,K.1^-5,K.1^-2,1,1,K.1^2,K.1^-5,K.1^-1,K.1,K.1^-4,K.1^4,K.1^5,K.1^-3,K.1^3,K.1^-2,K.1,K.1^-3,K.1^-2,K.1^3,K.1^-5,K.1^-4,K.1^-1,K.1^2,K.1^5,K.1^4,K.1^-4,K.1^2,K.1^-1,K.1^-5,K.1^-1,K.1^5,K.1,K.1^4,K.1^3,K.1^3,K.1^-5,K.1^2,K.1^-4,K.1,K.1^-2,K.1^-3,K.1^5,K.1^-3,K.1^-2,K.1^4,K.1^-1,K.1^-4,K.1^-3,K.1^4,K.1^-2,K.1,K.1^-5,K.1^3,K.1^2,K.1^5,-1*K.1^-1,-1*K.1^-5,-1*K.1^4,-1*K.1^-4,-1*K.1^-3,-1*K.1^3,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^5,-1*K.1^5,-1*K.1^-4,-1*K.1^4,-1*K.1^3,-1*K.1^-3,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-5,-1*K.1^5,-1*K.1^4,-1*K.1^-4,-1*K.1^3,-1*K.1^-3,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^5,-1*K.1^-5,-1*K.1^-4,-1*K.1^4,-1*K.1^-3,-1*K.1^3,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-5,K.1^-4,K.1^-1,K.1^5,K.1^2,K.1^-2,K.1^-1,K.1^-4,K.1^-5,K.1^-3,K.1,K.1^2,K.1^-2,K.1^-3,K.1,K.1^4,K.1^5,K.1^-5,K.1^4,K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,K.1^-2,K.1^-5,K.1,K.1^2,K.1^4,K.1^3,K.1^-3,K.1^-1,K.1^-4,K.1^5,1,1,K.1^-5,K.1^-4,K.1^-3,K.1^3,K.1^-1,K.1,K.1^4,K.1^2,K.1^-2,K.1^5,K.1^3,K.1^2,K.1^5,K.1^-2,K.1^-4,K.1^-1,K.1^-3,K.1^-5,K.1^4,K.1,K.1^-1,K.1^-5,K.1^-3,K.1^-4,K.1^-3,K.1^4,K.1^3,K.1,K.1^-2,K.1^-2,K.1^-4,K.1^-5,K.1^-1,K.1^3,K.1^5,K.1^2,K.1^4,K.1^2,K.1^5,K.1,K.1^-3,K.1^-1,K.1^2,K.1,K.1^5,K.1^3,K.1^-4,K.1^-2,K.1^-5,K.1^4,-1*K.1^-3,-1*K.1^-4,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^5,-1*K.1^-5,-1*K.1^3,-1*K.1^-3,-1*K.1^4,-1*K.1^4,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-5,-1*K.1^5,-1*K.1^-3,-1*K.1^3,-1*K.1^-4,-1*K.1^4,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^5,-1*K.1^-5,-1*K.1^-3,-1*K.1^3,-1*K.1^4,-1*K.1^-4,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-5,-1*K.1^5,-1*K.1^3,-1*K.1^-4,K.1^-1,K.1^-3,K.1^4,K.1^-5,K.1^5,K.1^-3,K.1^-1,K.1^-4,K.1^2,K.1^3,K.1^-5,K.1^5,K.1^2,K.1^3,K.1,K.1^4,K.1^-4,K.1,K.1^-2,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,K.1^2,K.1^5,K.1^-1,K.1^-2,K.1^-4,K.1^-3,K.1^3,K.1,K.1^4,K.1^-5,1,1,K.1^5,K.1^4,K.1^3,K.1^-3,K.1,K.1^-1,K.1^-4,K.1^-2,K.1^2,K.1^-5,K.1^-3,K.1^-2,K.1^-5,K.1^2,K.1^4,K.1,K.1^3,K.1^5,K.1^-4,K.1^-1,K.1,K.1^5,K.1^3,K.1^4,K.1^3,K.1^-4,K.1^-3,K.1^-1,K.1^2,K.1^2,K.1^4,K.1^5,K.1,K.1^-3,K.1^-5,K.1^-2,K.1^-4,K.1^-2,K.1^-5,K.1^-1,K.1^3,K.1,K.1^-2,K.1^-1,K.1^-5,K.1^-3,K.1^4,K.1^2,K.1^5,K.1^-4,-1*K.1^3,-1*K.1^4,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-5,-1*K.1^5,-1*K.1^-3,-1*K.1^3,-1*K.1^-4,-1*K.1^-4,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^5,-1*K.1^-5,-1*K.1^3,-1*K.1^-3,-1*K.1^4,-1*K.1^-4,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-5,-1*K.1^5,-1*K.1^3,-1*K.1^-3,-1*K.1^-4,-1*K.1^4,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^5,-1*K.1^-5,-1*K.1^-3,-1*K.1^4,K.1,K.1^3,K.1^-4,K.1^5,K.1^-5,K.1^3,K.1,K.1^4,K.1^-2,K.1^-3,K.1^5,K.1^-5,K.1^-2,K.1^-3,K.1^-1,K.1^-4,K.1^4,K.1^-1,K.1^2,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,K.1^-1,K.1^3,K.1^-5,K.1,K.1^2,K.1^-4,K.1^4,K.1^5,K.1^-2,K.1^-3,1,1,K.1^3,K.1^-2,K.1^4,K.1^-4,K.1^5,K.1^-5,K.1^2,K.1,K.1^-1,K.1^-3,K.1^-4,K.1,K.1^-3,K.1^-1,K.1^-2,K.1^5,K.1^4,K.1^3,K.1^2,K.1^-5,K.1^5,K.1^3,K.1^4,K.1^-2,K.1^4,K.1^2,K.1^-4,K.1^-5,K.1^-1,K.1^-1,K.1^-2,K.1^3,K.1^5,K.1^-4,K.1^-3,K.1,K.1^2,K.1,K.1^-3,K.1^-5,K.1^4,K.1^5,K.1,K.1^-5,K.1^-3,K.1^-4,K.1^-2,K.1^-1,K.1^3,K.1^2,-1*K.1^4,-1*K.1^-2,-1*K.1^-5,-1*K.1^5,-1*K.1,-1*K.1^-1,-1*K.1^-3,-1*K.1^3,-1*K.1^-4,-1*K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^5,-1*K.1^-5,-1*K.1^-1,-1*K.1,-1*K.1^3,-1*K.1^-3,-1*K.1^4,-1*K.1^-4,-1*K.1^-2,-1*K.1^2,-1*K.1^-5,-1*K.1^5,-1*K.1^-1,-1*K.1,-1*K.1^-3,-1*K.1^3,-1*K.1^4,-1*K.1^-4,-1*K.1^2,-1*K.1^-2,-1*K.1^5,-1*K.1^-5,-1*K.1,-1*K.1^-1,-1*K.1^3,-1*K.1^-3,-1*K.1^-4,-1*K.1^-2,K.1^5,K.1^4,K.1^2,K.1^3,K.1^-3,K.1^4,K.1^5,K.1^-2,K.1,K.1^-4,K.1^3,K.1^-3,K.1,K.1^-4,K.1^-5,K.1^2,K.1^-2,K.1^-5,K.1^-1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,K.1,K.1^-3,K.1^5,K.1^-1,K.1^-2,K.1^4,K.1^-4,K.1^-5,K.1^2,K.1^3,1,1,K.1^-3,K.1^2,K.1^-4,K.1^4,K.1^-5,K.1^5,K.1^-2,K.1^-1,K.1,K.1^3,K.1^4,K.1^-1,K.1^3,K.1,K.1^2,K.1^-5,K.1^-4,K.1^-3,K.1^-2,K.1^5,K.1^-5,K.1^-3,K.1^-4,K.1^2,K.1^-4,K.1^-2,K.1^4,K.1^5,K.1,K.1,K.1^2,K.1^-3,K.1^-5,K.1^4,K.1^3,K.1^-1,K.1^-2,K.1^-1,K.1^3,K.1^5,K.1^-4,K.1^-5,K.1^-1,K.1^5,K.1^3,K.1^4,K.1^2,K.1,K.1^-3,K.1^-2,-1*K.1^-4,-1*K.1^2,-1*K.1^5,-1*K.1^-5,-1*K.1^-1,-1*K.1,-1*K.1^3,-1*K.1^-3,-1*K.1^4,-1*K.1^-4,-1*K.1^-2,-1*K.1^-2,-1*K.1^-5,-1*K.1^5,-1*K.1,-1*K.1^-1,-1*K.1^-3,-1*K.1^3,-1*K.1^-4,-1*K.1^4,-1*K.1^2,-1*K.1^-2,-1*K.1^5,-1*K.1^-5,-1*K.1,-1*K.1^-1,-1*K.1^3,-1*K.1^-3,-1*K.1^-4,-1*K.1^4,-1*K.1^-2,-1*K.1^2,-1*K.1^-5,-1*K.1^5,-1*K.1^-1,-1*K.1,-1*K.1^-3,-1*K.1^3,-1*K.1^4,-1*K.1^2,K.1^-5,K.1^-4,K.1^-2,K.1^-3,K.1^3,K.1^-4,K.1^-5,K.1^2,K.1^-1,K.1^4,K.1^-3,K.1^3,K.1^-1,K.1^4,K.1^5,K.1^-2,K.1^2,K.1^5,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |1,1,1,-1,-1,1,-1*K.1^11,K.1^11,K.1^11,-1*K.1^11,-1*K.1^2,K.1^16,-1*K.1^10,K.1^20,-1*K.1^18,K.1^8,-1*K.1^14,K.1^12,K.1^4,-1*K.1^6,-1,-1,K.1^16,K.1^4,-1*K.1^14,K.1^8,K.1^12,-1*K.1^10,-1*K.1^18,K.1^20,-1*K.1^2,-1*K.1^6,K.1^8,K.1^20,-1*K.1^6,-1*K.1^2,K.1^4,K.1^12,-1*K.1^14,K.1^16,-1*K.1^18,-1*K.1^10,-1*K.1^12,-1*K.1^16,K.1^14,-1*K.1^4,K.1^14,K.1^18,-1*K.1^8,K.1^10,K.1^2,K.1^2,-1*K.1^4,-1*K.1^16,-1*K.1^12,-1*K.1^8,K.1^6,-1*K.1^20,K.1^18,-1*K.1^20,K.1^6,K.1^10,-1*K.1^14,K.1^12,K.1^20,-1*K.1^10,-1*K.1^6,K.1^8,K.1^4,-1*K.1^2,K.1^16,-1*K.1^18,K.1^3,-1*K.1^15,K.1^21,-1*K.1,K.1^9,-1*K.1^13,-1*K.1^17,K.1^5,K.1^19,-1*K.1^3,K.1^7,K.1^7,-1*K.1,K.1^21,-1*K.1^13,K.1^9,K.1^5,-1*K.1^17,-1*K.1^3,K.1^19,K.1^15,-1*K.1^7,-1*K.1^21,K.1,K.1^13,-1*K.1^9,K.1^17,-1*K.1^5,K.1^3,-1*K.1^19,-1*K.1^7,K.1^15,K.1,-1*K.1^21,-1*K.1^9,K.1^13,-1*K.1^5,K.1^17,-1*K.1^19,-1*K.1^15,-1*K.1^12,K.1^14,K.1^18,-1*K.1^16,K.1^6,K.1^14,-1*K.1^12,-1*K.1^4,-1*K.1^20,-1*K.1^8,-1*K.1^16,K.1^6,-1*K.1^20,-1*K.1^8,K.1^10,K.1^18,-1*K.1^4,K.1^10,K.1^2,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |1,1,1,-1,-1,1,K.1^11,-1*K.1^11,-1*K.1^11,K.1^11,K.1^20,-1*K.1^6,K.1^12,-1*K.1^2,K.1^4,-1*K.1^14,K.1^8,-1*K.1^10,-1*K.1^18,K.1^16,-1,-1,-1*K.1^6,-1*K.1^18,K.1^8,-1*K.1^14,-1*K.1^10,K.1^12,K.1^4,-1*K.1^2,K.1^20,K.1^16,-1*K.1^14,-1*K.1^2,K.1^16,K.1^20,-1*K.1^18,-1*K.1^10,K.1^8,-1*K.1^6,K.1^4,K.1^12,K.1^10,K.1^6,-1*K.1^8,K.1^18,-1*K.1^8,-1*K.1^4,K.1^14,-1*K.1^12,-1*K.1^20,-1*K.1^20,K.1^18,K.1^6,K.1^10,K.1^14,-1*K.1^16,K.1^2,-1*K.1^4,K.1^2,-1*K.1^16,-1*K.1^12,K.1^8,-1*K.1^10,-1*K.1^2,K.1^12,K.1^16,-1*K.1^14,-1*K.1^18,K.1^20,-1*K.1^6,K.1^4,-1*K.1^19,K.1^7,-1*K.1,K.1^21,-1*K.1^13,K.1^9,K.1^5,-1*K.1^17,-1*K.1^3,K.1^19,-1*K.1^15,-1*K.1^15,K.1^21,-1*K.1,K.1^9,-1*K.1^13,-1*K.1^17,K.1^5,K.1^19,-1*K.1^3,-1*K.1^7,K.1^15,K.1,-1*K.1^21,-1*K.1^9,K.1^13,-1*K.1^5,K.1^17,-1*K.1^19,K.1^3,K.1^15,-1*K.1^7,-1*K.1^21,K.1,K.1^13,-1*K.1^9,K.1^17,-1*K.1^5,K.1^3,K.1^7,K.1^10,-1*K.1^8,-1*K.1^4,K.1^6,-1*K.1^16,-1*K.1^8,K.1^10,K.1^18,K.1^2,K.1^14,K.1^6,-1*K.1^16,K.1^2,K.1^14,-1*K.1^12,-1*K.1^4,K.1^18,-1*K.1^12,-1*K.1^20,-1*K.1^20]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |1,1,1,-1,-1,1,-1*K.1^11,K.1^11,K.1^11,-1*K.1^11,K.1^20,-1*K.1^6,K.1^12,-1*K.1^2,K.1^4,-1*K.1^14,K.1^8,-1*K.1^10,-1*K.1^18,K.1^16,-1,-1,-1*K.1^6,-1*K.1^18,K.1^8,-1*K.1^14,-1*K.1^10,K.1^12,K.1^4,-1*K.1^2,K.1^20,K.1^16,-1*K.1^14,-1*K.1^2,K.1^16,K.1^20,-1*K.1^18,-1*K.1^10,K.1^8,-1*K.1^6,K.1^4,K.1^12,K.1^10,K.1^6,-1*K.1^8,K.1^18,-1*K.1^8,-1*K.1^4,K.1^14,-1*K.1^12,-1*K.1^20,-1*K.1^20,K.1^18,K.1^6,K.1^10,K.1^14,-1*K.1^16,K.1^2,-1*K.1^4,K.1^2,-1*K.1^16,-1*K.1^12,K.1^8,-1*K.1^10,-1*K.1^2,K.1^12,K.1^16,-1*K.1^14,-1*K.1^18,K.1^20,-1*K.1^6,K.1^4,K.1^19,-1*K.1^7,K.1,-1*K.1^21,K.1^13,-1*K.1^9,-1*K.1^5,K.1^17,K.1^3,-1*K.1^19,K.1^15,K.1^15,-1*K.1^21,K.1,-1*K.1^9,K.1^13,K.1^17,-1*K.1^5,-1*K.1^19,K.1^3,K.1^7,-1*K.1^15,-1*K.1,K.1^21,K.1^9,-1*K.1^13,K.1^5,-1*K.1^17,K.1^19,-1*K.1^3,-1*K.1^15,K.1^7,K.1^21,-1*K.1,-1*K.1^13,K.1^9,-1*K.1^17,K.1^5,-1*K.1^3,-1*K.1^7,K.1^10,-1*K.1^8,-1*K.1^4,K.1^6,-1*K.1^16,-1*K.1^8,K.1^10,K.1^18,K.1^2,K.1^14,K.1^6,-1*K.1^16,K.1^2,K.1^14,-1*K.1^12,-1*K.1^4,K.1^18,-1*K.1^12,-1*K.1^20,-1*K.1^20]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |1,1,1,-1,-1,1,K.1^11,-1*K.1^11,-1*K.1^11,K.1^11,-1*K.1^2,K.1^16,-1*K.1^10,K.1^20,-1*K.1^18,K.1^8,-1*K.1^14,K.1^12,K.1^4,-1*K.1^6,-1,-1,K.1^16,K.1^4,-1*K.1^14,K.1^8,K.1^12,-1*K.1^10,-1*K.1^18,K.1^20,-1*K.1^2,-1*K.1^6,K.1^8,K.1^20,-1*K.1^6,-1*K.1^2,K.1^4,K.1^12,-1*K.1^14,K.1^16,-1*K.1^18,-1*K.1^10,-1*K.1^12,-1*K.1^16,K.1^14,-1*K.1^4,K.1^14,K.1^18,-1*K.1^8,K.1^10,K.1^2,K.1^2,-1*K.1^4,-1*K.1^16,-1*K.1^12,-1*K.1^8,K.1^6,-1*K.1^20,K.1^18,-1*K.1^20,K.1^6,K.1^10,-1*K.1^14,K.1^12,K.1^20,-1*K.1^10,-1*K.1^6,K.1^8,K.1^4,-1*K.1^2,K.1^16,-1*K.1^18,-1*K.1^3,K.1^15,-1*K.1^21,K.1,-1*K.1^9,K.1^13,K.1^17,-1*K.1^5,-1*K.1^19,K.1^3,-1*K.1^7,-1*K.1^7,K.1,-1*K.1^21,K.1^13,-1*K.1^9,-1*K.1^5,K.1^17,K.1^3,-1*K.1^19,-1*K.1^15,K.1^7,K.1^21,-1*K.1,-1*K.1^13,K.1^9,-1*K.1^17,K.1^5,-1*K.1^3,K.1^19,K.1^7,-1*K.1^15,-1*K.1,K.1^21,K.1^9,-1*K.1^13,K.1^5,-1*K.1^17,K.1^19,K.1^15,-1*K.1^12,K.1^14,K.1^18,-1*K.1^16,K.1^6,K.1^14,-1*K.1^12,-1*K.1^4,-1*K.1^20,-1*K.1^8,-1*K.1^16,K.1^6,-1*K.1^20,-1*K.1^8,K.1^10,K.1^18,-1*K.1^4,K.1^10,K.1^2,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |1,1,1,-1,-1,1,-1*K.1^11,K.1^11,K.1^11,-1*K.1^11,-1*K.1^6,K.1^4,K.1^8,K.1^16,-1*K.1^10,-1*K.1^2,K.1^20,-1*K.1^14,K.1^12,-1*K.1^18,-1,-1,K.1^4,K.1^12,K.1^20,-1*K.1^2,-1*K.1^14,K.1^8,-1*K.1^10,K.1^16,-1*K.1^6,-1*K.1^18,-1*K.1^2,K.1^16,-1*K.1^18,-1*K.1^6,K.1^12,-1*K.1^14,K.1^20,K.1^4,-1*K.1^10,K.1^8,K.1^14,-1*K.1^4,-1*K.1^20,-1*K.1^12,-1*K.1^20,K.1^10,K.1^2,-1*K.1^8,K.1^6,K.1^6,-1*K.1^12,-1*K.1^4,K.1^14,K.1^2,K.1^18,-1*K.1^16,K.1^10,-1*K.1^16,K.1^18,-1*K.1^8,K.1^20,-1*K.1^14,K.1^16,K.1^8,-1*K.1^18,-1*K.1^2,K.1^12,-1*K.1^6,K.1^4,-1*K.1^10,-1*K.1^9,K.1,-1*K.1^19,K.1^3,K.1^5,-1*K.1^17,K.1^7,-1*K.1^15,-1*K.1^13,K.1^9,-1*K.1^21,-1*K.1^21,K.1^3,-1*K.1^19,-1*K.1^17,K.1^5,-1*K.1^15,K.1^7,K.1^9,-1*K.1^13,-1*K.1,K.1^21,K.1^19,-1*K.1^3,K.1^17,-1*K.1^5,-1*K.1^7,K.1^15,-1*K.1^9,K.1^13,K.1^21,-1*K.1,-1*K.1^3,K.1^19,-1*K.1^5,K.1^17,K.1^15,-1*K.1^7,K.1^13,K.1,K.1^14,-1*K.1^20,K.1^10,-1*K.1^4,K.1^18,-1*K.1^20,K.1^14,-1*K.1^12,-1*K.1^16,K.1^2,-1*K.1^4,K.1^18,-1*K.1^16,K.1^2,-1*K.1^8,K.1^10,-1*K.1^12,-1*K.1^8,K.1^6,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |1,1,1,-1,-1,1,K.1^11,-1*K.1^11,-1*K.1^11,K.1^11,K.1^16,-1*K.1^18,-1*K.1^14,-1*K.1^6,K.1^12,K.1^20,-1*K.1^2,K.1^8,-1*K.1^10,K.1^4,-1,-1,-1*K.1^18,-1*K.1^10,-1*K.1^2,K.1^20,K.1^8,-1*K.1^14,K.1^12,-1*K.1^6,K.1^16,K.1^4,K.1^20,-1*K.1^6,K.1^4,K.1^16,-1*K.1^10,K.1^8,-1*K.1^2,-1*K.1^18,K.1^12,-1*K.1^14,-1*K.1^8,K.1^18,K.1^2,K.1^10,K.1^2,-1*K.1^12,-1*K.1^20,K.1^14,-1*K.1^16,-1*K.1^16,K.1^10,K.1^18,-1*K.1^8,-1*K.1^20,-1*K.1^4,K.1^6,-1*K.1^12,K.1^6,-1*K.1^4,K.1^14,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^14,K.1^4,K.1^20,-1*K.1^10,K.1^16,-1*K.1^18,K.1^12,K.1^13,-1*K.1^21,K.1^3,-1*K.1^19,-1*K.1^17,K.1^5,-1*K.1^15,K.1^7,K.1^9,-1*K.1^13,K.1,K.1,-1*K.1^19,K.1^3,K.1^5,-1*K.1^17,K.1^7,-1*K.1^15,-1*K.1^13,K.1^9,K.1^21,-1*K.1,-1*K.1^3,K.1^19,-1*K.1^5,K.1^17,K.1^15,-1*K.1^7,K.1^13,-1*K.1^9,-1*K.1,K.1^21,K.1^19,-1*K.1^3,K.1^17,-1*K.1^5,-1*K.1^7,K.1^15,-1*K.1^9,-1*K.1^21,-1*K.1^8,K.1^2,-1*K.1^12,K.1^18,-1*K.1^4,K.1^2,-1*K.1^8,K.1^10,K.1^6,-1*K.1^20,K.1^18,-1*K.1^4,K.1^6,-1*K.1^20,K.1^14,-1*K.1^12,K.1^10,K.1^14,-1*K.1^16,-1*K.1^16]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |1,1,1,-1,-1,1,-1*K.1^11,K.1^11,K.1^11,-1*K.1^11,K.1^16,-1*K.1^18,-1*K.1^14,-1*K.1^6,K.1^12,K.1^20,-1*K.1^2,K.1^8,-1*K.1^10,K.1^4,-1,-1,-1*K.1^18,-1*K.1^10,-1*K.1^2,K.1^20,K.1^8,-1*K.1^14,K.1^12,-1*K.1^6,K.1^16,K.1^4,K.1^20,-1*K.1^6,K.1^4,K.1^16,-1*K.1^10,K.1^8,-1*K.1^2,-1*K.1^18,K.1^12,-1*K.1^14,-1*K.1^8,K.1^18,K.1^2,K.1^10,K.1^2,-1*K.1^12,-1*K.1^20,K.1^14,-1*K.1^16,-1*K.1^16,K.1^10,K.1^18,-1*K.1^8,-1*K.1^20,-1*K.1^4,K.1^6,-1*K.1^12,K.1^6,-1*K.1^4,K.1^14,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^14,K.1^4,K.1^20,-1*K.1^10,K.1^16,-1*K.1^18,K.1^12,-1*K.1^13,K.1^21,-1*K.1^3,K.1^19,K.1^17,-1*K.1^5,K.1^15,-1*K.1^7,-1*K.1^9,K.1^13,-1*K.1,-1*K.1,K.1^19,-1*K.1^3,-1*K.1^5,K.1^17,-1*K.1^7,K.1^15,K.1^13,-1*K.1^9,-1*K.1^21,K.1,K.1^3,-1*K.1^19,K.1^5,-1*K.1^17,-1*K.1^15,K.1^7,-1*K.1^13,K.1^9,K.1,-1*K.1^21,-1*K.1^19,K.1^3,-1*K.1^17,K.1^5,K.1^7,-1*K.1^15,K.1^9,K.1^21,-1*K.1^8,K.1^2,-1*K.1^12,K.1^18,-1*K.1^4,K.1^2,-1*K.1^8,K.1^10,K.1^6,-1*K.1^20,K.1^18,-1*K.1^4,K.1^6,-1*K.1^20,K.1^14,-1*K.1^12,K.1^10,K.1^14,-1*K.1^16,-1*K.1^16]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |1,1,1,-1,-1,1,K.1^11,-1*K.1^11,-1*K.1^11,K.1^11,-1*K.1^6,K.1^4,K.1^8,K.1^16,-1*K.1^10,-1*K.1^2,K.1^20,-1*K.1^14,K.1^12,-1*K.1^18,-1,-1,K.1^4,K.1^12,K.1^20,-1*K.1^2,-1*K.1^14,K.1^8,-1*K.1^10,K.1^16,-1*K.1^6,-1*K.1^18,-1*K.1^2,K.1^16,-1*K.1^18,-1*K.1^6,K.1^12,-1*K.1^14,K.1^20,K.1^4,-1*K.1^10,K.1^8,K.1^14,-1*K.1^4,-1*K.1^20,-1*K.1^12,-1*K.1^20,K.1^10,K.1^2,-1*K.1^8,K.1^6,K.1^6,-1*K.1^12,-1*K.1^4,K.1^14,K.1^2,K.1^18,-1*K.1^16,K.1^10,-1*K.1^16,K.1^18,-1*K.1^8,K.1^20,-1*K.1^14,K.1^16,K.1^8,-1*K.1^18,-1*K.1^2,K.1^12,-1*K.1^6,K.1^4,-1*K.1^10,K.1^9,-1*K.1,K.1^19,-1*K.1^3,-1*K.1^5,K.1^17,-1*K.1^7,K.1^15,K.1^13,-1*K.1^9,K.1^21,K.1^21,-1*K.1^3,K.1^19,K.1^17,-1*K.1^5,K.1^15,-1*K.1^7,-1*K.1^9,K.1^13,K.1,-1*K.1^21,-1*K.1^19,K.1^3,-1*K.1^17,K.1^5,K.1^7,-1*K.1^15,K.1^9,-1*K.1^13,-1*K.1^21,K.1,K.1^3,-1*K.1^19,K.1^5,-1*K.1^17,-1*K.1^15,K.1^7,-1*K.1^13,-1*K.1,K.1^14,-1*K.1^20,K.1^10,-1*K.1^4,K.1^18,-1*K.1^20,K.1^14,-1*K.1^12,-1*K.1^16,K.1^2,-1*K.1^4,K.1^18,-1*K.1^16,K.1^2,-1*K.1^8,K.1^10,-1*K.1^12,-1*K.1^8,K.1^6,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |1,1,1,-1,-1,1,-1*K.1^11,K.1^11,K.1^11,-1*K.1^11,-1*K.1^10,-1*K.1^14,-1*K.1^6,K.1^12,-1*K.1^2,-1*K.1^18,K.1^4,K.1^16,K.1^20,K.1^8,-1,-1,-1*K.1^14,K.1^20,K.1^4,-1*K.1^18,K.1^16,-1*K.1^6,-1*K.1^2,K.1^12,-1*K.1^10,K.1^8,-1*K.1^18,K.1^12,K.1^8,-1*K.1^10,K.1^20,K.1^16,K.1^4,-1*K.1^14,-1*K.1^2,-1*K.1^6,-1*K.1^16,K.1^14,-1*K.1^4,-1*K.1^20,-1*K.1^4,K.1^2,K.1^18,K.1^6,K.1^10,K.1^10,-1*K.1^20,K.1^14,-1*K.1^16,K.1^18,-1*K.1^8,-1*K.1^12,K.1^2,-1*K.1^12,-1*K.1^8,K.1^6,K.1^4,K.1^16,K.1^12,-1*K.1^6,K.1^8,-1*K.1^18,K.1^20,-1*K.1^10,-1*K.1^14,-1*K.1^2,K.1^15,K.1^9,K.1^17,-1*K.1^5,K.1,-1*K.1^21,K.1^19,-1*K.1^3,K.1^7,-1*K.1^15,-1*K.1^13,-1*K.1^13,-1*K.1^5,K.1^17,-1*K.1^21,K.1,-1*K.1^3,K.1^19,-1*K.1^15,K.1^7,-1*K.1^9,K.1^13,-1*K.1^17,K.1^5,K.1^21,-1*K.1,-1*K.1^19,K.1^3,K.1^15,-1*K.1^7,K.1^13,-1*K.1^9,K.1^5,-1*K.1^17,-1*K.1,K.1^21,K.1^3,-1*K.1^19,-1*K.1^7,K.1^9,-1*K.1^16,-1*K.1^4,K.1^2,K.1^14,-1*K.1^8,-1*K.1^4,-1*K.1^16,-1*K.1^20,-1*K.1^12,K.1^18,K.1^14,-1*K.1^8,-1*K.1^12,K.1^18,K.1^6,K.1^2,-1*K.1^20,K.1^6,K.1^10,K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |1,1,1,-1,-1,1,K.1^11,-1*K.1^11,-1*K.1^11,K.1^11,K.1^12,K.1^8,K.1^16,-1*K.1^10,K.1^20,K.1^4,-1*K.1^18,-1*K.1^6,-1*K.1^2,-1*K.1^14,-1,-1,K.1^8,-1*K.1^2,-1*K.1^18,K.1^4,-1*K.1^6,K.1^16,K.1^20,-1*K.1^10,K.1^12,-1*K.1^14,K.1^4,-1*K.1^10,-1*K.1^14,K.1^12,-1*K.1^2,-1*K.1^6,-1*K.1^18,K.1^8,K.1^20,K.1^16,K.1^6,-1*K.1^8,K.1^18,K.1^2,K.1^18,-1*K.1^20,-1*K.1^4,-1*K.1^16,-1*K.1^12,-1*K.1^12,K.1^2,-1*K.1^8,K.1^6,-1*K.1^4,K.1^14,K.1^10,-1*K.1^20,K.1^10,K.1^14,-1*K.1^16,-1*K.1^18,-1*K.1^6,-1*K.1^10,K.1^16,-1*K.1^14,K.1^4,-1*K.1^2,K.1^12,K.1^8,K.1^20,-1*K.1^7,-1*K.1^13,-1*K.1^5,K.1^17,-1*K.1^21,K.1,-1*K.1^3,K.1^19,-1*K.1^15,K.1^7,K.1^9,K.1^9,K.1^17,-1*K.1^5,K.1,-1*K.1^21,K.1^19,-1*K.1^3,K.1^7,-1*K.1^15,K.1^13,-1*K.1^9,K.1^5,-1*K.1^17,-1*K.1,K.1^21,K.1^3,-1*K.1^19,-1*K.1^7,K.1^15,-1*K.1^9,K.1^13,-1*K.1^17,K.1^5,K.1^21,-1*K.1,-1*K.1^19,K.1^3,K.1^15,-1*K.1^13,K.1^6,K.1^18,-1*K.1^20,-1*K.1^8,K.1^14,K.1^18,K.1^6,K.1^2,K.1^10,-1*K.1^4,-1*K.1^8,K.1^14,K.1^10,-1*K.1^4,-1*K.1^16,-1*K.1^20,K.1^2,-1*K.1^16,-1*K.1^12,-1*K.1^12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |1,1,1,-1,-1,1,-1*K.1^11,K.1^11,K.1^11,-1*K.1^11,K.1^12,K.1^8,K.1^16,-1*K.1^10,K.1^20,K.1^4,-1*K.1^18,-1*K.1^6,-1*K.1^2,-1*K.1^14,-1,-1,K.1^8,-1*K.1^2,-1*K.1^18,K.1^4,-1*K.1^6,K.1^16,K.1^20,-1*K.1^10,K.1^12,-1*K.1^14,K.1^4,-1*K.1^10,-1*K.1^14,K.1^12,-1*K.1^2,-1*K.1^6,-1*K.1^18,K.1^8,K.1^20,K.1^16,K.1^6,-1*K.1^8,K.1^18,K.1^2,K.1^18,-1*K.1^20,-1*K.1^4,-1*K.1^16,-1*K.1^12,-1*K.1^12,K.1^2,-1*K.1^8,K.1^6,-1*K.1^4,K.1^14,K.1^10,-1*K.1^20,K.1^10,K.1^14,-1*K.1^16,-1*K.1^18,-1*K.1^6,-1*K.1^10,K.1^16,-1*K.1^14,K.1^4,-1*K.1^2,K.1^12,K.1^8,K.1^20,K.1^7,K.1^13,K.1^5,-1*K.1^17,K.1^21,-1*K.1,K.1^3,-1*K.1^19,K.1^15,-1*K.1^7,-1*K.1^9,-1*K.1^9,-1*K.1^17,K.1^5,-1*K.1,K.1^21,-1*K.1^19,K.1^3,-1*K.1^7,K.1^15,-1*K.1^13,K.1^9,-1*K.1^5,K.1^17,K.1,-1*K.1^21,-1*K.1^3,K.1^19,K.1^7,-1*K.1^15,K.1^9,-1*K.1^13,K.1^17,-1*K.1^5,-1*K.1^21,K.1,K.1^19,-1*K.1^3,-1*K.1^15,K.1^13,K.1^6,K.1^18,-1*K.1^20,-1*K.1^8,K.1^14,K.1^18,K.1^6,K.1^2,K.1^10,-1*K.1^4,-1*K.1^8,K.1^14,K.1^10,-1*K.1^4,-1*K.1^16,-1*K.1^20,K.1^2,-1*K.1^16,-1*K.1^12,-1*K.1^12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |1,1,1,-1,-1,1,K.1^11,-1*K.1^11,-1*K.1^11,K.1^11,-1*K.1^10,-1*K.1^14,-1*K.1^6,K.1^12,-1*K.1^2,-1*K.1^18,K.1^4,K.1^16,K.1^20,K.1^8,-1,-1,-1*K.1^14,K.1^20,K.1^4,-1*K.1^18,K.1^16,-1*K.1^6,-1*K.1^2,K.1^12,-1*K.1^10,K.1^8,-1*K.1^18,K.1^12,K.1^8,-1*K.1^10,K.1^20,K.1^16,K.1^4,-1*K.1^14,-1*K.1^2,-1*K.1^6,-1*K.1^16,K.1^14,-1*K.1^4,-1*K.1^20,-1*K.1^4,K.1^2,K.1^18,K.1^6,K.1^10,K.1^10,-1*K.1^20,K.1^14,-1*K.1^16,K.1^18,-1*K.1^8,-1*K.1^12,K.1^2,-1*K.1^12,-1*K.1^8,K.1^6,K.1^4,K.1^16,K.1^12,-1*K.1^6,K.1^8,-1*K.1^18,K.1^20,-1*K.1^10,-1*K.1^14,-1*K.1^2,-1*K.1^15,-1*K.1^9,-1*K.1^17,K.1^5,-1*K.1,K.1^21,-1*K.1^19,K.1^3,-1*K.1^7,K.1^15,K.1^13,K.1^13,K.1^5,-1*K.1^17,K.1^21,-1*K.1,K.1^3,-1*K.1^19,K.1^15,-1*K.1^7,K.1^9,-1*K.1^13,K.1^17,-1*K.1^5,-1*K.1^21,K.1,K.1^19,-1*K.1^3,-1*K.1^15,K.1^7,-1*K.1^13,K.1^9,-1*K.1^5,K.1^17,K.1,-1*K.1^21,-1*K.1^3,K.1^19,K.1^7,-1*K.1^9,-1*K.1^16,-1*K.1^4,K.1^2,K.1^14,-1*K.1^8,-1*K.1^4,-1*K.1^16,-1*K.1^20,-1*K.1^12,K.1^18,K.1^14,-1*K.1^8,-1*K.1^12,K.1^18,K.1^6,K.1^2,-1*K.1^20,K.1^6,K.1^10,K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |1,1,1,-1,-1,1,-1*K.1^11,K.1^11,K.1^11,-1*K.1^11,-1*K.1^14,-1*K.1^2,K.1^4,K.1^8,K.1^16,K.1^12,-1*K.1^10,-1*K.1^18,-1*K.1^6,K.1^20,-1,-1,-1*K.1^2,-1*K.1^6,-1*K.1^10,K.1^12,-1*K.1^18,K.1^4,K.1^16,K.1^8,-1*K.1^14,K.1^20,K.1^12,K.1^8,K.1^20,-1*K.1^14,-1*K.1^6,-1*K.1^18,-1*K.1^10,-1*K.1^2,K.1^16,K.1^4,K.1^18,K.1^2,K.1^10,K.1^6,K.1^10,-1*K.1^16,-1*K.1^12,-1*K.1^4,K.1^14,K.1^14,K.1^6,K.1^2,K.1^18,-1*K.1^12,-1*K.1^20,-1*K.1^8,-1*K.1^16,-1*K.1^8,-1*K.1^20,-1*K.1^4,-1*K.1^10,-1*K.1^18,K.1^8,K.1^4,K.1^20,K.1^12,-1*K.1^6,-1*K.1^14,-1*K.1^2,K.1^16,-1*K.1^21,K.1^17,-1*K.1^15,K.1^7,-1*K.1^19,K.1^3,-1*K.1^9,K.1^13,-1*K.1,K.1^21,-1*K.1^5,-1*K.1^5,K.1^7,-1*K.1^15,K.1^3,-1*K.1^19,K.1^13,-1*K.1^9,K.1^21,-1*K.1,-1*K.1^17,K.1^5,K.1^15,-1*K.1^7,-1*K.1^3,K.1^19,K.1^9,-1*K.1^13,-1*K.1^21,K.1,K.1^5,-1*K.1^17,-1*K.1^7,K.1^15,K.1^19,-1*K.1^3,-1*K.1^13,K.1^9,K.1,K.1^17,K.1^18,K.1^10,-1*K.1^16,K.1^2,-1*K.1^20,K.1^10,K.1^18,K.1^6,-1*K.1^8,-1*K.1^12,K.1^2,-1*K.1^20,-1*K.1^8,-1*K.1^12,-1*K.1^4,-1*K.1^16,K.1^6,-1*K.1^4,K.1^14,K.1^14]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |1,1,1,-1,-1,1,K.1^11,-1*K.1^11,-1*K.1^11,K.1^11,K.1^8,K.1^20,-1*K.1^18,-1*K.1^14,-1*K.1^6,-1*K.1^10,K.1^12,K.1^4,K.1^16,-1*K.1^2,-1,-1,K.1^20,K.1^16,K.1^12,-1*K.1^10,K.1^4,-1*K.1^18,-1*K.1^6,-1*K.1^14,K.1^8,-1*K.1^2,-1*K.1^10,-1*K.1^14,-1*K.1^2,K.1^8,K.1^16,K.1^4,K.1^12,K.1^20,-1*K.1^6,-1*K.1^18,-1*K.1^4,-1*K.1^20,-1*K.1^12,-1*K.1^16,-1*K.1^12,K.1^6,K.1^10,K.1^18,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^20,-1*K.1^4,K.1^10,K.1^2,K.1^14,K.1^6,K.1^14,K.1^2,K.1^18,K.1^12,K.1^4,-1*K.1^14,-1*K.1^18,-1*K.1^2,-1*K.1^10,K.1^16,K.1^8,K.1^20,-1*K.1^6,K.1,-1*K.1^5,K.1^7,-1*K.1^15,K.1^3,-1*K.1^19,K.1^13,-1*K.1^9,K.1^21,-1*K.1,K.1^17,K.1^17,-1*K.1^15,K.1^7,-1*K.1^19,K.1^3,-1*K.1^9,K.1^13,-1*K.1,K.1^21,K.1^5,-1*K.1^17,-1*K.1^7,K.1^15,K.1^19,-1*K.1^3,-1*K.1^13,K.1^9,K.1,-1*K.1^21,-1*K.1^17,K.1^5,K.1^15,-1*K.1^7,-1*K.1^3,K.1^19,K.1^9,-1*K.1^13,-1*K.1^21,-1*K.1^5,-1*K.1^4,-1*K.1^12,K.1^6,-1*K.1^20,K.1^2,-1*K.1^12,-1*K.1^4,-1*K.1^16,K.1^14,K.1^10,-1*K.1^20,K.1^2,K.1^14,K.1^10,K.1^18,K.1^6,-1*K.1^16,K.1^18,-1*K.1^8,-1*K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |1,1,1,-1,-1,1,-1*K.1^11,K.1^11,K.1^11,-1*K.1^11,K.1^8,K.1^20,-1*K.1^18,-1*K.1^14,-1*K.1^6,-1*K.1^10,K.1^12,K.1^4,K.1^16,-1*K.1^2,-1,-1,K.1^20,K.1^16,K.1^12,-1*K.1^10,K.1^4,-1*K.1^18,-1*K.1^6,-1*K.1^14,K.1^8,-1*K.1^2,-1*K.1^10,-1*K.1^14,-1*K.1^2,K.1^8,K.1^16,K.1^4,K.1^12,K.1^20,-1*K.1^6,-1*K.1^18,-1*K.1^4,-1*K.1^20,-1*K.1^12,-1*K.1^16,-1*K.1^12,K.1^6,K.1^10,K.1^18,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^20,-1*K.1^4,K.1^10,K.1^2,K.1^14,K.1^6,K.1^14,K.1^2,K.1^18,K.1^12,K.1^4,-1*K.1^14,-1*K.1^18,-1*K.1^2,-1*K.1^10,K.1^16,K.1^8,K.1^20,-1*K.1^6,-1*K.1,K.1^5,-1*K.1^7,K.1^15,-1*K.1^3,K.1^19,-1*K.1^13,K.1^9,-1*K.1^21,K.1,-1*K.1^17,-1*K.1^17,K.1^15,-1*K.1^7,K.1^19,-1*K.1^3,K.1^9,-1*K.1^13,K.1,-1*K.1^21,-1*K.1^5,K.1^17,K.1^7,-1*K.1^15,-1*K.1^19,K.1^3,K.1^13,-1*K.1^9,-1*K.1,K.1^21,K.1^17,-1*K.1^5,-1*K.1^15,K.1^7,K.1^3,-1*K.1^19,-1*K.1^9,K.1^13,K.1^21,K.1^5,-1*K.1^4,-1*K.1^12,K.1^6,-1*K.1^20,K.1^2,-1*K.1^12,-1*K.1^4,-1*K.1^16,K.1^14,K.1^10,-1*K.1^20,K.1^2,K.1^14,K.1^10,K.1^18,K.1^6,-1*K.1^16,K.1^18,-1*K.1^8,-1*K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |1,1,1,-1,-1,1,K.1^11,-1*K.1^11,-1*K.1^11,K.1^11,-1*K.1^14,-1*K.1^2,K.1^4,K.1^8,K.1^16,K.1^12,-1*K.1^10,-1*K.1^18,-1*K.1^6,K.1^20,-1,-1,-1*K.1^2,-1*K.1^6,-1*K.1^10,K.1^12,-1*K.1^18,K.1^4,K.1^16,K.1^8,-1*K.1^14,K.1^20,K.1^12,K.1^8,K.1^20,-1*K.1^14,-1*K.1^6,-1*K.1^18,-1*K.1^10,-1*K.1^2,K.1^16,K.1^4,K.1^18,K.1^2,K.1^10,K.1^6,K.1^10,-1*K.1^16,-1*K.1^12,-1*K.1^4,K.1^14,K.1^14,K.1^6,K.1^2,K.1^18,-1*K.1^12,-1*K.1^20,-1*K.1^8,-1*K.1^16,-1*K.1^8,-1*K.1^20,-1*K.1^4,-1*K.1^10,-1*K.1^18,K.1^8,K.1^4,K.1^20,K.1^12,-1*K.1^6,-1*K.1^14,-1*K.1^2,K.1^16,K.1^21,-1*K.1^17,K.1^15,-1*K.1^7,K.1^19,-1*K.1^3,K.1^9,-1*K.1^13,K.1,-1*K.1^21,K.1^5,K.1^5,-1*K.1^7,K.1^15,-1*K.1^3,K.1^19,-1*K.1^13,K.1^9,-1*K.1^21,K.1,K.1^17,-1*K.1^5,-1*K.1^15,K.1^7,K.1^3,-1*K.1^19,-1*K.1^9,K.1^13,K.1^21,-1*K.1,-1*K.1^5,K.1^17,K.1^7,-1*K.1^15,-1*K.1^19,K.1^3,K.1^13,-1*K.1^9,-1*K.1,-1*K.1^17,K.1^18,K.1^10,-1*K.1^16,K.1^2,-1*K.1^20,K.1^10,K.1^18,K.1^6,-1*K.1^8,-1*K.1^12,K.1^2,-1*K.1^20,-1*K.1^8,-1*K.1^12,-1*K.1^4,-1*K.1^16,K.1^6,-1*K.1^4,K.1^14,K.1^14]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |1,1,1,-1,-1,1,-1*K.1^11,K.1^11,K.1^11,-1*K.1^11,-1*K.1^18,K.1^12,-1*K.1^2,K.1^4,K.1^8,-1*K.1^6,K.1^16,K.1^20,-1*K.1^14,-1*K.1^10,-1,-1,K.1^12,-1*K.1^14,K.1^16,-1*K.1^6,K.1^20,-1*K.1^2,K.1^8,K.1^4,-1*K.1^18,-1*K.1^10,-1*K.1^6,K.1^4,-1*K.1^10,-1*K.1^18,-1*K.1^14,K.1^20,K.1^16,K.1^12,K.1^8,-1*K.1^2,-1*K.1^20,-1*K.1^12,-1*K.1^16,K.1^14,-1*K.1^16,-1*K.1^8,K.1^6,K.1^2,K.1^18,K.1^18,K.1^14,-1*K.1^12,-1*K.1^20,K.1^6,K.1^10,-1*K.1^4,-1*K.1^8,-1*K.1^4,K.1^10,K.1^2,K.1^16,K.1^20,K.1^4,-1*K.1^2,-1*K.1^10,-1*K.1^6,-1*K.1^14,-1*K.1^18,K.1^12,K.1^8,-1*K.1^5,-1*K.1^3,K.1^13,-1*K.1^9,-1*K.1^15,K.1^7,-1*K.1^21,K.1,-1*K.1^17,K.1^5,K.1^19,K.1^19,-1*K.1^9,K.1^13,K.1^7,-1*K.1^15,K.1,-1*K.1^21,K.1^5,-1*K.1^17,K.1^3,-1*K.1^19,-1*K.1^13,K.1^9,-1*K.1^7,K.1^15,K.1^21,-1*K.1,-1*K.1^5,K.1^17,-1*K.1^19,K.1^3,K.1^9,-1*K.1^13,K.1^15,-1*K.1^7,-1*K.1,K.1^21,K.1^17,-1*K.1^3,-1*K.1^20,-1*K.1^16,-1*K.1^8,-1*K.1^12,K.1^10,-1*K.1^16,-1*K.1^20,K.1^14,-1*K.1^4,K.1^6,-1*K.1^12,K.1^10,-1*K.1^4,K.1^6,K.1^2,-1*K.1^8,K.1^14,K.1^2,K.1^18,K.1^18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |1,1,1,-1,-1,1,K.1^11,-1*K.1^11,-1*K.1^11,K.1^11,K.1^4,-1*K.1^10,K.1^20,-1*K.1^18,-1*K.1^14,K.1^16,-1*K.1^6,-1*K.1^2,K.1^8,K.1^12,-1,-1,-1*K.1^10,K.1^8,-1*K.1^6,K.1^16,-1*K.1^2,K.1^20,-1*K.1^14,-1*K.1^18,K.1^4,K.1^12,K.1^16,-1*K.1^18,K.1^12,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^10,-1*K.1^14,K.1^20,K.1^2,K.1^10,K.1^6,-1*K.1^8,K.1^6,K.1^14,-1*K.1^16,-1*K.1^20,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^10,K.1^2,-1*K.1^16,-1*K.1^12,K.1^18,K.1^14,K.1^18,-1*K.1^12,-1*K.1^20,-1*K.1^6,-1*K.1^2,-1*K.1^18,K.1^20,K.1^12,K.1^16,K.1^8,K.1^4,-1*K.1^10,-1*K.1^14,K.1^17,K.1^19,-1*K.1^9,K.1^13,K.1^7,-1*K.1^15,K.1,-1*K.1^21,K.1^5,-1*K.1^17,-1*K.1^3,-1*K.1^3,K.1^13,-1*K.1^9,-1*K.1^15,K.1^7,-1*K.1^21,K.1,-1*K.1^17,K.1^5,-1*K.1^19,K.1^3,K.1^9,-1*K.1^13,K.1^15,-1*K.1^7,-1*K.1,K.1^21,K.1^17,-1*K.1^5,K.1^3,-1*K.1^19,-1*K.1^13,K.1^9,-1*K.1^7,K.1^15,K.1^21,-1*K.1,-1*K.1^5,K.1^19,K.1^2,K.1^6,K.1^14,K.1^10,-1*K.1^12,K.1^6,K.1^2,-1*K.1^8,K.1^18,-1*K.1^16,K.1^10,-1*K.1^12,K.1^18,-1*K.1^16,-1*K.1^20,K.1^14,-1*K.1^8,-1*K.1^20,-1*K.1^4,-1*K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |1,1,1,-1,-1,1,-1*K.1^11,K.1^11,K.1^11,-1*K.1^11,K.1^4,-1*K.1^10,K.1^20,-1*K.1^18,-1*K.1^14,K.1^16,-1*K.1^6,-1*K.1^2,K.1^8,K.1^12,-1,-1,-1*K.1^10,K.1^8,-1*K.1^6,K.1^16,-1*K.1^2,K.1^20,-1*K.1^14,-1*K.1^18,K.1^4,K.1^12,K.1^16,-1*K.1^18,K.1^12,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^10,-1*K.1^14,K.1^20,K.1^2,K.1^10,K.1^6,-1*K.1^8,K.1^6,K.1^14,-1*K.1^16,-1*K.1^20,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^10,K.1^2,-1*K.1^16,-1*K.1^12,K.1^18,K.1^14,K.1^18,-1*K.1^12,-1*K.1^20,-1*K.1^6,-1*K.1^2,-1*K.1^18,K.1^20,K.1^12,K.1^16,K.1^8,K.1^4,-1*K.1^10,-1*K.1^14,-1*K.1^17,-1*K.1^19,K.1^9,-1*K.1^13,-1*K.1^7,K.1^15,-1*K.1,K.1^21,-1*K.1^5,K.1^17,K.1^3,K.1^3,-1*K.1^13,K.1^9,K.1^15,-1*K.1^7,K.1^21,-1*K.1,K.1^17,-1*K.1^5,K.1^19,-1*K.1^3,-1*K.1^9,K.1^13,-1*K.1^15,K.1^7,K.1,-1*K.1^21,-1*K.1^17,K.1^5,-1*K.1^3,K.1^19,K.1^13,-1*K.1^9,K.1^7,-1*K.1^15,-1*K.1^21,K.1,K.1^5,-1*K.1^19,K.1^2,K.1^6,K.1^14,K.1^10,-1*K.1^12,K.1^6,K.1^2,-1*K.1^8,K.1^18,-1*K.1^16,K.1^10,-1*K.1^12,K.1^18,-1*K.1^16,-1*K.1^20,K.1^14,-1*K.1^8,-1*K.1^20,-1*K.1^4,-1*K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |1,1,1,-1,-1,1,K.1^11,-1*K.1^11,-1*K.1^11,K.1^11,-1*K.1^18,K.1^12,-1*K.1^2,K.1^4,K.1^8,-1*K.1^6,K.1^16,K.1^20,-1*K.1^14,-1*K.1^10,-1,-1,K.1^12,-1*K.1^14,K.1^16,-1*K.1^6,K.1^20,-1*K.1^2,K.1^8,K.1^4,-1*K.1^18,-1*K.1^10,-1*K.1^6,K.1^4,-1*K.1^10,-1*K.1^18,-1*K.1^14,K.1^20,K.1^16,K.1^12,K.1^8,-1*K.1^2,-1*K.1^20,-1*K.1^12,-1*K.1^16,K.1^14,-1*K.1^16,-1*K.1^8,K.1^6,K.1^2,K.1^18,K.1^18,K.1^14,-1*K.1^12,-1*K.1^20,K.1^6,K.1^10,-1*K.1^4,-1*K.1^8,-1*K.1^4,K.1^10,K.1^2,K.1^16,K.1^20,K.1^4,-1*K.1^2,-1*K.1^10,-1*K.1^6,-1*K.1^14,-1*K.1^18,K.1^12,K.1^8,K.1^5,K.1^3,-1*K.1^13,K.1^9,K.1^15,-1*K.1^7,K.1^21,-1*K.1,K.1^17,-1*K.1^5,-1*K.1^19,-1*K.1^19,K.1^9,-1*K.1^13,-1*K.1^7,K.1^15,-1*K.1,K.1^21,-1*K.1^5,K.1^17,-1*K.1^3,K.1^19,K.1^13,-1*K.1^9,K.1^7,-1*K.1^15,-1*K.1^21,K.1,K.1^5,-1*K.1^17,K.1^19,-1*K.1^3,-1*K.1^9,K.1^13,-1*K.1^15,K.1^7,K.1,-1*K.1^21,-1*K.1^17,K.1^3,-1*K.1^20,-1*K.1^16,-1*K.1^8,-1*K.1^12,K.1^10,-1*K.1^16,-1*K.1^20,K.1^14,-1*K.1^4,K.1^6,-1*K.1^12,K.1^10,-1*K.1^4,K.1^6,K.1^2,-1*K.1^8,K.1^14,K.1^2,K.1^18,K.1^18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,-1*K.1^22,K.1^22,-1,K.1^33,-1*K.1^11,K.1^11,-1*K.1^33,-1*K.1^4,K.1^32,-1*K.1^20,K.1^40,-1*K.1^36,K.1^16,-1*K.1^28,K.1^24,K.1^8,-1*K.1^12,-1*K.1^22,K.1^22,-1*K.1^32,-1*K.1^8,K.1^28,-1*K.1^16,-1*K.1^24,K.1^20,K.1^36,-1*K.1^40,K.1^4,K.1^12,K.1^16,K.1^40,-1*K.1^12,-1*K.1^4,K.1^8,K.1^24,-1*K.1^28,K.1^32,-1*K.1^36,-1*K.1^20,-1*K.1^2,-1*K.1^10,K.1^6,-1*K.1^30,-1*K.1^6,-1*K.1^14,-1*K.1^38,-1*K.1^42,K.1^26,-1*K.1^26,K.1^30,K.1^10,K.1^2,K.1^38,-1*K.1^34,K.1^18,K.1^14,-1*K.1^18,K.1^34,K.1^42,K.1^28,-1*K.1^24,-1*K.1^40,K.1^20,K.1^12,-1*K.1^16,-1*K.1^8,K.1^4,-1*K.1^32,K.1^36,-1*K.1^39,K.1^41,K.1^9,K.1^35,K.1^29,K.1^15,K.1^23,K.1^21,K.1^27,K.1^17,K.1^3,-1*K.1^3,-1*K.1^35,-1*K.1^9,-1*K.1^15,-1*K.1^29,-1*K.1^21,-1*K.1^23,-1*K.1^17,-1*K.1^27,-1*K.1^19,-1*K.1^25,-1*K.1^31,-1*K.1^13,-1*K.1^37,-1*K.1^7,-1*K.1,-1*K.1^43,K.1^39,K.1^5,K.1^25,K.1^19,K.1^13,K.1^31,K.1^7,K.1^37,K.1^43,K.1,-1*K.1^5,-1*K.1^41,K.1^2,-1*K.1^6,K.1^14,K.1^10,K.1^34,K.1^6,-1*K.1^2,K.1^30,-1*K.1^18,K.1^38,-1*K.1^10,-1*K.1^34,K.1^18,-1*K.1^38,K.1^42,-1*K.1^14,-1*K.1^30,-1*K.1^42,K.1^26,-1*K.1^26]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,K.1^22,-1*K.1^22,-1,-1*K.1^11,K.1^33,-1*K.1^33,K.1^11,K.1^40,-1*K.1^12,K.1^24,-1*K.1^4,K.1^8,-1*K.1^28,K.1^16,-1*K.1^20,-1*K.1^36,K.1^32,K.1^22,-1*K.1^22,K.1^12,K.1^36,-1*K.1^16,K.1^28,K.1^20,-1*K.1^24,-1*K.1^8,K.1^4,-1*K.1^40,-1*K.1^32,-1*K.1^28,-1*K.1^4,K.1^32,K.1^40,-1*K.1^36,-1*K.1^20,K.1^16,-1*K.1^12,K.1^8,K.1^24,K.1^42,K.1^34,-1*K.1^38,K.1^14,K.1^38,K.1^30,K.1^6,K.1^2,-1*K.1^18,K.1^18,-1*K.1^14,-1*K.1^34,-1*K.1^42,-1*K.1^6,K.1^10,-1*K.1^26,-1*K.1^30,K.1^26,-1*K.1^10,-1*K.1^2,-1*K.1^16,K.1^20,K.1^4,-1*K.1^24,-1*K.1^32,K.1^28,K.1^36,-1*K.1^40,K.1^12,-1*K.1^8,K.1^5,-1*K.1^3,-1*K.1^35,-1*K.1^9,-1*K.1^15,-1*K.1^29,-1*K.1^21,-1*K.1^23,-1*K.1^17,-1*K.1^27,-1*K.1^41,K.1^41,K.1^9,K.1^35,K.1^29,K.1^15,K.1^23,K.1^21,K.1^27,K.1^17,K.1^25,K.1^19,K.1^13,K.1^31,K.1^7,K.1^37,K.1^43,K.1,-1*K.1^5,-1*K.1^39,-1*K.1^19,-1*K.1^25,-1*K.1^31,-1*K.1^13,-1*K.1^37,-1*K.1^7,-1*K.1,-1*K.1^43,K.1^39,K.1^3,-1*K.1^42,K.1^38,-1*K.1^30,-1*K.1^34,-1*K.1^10,-1*K.1^38,K.1^42,-1*K.1^14,K.1^26,-1*K.1^6,K.1^34,K.1^10,-1*K.1^26,K.1^6,-1*K.1^2,K.1^30,K.1^14,K.1^2,-1*K.1^18,K.1^18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,-1*K.1^22,K.1^22,-1,K.1^33,-1*K.1^11,K.1^11,-1*K.1^33,K.1^40,-1*K.1^12,K.1^24,-1*K.1^4,K.1^8,-1*K.1^28,K.1^16,-1*K.1^20,-1*K.1^36,K.1^32,-1*K.1^22,K.1^22,K.1^12,K.1^36,-1*K.1^16,K.1^28,K.1^20,-1*K.1^24,-1*K.1^8,K.1^4,-1*K.1^40,-1*K.1^32,-1*K.1^28,-1*K.1^4,K.1^32,K.1^40,-1*K.1^36,-1*K.1^20,K.1^16,-1*K.1^12,K.1^8,K.1^24,-1*K.1^42,-1*K.1^34,K.1^38,-1*K.1^14,-1*K.1^38,-1*K.1^30,-1*K.1^6,-1*K.1^2,K.1^18,-1*K.1^18,K.1^14,K.1^34,K.1^42,K.1^6,-1*K.1^10,K.1^26,K.1^30,-1*K.1^26,K.1^10,K.1^2,-1*K.1^16,K.1^20,K.1^4,-1*K.1^24,-1*K.1^32,K.1^28,K.1^36,-1*K.1^40,K.1^12,-1*K.1^8,K.1^27,K.1^25,-1*K.1^13,-1*K.1^31,K.1^37,K.1^7,-1*K.1^43,-1*K.1,-1*K.1^39,-1*K.1^5,K.1^19,-1*K.1^19,K.1^31,K.1^13,-1*K.1^7,-1*K.1^37,K.1,K.1^43,K.1^5,K.1^39,-1*K.1^3,-1*K.1^41,K.1^35,K.1^9,-1*K.1^29,-1*K.1^15,K.1^21,K.1^23,-1*K.1^27,-1*K.1^17,K.1^41,K.1^3,-1*K.1^9,-1*K.1^35,K.1^15,K.1^29,-1*K.1^23,-1*K.1^21,K.1^17,-1*K.1^25,K.1^42,-1*K.1^38,K.1^30,K.1^34,K.1^10,K.1^38,-1*K.1^42,K.1^14,-1*K.1^26,K.1^6,-1*K.1^34,-1*K.1^10,K.1^26,-1*K.1^6,K.1^2,-1*K.1^30,-1*K.1^14,-1*K.1^2,K.1^18,-1*K.1^18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,K.1^22,-1*K.1^22,-1,-1*K.1^11,K.1^33,-1*K.1^33,K.1^11,-1*K.1^4,K.1^32,-1*K.1^20,K.1^40,-1*K.1^36,K.1^16,-1*K.1^28,K.1^24,K.1^8,-1*K.1^12,K.1^22,-1*K.1^22,-1*K.1^32,-1*K.1^8,K.1^28,-1*K.1^16,-1*K.1^24,K.1^20,K.1^36,-1*K.1^40,K.1^4,K.1^12,K.1^16,K.1^40,-1*K.1^12,-1*K.1^4,K.1^8,K.1^24,-1*K.1^28,K.1^32,-1*K.1^36,-1*K.1^20,K.1^2,K.1^10,-1*K.1^6,K.1^30,K.1^6,K.1^14,K.1^38,K.1^42,-1*K.1^26,K.1^26,-1*K.1^30,-1*K.1^10,-1*K.1^2,-1*K.1^38,K.1^34,-1*K.1^18,-1*K.1^14,K.1^18,-1*K.1^34,-1*K.1^42,K.1^28,-1*K.1^24,-1*K.1^40,K.1^20,K.1^12,-1*K.1^16,-1*K.1^8,K.1^4,-1*K.1^32,K.1^36,-1*K.1^17,-1*K.1^19,K.1^31,K.1^13,-1*K.1^7,-1*K.1^37,K.1,K.1^43,K.1^5,K.1^39,-1*K.1^25,K.1^25,-1*K.1^13,-1*K.1^31,K.1^37,K.1^7,-1*K.1^43,-1*K.1,-1*K.1^39,-1*K.1^5,K.1^41,K.1^3,-1*K.1^9,-1*K.1^35,K.1^15,K.1^29,-1*K.1^23,-1*K.1^21,K.1^17,K.1^27,-1*K.1^3,-1*K.1^41,K.1^35,K.1^9,-1*K.1^29,-1*K.1^15,K.1^21,K.1^23,-1*K.1^27,K.1^19,-1*K.1^2,K.1^6,-1*K.1^14,-1*K.1^10,-1*K.1^34,-1*K.1^6,K.1^2,-1*K.1^30,K.1^18,-1*K.1^38,K.1^10,K.1^34,-1*K.1^18,K.1^38,-1*K.1^42,K.1^14,K.1^30,K.1^42,-1*K.1^26,K.1^26]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,-1*K.1^22,K.1^22,-1,K.1^33,-1*K.1^11,K.1^11,-1*K.1^33,-1*K.1^12,K.1^8,K.1^16,K.1^32,-1*K.1^20,-1*K.1^4,K.1^40,-1*K.1^28,K.1^24,-1*K.1^36,-1*K.1^22,K.1^22,-1*K.1^8,-1*K.1^24,-1*K.1^40,K.1^4,K.1^28,-1*K.1^16,K.1^20,-1*K.1^32,K.1^12,K.1^36,-1*K.1^4,K.1^32,-1*K.1^36,-1*K.1^12,K.1^24,-1*K.1^28,K.1^40,K.1^8,-1*K.1^20,K.1^16,K.1^6,K.1^30,-1*K.1^18,K.1^2,K.1^18,K.1^42,K.1^26,K.1^38,K.1^34,-1*K.1^34,-1*K.1^2,-1*K.1^30,-1*K.1^6,-1*K.1^26,K.1^14,K.1^10,-1*K.1^42,-1*K.1^10,-1*K.1^14,-1*K.1^38,-1*K.1^40,K.1^28,-1*K.1^32,-1*K.1^16,K.1^36,K.1^4,-1*K.1^24,K.1^12,-1*K.1^8,K.1^20,-1*K.1^7,-1*K.1^13,-1*K.1^5,-1*K.1^39,K.1^21,K.1^23,-1*K.1^3,-1*K.1^41,-1*K.1^15,-1*K.1^29,-1*K.1^31,K.1^31,K.1^39,K.1^5,-1*K.1^23,-1*K.1^21,K.1^41,K.1^3,K.1^29,K.1^15,-1*K.1^35,-1*K.1^9,K.1^27,K.1^17,K.1,K.1^43,-1*K.1^25,-1*K.1^19,K.1^7,K.1^37,K.1^9,K.1^35,-1*K.1^17,-1*K.1^27,-1*K.1^43,-1*K.1,K.1^19,K.1^25,-1*K.1^37,K.1^13,-1*K.1^6,K.1^18,-1*K.1^42,-1*K.1^30,-1*K.1^14,-1*K.1^18,K.1^6,-1*K.1^2,-1*K.1^10,-1*K.1^26,K.1^30,K.1^14,K.1^10,K.1^26,-1*K.1^38,K.1^42,K.1^2,K.1^38,K.1^34,-1*K.1^34]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,K.1^22,-1*K.1^22,-1,-1*K.1^11,K.1^33,-1*K.1^33,K.1^11,K.1^32,-1*K.1^36,-1*K.1^28,-1*K.1^12,K.1^24,K.1^40,-1*K.1^4,K.1^16,-1*K.1^20,K.1^8,K.1^22,-1*K.1^22,K.1^36,K.1^20,K.1^4,-1*K.1^40,-1*K.1^16,K.1^28,-1*K.1^24,K.1^12,-1*K.1^32,-1*K.1^8,K.1^40,-1*K.1^12,K.1^8,K.1^32,-1*K.1^20,K.1^16,-1*K.1^4,-1*K.1^36,K.1^24,-1*K.1^28,-1*K.1^38,-1*K.1^14,K.1^26,-1*K.1^42,-1*K.1^26,-1*K.1^2,-1*K.1^18,-1*K.1^6,-1*K.1^10,K.1^10,K.1^42,K.1^14,K.1^38,K.1^18,-1*K.1^30,-1*K.1^34,K.1^2,K.1^34,K.1^30,K.1^6,K.1^4,-1*K.1^16,K.1^12,K.1^28,-1*K.1^8,-1*K.1^40,K.1^20,-1*K.1^32,K.1^36,-1*K.1^24,K.1^37,K.1^31,K.1^39,K.1^5,-1*K.1^23,-1*K.1^21,K.1^41,K.1^3,K.1^29,K.1^15,K.1^13,-1*K.1^13,-1*K.1^5,-1*K.1^39,K.1^21,K.1^23,-1*K.1^3,-1*K.1^41,-1*K.1^15,-1*K.1^29,K.1^9,K.1^35,-1*K.1^17,-1*K.1^27,-1*K.1^43,-1*K.1,K.1^19,K.1^25,-1*K.1^37,-1*K.1^7,-1*K.1^35,-1*K.1^9,K.1^27,K.1^17,K.1,K.1^43,-1*K.1^25,-1*K.1^19,K.1^7,-1*K.1^31,K.1^38,-1*K.1^26,K.1^2,K.1^14,K.1^30,K.1^26,-1*K.1^38,K.1^42,K.1^34,K.1^18,-1*K.1^14,-1*K.1^30,-1*K.1^34,-1*K.1^18,K.1^6,-1*K.1^2,-1*K.1^42,-1*K.1^6,-1*K.1^10,K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,-1*K.1^22,K.1^22,-1,K.1^33,-1*K.1^11,K.1^11,-1*K.1^33,K.1^32,-1*K.1^36,-1*K.1^28,-1*K.1^12,K.1^24,K.1^40,-1*K.1^4,K.1^16,-1*K.1^20,K.1^8,-1*K.1^22,K.1^22,K.1^36,K.1^20,K.1^4,-1*K.1^40,-1*K.1^16,K.1^28,-1*K.1^24,K.1^12,-1*K.1^32,-1*K.1^8,K.1^40,-1*K.1^12,K.1^8,K.1^32,-1*K.1^20,K.1^16,-1*K.1^4,-1*K.1^36,K.1^24,-1*K.1^28,K.1^38,K.1^14,-1*K.1^26,K.1^42,K.1^26,K.1^2,K.1^18,K.1^6,K.1^10,-1*K.1^10,-1*K.1^42,-1*K.1^14,-1*K.1^38,-1*K.1^18,K.1^30,K.1^34,-1*K.1^2,-1*K.1^34,-1*K.1^30,-1*K.1^6,K.1^4,-1*K.1^16,K.1^12,K.1^28,-1*K.1^8,-1*K.1^40,K.1^20,-1*K.1^32,K.1^36,-1*K.1^24,-1*K.1^15,K.1^9,K.1^17,K.1^27,-1*K.1,-1*K.1^43,-1*K.1^19,-1*K.1^25,-1*K.1^7,-1*K.1^37,K.1^35,-1*K.1^35,-1*K.1^27,-1*K.1^17,K.1^43,K.1,K.1^25,K.1^19,K.1^37,K.1^7,K.1^31,K.1^13,-1*K.1^39,-1*K.1^5,-1*K.1^21,-1*K.1^23,-1*K.1^41,-1*K.1^3,K.1^15,K.1^29,-1*K.1^13,-1*K.1^31,K.1^5,K.1^39,K.1^23,K.1^21,K.1^3,K.1^41,-1*K.1^29,-1*K.1^9,-1*K.1^38,K.1^26,-1*K.1^2,-1*K.1^14,-1*K.1^30,-1*K.1^26,K.1^38,-1*K.1^42,-1*K.1^34,-1*K.1^18,K.1^14,K.1^30,K.1^34,K.1^18,-1*K.1^6,K.1^2,K.1^42,K.1^6,K.1^10,-1*K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,K.1^22,-1*K.1^22,-1,-1*K.1^11,K.1^33,-1*K.1^33,K.1^11,-1*K.1^12,K.1^8,K.1^16,K.1^32,-1*K.1^20,-1*K.1^4,K.1^40,-1*K.1^28,K.1^24,-1*K.1^36,K.1^22,-1*K.1^22,-1*K.1^8,-1*K.1^24,-1*K.1^40,K.1^4,K.1^28,-1*K.1^16,K.1^20,-1*K.1^32,K.1^12,K.1^36,-1*K.1^4,K.1^32,-1*K.1^36,-1*K.1^12,K.1^24,-1*K.1^28,K.1^40,K.1^8,-1*K.1^20,K.1^16,-1*K.1^6,-1*K.1^30,K.1^18,-1*K.1^2,-1*K.1^18,-1*K.1^42,-1*K.1^26,-1*K.1^38,-1*K.1^34,K.1^34,K.1^2,K.1^30,K.1^6,K.1^26,-1*K.1^14,-1*K.1^10,K.1^42,K.1^10,K.1^14,K.1^38,-1*K.1^40,K.1^28,-1*K.1^32,-1*K.1^16,K.1^36,K.1^4,-1*K.1^24,K.1^12,-1*K.1^8,K.1^20,K.1^29,-1*K.1^35,-1*K.1^27,-1*K.1^17,K.1^43,K.1,K.1^25,K.1^19,K.1^37,K.1^7,-1*K.1^9,K.1^9,K.1^17,K.1^27,-1*K.1,-1*K.1^43,-1*K.1^19,-1*K.1^25,-1*K.1^7,-1*K.1^37,-1*K.1^13,-1*K.1^31,K.1^5,K.1^39,K.1^23,K.1^21,K.1^3,K.1^41,-1*K.1^29,-1*K.1^15,K.1^31,K.1^13,-1*K.1^39,-1*K.1^5,-1*K.1^21,-1*K.1^23,-1*K.1^41,-1*K.1^3,K.1^15,K.1^35,K.1^6,-1*K.1^18,K.1^42,K.1^30,K.1^14,K.1^18,-1*K.1^6,K.1^2,K.1^10,K.1^26,-1*K.1^30,-1*K.1^14,-1*K.1^10,-1*K.1^26,K.1^38,-1*K.1^42,-1*K.1^2,-1*K.1^38,-1*K.1^34,K.1^34]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,-1*K.1^22,K.1^22,-1,K.1^33,-1*K.1^11,K.1^11,-1*K.1^33,-1*K.1^20,-1*K.1^28,-1*K.1^12,K.1^24,-1*K.1^4,-1*K.1^36,K.1^8,K.1^32,K.1^40,K.1^16,-1*K.1^22,K.1^22,K.1^28,-1*K.1^40,-1*K.1^8,K.1^36,-1*K.1^32,K.1^12,K.1^4,-1*K.1^24,K.1^20,-1*K.1^16,-1*K.1^36,K.1^24,K.1^16,-1*K.1^20,K.1^40,K.1^32,K.1^8,-1*K.1^28,-1*K.1^4,-1*K.1^12,-1*K.1^10,K.1^6,K.1^30,K.1^18,-1*K.1^30,K.1^26,-1*K.1^14,-1*K.1^34,K.1^42,-1*K.1^42,-1*K.1^18,-1*K.1^6,K.1^10,K.1^14,K.1^38,K.1^2,-1*K.1^26,-1*K.1^2,-1*K.1^38,K.1^34,-1*K.1^8,-1*K.1^32,-1*K.1^24,K.1^12,-1*K.1^16,K.1^36,-1*K.1^40,K.1^20,K.1^28,K.1^4,K.1^19,-1*K.1^29,K.1,K.1^43,K.1^13,K.1^31,-1*K.1^27,-1*K.1^17,K.1^3,K.1^41,-1*K.1^15,K.1^15,-1*K.1^43,-1*K.1,-1*K.1^31,-1*K.1^13,K.1^17,K.1^27,-1*K.1^41,-1*K.1^3,K.1^7,K.1^37,-1*K.1^23,-1*K.1^21,K.1^9,K.1^35,K.1^5,K.1^39,-1*K.1^19,-1*K.1^25,-1*K.1^37,-1*K.1^7,K.1^21,K.1^23,-1*K.1^35,-1*K.1^9,-1*K.1^39,-1*K.1^5,K.1^25,K.1^29,K.1^10,-1*K.1^30,-1*K.1^26,-1*K.1^6,-1*K.1^38,K.1^30,-1*K.1^10,-1*K.1^18,-1*K.1^2,K.1^14,K.1^6,K.1^38,K.1^2,-1*K.1^14,K.1^34,K.1^26,K.1^18,-1*K.1^34,K.1^42,-1*K.1^42]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,K.1^22,-1*K.1^22,-1,-1*K.1^11,K.1^33,-1*K.1^33,K.1^11,K.1^24,K.1^16,K.1^32,-1*K.1^20,K.1^40,K.1^8,-1*K.1^36,-1*K.1^12,-1*K.1^4,-1*K.1^28,K.1^22,-1*K.1^22,-1*K.1^16,K.1^4,K.1^36,-1*K.1^8,K.1^12,-1*K.1^32,-1*K.1^40,K.1^20,-1*K.1^24,K.1^28,K.1^8,-1*K.1^20,-1*K.1^28,K.1^24,-1*K.1^4,-1*K.1^12,-1*K.1^36,K.1^16,K.1^40,K.1^32,K.1^34,-1*K.1^38,-1*K.1^14,-1*K.1^26,K.1^14,-1*K.1^18,K.1^30,K.1^10,-1*K.1^2,K.1^2,K.1^26,K.1^38,-1*K.1^34,-1*K.1^30,-1*K.1^6,-1*K.1^42,K.1^18,K.1^42,K.1^6,-1*K.1^10,K.1^36,K.1^12,K.1^20,-1*K.1^32,K.1^28,-1*K.1^8,K.1^4,-1*K.1^24,-1*K.1^16,-1*K.1^40,-1*K.1^25,K.1^15,-1*K.1^43,-1*K.1,-1*K.1^31,-1*K.1^13,K.1^17,K.1^27,-1*K.1^41,-1*K.1^3,K.1^29,-1*K.1^29,K.1,K.1^43,K.1^13,K.1^31,-1*K.1^27,-1*K.1^17,K.1^3,K.1^41,-1*K.1^37,-1*K.1^7,K.1^21,K.1^23,-1*K.1^35,-1*K.1^9,-1*K.1^39,-1*K.1^5,K.1^25,K.1^19,K.1^7,K.1^37,-1*K.1^23,-1*K.1^21,K.1^9,K.1^35,K.1^5,K.1^39,-1*K.1^19,-1*K.1^15,-1*K.1^34,K.1^14,K.1^18,K.1^38,K.1^6,-1*K.1^14,K.1^34,K.1^26,K.1^42,-1*K.1^30,-1*K.1^38,-1*K.1^6,-1*K.1^42,K.1^30,-1*K.1^10,-1*K.1^18,-1*K.1^26,K.1^10,-1*K.1^2,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,-1*K.1^22,K.1^22,-1,K.1^33,-1*K.1^11,K.1^11,-1*K.1^33,K.1^24,K.1^16,K.1^32,-1*K.1^20,K.1^40,K.1^8,-1*K.1^36,-1*K.1^12,-1*K.1^4,-1*K.1^28,-1*K.1^22,K.1^22,-1*K.1^16,K.1^4,K.1^36,-1*K.1^8,K.1^12,-1*K.1^32,-1*K.1^40,K.1^20,-1*K.1^24,K.1^28,K.1^8,-1*K.1^20,-1*K.1^28,K.1^24,-1*K.1^4,-1*K.1^12,-1*K.1^36,K.1^16,K.1^40,K.1^32,-1*K.1^34,K.1^38,K.1^14,K.1^26,-1*K.1^14,K.1^18,-1*K.1^30,-1*K.1^10,K.1^2,-1*K.1^2,-1*K.1^26,-1*K.1^38,K.1^34,K.1^30,K.1^6,K.1^42,-1*K.1^18,-1*K.1^42,-1*K.1^6,K.1^10,K.1^36,K.1^12,K.1^20,-1*K.1^32,K.1^28,-1*K.1^8,K.1^4,-1*K.1^24,-1*K.1^16,-1*K.1^40,K.1^3,-1*K.1^37,-1*K.1^21,-1*K.1^23,-1*K.1^9,-1*K.1^35,K.1^39,K.1^5,K.1^19,K.1^25,-1*K.1^7,K.1^7,K.1^23,K.1^21,K.1^35,K.1^9,-1*K.1^5,-1*K.1^39,-1*K.1^25,-1*K.1^19,K.1^15,K.1^29,K.1^43,K.1,-1*K.1^13,-1*K.1^31,-1*K.1^17,-1*K.1^27,-1*K.1^3,-1*K.1^41,-1*K.1^29,-1*K.1^15,-1*K.1,-1*K.1^43,K.1^31,K.1^13,K.1^27,K.1^17,K.1^41,K.1^37,K.1^34,-1*K.1^14,-1*K.1^18,-1*K.1^38,-1*K.1^6,K.1^14,-1*K.1^34,-1*K.1^26,-1*K.1^42,K.1^30,K.1^38,K.1^6,K.1^42,-1*K.1^30,K.1^10,K.1^18,K.1^26,-1*K.1^10,K.1^2,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,K.1^22,-1*K.1^22,-1,-1*K.1^11,K.1^33,-1*K.1^33,K.1^11,-1*K.1^20,-1*K.1^28,-1*K.1^12,K.1^24,-1*K.1^4,-1*K.1^36,K.1^8,K.1^32,K.1^40,K.1^16,K.1^22,-1*K.1^22,K.1^28,-1*K.1^40,-1*K.1^8,K.1^36,-1*K.1^32,K.1^12,K.1^4,-1*K.1^24,K.1^20,-1*K.1^16,-1*K.1^36,K.1^24,K.1^16,-1*K.1^20,K.1^40,K.1^32,K.1^8,-1*K.1^28,-1*K.1^4,-1*K.1^12,K.1^10,-1*K.1^6,-1*K.1^30,-1*K.1^18,K.1^30,-1*K.1^26,K.1^14,K.1^34,-1*K.1^42,K.1^42,K.1^18,K.1^6,-1*K.1^10,-1*K.1^14,-1*K.1^38,-1*K.1^2,K.1^26,K.1^2,K.1^38,-1*K.1^34,-1*K.1^8,-1*K.1^32,-1*K.1^24,K.1^12,-1*K.1^16,K.1^36,-1*K.1^40,K.1^20,K.1^28,K.1^4,-1*K.1^41,K.1^7,K.1^23,K.1^21,K.1^35,K.1^9,-1*K.1^5,-1*K.1^39,-1*K.1^25,-1*K.1^19,K.1^37,-1*K.1^37,-1*K.1^21,-1*K.1^23,-1*K.1^9,-1*K.1^35,K.1^39,K.1^5,K.1^19,K.1^25,-1*K.1^29,-1*K.1^15,-1*K.1,-1*K.1^43,K.1^31,K.1^13,K.1^27,K.1^17,K.1^41,K.1^3,K.1^15,K.1^29,K.1^43,K.1,-1*K.1^13,-1*K.1^31,-1*K.1^17,-1*K.1^27,-1*K.1^3,-1*K.1^7,-1*K.1^10,K.1^30,K.1^26,K.1^6,K.1^38,-1*K.1^30,K.1^10,K.1^18,K.1^2,-1*K.1^14,-1*K.1^6,-1*K.1^38,-1*K.1^2,K.1^14,-1*K.1^34,-1*K.1^26,-1*K.1^18,K.1^34,-1*K.1^42,K.1^42]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,-1*K.1^22,K.1^22,-1,K.1^33,-1*K.1^11,K.1^11,-1*K.1^33,-1*K.1^28,-1*K.1^4,K.1^8,K.1^16,K.1^32,K.1^24,-1*K.1^20,-1*K.1^36,-1*K.1^12,K.1^40,-1*K.1^22,K.1^22,K.1^4,K.1^12,K.1^20,-1*K.1^24,K.1^36,-1*K.1^8,-1*K.1^32,-1*K.1^16,K.1^28,-1*K.1^40,K.1^24,K.1^16,K.1^40,-1*K.1^28,-1*K.1^12,-1*K.1^36,-1*K.1^20,-1*K.1^4,K.1^32,K.1^8,K.1^14,-1*K.1^26,-1*K.1^42,K.1^34,K.1^42,K.1^10,K.1^2,K.1^30,-1*K.1^6,K.1^6,-1*K.1^34,K.1^26,-1*K.1^14,-1*K.1^2,-1*K.1^18,-1*K.1^38,-1*K.1^10,K.1^38,K.1^18,-1*K.1^30,K.1^20,K.1^36,-1*K.1^16,-1*K.1^8,-1*K.1^40,-1*K.1^24,K.1^12,K.1^28,K.1^4,-1*K.1^32,-1*K.1^31,K.1,K.1^41,K.1^3,K.1^5,K.1^39,K.1^7,K.1^37,K.1^35,K.1^9,K.1^43,-1*K.1^43,-1*K.1^3,-1*K.1^41,-1*K.1^39,-1*K.1^5,-1*K.1^37,-1*K.1^7,-1*K.1^9,-1*K.1^35,K.1^23,K.1^21,K.1^19,K.1^25,K.1^17,K.1^27,K.1^29,K.1^15,K.1^31,K.1^13,-1*K.1^21,-1*K.1^23,-1*K.1^25,-1*K.1^19,-1*K.1^27,-1*K.1^17,-1*K.1^15,-1*K.1^29,-1*K.1^13,-1*K.1,-1*K.1^14,K.1^42,-1*K.1^10,K.1^26,K.1^18,-1*K.1^42,K.1^14,-1*K.1^34,K.1^38,-1*K.1^2,-1*K.1^26,-1*K.1^18,-1*K.1^38,K.1^2,-1*K.1^30,K.1^10,K.1^34,K.1^30,-1*K.1^6,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,K.1^22,-1*K.1^22,-1,-1*K.1^11,K.1^33,-1*K.1^33,K.1^11,K.1^16,K.1^40,-1*K.1^36,-1*K.1^28,-1*K.1^12,-1*K.1^20,K.1^24,K.1^8,K.1^32,-1*K.1^4,K.1^22,-1*K.1^22,-1*K.1^40,-1*K.1^32,-1*K.1^24,K.1^20,-1*K.1^8,K.1^36,K.1^12,K.1^28,-1*K.1^16,K.1^4,-1*K.1^20,-1*K.1^28,-1*K.1^4,K.1^16,K.1^32,K.1^8,K.1^24,K.1^40,-1*K.1^12,-1*K.1^36,-1*K.1^30,K.1^18,K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^34,-1*K.1^42,-1*K.1^14,K.1^38,-1*K.1^38,K.1^10,-1*K.1^18,K.1^30,K.1^42,K.1^26,K.1^6,K.1^34,-1*K.1^6,-1*K.1^26,K.1^14,-1*K.1^24,-1*K.1^8,K.1^28,K.1^36,K.1^4,K.1^20,-1*K.1^32,-1*K.1^16,-1*K.1^40,K.1^12,K.1^13,-1*K.1^43,-1*K.1^3,-1*K.1^41,-1*K.1^39,-1*K.1^5,-1*K.1^37,-1*K.1^7,-1*K.1^9,-1*K.1^35,-1*K.1,K.1,K.1^41,K.1^3,K.1^5,K.1^39,K.1^7,K.1^37,K.1^35,K.1^9,-1*K.1^21,-1*K.1^23,-1*K.1^25,-1*K.1^19,-1*K.1^27,-1*K.1^17,-1*K.1^15,-1*K.1^29,-1*K.1^13,-1*K.1^31,K.1^23,K.1^21,K.1^19,K.1^25,K.1^17,K.1^27,K.1^29,K.1^15,K.1^31,K.1^43,K.1^30,-1*K.1^2,K.1^34,-1*K.1^18,-1*K.1^26,K.1^2,-1*K.1^30,K.1^10,-1*K.1^6,K.1^42,K.1^18,K.1^26,K.1^6,-1*K.1^42,K.1^14,-1*K.1^34,-1*K.1^10,-1*K.1^14,K.1^38,-1*K.1^38]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,-1*K.1^22,K.1^22,-1,K.1^33,-1*K.1^11,K.1^11,-1*K.1^33,K.1^16,K.1^40,-1*K.1^36,-1*K.1^28,-1*K.1^12,-1*K.1^20,K.1^24,K.1^8,K.1^32,-1*K.1^4,-1*K.1^22,K.1^22,-1*K.1^40,-1*K.1^32,-1*K.1^24,K.1^20,-1*K.1^8,K.1^36,K.1^12,K.1^28,-1*K.1^16,K.1^4,-1*K.1^20,-1*K.1^28,-1*K.1^4,K.1^16,K.1^32,K.1^8,K.1^24,K.1^40,-1*K.1^12,-1*K.1^36,K.1^30,-1*K.1^18,-1*K.1^2,K.1^10,K.1^2,K.1^34,K.1^42,K.1^14,-1*K.1^38,K.1^38,-1*K.1^10,K.1^18,-1*K.1^30,-1*K.1^42,-1*K.1^26,-1*K.1^6,-1*K.1^34,K.1^6,K.1^26,-1*K.1^14,-1*K.1^24,-1*K.1^8,K.1^28,K.1^36,K.1^4,K.1^20,-1*K.1^32,-1*K.1^16,-1*K.1^40,K.1^12,K.1^35,-1*K.1^21,K.1^25,K.1^19,-1*K.1^17,-1*K.1^27,K.1^15,K.1^29,-1*K.1^31,-1*K.1^13,-1*K.1^23,K.1^23,-1*K.1^19,-1*K.1^25,K.1^27,K.1^17,-1*K.1^29,-1*K.1^15,K.1^13,K.1^31,-1*K.1^43,-1*K.1,K.1^3,K.1^41,-1*K.1^5,-1*K.1^39,K.1^37,K.1^7,-1*K.1^35,-1*K.1^9,K.1,K.1^43,-1*K.1^41,-1*K.1^3,K.1^39,K.1^5,-1*K.1^7,-1*K.1^37,K.1^9,K.1^21,-1*K.1^30,K.1^2,-1*K.1^34,K.1^18,K.1^26,-1*K.1^2,K.1^30,-1*K.1^10,K.1^6,-1*K.1^42,-1*K.1^18,-1*K.1^26,-1*K.1^6,K.1^42,-1*K.1^14,K.1^34,K.1^10,K.1^14,-1*K.1^38,K.1^38]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,K.1^22,-1*K.1^22,-1,-1*K.1^11,K.1^33,-1*K.1^33,K.1^11,-1*K.1^28,-1*K.1^4,K.1^8,K.1^16,K.1^32,K.1^24,-1*K.1^20,-1*K.1^36,-1*K.1^12,K.1^40,K.1^22,-1*K.1^22,K.1^4,K.1^12,K.1^20,-1*K.1^24,K.1^36,-1*K.1^8,-1*K.1^32,-1*K.1^16,K.1^28,-1*K.1^40,K.1^24,K.1^16,K.1^40,-1*K.1^28,-1*K.1^12,-1*K.1^36,-1*K.1^20,-1*K.1^4,K.1^32,K.1^8,-1*K.1^14,K.1^26,K.1^42,-1*K.1^34,-1*K.1^42,-1*K.1^10,-1*K.1^2,-1*K.1^30,K.1^6,-1*K.1^6,K.1^34,-1*K.1^26,K.1^14,K.1^2,K.1^18,K.1^38,K.1^10,-1*K.1^38,-1*K.1^18,K.1^30,K.1^20,K.1^36,-1*K.1^16,-1*K.1^8,-1*K.1^40,-1*K.1^24,K.1^12,K.1^28,K.1^4,-1*K.1^32,-1*K.1^9,K.1^23,-1*K.1^19,-1*K.1^25,K.1^27,K.1^17,-1*K.1^29,-1*K.1^15,K.1^13,K.1^31,K.1^21,-1*K.1^21,K.1^25,K.1^19,-1*K.1^17,-1*K.1^27,K.1^15,K.1^29,-1*K.1^31,-1*K.1^13,K.1,K.1^43,-1*K.1^41,-1*K.1^3,K.1^39,K.1^5,-1*K.1^7,-1*K.1^37,K.1^9,K.1^35,-1*K.1^43,-1*K.1,K.1^3,K.1^41,-1*K.1^5,-1*K.1^39,K.1^37,K.1^7,-1*K.1^35,-1*K.1^23,K.1^14,-1*K.1^42,K.1^10,-1*K.1^26,-1*K.1^18,K.1^42,-1*K.1^14,K.1^34,-1*K.1^38,K.1^2,K.1^26,K.1^18,K.1^38,-1*K.1^2,K.1^30,-1*K.1^10,-1*K.1^34,-1*K.1^30,K.1^6,-1*K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,-1*K.1^22,K.1^22,-1,K.1^33,-1*K.1^11,K.1^11,-1*K.1^33,-1*K.1^36,K.1^24,-1*K.1^4,K.1^8,K.1^16,-1*K.1^12,K.1^32,K.1^40,-1*K.1^28,-1*K.1^20,-1*K.1^22,K.1^22,-1*K.1^24,K.1^28,-1*K.1^32,K.1^12,-1*K.1^40,K.1^4,-1*K.1^16,-1*K.1^8,K.1^36,K.1^20,-1*K.1^12,K.1^8,-1*K.1^20,-1*K.1^36,-1*K.1^28,K.1^40,K.1^32,K.1^24,K.1^16,-1*K.1^4,-1*K.1^18,-1*K.1^2,-1*K.1^10,-1*K.1^6,K.1^10,-1*K.1^38,K.1^34,-1*K.1^26,-1*K.1^14,K.1^14,K.1^6,K.1^2,K.1^18,-1*K.1^34,-1*K.1^42,-1*K.1^30,K.1^38,K.1^30,K.1^42,K.1^26,-1*K.1^32,-1*K.1^40,-1*K.1^8,K.1^4,K.1^20,K.1^12,K.1^28,K.1^36,-1*K.1^24,-1*K.1^16,K.1^43,K.1^17,-1*K.1^37,-1*K.1^7,-1*K.1^41,-1*K.1^3,K.1^31,K.1^13,-1*K.1^23,-1*K.1^21,K.1^27,-1*K.1^27,K.1^7,K.1^37,K.1^3,K.1^41,-1*K.1^13,-1*K.1^31,K.1^21,K.1^23,K.1^39,K.1^5,-1*K.1^15,-1*K.1^29,K.1^25,K.1^19,-1*K.1^9,-1*K.1^35,-1*K.1^43,-1*K.1,-1*K.1^5,-1*K.1^39,K.1^29,K.1^15,-1*K.1^19,-1*K.1^25,K.1^35,K.1^9,K.1,-1*K.1^17,K.1^18,K.1^10,K.1^38,K.1^2,K.1^42,-1*K.1^10,-1*K.1^18,K.1^6,K.1^30,-1*K.1^34,-1*K.1^2,-1*K.1^42,-1*K.1^30,K.1^34,K.1^26,-1*K.1^38,-1*K.1^6,-1*K.1^26,-1*K.1^14,K.1^14]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,K.1^22,-1*K.1^22,-1,-1*K.1^11,K.1^33,-1*K.1^33,K.1^11,K.1^8,-1*K.1^20,K.1^40,-1*K.1^36,-1*K.1^28,K.1^32,-1*K.1^12,-1*K.1^4,K.1^16,K.1^24,K.1^22,-1*K.1^22,K.1^20,-1*K.1^16,K.1^12,-1*K.1^32,K.1^4,-1*K.1^40,K.1^28,K.1^36,-1*K.1^8,-1*K.1^24,K.1^32,-1*K.1^36,K.1^24,K.1^8,K.1^16,-1*K.1^4,-1*K.1^12,-1*K.1^20,-1*K.1^28,K.1^40,K.1^26,K.1^42,K.1^34,K.1^38,-1*K.1^34,K.1^6,-1*K.1^10,K.1^18,K.1^30,-1*K.1^30,-1*K.1^38,-1*K.1^42,-1*K.1^26,K.1^10,K.1^2,K.1^14,-1*K.1^6,-1*K.1^14,-1*K.1^2,-1*K.1^18,K.1^12,K.1^4,K.1^36,-1*K.1^40,-1*K.1^24,-1*K.1^32,-1*K.1^16,-1*K.1^8,K.1^20,K.1^28,-1*K.1,-1*K.1^27,K.1^7,K.1^37,K.1^3,K.1^41,-1*K.1^13,-1*K.1^31,K.1^21,K.1^23,-1*K.1^17,K.1^17,-1*K.1^37,-1*K.1^7,-1*K.1^41,-1*K.1^3,K.1^31,K.1^13,-1*K.1^23,-1*K.1^21,-1*K.1^5,-1*K.1^39,K.1^29,K.1^15,-1*K.1^19,-1*K.1^25,K.1^35,K.1^9,K.1,K.1^43,K.1^39,K.1^5,-1*K.1^15,-1*K.1^29,K.1^25,K.1^19,-1*K.1^9,-1*K.1^35,-1*K.1^43,K.1^27,-1*K.1^26,-1*K.1^34,-1*K.1^6,-1*K.1^42,-1*K.1^2,K.1^34,K.1^26,-1*K.1^38,-1*K.1^14,K.1^10,K.1^42,K.1^2,K.1^14,-1*K.1^10,-1*K.1^18,K.1^6,K.1^38,K.1^18,K.1^30,-1*K.1^30]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,-1*K.1^22,K.1^22,-1,K.1^33,-1*K.1^11,K.1^11,-1*K.1^33,K.1^8,-1*K.1^20,K.1^40,-1*K.1^36,-1*K.1^28,K.1^32,-1*K.1^12,-1*K.1^4,K.1^16,K.1^24,-1*K.1^22,K.1^22,K.1^20,-1*K.1^16,K.1^12,-1*K.1^32,K.1^4,-1*K.1^40,K.1^28,K.1^36,-1*K.1^8,-1*K.1^24,K.1^32,-1*K.1^36,K.1^24,K.1^8,K.1^16,-1*K.1^4,-1*K.1^12,-1*K.1^20,-1*K.1^28,K.1^40,-1*K.1^26,-1*K.1^42,-1*K.1^34,-1*K.1^38,K.1^34,-1*K.1^6,K.1^10,-1*K.1^18,-1*K.1^30,K.1^30,K.1^38,K.1^42,K.1^26,-1*K.1^10,-1*K.1^2,-1*K.1^14,K.1^6,K.1^14,K.1^2,K.1^18,K.1^12,K.1^4,K.1^36,-1*K.1^40,-1*K.1^24,-1*K.1^32,-1*K.1^16,-1*K.1^8,K.1^20,K.1^28,-1*K.1^23,-1*K.1^5,-1*K.1^29,-1*K.1^15,-1*K.1^25,-1*K.1^19,-1*K.1^35,-1*K.1^9,K.1^43,K.1,-1*K.1^39,K.1^39,K.1^15,K.1^29,K.1^19,K.1^25,K.1^9,K.1^35,-1*K.1,-1*K.1^43,-1*K.1^27,-1*K.1^17,-1*K.1^7,-1*K.1^37,K.1^41,K.1^3,K.1^13,K.1^31,K.1^23,K.1^21,K.1^17,K.1^27,K.1^37,K.1^7,-1*K.1^3,-1*K.1^41,-1*K.1^31,-1*K.1^13,-1*K.1^21,K.1^5,K.1^26,K.1^34,K.1^6,K.1^42,K.1^2,-1*K.1^34,-1*K.1^26,K.1^38,K.1^14,-1*K.1^10,-1*K.1^42,-1*K.1^2,-1*K.1^14,K.1^10,K.1^18,-1*K.1^6,-1*K.1^38,-1*K.1^18,-1*K.1^30,K.1^30]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,K.1^22,-1*K.1^22,-1,-1*K.1^11,K.1^33,-1*K.1^33,K.1^11,-1*K.1^36,K.1^24,-1*K.1^4,K.1^8,K.1^16,-1*K.1^12,K.1^32,K.1^40,-1*K.1^28,-1*K.1^20,K.1^22,-1*K.1^22,-1*K.1^24,K.1^28,-1*K.1^32,K.1^12,-1*K.1^40,K.1^4,-1*K.1^16,-1*K.1^8,K.1^36,K.1^20,-1*K.1^12,K.1^8,-1*K.1^20,-1*K.1^36,-1*K.1^28,K.1^40,K.1^32,K.1^24,K.1^16,-1*K.1^4,K.1^18,K.1^2,K.1^10,K.1^6,-1*K.1^10,K.1^38,-1*K.1^34,K.1^26,K.1^14,-1*K.1^14,-1*K.1^6,-1*K.1^2,-1*K.1^18,K.1^34,K.1^42,K.1^30,-1*K.1^38,-1*K.1^30,-1*K.1^42,-1*K.1^26,-1*K.1^32,-1*K.1^40,-1*K.1^8,K.1^4,K.1^20,K.1^12,K.1^28,K.1^36,-1*K.1^24,-1*K.1^16,K.1^21,K.1^39,K.1^15,K.1^29,K.1^19,K.1^25,K.1^9,K.1^35,-1*K.1,-1*K.1^43,K.1^5,-1*K.1^5,-1*K.1^29,-1*K.1^15,-1*K.1^25,-1*K.1^19,-1*K.1^35,-1*K.1^9,K.1^43,K.1,K.1^17,K.1^27,K.1^37,K.1^7,-1*K.1^3,-1*K.1^41,-1*K.1^31,-1*K.1^13,-1*K.1^21,-1*K.1^23,-1*K.1^27,-1*K.1^17,-1*K.1^7,-1*K.1^37,K.1^41,K.1^3,K.1^13,K.1^31,K.1^23,-1*K.1^39,-1*K.1^18,-1*K.1^10,-1*K.1^38,-1*K.1^2,-1*K.1^42,K.1^10,K.1^18,-1*K.1^6,-1*K.1^30,K.1^34,K.1^2,K.1^42,K.1^30,-1*K.1^34,-1*K.1^26,K.1^38,K.1^6,K.1^26,K.1^14,-1*K.1^14]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,-1*K.1^22,K.1^22,-1,-1*K.1^33,K.1^11,-1*K.1^11,K.1^33,-1*K.1^4,K.1^32,-1*K.1^20,K.1^40,-1*K.1^36,K.1^16,-1*K.1^28,K.1^24,K.1^8,-1*K.1^12,-1*K.1^22,K.1^22,-1*K.1^32,-1*K.1^8,K.1^28,-1*K.1^16,-1*K.1^24,K.1^20,K.1^36,-1*K.1^40,K.1^4,K.1^12,K.1^16,K.1^40,-1*K.1^12,-1*K.1^4,K.1^8,K.1^24,-1*K.1^28,K.1^32,-1*K.1^36,-1*K.1^20,-1*K.1^2,-1*K.1^10,K.1^6,-1*K.1^30,-1*K.1^6,-1*K.1^14,-1*K.1^38,-1*K.1^42,K.1^26,-1*K.1^26,K.1^30,K.1^10,K.1^2,K.1^38,-1*K.1^34,K.1^18,K.1^14,-1*K.1^18,K.1^34,K.1^42,K.1^28,-1*K.1^24,-1*K.1^40,K.1^20,K.1^12,-1*K.1^16,-1*K.1^8,K.1^4,-1*K.1^32,K.1^36,K.1^39,-1*K.1^41,-1*K.1^9,-1*K.1^35,-1*K.1^29,-1*K.1^15,-1*K.1^23,-1*K.1^21,-1*K.1^27,-1*K.1^17,-1*K.1^3,K.1^3,K.1^35,K.1^9,K.1^15,K.1^29,K.1^21,K.1^23,K.1^17,K.1^27,K.1^19,K.1^25,K.1^31,K.1^13,K.1^37,K.1^7,K.1,K.1^43,-1*K.1^39,-1*K.1^5,-1*K.1^25,-1*K.1^19,-1*K.1^13,-1*K.1^31,-1*K.1^7,-1*K.1^37,-1*K.1^43,-1*K.1,K.1^5,K.1^41,K.1^2,-1*K.1^6,K.1^14,K.1^10,K.1^34,K.1^6,-1*K.1^2,K.1^30,-1*K.1^18,K.1^38,-1*K.1^10,-1*K.1^34,K.1^18,-1*K.1^38,K.1^42,-1*K.1^14,-1*K.1^30,-1*K.1^42,K.1^26,-1*K.1^26]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,K.1^22,-1*K.1^22,-1,K.1^11,-1*K.1^33,K.1^33,-1*K.1^11,K.1^40,-1*K.1^12,K.1^24,-1*K.1^4,K.1^8,-1*K.1^28,K.1^16,-1*K.1^20,-1*K.1^36,K.1^32,K.1^22,-1*K.1^22,K.1^12,K.1^36,-1*K.1^16,K.1^28,K.1^20,-1*K.1^24,-1*K.1^8,K.1^4,-1*K.1^40,-1*K.1^32,-1*K.1^28,-1*K.1^4,K.1^32,K.1^40,-1*K.1^36,-1*K.1^20,K.1^16,-1*K.1^12,K.1^8,K.1^24,K.1^42,K.1^34,-1*K.1^38,K.1^14,K.1^38,K.1^30,K.1^6,K.1^2,-1*K.1^18,K.1^18,-1*K.1^14,-1*K.1^34,-1*K.1^42,-1*K.1^6,K.1^10,-1*K.1^26,-1*K.1^30,K.1^26,-1*K.1^10,-1*K.1^2,-1*K.1^16,K.1^20,K.1^4,-1*K.1^24,-1*K.1^32,K.1^28,K.1^36,-1*K.1^40,K.1^12,-1*K.1^8,-1*K.1^5,K.1^3,K.1^35,K.1^9,K.1^15,K.1^29,K.1^21,K.1^23,K.1^17,K.1^27,K.1^41,-1*K.1^41,-1*K.1^9,-1*K.1^35,-1*K.1^29,-1*K.1^15,-1*K.1^23,-1*K.1^21,-1*K.1^27,-1*K.1^17,-1*K.1^25,-1*K.1^19,-1*K.1^13,-1*K.1^31,-1*K.1^7,-1*K.1^37,-1*K.1^43,-1*K.1,K.1^5,K.1^39,K.1^19,K.1^25,K.1^31,K.1^13,K.1^37,K.1^7,K.1,K.1^43,-1*K.1^39,-1*K.1^3,-1*K.1^42,K.1^38,-1*K.1^30,-1*K.1^34,-1*K.1^10,-1*K.1^38,K.1^42,-1*K.1^14,K.1^26,-1*K.1^6,K.1^34,K.1^10,-1*K.1^26,K.1^6,-1*K.1^2,K.1^30,K.1^14,K.1^2,-1*K.1^18,K.1^18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,-1*K.1^22,K.1^22,-1,-1*K.1^33,K.1^11,-1*K.1^11,K.1^33,K.1^40,-1*K.1^12,K.1^24,-1*K.1^4,K.1^8,-1*K.1^28,K.1^16,-1*K.1^20,-1*K.1^36,K.1^32,-1*K.1^22,K.1^22,K.1^12,K.1^36,-1*K.1^16,K.1^28,K.1^20,-1*K.1^24,-1*K.1^8,K.1^4,-1*K.1^40,-1*K.1^32,-1*K.1^28,-1*K.1^4,K.1^32,K.1^40,-1*K.1^36,-1*K.1^20,K.1^16,-1*K.1^12,K.1^8,K.1^24,-1*K.1^42,-1*K.1^34,K.1^38,-1*K.1^14,-1*K.1^38,-1*K.1^30,-1*K.1^6,-1*K.1^2,K.1^18,-1*K.1^18,K.1^14,K.1^34,K.1^42,K.1^6,-1*K.1^10,K.1^26,K.1^30,-1*K.1^26,K.1^10,K.1^2,-1*K.1^16,K.1^20,K.1^4,-1*K.1^24,-1*K.1^32,K.1^28,K.1^36,-1*K.1^40,K.1^12,-1*K.1^8,-1*K.1^27,-1*K.1^25,K.1^13,K.1^31,-1*K.1^37,-1*K.1^7,K.1^43,K.1,K.1^39,K.1^5,-1*K.1^19,K.1^19,-1*K.1^31,-1*K.1^13,K.1^7,K.1^37,-1*K.1,-1*K.1^43,-1*K.1^5,-1*K.1^39,K.1^3,K.1^41,-1*K.1^35,-1*K.1^9,K.1^29,K.1^15,-1*K.1^21,-1*K.1^23,K.1^27,K.1^17,-1*K.1^41,-1*K.1^3,K.1^9,K.1^35,-1*K.1^15,-1*K.1^29,K.1^23,K.1^21,-1*K.1^17,K.1^25,K.1^42,-1*K.1^38,K.1^30,K.1^34,K.1^10,K.1^38,-1*K.1^42,K.1^14,-1*K.1^26,K.1^6,-1*K.1^34,-1*K.1^10,K.1^26,-1*K.1^6,K.1^2,-1*K.1^30,-1*K.1^14,-1*K.1^2,K.1^18,-1*K.1^18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,K.1^22,-1*K.1^22,-1,K.1^11,-1*K.1^33,K.1^33,-1*K.1^11,-1*K.1^4,K.1^32,-1*K.1^20,K.1^40,-1*K.1^36,K.1^16,-1*K.1^28,K.1^24,K.1^8,-1*K.1^12,K.1^22,-1*K.1^22,-1*K.1^32,-1*K.1^8,K.1^28,-1*K.1^16,-1*K.1^24,K.1^20,K.1^36,-1*K.1^40,K.1^4,K.1^12,K.1^16,K.1^40,-1*K.1^12,-1*K.1^4,K.1^8,K.1^24,-1*K.1^28,K.1^32,-1*K.1^36,-1*K.1^20,K.1^2,K.1^10,-1*K.1^6,K.1^30,K.1^6,K.1^14,K.1^38,K.1^42,-1*K.1^26,K.1^26,-1*K.1^30,-1*K.1^10,-1*K.1^2,-1*K.1^38,K.1^34,-1*K.1^18,-1*K.1^14,K.1^18,-1*K.1^34,-1*K.1^42,K.1^28,-1*K.1^24,-1*K.1^40,K.1^20,K.1^12,-1*K.1^16,-1*K.1^8,K.1^4,-1*K.1^32,K.1^36,K.1^17,K.1^19,-1*K.1^31,-1*K.1^13,K.1^7,K.1^37,-1*K.1,-1*K.1^43,-1*K.1^5,-1*K.1^39,K.1^25,-1*K.1^25,K.1^13,K.1^31,-1*K.1^37,-1*K.1^7,K.1^43,K.1,K.1^39,K.1^5,-1*K.1^41,-1*K.1^3,K.1^9,K.1^35,-1*K.1^15,-1*K.1^29,K.1^23,K.1^21,-1*K.1^17,-1*K.1^27,K.1^3,K.1^41,-1*K.1^35,-1*K.1^9,K.1^29,K.1^15,-1*K.1^21,-1*K.1^23,K.1^27,-1*K.1^19,-1*K.1^2,K.1^6,-1*K.1^14,-1*K.1^10,-1*K.1^34,-1*K.1^6,K.1^2,-1*K.1^30,K.1^18,-1*K.1^38,K.1^10,K.1^34,-1*K.1^18,K.1^38,-1*K.1^42,K.1^14,K.1^30,K.1^42,-1*K.1^26,K.1^26]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,-1*K.1^22,K.1^22,-1,-1*K.1^33,K.1^11,-1*K.1^11,K.1^33,-1*K.1^12,K.1^8,K.1^16,K.1^32,-1*K.1^20,-1*K.1^4,K.1^40,-1*K.1^28,K.1^24,-1*K.1^36,-1*K.1^22,K.1^22,-1*K.1^8,-1*K.1^24,-1*K.1^40,K.1^4,K.1^28,-1*K.1^16,K.1^20,-1*K.1^32,K.1^12,K.1^36,-1*K.1^4,K.1^32,-1*K.1^36,-1*K.1^12,K.1^24,-1*K.1^28,K.1^40,K.1^8,-1*K.1^20,K.1^16,K.1^6,K.1^30,-1*K.1^18,K.1^2,K.1^18,K.1^42,K.1^26,K.1^38,K.1^34,-1*K.1^34,-1*K.1^2,-1*K.1^30,-1*K.1^6,-1*K.1^26,K.1^14,K.1^10,-1*K.1^42,-1*K.1^10,-1*K.1^14,-1*K.1^38,-1*K.1^40,K.1^28,-1*K.1^32,-1*K.1^16,K.1^36,K.1^4,-1*K.1^24,K.1^12,-1*K.1^8,K.1^20,K.1^7,K.1^13,K.1^5,K.1^39,-1*K.1^21,-1*K.1^23,K.1^3,K.1^41,K.1^15,K.1^29,K.1^31,-1*K.1^31,-1*K.1^39,-1*K.1^5,K.1^23,K.1^21,-1*K.1^41,-1*K.1^3,-1*K.1^29,-1*K.1^15,K.1^35,K.1^9,-1*K.1^27,-1*K.1^17,-1*K.1,-1*K.1^43,K.1^25,K.1^19,-1*K.1^7,-1*K.1^37,-1*K.1^9,-1*K.1^35,K.1^17,K.1^27,K.1^43,K.1,-1*K.1^19,-1*K.1^25,K.1^37,-1*K.1^13,-1*K.1^6,K.1^18,-1*K.1^42,-1*K.1^30,-1*K.1^14,-1*K.1^18,K.1^6,-1*K.1^2,-1*K.1^10,-1*K.1^26,K.1^30,K.1^14,K.1^10,K.1^26,-1*K.1^38,K.1^42,K.1^2,K.1^38,K.1^34,-1*K.1^34]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,K.1^22,-1*K.1^22,-1,K.1^11,-1*K.1^33,K.1^33,-1*K.1^11,K.1^32,-1*K.1^36,-1*K.1^28,-1*K.1^12,K.1^24,K.1^40,-1*K.1^4,K.1^16,-1*K.1^20,K.1^8,K.1^22,-1*K.1^22,K.1^36,K.1^20,K.1^4,-1*K.1^40,-1*K.1^16,K.1^28,-1*K.1^24,K.1^12,-1*K.1^32,-1*K.1^8,K.1^40,-1*K.1^12,K.1^8,K.1^32,-1*K.1^20,K.1^16,-1*K.1^4,-1*K.1^36,K.1^24,-1*K.1^28,-1*K.1^38,-1*K.1^14,K.1^26,-1*K.1^42,-1*K.1^26,-1*K.1^2,-1*K.1^18,-1*K.1^6,-1*K.1^10,K.1^10,K.1^42,K.1^14,K.1^38,K.1^18,-1*K.1^30,-1*K.1^34,K.1^2,K.1^34,K.1^30,K.1^6,K.1^4,-1*K.1^16,K.1^12,K.1^28,-1*K.1^8,-1*K.1^40,K.1^20,-1*K.1^32,K.1^36,-1*K.1^24,-1*K.1^37,-1*K.1^31,-1*K.1^39,-1*K.1^5,K.1^23,K.1^21,-1*K.1^41,-1*K.1^3,-1*K.1^29,-1*K.1^15,-1*K.1^13,K.1^13,K.1^5,K.1^39,-1*K.1^21,-1*K.1^23,K.1^3,K.1^41,K.1^15,K.1^29,-1*K.1^9,-1*K.1^35,K.1^17,K.1^27,K.1^43,K.1,-1*K.1^19,-1*K.1^25,K.1^37,K.1^7,K.1^35,K.1^9,-1*K.1^27,-1*K.1^17,-1*K.1,-1*K.1^43,K.1^25,K.1^19,-1*K.1^7,K.1^31,K.1^38,-1*K.1^26,K.1^2,K.1^14,K.1^30,K.1^26,-1*K.1^38,K.1^42,K.1^34,K.1^18,-1*K.1^14,-1*K.1^30,-1*K.1^34,-1*K.1^18,K.1^6,-1*K.1^2,-1*K.1^42,-1*K.1^6,-1*K.1^10,K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,-1*K.1^22,K.1^22,-1,-1*K.1^33,K.1^11,-1*K.1^11,K.1^33,K.1^32,-1*K.1^36,-1*K.1^28,-1*K.1^12,K.1^24,K.1^40,-1*K.1^4,K.1^16,-1*K.1^20,K.1^8,-1*K.1^22,K.1^22,K.1^36,K.1^20,K.1^4,-1*K.1^40,-1*K.1^16,K.1^28,-1*K.1^24,K.1^12,-1*K.1^32,-1*K.1^8,K.1^40,-1*K.1^12,K.1^8,K.1^32,-1*K.1^20,K.1^16,-1*K.1^4,-1*K.1^36,K.1^24,-1*K.1^28,K.1^38,K.1^14,-1*K.1^26,K.1^42,K.1^26,K.1^2,K.1^18,K.1^6,K.1^10,-1*K.1^10,-1*K.1^42,-1*K.1^14,-1*K.1^38,-1*K.1^18,K.1^30,K.1^34,-1*K.1^2,-1*K.1^34,-1*K.1^30,-1*K.1^6,K.1^4,-1*K.1^16,K.1^12,K.1^28,-1*K.1^8,-1*K.1^40,K.1^20,-1*K.1^32,K.1^36,-1*K.1^24,K.1^15,-1*K.1^9,-1*K.1^17,-1*K.1^27,K.1,K.1^43,K.1^19,K.1^25,K.1^7,K.1^37,-1*K.1^35,K.1^35,K.1^27,K.1^17,-1*K.1^43,-1*K.1,-1*K.1^25,-1*K.1^19,-1*K.1^37,-1*K.1^7,-1*K.1^31,-1*K.1^13,K.1^39,K.1^5,K.1^21,K.1^23,K.1^41,K.1^3,-1*K.1^15,-1*K.1^29,K.1^13,K.1^31,-1*K.1^5,-1*K.1^39,-1*K.1^23,-1*K.1^21,-1*K.1^3,-1*K.1^41,K.1^29,K.1^9,-1*K.1^38,K.1^26,-1*K.1^2,-1*K.1^14,-1*K.1^30,-1*K.1^26,K.1^38,-1*K.1^42,-1*K.1^34,-1*K.1^18,K.1^14,K.1^30,K.1^34,K.1^18,-1*K.1^6,K.1^2,K.1^42,K.1^6,K.1^10,-1*K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,K.1^22,-1*K.1^22,-1,K.1^11,-1*K.1^33,K.1^33,-1*K.1^11,-1*K.1^12,K.1^8,K.1^16,K.1^32,-1*K.1^20,-1*K.1^4,K.1^40,-1*K.1^28,K.1^24,-1*K.1^36,K.1^22,-1*K.1^22,-1*K.1^8,-1*K.1^24,-1*K.1^40,K.1^4,K.1^28,-1*K.1^16,K.1^20,-1*K.1^32,K.1^12,K.1^36,-1*K.1^4,K.1^32,-1*K.1^36,-1*K.1^12,K.1^24,-1*K.1^28,K.1^40,K.1^8,-1*K.1^20,K.1^16,-1*K.1^6,-1*K.1^30,K.1^18,-1*K.1^2,-1*K.1^18,-1*K.1^42,-1*K.1^26,-1*K.1^38,-1*K.1^34,K.1^34,K.1^2,K.1^30,K.1^6,K.1^26,-1*K.1^14,-1*K.1^10,K.1^42,K.1^10,K.1^14,K.1^38,-1*K.1^40,K.1^28,-1*K.1^32,-1*K.1^16,K.1^36,K.1^4,-1*K.1^24,K.1^12,-1*K.1^8,K.1^20,-1*K.1^29,K.1^35,K.1^27,K.1^17,-1*K.1^43,-1*K.1,-1*K.1^25,-1*K.1^19,-1*K.1^37,-1*K.1^7,K.1^9,-1*K.1^9,-1*K.1^17,-1*K.1^27,K.1,K.1^43,K.1^19,K.1^25,K.1^7,K.1^37,K.1^13,K.1^31,-1*K.1^5,-1*K.1^39,-1*K.1^23,-1*K.1^21,-1*K.1^3,-1*K.1^41,K.1^29,K.1^15,-1*K.1^31,-1*K.1^13,K.1^39,K.1^5,K.1^21,K.1^23,K.1^41,K.1^3,-1*K.1^15,-1*K.1^35,K.1^6,-1*K.1^18,K.1^42,K.1^30,K.1^14,K.1^18,-1*K.1^6,K.1^2,K.1^10,K.1^26,-1*K.1^30,-1*K.1^14,-1*K.1^10,-1*K.1^26,K.1^38,-1*K.1^42,-1*K.1^2,-1*K.1^38,-1*K.1^34,K.1^34]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,-1*K.1^22,K.1^22,-1,-1*K.1^33,K.1^11,-1*K.1^11,K.1^33,-1*K.1^20,-1*K.1^28,-1*K.1^12,K.1^24,-1*K.1^4,-1*K.1^36,K.1^8,K.1^32,K.1^40,K.1^16,-1*K.1^22,K.1^22,K.1^28,-1*K.1^40,-1*K.1^8,K.1^36,-1*K.1^32,K.1^12,K.1^4,-1*K.1^24,K.1^20,-1*K.1^16,-1*K.1^36,K.1^24,K.1^16,-1*K.1^20,K.1^40,K.1^32,K.1^8,-1*K.1^28,-1*K.1^4,-1*K.1^12,-1*K.1^10,K.1^6,K.1^30,K.1^18,-1*K.1^30,K.1^26,-1*K.1^14,-1*K.1^34,K.1^42,-1*K.1^42,-1*K.1^18,-1*K.1^6,K.1^10,K.1^14,K.1^38,K.1^2,-1*K.1^26,-1*K.1^2,-1*K.1^38,K.1^34,-1*K.1^8,-1*K.1^32,-1*K.1^24,K.1^12,-1*K.1^16,K.1^36,-1*K.1^40,K.1^20,K.1^28,K.1^4,-1*K.1^19,K.1^29,-1*K.1,-1*K.1^43,-1*K.1^13,-1*K.1^31,K.1^27,K.1^17,-1*K.1^3,-1*K.1^41,K.1^15,-1*K.1^15,K.1^43,K.1,K.1^31,K.1^13,-1*K.1^17,-1*K.1^27,K.1^41,K.1^3,-1*K.1^7,-1*K.1^37,K.1^23,K.1^21,-1*K.1^9,-1*K.1^35,-1*K.1^5,-1*K.1^39,K.1^19,K.1^25,K.1^37,K.1^7,-1*K.1^21,-1*K.1^23,K.1^35,K.1^9,K.1^39,K.1^5,-1*K.1^25,-1*K.1^29,K.1^10,-1*K.1^30,-1*K.1^26,-1*K.1^6,-1*K.1^38,K.1^30,-1*K.1^10,-1*K.1^18,-1*K.1^2,K.1^14,K.1^6,K.1^38,K.1^2,-1*K.1^14,K.1^34,K.1^26,K.1^18,-1*K.1^34,K.1^42,-1*K.1^42]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,K.1^22,-1*K.1^22,-1,K.1^11,-1*K.1^33,K.1^33,-1*K.1^11,K.1^24,K.1^16,K.1^32,-1*K.1^20,K.1^40,K.1^8,-1*K.1^36,-1*K.1^12,-1*K.1^4,-1*K.1^28,K.1^22,-1*K.1^22,-1*K.1^16,K.1^4,K.1^36,-1*K.1^8,K.1^12,-1*K.1^32,-1*K.1^40,K.1^20,-1*K.1^24,K.1^28,K.1^8,-1*K.1^20,-1*K.1^28,K.1^24,-1*K.1^4,-1*K.1^12,-1*K.1^36,K.1^16,K.1^40,K.1^32,K.1^34,-1*K.1^38,-1*K.1^14,-1*K.1^26,K.1^14,-1*K.1^18,K.1^30,K.1^10,-1*K.1^2,K.1^2,K.1^26,K.1^38,-1*K.1^34,-1*K.1^30,-1*K.1^6,-1*K.1^42,K.1^18,K.1^42,K.1^6,-1*K.1^10,K.1^36,K.1^12,K.1^20,-1*K.1^32,K.1^28,-1*K.1^8,K.1^4,-1*K.1^24,-1*K.1^16,-1*K.1^40,K.1^25,-1*K.1^15,K.1^43,K.1,K.1^31,K.1^13,-1*K.1^17,-1*K.1^27,K.1^41,K.1^3,-1*K.1^29,K.1^29,-1*K.1,-1*K.1^43,-1*K.1^13,-1*K.1^31,K.1^27,K.1^17,-1*K.1^3,-1*K.1^41,K.1^37,K.1^7,-1*K.1^21,-1*K.1^23,K.1^35,K.1^9,K.1^39,K.1^5,-1*K.1^25,-1*K.1^19,-1*K.1^7,-1*K.1^37,K.1^23,K.1^21,-1*K.1^9,-1*K.1^35,-1*K.1^5,-1*K.1^39,K.1^19,K.1^15,-1*K.1^34,K.1^14,K.1^18,K.1^38,K.1^6,-1*K.1^14,K.1^34,K.1^26,K.1^42,-1*K.1^30,-1*K.1^38,-1*K.1^6,-1*K.1^42,K.1^30,-1*K.1^10,-1*K.1^18,-1*K.1^26,K.1^10,-1*K.1^2,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,-1*K.1^22,K.1^22,-1,-1*K.1^33,K.1^11,-1*K.1^11,K.1^33,K.1^24,K.1^16,K.1^32,-1*K.1^20,K.1^40,K.1^8,-1*K.1^36,-1*K.1^12,-1*K.1^4,-1*K.1^28,-1*K.1^22,K.1^22,-1*K.1^16,K.1^4,K.1^36,-1*K.1^8,K.1^12,-1*K.1^32,-1*K.1^40,K.1^20,-1*K.1^24,K.1^28,K.1^8,-1*K.1^20,-1*K.1^28,K.1^24,-1*K.1^4,-1*K.1^12,-1*K.1^36,K.1^16,K.1^40,K.1^32,-1*K.1^34,K.1^38,K.1^14,K.1^26,-1*K.1^14,K.1^18,-1*K.1^30,-1*K.1^10,K.1^2,-1*K.1^2,-1*K.1^26,-1*K.1^38,K.1^34,K.1^30,K.1^6,K.1^42,-1*K.1^18,-1*K.1^42,-1*K.1^6,K.1^10,K.1^36,K.1^12,K.1^20,-1*K.1^32,K.1^28,-1*K.1^8,K.1^4,-1*K.1^24,-1*K.1^16,-1*K.1^40,-1*K.1^3,K.1^37,K.1^21,K.1^23,K.1^9,K.1^35,-1*K.1^39,-1*K.1^5,-1*K.1^19,-1*K.1^25,K.1^7,-1*K.1^7,-1*K.1^23,-1*K.1^21,-1*K.1^35,-1*K.1^9,K.1^5,K.1^39,K.1^25,K.1^19,-1*K.1^15,-1*K.1^29,-1*K.1^43,-1*K.1,K.1^13,K.1^31,K.1^17,K.1^27,K.1^3,K.1^41,K.1^29,K.1^15,K.1,K.1^43,-1*K.1^31,-1*K.1^13,-1*K.1^27,-1*K.1^17,-1*K.1^41,-1*K.1^37,K.1^34,-1*K.1^14,-1*K.1^18,-1*K.1^38,-1*K.1^6,K.1^14,-1*K.1^34,-1*K.1^26,-1*K.1^42,K.1^30,K.1^38,K.1^6,K.1^42,-1*K.1^30,K.1^10,K.1^18,K.1^26,-1*K.1^10,K.1^2,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,K.1^22,-1*K.1^22,-1,K.1^11,-1*K.1^33,K.1^33,-1*K.1^11,-1*K.1^20,-1*K.1^28,-1*K.1^12,K.1^24,-1*K.1^4,-1*K.1^36,K.1^8,K.1^32,K.1^40,K.1^16,K.1^22,-1*K.1^22,K.1^28,-1*K.1^40,-1*K.1^8,K.1^36,-1*K.1^32,K.1^12,K.1^4,-1*K.1^24,K.1^20,-1*K.1^16,-1*K.1^36,K.1^24,K.1^16,-1*K.1^20,K.1^40,K.1^32,K.1^8,-1*K.1^28,-1*K.1^4,-1*K.1^12,K.1^10,-1*K.1^6,-1*K.1^30,-1*K.1^18,K.1^30,-1*K.1^26,K.1^14,K.1^34,-1*K.1^42,K.1^42,K.1^18,K.1^6,-1*K.1^10,-1*K.1^14,-1*K.1^38,-1*K.1^2,K.1^26,K.1^2,K.1^38,-1*K.1^34,-1*K.1^8,-1*K.1^32,-1*K.1^24,K.1^12,-1*K.1^16,K.1^36,-1*K.1^40,K.1^20,K.1^28,K.1^4,K.1^41,-1*K.1^7,-1*K.1^23,-1*K.1^21,-1*K.1^35,-1*K.1^9,K.1^5,K.1^39,K.1^25,K.1^19,-1*K.1^37,K.1^37,K.1^21,K.1^23,K.1^9,K.1^35,-1*K.1^39,-1*K.1^5,-1*K.1^19,-1*K.1^25,K.1^29,K.1^15,K.1,K.1^43,-1*K.1^31,-1*K.1^13,-1*K.1^27,-1*K.1^17,-1*K.1^41,-1*K.1^3,-1*K.1^15,-1*K.1^29,-1*K.1^43,-1*K.1,K.1^13,K.1^31,K.1^17,K.1^27,K.1^3,K.1^7,-1*K.1^10,K.1^30,K.1^26,K.1^6,K.1^38,-1*K.1^30,K.1^10,K.1^18,K.1^2,-1*K.1^14,-1*K.1^6,-1*K.1^38,-1*K.1^2,K.1^14,-1*K.1^34,-1*K.1^26,-1*K.1^18,K.1^34,-1*K.1^42,K.1^42]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,-1*K.1^22,K.1^22,-1,-1*K.1^33,K.1^11,-1*K.1^11,K.1^33,-1*K.1^28,-1*K.1^4,K.1^8,K.1^16,K.1^32,K.1^24,-1*K.1^20,-1*K.1^36,-1*K.1^12,K.1^40,-1*K.1^22,K.1^22,K.1^4,K.1^12,K.1^20,-1*K.1^24,K.1^36,-1*K.1^8,-1*K.1^32,-1*K.1^16,K.1^28,-1*K.1^40,K.1^24,K.1^16,K.1^40,-1*K.1^28,-1*K.1^12,-1*K.1^36,-1*K.1^20,-1*K.1^4,K.1^32,K.1^8,K.1^14,-1*K.1^26,-1*K.1^42,K.1^34,K.1^42,K.1^10,K.1^2,K.1^30,-1*K.1^6,K.1^6,-1*K.1^34,K.1^26,-1*K.1^14,-1*K.1^2,-1*K.1^18,-1*K.1^38,-1*K.1^10,K.1^38,K.1^18,-1*K.1^30,K.1^20,K.1^36,-1*K.1^16,-1*K.1^8,-1*K.1^40,-1*K.1^24,K.1^12,K.1^28,K.1^4,-1*K.1^32,K.1^31,-1*K.1,-1*K.1^41,-1*K.1^3,-1*K.1^5,-1*K.1^39,-1*K.1^7,-1*K.1^37,-1*K.1^35,-1*K.1^9,-1*K.1^43,K.1^43,K.1^3,K.1^41,K.1^39,K.1^5,K.1^37,K.1^7,K.1^9,K.1^35,-1*K.1^23,-1*K.1^21,-1*K.1^19,-1*K.1^25,-1*K.1^17,-1*K.1^27,-1*K.1^29,-1*K.1^15,-1*K.1^31,-1*K.1^13,K.1^21,K.1^23,K.1^25,K.1^19,K.1^27,K.1^17,K.1^15,K.1^29,K.1^13,K.1,-1*K.1^14,K.1^42,-1*K.1^10,K.1^26,K.1^18,-1*K.1^42,K.1^14,-1*K.1^34,K.1^38,-1*K.1^2,-1*K.1^26,-1*K.1^18,-1*K.1^38,K.1^2,-1*K.1^30,K.1^10,K.1^34,K.1^30,-1*K.1^6,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,K.1^22,-1*K.1^22,-1,K.1^11,-1*K.1^33,K.1^33,-1*K.1^11,K.1^16,K.1^40,-1*K.1^36,-1*K.1^28,-1*K.1^12,-1*K.1^20,K.1^24,K.1^8,K.1^32,-1*K.1^4,K.1^22,-1*K.1^22,-1*K.1^40,-1*K.1^32,-1*K.1^24,K.1^20,-1*K.1^8,K.1^36,K.1^12,K.1^28,-1*K.1^16,K.1^4,-1*K.1^20,-1*K.1^28,-1*K.1^4,K.1^16,K.1^32,K.1^8,K.1^24,K.1^40,-1*K.1^12,-1*K.1^36,-1*K.1^30,K.1^18,K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^34,-1*K.1^42,-1*K.1^14,K.1^38,-1*K.1^38,K.1^10,-1*K.1^18,K.1^30,K.1^42,K.1^26,K.1^6,K.1^34,-1*K.1^6,-1*K.1^26,K.1^14,-1*K.1^24,-1*K.1^8,K.1^28,K.1^36,K.1^4,K.1^20,-1*K.1^32,-1*K.1^16,-1*K.1^40,K.1^12,-1*K.1^13,K.1^43,K.1^3,K.1^41,K.1^39,K.1^5,K.1^37,K.1^7,K.1^9,K.1^35,K.1,-1*K.1,-1*K.1^41,-1*K.1^3,-1*K.1^5,-1*K.1^39,-1*K.1^7,-1*K.1^37,-1*K.1^35,-1*K.1^9,K.1^21,K.1^23,K.1^25,K.1^19,K.1^27,K.1^17,K.1^15,K.1^29,K.1^13,K.1^31,-1*K.1^23,-1*K.1^21,-1*K.1^19,-1*K.1^25,-1*K.1^17,-1*K.1^27,-1*K.1^29,-1*K.1^15,-1*K.1^31,-1*K.1^43,K.1^30,-1*K.1^2,K.1^34,-1*K.1^18,-1*K.1^26,K.1^2,-1*K.1^30,K.1^10,-1*K.1^6,K.1^42,K.1^18,K.1^26,K.1^6,-1*K.1^42,K.1^14,-1*K.1^34,-1*K.1^10,-1*K.1^14,K.1^38,-1*K.1^38]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,-1*K.1^22,K.1^22,-1,-1*K.1^33,K.1^11,-1*K.1^11,K.1^33,K.1^16,K.1^40,-1*K.1^36,-1*K.1^28,-1*K.1^12,-1*K.1^20,K.1^24,K.1^8,K.1^32,-1*K.1^4,-1*K.1^22,K.1^22,-1*K.1^40,-1*K.1^32,-1*K.1^24,K.1^20,-1*K.1^8,K.1^36,K.1^12,K.1^28,-1*K.1^16,K.1^4,-1*K.1^20,-1*K.1^28,-1*K.1^4,K.1^16,K.1^32,K.1^8,K.1^24,K.1^40,-1*K.1^12,-1*K.1^36,K.1^30,-1*K.1^18,-1*K.1^2,K.1^10,K.1^2,K.1^34,K.1^42,K.1^14,-1*K.1^38,K.1^38,-1*K.1^10,K.1^18,-1*K.1^30,-1*K.1^42,-1*K.1^26,-1*K.1^6,-1*K.1^34,K.1^6,K.1^26,-1*K.1^14,-1*K.1^24,-1*K.1^8,K.1^28,K.1^36,K.1^4,K.1^20,-1*K.1^32,-1*K.1^16,-1*K.1^40,K.1^12,-1*K.1^35,K.1^21,-1*K.1^25,-1*K.1^19,K.1^17,K.1^27,-1*K.1^15,-1*K.1^29,K.1^31,K.1^13,K.1^23,-1*K.1^23,K.1^19,K.1^25,-1*K.1^27,-1*K.1^17,K.1^29,K.1^15,-1*K.1^13,-1*K.1^31,K.1^43,K.1,-1*K.1^3,-1*K.1^41,K.1^5,K.1^39,-1*K.1^37,-1*K.1^7,K.1^35,K.1^9,-1*K.1,-1*K.1^43,K.1^41,K.1^3,-1*K.1^39,-1*K.1^5,K.1^7,K.1^37,-1*K.1^9,-1*K.1^21,-1*K.1^30,K.1^2,-1*K.1^34,K.1^18,K.1^26,-1*K.1^2,K.1^30,-1*K.1^10,K.1^6,-1*K.1^42,-1*K.1^18,-1*K.1^26,-1*K.1^6,K.1^42,-1*K.1^14,K.1^34,K.1^10,K.1^14,-1*K.1^38,K.1^38]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,K.1^22,-1*K.1^22,-1,K.1^11,-1*K.1^33,K.1^33,-1*K.1^11,-1*K.1^28,-1*K.1^4,K.1^8,K.1^16,K.1^32,K.1^24,-1*K.1^20,-1*K.1^36,-1*K.1^12,K.1^40,K.1^22,-1*K.1^22,K.1^4,K.1^12,K.1^20,-1*K.1^24,K.1^36,-1*K.1^8,-1*K.1^32,-1*K.1^16,K.1^28,-1*K.1^40,K.1^24,K.1^16,K.1^40,-1*K.1^28,-1*K.1^12,-1*K.1^36,-1*K.1^20,-1*K.1^4,K.1^32,K.1^8,-1*K.1^14,K.1^26,K.1^42,-1*K.1^34,-1*K.1^42,-1*K.1^10,-1*K.1^2,-1*K.1^30,K.1^6,-1*K.1^6,K.1^34,-1*K.1^26,K.1^14,K.1^2,K.1^18,K.1^38,K.1^10,-1*K.1^38,-1*K.1^18,K.1^30,K.1^20,K.1^36,-1*K.1^16,-1*K.1^8,-1*K.1^40,-1*K.1^24,K.1^12,K.1^28,K.1^4,-1*K.1^32,K.1^9,-1*K.1^23,K.1^19,K.1^25,-1*K.1^27,-1*K.1^17,K.1^29,K.1^15,-1*K.1^13,-1*K.1^31,-1*K.1^21,K.1^21,-1*K.1^25,-1*K.1^19,K.1^17,K.1^27,-1*K.1^15,-1*K.1^29,K.1^31,K.1^13,-1*K.1,-1*K.1^43,K.1^41,K.1^3,-1*K.1^39,-1*K.1^5,K.1^7,K.1^37,-1*K.1^9,-1*K.1^35,K.1^43,K.1,-1*K.1^3,-1*K.1^41,K.1^5,K.1^39,-1*K.1^37,-1*K.1^7,K.1^35,K.1^23,K.1^14,-1*K.1^42,K.1^10,-1*K.1^26,-1*K.1^18,K.1^42,-1*K.1^14,K.1^34,-1*K.1^38,K.1^2,K.1^26,K.1^18,K.1^38,-1*K.1^2,K.1^30,-1*K.1^10,-1*K.1^34,-1*K.1^30,K.1^6,-1*K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,-1*K.1^22,K.1^22,-1,-1*K.1^33,K.1^11,-1*K.1^11,K.1^33,-1*K.1^36,K.1^24,-1*K.1^4,K.1^8,K.1^16,-1*K.1^12,K.1^32,K.1^40,-1*K.1^28,-1*K.1^20,-1*K.1^22,K.1^22,-1*K.1^24,K.1^28,-1*K.1^32,K.1^12,-1*K.1^40,K.1^4,-1*K.1^16,-1*K.1^8,K.1^36,K.1^20,-1*K.1^12,K.1^8,-1*K.1^20,-1*K.1^36,-1*K.1^28,K.1^40,K.1^32,K.1^24,K.1^16,-1*K.1^4,-1*K.1^18,-1*K.1^2,-1*K.1^10,-1*K.1^6,K.1^10,-1*K.1^38,K.1^34,-1*K.1^26,-1*K.1^14,K.1^14,K.1^6,K.1^2,K.1^18,-1*K.1^34,-1*K.1^42,-1*K.1^30,K.1^38,K.1^30,K.1^42,K.1^26,-1*K.1^32,-1*K.1^40,-1*K.1^8,K.1^4,K.1^20,K.1^12,K.1^28,K.1^36,-1*K.1^24,-1*K.1^16,-1*K.1^43,-1*K.1^17,K.1^37,K.1^7,K.1^41,K.1^3,-1*K.1^31,-1*K.1^13,K.1^23,K.1^21,-1*K.1^27,K.1^27,-1*K.1^7,-1*K.1^37,-1*K.1^3,-1*K.1^41,K.1^13,K.1^31,-1*K.1^21,-1*K.1^23,-1*K.1^39,-1*K.1^5,K.1^15,K.1^29,-1*K.1^25,-1*K.1^19,K.1^9,K.1^35,K.1^43,K.1,K.1^5,K.1^39,-1*K.1^29,-1*K.1^15,K.1^19,K.1^25,-1*K.1^35,-1*K.1^9,-1*K.1,K.1^17,K.1^18,K.1^10,K.1^38,K.1^2,K.1^42,-1*K.1^10,-1*K.1^18,K.1^6,K.1^30,-1*K.1^34,-1*K.1^2,-1*K.1^42,-1*K.1^30,K.1^34,K.1^26,-1*K.1^38,-1*K.1^6,-1*K.1^26,-1*K.1^14,K.1^14]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,K.1^22,-1*K.1^22,-1,K.1^11,-1*K.1^33,K.1^33,-1*K.1^11,K.1^8,-1*K.1^20,K.1^40,-1*K.1^36,-1*K.1^28,K.1^32,-1*K.1^12,-1*K.1^4,K.1^16,K.1^24,K.1^22,-1*K.1^22,K.1^20,-1*K.1^16,K.1^12,-1*K.1^32,K.1^4,-1*K.1^40,K.1^28,K.1^36,-1*K.1^8,-1*K.1^24,K.1^32,-1*K.1^36,K.1^24,K.1^8,K.1^16,-1*K.1^4,-1*K.1^12,-1*K.1^20,-1*K.1^28,K.1^40,K.1^26,K.1^42,K.1^34,K.1^38,-1*K.1^34,K.1^6,-1*K.1^10,K.1^18,K.1^30,-1*K.1^30,-1*K.1^38,-1*K.1^42,-1*K.1^26,K.1^10,K.1^2,K.1^14,-1*K.1^6,-1*K.1^14,-1*K.1^2,-1*K.1^18,K.1^12,K.1^4,K.1^36,-1*K.1^40,-1*K.1^24,-1*K.1^32,-1*K.1^16,-1*K.1^8,K.1^20,K.1^28,K.1,K.1^27,-1*K.1^7,-1*K.1^37,-1*K.1^3,-1*K.1^41,K.1^13,K.1^31,-1*K.1^21,-1*K.1^23,K.1^17,-1*K.1^17,K.1^37,K.1^7,K.1^41,K.1^3,-1*K.1^31,-1*K.1^13,K.1^23,K.1^21,K.1^5,K.1^39,-1*K.1^29,-1*K.1^15,K.1^19,K.1^25,-1*K.1^35,-1*K.1^9,-1*K.1,-1*K.1^43,-1*K.1^39,-1*K.1^5,K.1^15,K.1^29,-1*K.1^25,-1*K.1^19,K.1^9,K.1^35,K.1^43,-1*K.1^27,-1*K.1^26,-1*K.1^34,-1*K.1^6,-1*K.1^42,-1*K.1^2,K.1^34,K.1^26,-1*K.1^38,-1*K.1^14,K.1^10,K.1^42,K.1^2,K.1^14,-1*K.1^10,-1*K.1^18,K.1^6,K.1^38,K.1^18,K.1^30,-1*K.1^30]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,-1*K.1^22,K.1^22,-1,-1*K.1^33,K.1^11,-1*K.1^11,K.1^33,K.1^8,-1*K.1^20,K.1^40,-1*K.1^36,-1*K.1^28,K.1^32,-1*K.1^12,-1*K.1^4,K.1^16,K.1^24,-1*K.1^22,K.1^22,K.1^20,-1*K.1^16,K.1^12,-1*K.1^32,K.1^4,-1*K.1^40,K.1^28,K.1^36,-1*K.1^8,-1*K.1^24,K.1^32,-1*K.1^36,K.1^24,K.1^8,K.1^16,-1*K.1^4,-1*K.1^12,-1*K.1^20,-1*K.1^28,K.1^40,-1*K.1^26,-1*K.1^42,-1*K.1^34,-1*K.1^38,K.1^34,-1*K.1^6,K.1^10,-1*K.1^18,-1*K.1^30,K.1^30,K.1^38,K.1^42,K.1^26,-1*K.1^10,-1*K.1^2,-1*K.1^14,K.1^6,K.1^14,K.1^2,K.1^18,K.1^12,K.1^4,K.1^36,-1*K.1^40,-1*K.1^24,-1*K.1^32,-1*K.1^16,-1*K.1^8,K.1^20,K.1^28,K.1^23,K.1^5,K.1^29,K.1^15,K.1^25,K.1^19,K.1^35,K.1^9,-1*K.1^43,-1*K.1,K.1^39,-1*K.1^39,-1*K.1^15,-1*K.1^29,-1*K.1^19,-1*K.1^25,-1*K.1^9,-1*K.1^35,K.1,K.1^43,K.1^27,K.1^17,K.1^7,K.1^37,-1*K.1^41,-1*K.1^3,-1*K.1^13,-1*K.1^31,-1*K.1^23,-1*K.1^21,-1*K.1^17,-1*K.1^27,-1*K.1^37,-1*K.1^7,K.1^3,K.1^41,K.1^31,K.1^13,K.1^21,-1*K.1^5,K.1^26,K.1^34,K.1^6,K.1^42,K.1^2,-1*K.1^34,-1*K.1^26,K.1^38,K.1^14,-1*K.1^10,-1*K.1^42,-1*K.1^2,-1*K.1^14,K.1^10,K.1^18,-1*K.1^6,-1*K.1^38,-1*K.1^18,-1*K.1^30,K.1^30]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(88: Sparse := true); S := [ K |1,-1,1,K.1^22,-1*K.1^22,-1,K.1^11,-1*K.1^33,K.1^33,-1*K.1^11,-1*K.1^36,K.1^24,-1*K.1^4,K.1^8,K.1^16,-1*K.1^12,K.1^32,K.1^40,-1*K.1^28,-1*K.1^20,K.1^22,-1*K.1^22,-1*K.1^24,K.1^28,-1*K.1^32,K.1^12,-1*K.1^40,K.1^4,-1*K.1^16,-1*K.1^8,K.1^36,K.1^20,-1*K.1^12,K.1^8,-1*K.1^20,-1*K.1^36,-1*K.1^28,K.1^40,K.1^32,K.1^24,K.1^16,-1*K.1^4,K.1^18,K.1^2,K.1^10,K.1^6,-1*K.1^10,K.1^38,-1*K.1^34,K.1^26,K.1^14,-1*K.1^14,-1*K.1^6,-1*K.1^2,-1*K.1^18,K.1^34,K.1^42,K.1^30,-1*K.1^38,-1*K.1^30,-1*K.1^42,-1*K.1^26,-1*K.1^32,-1*K.1^40,-1*K.1^8,K.1^4,K.1^20,K.1^12,K.1^28,K.1^36,-1*K.1^24,-1*K.1^16,-1*K.1^21,-1*K.1^39,-1*K.1^15,-1*K.1^29,-1*K.1^19,-1*K.1^25,-1*K.1^9,-1*K.1^35,K.1,K.1^43,-1*K.1^5,K.1^5,K.1^29,K.1^15,K.1^25,K.1^19,K.1^35,K.1^9,-1*K.1^43,-1*K.1,-1*K.1^17,-1*K.1^27,-1*K.1^37,-1*K.1^7,K.1^3,K.1^41,K.1^31,K.1^13,K.1^21,K.1^23,K.1^27,K.1^17,K.1^7,K.1^37,-1*K.1^41,-1*K.1^3,-1*K.1^13,-1*K.1^31,-1*K.1^23,K.1^39,-1*K.1^18,-1*K.1^10,-1*K.1^38,-1*K.1^2,-1*K.1^42,K.1^10,K.1^18,-1*K.1^6,-1*K.1^30,K.1^34,K.1^2,K.1^42,K.1^30,-1*K.1^34,-1*K.1^26,K.1^38,K.1^6,K.1^26,K.1^14,-1*K.1^14]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[2, 2, -1, 2, 2, -1, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -1, -2, -2, -1, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-1,-2*K.1,2*K.1,1,0,0,0,0,2,2,2,2,2,2,2,2,2,2,K.1,-1*K.1,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-1,2*K.1,-2*K.1,1,0,0,0,0,2,2,2,2,2,2,2,2,2,2,-1*K.1,K.1,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,-1,2,2,-1,0,0,0,0,2*K.1^-5,2*K.1^4,2*K.1^-3,2*K.1^5,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^3,2*K.1,2*K.1^-4,-1,-1,2*K.1^4,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^3,2*K.1^-3,2*K.1^-1,2*K.1^5,2*K.1^-5,2*K.1^-4,-1*K.1^2,-1*K.1^5,-1*K.1^-4,-1*K.1^-5,-1*K.1,-1*K.1^3,-1*K.1^-2,-1*K.1^4,-1*K.1^-1,-1*K.1^-3,2*K.1^3,2*K.1^4,2*K.1^-2,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1^-3,2*K.1^-5,2*K.1^-5,2*K.1,2*K.1^4,2*K.1^3,2*K.1^2,2*K.1^-4,2*K.1^5,2*K.1^-1,2*K.1^5,2*K.1^-4,2*K.1^-3,-1*K.1^-2,-1*K.1^3,-1*K.1^5,-1*K.1^-3,-1*K.1^-4,-1*K.1^2,-1*K.1,-1*K.1^-5,-1*K.1^4,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3,-1*K.1^-2,-1*K.1^-1,-1*K.1^4,-1*K.1^-4,-1*K.1^-2,-1*K.1^3,-1*K.1,-1*K.1^5,-1*K.1^2,-1*K.1^4,-1*K.1^-4,-1*K.1^5,-1*K.1^2,-1*K.1^-3,-1*K.1^-1,-1*K.1,-1*K.1^-3,-1*K.1^-5,-1*K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,-1,2,2,-1,0,0,0,0,2*K.1^5,2*K.1^-4,2*K.1^3,2*K.1^-5,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-3,2*K.1^-1,2*K.1^4,-1,-1,2*K.1^-4,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^-3,2*K.1^3,2*K.1,2*K.1^-5,2*K.1^5,2*K.1^4,-1*K.1^-2,-1*K.1^-5,-1*K.1^4,-1*K.1^5,-1*K.1^-1,-1*K.1^-3,-1*K.1^2,-1*K.1^-4,-1*K.1,-1*K.1^3,2*K.1^-3,2*K.1^-4,2*K.1^2,2*K.1^-1,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^3,2*K.1^5,2*K.1^5,2*K.1^-1,2*K.1^-4,2*K.1^-3,2*K.1^-2,2*K.1^4,2*K.1^-5,2*K.1,2*K.1^-5,2*K.1^4,2*K.1^3,-1*K.1^2,-1*K.1^-3,-1*K.1^-5,-1*K.1^3,-1*K.1^4,-1*K.1^-2,-1*K.1^-1,-1*K.1^5,-1*K.1^-4,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-3,-1*K.1^2,-1*K.1,-1*K.1^-4,-1*K.1^4,-1*K.1^2,-1*K.1^-3,-1*K.1^-1,-1*K.1^-5,-1*K.1^-2,-1*K.1^-4,-1*K.1^4,-1*K.1^-5,-1*K.1^-2,-1*K.1^3,-1*K.1,-1*K.1^-1,-1*K.1^3,-1*K.1^5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,-1,2,2,-1,0,0,0,0,2*K.1^-4,2*K.1,2*K.1^2,2*K.1^4,2*K.1^-3,2*K.1^-5,2*K.1^5,2*K.1^-2,2*K.1^3,2*K.1^-1,-1,-1,2*K.1,2*K.1^3,2*K.1^5,2*K.1^-5,2*K.1^-2,2*K.1^2,2*K.1^-3,2*K.1^4,2*K.1^-4,2*K.1^-1,-1*K.1^-5,-1*K.1^4,-1*K.1^-1,-1*K.1^-4,-1*K.1^3,-1*K.1^-2,-1*K.1^5,-1*K.1,-1*K.1^-3,-1*K.1^2,2*K.1^-2,2*K.1,2*K.1^5,2*K.1^3,2*K.1^5,2*K.1^-3,2*K.1^-5,2*K.1^2,2*K.1^-4,2*K.1^-4,2*K.1^3,2*K.1,2*K.1^-2,2*K.1^-5,2*K.1^-1,2*K.1^4,2*K.1^-3,2*K.1^4,2*K.1^-1,2*K.1^2,-1*K.1^5,-1*K.1^-2,-1*K.1^4,-1*K.1^2,-1*K.1^-1,-1*K.1^-5,-1*K.1^3,-1*K.1^-4,-1*K.1,-1*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-2,-1*K.1^5,-1*K.1^-3,-1*K.1,-1*K.1^-1,-1*K.1^5,-1*K.1^-2,-1*K.1^3,-1*K.1^4,-1*K.1^-5,-1*K.1,-1*K.1^-1,-1*K.1^4,-1*K.1^-5,-1*K.1^2,-1*K.1^-3,-1*K.1^3,-1*K.1^2,-1*K.1^-4,-1*K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,-1,2,2,-1,0,0,0,0,2*K.1^4,2*K.1^-1,2*K.1^-2,2*K.1^-4,2*K.1^3,2*K.1^5,2*K.1^-5,2*K.1^2,2*K.1^-3,2*K.1,-1,-1,2*K.1^-1,2*K.1^-3,2*K.1^-5,2*K.1^5,2*K.1^2,2*K.1^-2,2*K.1^3,2*K.1^-4,2*K.1^4,2*K.1,-1*K.1^5,-1*K.1^-4,-1*K.1,-1*K.1^4,-1*K.1^-3,-1*K.1^2,-1*K.1^-5,-1*K.1^-1,-1*K.1^3,-1*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^-5,2*K.1^-3,2*K.1^-5,2*K.1^3,2*K.1^5,2*K.1^-2,2*K.1^4,2*K.1^4,2*K.1^-3,2*K.1^-1,2*K.1^2,2*K.1^5,2*K.1,2*K.1^-4,2*K.1^3,2*K.1^-4,2*K.1,2*K.1^-2,-1*K.1^-5,-1*K.1^2,-1*K.1^-4,-1*K.1^-2,-1*K.1,-1*K.1^5,-1*K.1^-3,-1*K.1^4,-1*K.1^-1,-1*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2,-1*K.1^-5,-1*K.1^3,-1*K.1^-1,-1*K.1,-1*K.1^-5,-1*K.1^2,-1*K.1^-3,-1*K.1^-4,-1*K.1^5,-1*K.1^-1,-1*K.1,-1*K.1^-4,-1*K.1^5,-1*K.1^-2,-1*K.1^3,-1*K.1^-3,-1*K.1^-2,-1*K.1^4,-1*K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,-1,2,2,-1,0,0,0,0,2*K.1^-3,2*K.1^-2,2*K.1^-4,2*K.1^3,2*K.1^-5,2*K.1^-1,2*K.1,2*K.1^4,2*K.1^5,2*K.1^2,-1,-1,2*K.1^-2,2*K.1^5,2*K.1,2*K.1^-1,2*K.1^4,2*K.1^-4,2*K.1^-5,2*K.1^3,2*K.1^-3,2*K.1^2,-1*K.1^-1,-1*K.1^3,-1*K.1^2,-1*K.1^-3,-1*K.1^5,-1*K.1^4,-1*K.1,-1*K.1^-2,-1*K.1^-5,-1*K.1^-4,2*K.1^4,2*K.1^-2,2*K.1,2*K.1^5,2*K.1,2*K.1^-5,2*K.1^-1,2*K.1^-4,2*K.1^-3,2*K.1^-3,2*K.1^5,2*K.1^-2,2*K.1^4,2*K.1^-1,2*K.1^2,2*K.1^3,2*K.1^-5,2*K.1^3,2*K.1^2,2*K.1^-4,-1*K.1,-1*K.1^4,-1*K.1^3,-1*K.1^-4,-1*K.1^2,-1*K.1^-1,-1*K.1^5,-1*K.1^-3,-1*K.1^-2,-1*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4,-1*K.1,-1*K.1^-5,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^4,-1*K.1^5,-1*K.1^3,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^3,-1*K.1^-1,-1*K.1^-4,-1*K.1^-5,-1*K.1^5,-1*K.1^-4,-1*K.1^-3,-1*K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,-1,2,2,-1,0,0,0,0,2*K.1^3,2*K.1^2,2*K.1^4,2*K.1^-3,2*K.1^5,2*K.1,2*K.1^-1,2*K.1^-4,2*K.1^-5,2*K.1^-2,-1,-1,2*K.1^2,2*K.1^-5,2*K.1^-1,2*K.1,2*K.1^-4,2*K.1^4,2*K.1^5,2*K.1^-3,2*K.1^3,2*K.1^-2,-1*K.1,-1*K.1^-3,-1*K.1^-2,-1*K.1^3,-1*K.1^-5,-1*K.1^-4,-1*K.1^-1,-1*K.1^2,-1*K.1^5,-1*K.1^4,2*K.1^-4,2*K.1^2,2*K.1^-1,2*K.1^-5,2*K.1^-1,2*K.1^5,2*K.1,2*K.1^4,2*K.1^3,2*K.1^3,2*K.1^-5,2*K.1^2,2*K.1^-4,2*K.1,2*K.1^-2,2*K.1^-3,2*K.1^5,2*K.1^-3,2*K.1^-2,2*K.1^4,-1*K.1^-1,-1*K.1^-4,-1*K.1^-3,-1*K.1^4,-1*K.1^-2,-1*K.1,-1*K.1^-5,-1*K.1^3,-1*K.1^2,-1*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-4,-1*K.1^-1,-1*K.1^5,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-4,-1*K.1^-5,-1*K.1^-3,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-3,-1*K.1,-1*K.1^4,-1*K.1^5,-1*K.1^-5,-1*K.1^4,-1*K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,-1,2,2,-1,0,0,0,0,2*K.1^-2,2*K.1^-5,2*K.1,2*K.1^2,2*K.1^4,2*K.1^3,2*K.1^-3,2*K.1^-1,2*K.1^-4,2*K.1^5,-1,-1,2*K.1^-5,2*K.1^-4,2*K.1^-3,2*K.1^3,2*K.1^-1,2*K.1,2*K.1^4,2*K.1^2,2*K.1^-2,2*K.1^5,-1*K.1^3,-1*K.1^2,-1*K.1^5,-1*K.1^-2,-1*K.1^-4,-1*K.1^-1,-1*K.1^-3,-1*K.1^-5,-1*K.1^4,-1*K.1,2*K.1^-1,2*K.1^-5,2*K.1^-3,2*K.1^-4,2*K.1^-3,2*K.1^4,2*K.1^3,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1^-4,2*K.1^-5,2*K.1^-1,2*K.1^3,2*K.1^5,2*K.1^2,2*K.1^4,2*K.1^2,2*K.1^5,2*K.1,-1*K.1^-3,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^5,-1*K.1^3,-1*K.1^-4,-1*K.1^-2,-1*K.1^-5,-1*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1^-3,-1*K.1^4,-1*K.1^-5,-1*K.1^5,-1*K.1^-3,-1*K.1^-1,-1*K.1^-4,-1*K.1^2,-1*K.1^3,-1*K.1^-5,-1*K.1^5,-1*K.1^2,-1*K.1^3,-1*K.1,-1*K.1^4,-1*K.1^-4,-1*K.1,-1*K.1^-2,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,-1,2,2,-1,0,0,0,0,2*K.1^2,2*K.1^5,2*K.1^-1,2*K.1^-2,2*K.1^-4,2*K.1^-3,2*K.1^3,2*K.1,2*K.1^4,2*K.1^-5,-1,-1,2*K.1^5,2*K.1^4,2*K.1^3,2*K.1^-3,2*K.1,2*K.1^-1,2*K.1^-4,2*K.1^-2,2*K.1^2,2*K.1^-5,-1*K.1^-3,-1*K.1^-2,-1*K.1^-5,-1*K.1^2,-1*K.1^4,-1*K.1,-1*K.1^3,-1*K.1^5,-1*K.1^-4,-1*K.1^-1,2*K.1,2*K.1^5,2*K.1^3,2*K.1^4,2*K.1^3,2*K.1^-4,2*K.1^-3,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1^4,2*K.1^5,2*K.1,2*K.1^-3,2*K.1^-5,2*K.1^-2,2*K.1^-4,2*K.1^-2,2*K.1^-5,2*K.1^-1,-1*K.1^3,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-5,-1*K.1^-3,-1*K.1^4,-1*K.1^2,-1*K.1^5,-1*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^3,-1*K.1^-4,-1*K.1^5,-1*K.1^-5,-1*K.1^3,-1*K.1,-1*K.1^4,-1*K.1^-2,-1*K.1^-3,-1*K.1^5,-1*K.1^-5,-1*K.1^-2,-1*K.1^-3,-1*K.1^-1,-1*K.1^-4,-1*K.1^4,-1*K.1^-1,-1*K.1^2,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,-1,2,2,-1,0,0,0,0,2*K.1^-1,2*K.1^3,2*K.1^-5,2*K.1,2*K.1^2,2*K.1^-4,2*K.1^4,2*K.1^5,2*K.1^-2,2*K.1^-3,-1,-1,2*K.1^3,2*K.1^-2,2*K.1^4,2*K.1^-4,2*K.1^5,2*K.1^-5,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-3,-1*K.1^-4,-1*K.1,-1*K.1^-3,-1*K.1^-1,-1*K.1^-2,-1*K.1^5,-1*K.1^4,-1*K.1^3,-1*K.1^2,-1*K.1^-5,2*K.1^5,2*K.1^3,2*K.1^4,2*K.1^-2,2*K.1^4,2*K.1^2,2*K.1^-4,2*K.1^-5,2*K.1^-1,2*K.1^-1,2*K.1^-2,2*K.1^3,2*K.1^5,2*K.1^-4,2*K.1^-3,2*K.1,2*K.1^2,2*K.1,2*K.1^-3,2*K.1^-5,-1*K.1^4,-1*K.1^5,-1*K.1,-1*K.1^-5,-1*K.1^-3,-1*K.1^-4,-1*K.1^-2,-1*K.1^-1,-1*K.1^3,-1*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^5,-1*K.1^4,-1*K.1^2,-1*K.1^3,-1*K.1^-3,-1*K.1^4,-1*K.1^5,-1*K.1^-2,-1*K.1,-1*K.1^-4,-1*K.1^3,-1*K.1^-3,-1*K.1,-1*K.1^-4,-1*K.1^-5,-1*K.1^2,-1*K.1^-2,-1*K.1^-5,-1*K.1^-1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,-1,2,2,-1,0,0,0,0,2*K.1,2*K.1^-3,2*K.1^5,2*K.1^-1,2*K.1^-2,2*K.1^4,2*K.1^-4,2*K.1^-5,2*K.1^2,2*K.1^3,-1,-1,2*K.1^-3,2*K.1^2,2*K.1^-4,2*K.1^4,2*K.1^-5,2*K.1^5,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^3,-1*K.1^4,-1*K.1^-1,-1*K.1^3,-1*K.1,-1*K.1^2,-1*K.1^-5,-1*K.1^-4,-1*K.1^-3,-1*K.1^-2,-1*K.1^5,2*K.1^-5,2*K.1^-3,2*K.1^-4,2*K.1^2,2*K.1^-4,2*K.1^-2,2*K.1^4,2*K.1^5,2*K.1,2*K.1,2*K.1^2,2*K.1^-3,2*K.1^-5,2*K.1^4,2*K.1^3,2*K.1^-1,2*K.1^-2,2*K.1^-1,2*K.1^3,2*K.1^5,-1*K.1^-4,-1*K.1^-5,-1*K.1^-1,-1*K.1^5,-1*K.1^3,-1*K.1^4,-1*K.1^2,-1*K.1,-1*K.1^-3,-1*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-5,-1*K.1^-4,-1*K.1^-2,-1*K.1^-3,-1*K.1^3,-1*K.1^-4,-1*K.1^-5,-1*K.1^2,-1*K.1^-1,-1*K.1^4,-1*K.1^-3,-1*K.1^3,-1*K.1^-1,-1*K.1^4,-1*K.1^5,-1*K.1^-2,-1*K.1^2,-1*K.1^5,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,-1,-2,-2,-1,0,0,0,0,2*K.1^-5,2*K.1^4,2*K.1^-3,2*K.1^5,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^3,2*K.1,2*K.1^-4,1,1,2*K.1^4,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^3,2*K.1^-3,2*K.1^-1,2*K.1^5,2*K.1^-5,2*K.1^-4,-1*K.1^2,-1*K.1^5,-1*K.1^-4,-1*K.1^-5,-1*K.1,-1*K.1^3,-1*K.1^-2,-1*K.1^4,-1*K.1^-1,-1*K.1^-3,-2*K.1^3,-2*K.1^4,-2*K.1^-2,-2*K.1,-2*K.1^-2,-2*K.1^-1,-2*K.1^2,-2*K.1^-3,-2*K.1^-5,-2*K.1^-5,-2*K.1,-2*K.1^4,-2*K.1^3,-2*K.1^2,-2*K.1^-4,-2*K.1^5,-2*K.1^-1,-2*K.1^5,-2*K.1^-4,-2*K.1^-3,-1*K.1^-2,-1*K.1^3,-1*K.1^5,-1*K.1^-3,-1*K.1^-4,-1*K.1^2,-1*K.1,-1*K.1^-5,-1*K.1^4,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3,K.1^-2,K.1^-1,K.1^4,K.1^-4,K.1^-2,K.1^3,K.1,K.1^5,K.1^2,K.1^4,K.1^-4,K.1^5,K.1^2,K.1^-3,K.1^-1,K.1,K.1^-3,K.1^-5,K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,-1,-2,-2,-1,0,0,0,0,2*K.1^5,2*K.1^-4,2*K.1^3,2*K.1^-5,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-3,2*K.1^-1,2*K.1^4,1,1,2*K.1^-4,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^-3,2*K.1^3,2*K.1,2*K.1^-5,2*K.1^5,2*K.1^4,-1*K.1^-2,-1*K.1^-5,-1*K.1^4,-1*K.1^5,-1*K.1^-1,-1*K.1^-3,-1*K.1^2,-1*K.1^-4,-1*K.1,-1*K.1^3,-2*K.1^-3,-2*K.1^-4,-2*K.1^2,-2*K.1^-1,-2*K.1^2,-2*K.1,-2*K.1^-2,-2*K.1^3,-2*K.1^5,-2*K.1^5,-2*K.1^-1,-2*K.1^-4,-2*K.1^-3,-2*K.1^-2,-2*K.1^4,-2*K.1^-5,-2*K.1,-2*K.1^-5,-2*K.1^4,-2*K.1^3,-1*K.1^2,-1*K.1^-3,-1*K.1^-5,-1*K.1^3,-1*K.1^4,-1*K.1^-2,-1*K.1^-1,-1*K.1^5,-1*K.1^-4,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-3,K.1^2,K.1,K.1^-4,K.1^4,K.1^2,K.1^-3,K.1^-1,K.1^-5,K.1^-2,K.1^-4,K.1^4,K.1^-5,K.1^-2,K.1^3,K.1,K.1^-1,K.1^3,K.1^5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,-1,-2,-2,-1,0,0,0,0,2*K.1^-4,2*K.1,2*K.1^2,2*K.1^4,2*K.1^-3,2*K.1^-5,2*K.1^5,2*K.1^-2,2*K.1^3,2*K.1^-1,1,1,2*K.1,2*K.1^3,2*K.1^5,2*K.1^-5,2*K.1^-2,2*K.1^2,2*K.1^-3,2*K.1^4,2*K.1^-4,2*K.1^-1,-1*K.1^-5,-1*K.1^4,-1*K.1^-1,-1*K.1^-4,-1*K.1^3,-1*K.1^-2,-1*K.1^5,-1*K.1,-1*K.1^-3,-1*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^5,-2*K.1^3,-2*K.1^5,-2*K.1^-3,-2*K.1^-5,-2*K.1^2,-2*K.1^-4,-2*K.1^-4,-2*K.1^3,-2*K.1,-2*K.1^-2,-2*K.1^-5,-2*K.1^-1,-2*K.1^4,-2*K.1^-3,-2*K.1^4,-2*K.1^-1,-2*K.1^2,-1*K.1^5,-1*K.1^-2,-1*K.1^4,-1*K.1^2,-1*K.1^-1,-1*K.1^-5,-1*K.1^3,-1*K.1^-4,-1*K.1,-1*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-2,K.1^5,K.1^-3,K.1,K.1^-1,K.1^5,K.1^-2,K.1^3,K.1^4,K.1^-5,K.1,K.1^-1,K.1^4,K.1^-5,K.1^2,K.1^-3,K.1^3,K.1^2,K.1^-4,K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,-1,-2,-2,-1,0,0,0,0,2*K.1^4,2*K.1^-1,2*K.1^-2,2*K.1^-4,2*K.1^3,2*K.1^5,2*K.1^-5,2*K.1^2,2*K.1^-3,2*K.1,1,1,2*K.1^-1,2*K.1^-3,2*K.1^-5,2*K.1^5,2*K.1^2,2*K.1^-2,2*K.1^3,2*K.1^-4,2*K.1^4,2*K.1,-1*K.1^5,-1*K.1^-4,-1*K.1,-1*K.1^4,-1*K.1^-3,-1*K.1^2,-1*K.1^-5,-1*K.1^-1,-1*K.1^3,-1*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1^-5,-2*K.1^-3,-2*K.1^-5,-2*K.1^3,-2*K.1^5,-2*K.1^-2,-2*K.1^4,-2*K.1^4,-2*K.1^-3,-2*K.1^-1,-2*K.1^2,-2*K.1^5,-2*K.1,-2*K.1^-4,-2*K.1^3,-2*K.1^-4,-2*K.1,-2*K.1^-2,-1*K.1^-5,-1*K.1^2,-1*K.1^-4,-1*K.1^-2,-1*K.1,-1*K.1^5,-1*K.1^-3,-1*K.1^4,-1*K.1^-1,-1*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2,K.1^-5,K.1^3,K.1^-1,K.1,K.1^-5,K.1^2,K.1^-3,K.1^-4,K.1^5,K.1^-1,K.1,K.1^-4,K.1^5,K.1^-2,K.1^3,K.1^-3,K.1^-2,K.1^4,K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,-1,-2,-2,-1,0,0,0,0,2*K.1^-3,2*K.1^-2,2*K.1^-4,2*K.1^3,2*K.1^-5,2*K.1^-1,2*K.1,2*K.1^4,2*K.1^5,2*K.1^2,1,1,2*K.1^-2,2*K.1^5,2*K.1,2*K.1^-1,2*K.1^4,2*K.1^-4,2*K.1^-5,2*K.1^3,2*K.1^-3,2*K.1^2,-1*K.1^-1,-1*K.1^3,-1*K.1^2,-1*K.1^-3,-1*K.1^5,-1*K.1^4,-1*K.1,-1*K.1^-2,-1*K.1^-5,-1*K.1^-4,-2*K.1^4,-2*K.1^-2,-2*K.1,-2*K.1^5,-2*K.1,-2*K.1^-5,-2*K.1^-1,-2*K.1^-4,-2*K.1^-3,-2*K.1^-3,-2*K.1^5,-2*K.1^-2,-2*K.1^4,-2*K.1^-1,-2*K.1^2,-2*K.1^3,-2*K.1^-5,-2*K.1^3,-2*K.1^2,-2*K.1^-4,-1*K.1,-1*K.1^4,-1*K.1^3,-1*K.1^-4,-1*K.1^2,-1*K.1^-1,-1*K.1^5,-1*K.1^-3,-1*K.1^-2,-1*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4,K.1,K.1^-5,K.1^-2,K.1^2,K.1,K.1^4,K.1^5,K.1^3,K.1^-1,K.1^-2,K.1^2,K.1^3,K.1^-1,K.1^-4,K.1^-5,K.1^5,K.1^-4,K.1^-3,K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,-1,-2,-2,-1,0,0,0,0,2*K.1^3,2*K.1^2,2*K.1^4,2*K.1^-3,2*K.1^5,2*K.1,2*K.1^-1,2*K.1^-4,2*K.1^-5,2*K.1^-2,1,1,2*K.1^2,2*K.1^-5,2*K.1^-1,2*K.1,2*K.1^-4,2*K.1^4,2*K.1^5,2*K.1^-3,2*K.1^3,2*K.1^-2,-1*K.1,-1*K.1^-3,-1*K.1^-2,-1*K.1^3,-1*K.1^-5,-1*K.1^-4,-1*K.1^-1,-1*K.1^2,-1*K.1^5,-1*K.1^4,-2*K.1^-4,-2*K.1^2,-2*K.1^-1,-2*K.1^-5,-2*K.1^-1,-2*K.1^5,-2*K.1,-2*K.1^4,-2*K.1^3,-2*K.1^3,-2*K.1^-5,-2*K.1^2,-2*K.1^-4,-2*K.1,-2*K.1^-2,-2*K.1^-3,-2*K.1^5,-2*K.1^-3,-2*K.1^-2,-2*K.1^4,-1*K.1^-1,-1*K.1^-4,-1*K.1^-3,-1*K.1^4,-1*K.1^-2,-1*K.1,-1*K.1^-5,-1*K.1^3,-1*K.1^2,-1*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-4,K.1^-1,K.1^5,K.1^2,K.1^-2,K.1^-1,K.1^-4,K.1^-5,K.1^-3,K.1,K.1^2,K.1^-2,K.1^-3,K.1,K.1^4,K.1^5,K.1^-5,K.1^4,K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,-1,-2,-2,-1,0,0,0,0,2*K.1^-2,2*K.1^-5,2*K.1,2*K.1^2,2*K.1^4,2*K.1^3,2*K.1^-3,2*K.1^-1,2*K.1^-4,2*K.1^5,1,1,2*K.1^-5,2*K.1^-4,2*K.1^-3,2*K.1^3,2*K.1^-1,2*K.1,2*K.1^4,2*K.1^2,2*K.1^-2,2*K.1^5,-1*K.1^3,-1*K.1^2,-1*K.1^5,-1*K.1^-2,-1*K.1^-4,-1*K.1^-1,-1*K.1^-3,-1*K.1^-5,-1*K.1^4,-1*K.1,-2*K.1^-1,-2*K.1^-5,-2*K.1^-3,-2*K.1^-4,-2*K.1^-3,-2*K.1^4,-2*K.1^3,-2*K.1,-2*K.1^-2,-2*K.1^-2,-2*K.1^-4,-2*K.1^-5,-2*K.1^-1,-2*K.1^3,-2*K.1^5,-2*K.1^2,-2*K.1^4,-2*K.1^2,-2*K.1^5,-2*K.1,-1*K.1^-3,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^5,-1*K.1^3,-1*K.1^-4,-1*K.1^-2,-1*K.1^-5,-1*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-1,K.1^-3,K.1^4,K.1^-5,K.1^5,K.1^-3,K.1^-1,K.1^-4,K.1^2,K.1^3,K.1^-5,K.1^5,K.1^2,K.1^3,K.1,K.1^4,K.1^-4,K.1,K.1^-2,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,-1,-2,-2,-1,0,0,0,0,2*K.1^2,2*K.1^5,2*K.1^-1,2*K.1^-2,2*K.1^-4,2*K.1^-3,2*K.1^3,2*K.1,2*K.1^4,2*K.1^-5,1,1,2*K.1^5,2*K.1^4,2*K.1^3,2*K.1^-3,2*K.1,2*K.1^-1,2*K.1^-4,2*K.1^-2,2*K.1^2,2*K.1^-5,-1*K.1^-3,-1*K.1^-2,-1*K.1^-5,-1*K.1^2,-1*K.1^4,-1*K.1,-1*K.1^3,-1*K.1^5,-1*K.1^-4,-1*K.1^-1,-2*K.1,-2*K.1^5,-2*K.1^3,-2*K.1^4,-2*K.1^3,-2*K.1^-4,-2*K.1^-3,-2*K.1^-1,-2*K.1^2,-2*K.1^2,-2*K.1^4,-2*K.1^5,-2*K.1,-2*K.1^-3,-2*K.1^-5,-2*K.1^-2,-2*K.1^-4,-2*K.1^-2,-2*K.1^-5,-2*K.1^-1,-1*K.1^3,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-5,-1*K.1^-3,-1*K.1^4,-1*K.1^2,-1*K.1^5,-1*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1,K.1^3,K.1^-4,K.1^5,K.1^-5,K.1^3,K.1,K.1^4,K.1^-2,K.1^-3,K.1^5,K.1^-5,K.1^-2,K.1^-3,K.1^-1,K.1^-4,K.1^4,K.1^-1,K.1^2,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,-1,-2,-2,-1,0,0,0,0,2*K.1^-1,2*K.1^3,2*K.1^-5,2*K.1,2*K.1^2,2*K.1^-4,2*K.1^4,2*K.1^5,2*K.1^-2,2*K.1^-3,1,1,2*K.1^3,2*K.1^-2,2*K.1^4,2*K.1^-4,2*K.1^5,2*K.1^-5,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-3,-1*K.1^-4,-1*K.1,-1*K.1^-3,-1*K.1^-1,-1*K.1^-2,-1*K.1^5,-1*K.1^4,-1*K.1^3,-1*K.1^2,-1*K.1^-5,-2*K.1^5,-2*K.1^3,-2*K.1^4,-2*K.1^-2,-2*K.1^4,-2*K.1^2,-2*K.1^-4,-2*K.1^-5,-2*K.1^-1,-2*K.1^-1,-2*K.1^-2,-2*K.1^3,-2*K.1^5,-2*K.1^-4,-2*K.1^-3,-2*K.1,-2*K.1^2,-2*K.1,-2*K.1^-3,-2*K.1^-5,-1*K.1^4,-1*K.1^5,-1*K.1,-1*K.1^-5,-1*K.1^-3,-1*K.1^-4,-1*K.1^-2,-1*K.1^-1,-1*K.1^3,-1*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^5,K.1^4,K.1^2,K.1^3,K.1^-3,K.1^4,K.1^5,K.1^-2,K.1,K.1^-4,K.1^3,K.1^-3,K.1,K.1^-4,K.1^-5,K.1^2,K.1^-2,K.1^-5,K.1^-1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,2,-1,-2,-2,-1,0,0,0,0,2*K.1,2*K.1^-3,2*K.1^5,2*K.1^-1,2*K.1^-2,2*K.1^4,2*K.1^-4,2*K.1^-5,2*K.1^2,2*K.1^3,1,1,2*K.1^-3,2*K.1^2,2*K.1^-4,2*K.1^4,2*K.1^-5,2*K.1^5,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^3,-1*K.1^4,-1*K.1^-1,-1*K.1^3,-1*K.1,-1*K.1^2,-1*K.1^-5,-1*K.1^-4,-1*K.1^-3,-1*K.1^-2,-1*K.1^5,-2*K.1^-5,-2*K.1^-3,-2*K.1^-4,-2*K.1^2,-2*K.1^-4,-2*K.1^-2,-2*K.1^4,-2*K.1^5,-2*K.1,-2*K.1,-2*K.1^2,-2*K.1^-3,-2*K.1^-5,-2*K.1^4,-2*K.1^3,-2*K.1^-1,-2*K.1^-2,-2*K.1^-1,-2*K.1^3,-2*K.1^5,-1*K.1^-4,-1*K.1^-5,-1*K.1^-1,-1*K.1^5,-1*K.1^3,-1*K.1^4,-1*K.1^2,-1*K.1,-1*K.1^-3,-1*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-5,K.1^-4,K.1^-2,K.1^-3,K.1^3,K.1^-4,K.1^-5,K.1^2,K.1^-1,K.1^4,K.1^-3,K.1^3,K.1^-1,K.1^4,K.1^5,K.1^-2,K.1^2,K.1^5,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-1,-2*K.1^11,2*K.1^11,1,0,0,0,0,-2*K.1^2,2*K.1^16,-2*K.1^10,2*K.1^20,-2*K.1^18,2*K.1^8,-2*K.1^14,2*K.1^12,2*K.1^4,-2*K.1^6,K.1^11,-1*K.1^11,-2*K.1^16,-2*K.1^4,2*K.1^14,-2*K.1^8,-2*K.1^12,2*K.1^10,2*K.1^18,-2*K.1^20,2*K.1^2,2*K.1^6,-1*K.1^8,-1*K.1^20,K.1^6,K.1^2,-1*K.1^4,-1*K.1^12,K.1^14,-1*K.1^16,K.1^18,K.1^10,-2*K.1,-2*K.1^5,2*K.1^3,-2*K.1^15,-2*K.1^3,-2*K.1^7,-2*K.1^19,-2*K.1^21,2*K.1^13,-2*K.1^13,2*K.1^15,2*K.1^5,2*K.1,2*K.1^19,-2*K.1^17,2*K.1^9,2*K.1^7,-2*K.1^9,2*K.1^17,2*K.1^21,-1*K.1^14,K.1^12,K.1^20,-1*K.1^10,-1*K.1^6,K.1^8,K.1^4,-1*K.1^2,K.1^16,-1*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,K.1^3,-1*K.1^7,-1*K.1^5,-1*K.1^17,-1*K.1^3,K.1,-1*K.1^15,K.1^9,-1*K.1^19,K.1^5,K.1^17,-1*K.1^9,K.1^19,-1*K.1^21,K.1^7,K.1^15,K.1^21,-1*K.1^13,K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-1,2*K.1^11,-2*K.1^11,1,0,0,0,0,2*K.1^20,-2*K.1^6,2*K.1^12,-2*K.1^2,2*K.1^4,-2*K.1^14,2*K.1^8,-2*K.1^10,-2*K.1^18,2*K.1^16,-1*K.1^11,K.1^11,2*K.1^6,2*K.1^18,-2*K.1^8,2*K.1^14,2*K.1^10,-2*K.1^12,-2*K.1^4,2*K.1^2,-2*K.1^20,-2*K.1^16,K.1^14,K.1^2,-1*K.1^16,-1*K.1^20,K.1^18,K.1^10,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^12,2*K.1^21,2*K.1^17,-2*K.1^19,2*K.1^7,2*K.1^19,2*K.1^15,2*K.1^3,2*K.1,-2*K.1^9,2*K.1^9,-2*K.1^7,-2*K.1^17,-2*K.1^21,-2*K.1^3,2*K.1^5,-2*K.1^13,-2*K.1^15,2*K.1^13,-2*K.1^5,-2*K.1,K.1^8,-1*K.1^10,-1*K.1^2,K.1^12,K.1^16,-1*K.1^14,-1*K.1^18,K.1^20,-1*K.1^6,K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^21,-1*K.1^19,K.1^15,K.1^17,K.1^5,K.1^19,-1*K.1^21,K.1^7,-1*K.1^13,K.1^3,-1*K.1^17,-1*K.1^5,K.1^13,-1*K.1^3,K.1,-1*K.1^15,-1*K.1^7,-1*K.1,K.1^9,-1*K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-1,-2*K.1^11,2*K.1^11,1,0,0,0,0,2*K.1^20,-2*K.1^6,2*K.1^12,-2*K.1^2,2*K.1^4,-2*K.1^14,2*K.1^8,-2*K.1^10,-2*K.1^18,2*K.1^16,K.1^11,-1*K.1^11,2*K.1^6,2*K.1^18,-2*K.1^8,2*K.1^14,2*K.1^10,-2*K.1^12,-2*K.1^4,2*K.1^2,-2*K.1^20,-2*K.1^16,K.1^14,K.1^2,-1*K.1^16,-1*K.1^20,K.1^18,K.1^10,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^12,-2*K.1^21,-2*K.1^17,2*K.1^19,-2*K.1^7,-2*K.1^19,-2*K.1^15,-2*K.1^3,-2*K.1,2*K.1^9,-2*K.1^9,2*K.1^7,2*K.1^17,2*K.1^21,2*K.1^3,-2*K.1^5,2*K.1^13,2*K.1^15,-2*K.1^13,2*K.1^5,2*K.1,K.1^8,-1*K.1^10,-1*K.1^2,K.1^12,K.1^16,-1*K.1^14,-1*K.1^18,K.1^20,-1*K.1^6,K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^21,K.1^19,-1*K.1^15,-1*K.1^17,-1*K.1^5,-1*K.1^19,K.1^21,-1*K.1^7,K.1^13,-1*K.1^3,K.1^17,K.1^5,-1*K.1^13,K.1^3,-1*K.1,K.1^15,K.1^7,K.1,-1*K.1^9,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-1,2*K.1^11,-2*K.1^11,1,0,0,0,0,-2*K.1^2,2*K.1^16,-2*K.1^10,2*K.1^20,-2*K.1^18,2*K.1^8,-2*K.1^14,2*K.1^12,2*K.1^4,-2*K.1^6,-1*K.1^11,K.1^11,-2*K.1^16,-2*K.1^4,2*K.1^14,-2*K.1^8,-2*K.1^12,2*K.1^10,2*K.1^18,-2*K.1^20,2*K.1^2,2*K.1^6,-1*K.1^8,-1*K.1^20,K.1^6,K.1^2,-1*K.1^4,-1*K.1^12,K.1^14,-1*K.1^16,K.1^18,K.1^10,2*K.1,2*K.1^5,-2*K.1^3,2*K.1^15,2*K.1^3,2*K.1^7,2*K.1^19,2*K.1^21,-2*K.1^13,2*K.1^13,-2*K.1^15,-2*K.1^5,-2*K.1,-2*K.1^19,2*K.1^17,-2*K.1^9,-2*K.1^7,2*K.1^9,-2*K.1^17,-2*K.1^21,-1*K.1^14,K.1^12,K.1^20,-1*K.1^10,-1*K.1^6,K.1^8,K.1^4,-1*K.1^2,K.1^16,-1*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1,-1*K.1^3,K.1^7,K.1^5,K.1^17,K.1^3,-1*K.1,K.1^15,-1*K.1^9,K.1^19,-1*K.1^5,-1*K.1^17,K.1^9,-1*K.1^19,K.1^21,-1*K.1^7,-1*K.1^15,-1*K.1^21,K.1^13,-1*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-1,-2*K.1^11,2*K.1^11,1,0,0,0,0,-2*K.1^6,2*K.1^4,2*K.1^8,2*K.1^16,-2*K.1^10,-2*K.1^2,2*K.1^20,-2*K.1^14,2*K.1^12,-2*K.1^18,K.1^11,-1*K.1^11,-2*K.1^4,-2*K.1^12,-2*K.1^20,2*K.1^2,2*K.1^14,-2*K.1^8,2*K.1^10,-2*K.1^16,2*K.1^6,2*K.1^18,K.1^2,-1*K.1^16,K.1^18,K.1^6,-1*K.1^12,K.1^14,-1*K.1^20,-1*K.1^4,K.1^10,-1*K.1^8,2*K.1^3,2*K.1^15,-2*K.1^9,2*K.1,2*K.1^9,2*K.1^21,2*K.1^13,2*K.1^19,2*K.1^17,-2*K.1^17,-2*K.1,-2*K.1^15,-2*K.1^3,-2*K.1^13,2*K.1^7,2*K.1^5,-2*K.1^21,-2*K.1^5,-2*K.1^7,-2*K.1^19,K.1^20,-1*K.1^14,K.1^16,K.1^8,-1*K.1^18,-1*K.1^2,K.1^12,-1*K.1^6,K.1^4,-1*K.1^10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3,-1*K.1^9,K.1^21,K.1^15,K.1^7,K.1^9,-1*K.1^3,K.1,K.1^5,K.1^13,-1*K.1^15,-1*K.1^7,-1*K.1^5,-1*K.1^13,K.1^19,-1*K.1^21,-1*K.1,-1*K.1^19,-1*K.1^17,K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-1,2*K.1^11,-2*K.1^11,1,0,0,0,0,2*K.1^16,-2*K.1^18,-2*K.1^14,-2*K.1^6,2*K.1^12,2*K.1^20,-2*K.1^2,2*K.1^8,-2*K.1^10,2*K.1^4,-1*K.1^11,K.1^11,2*K.1^18,2*K.1^10,2*K.1^2,-2*K.1^20,-2*K.1^8,2*K.1^14,-2*K.1^12,2*K.1^6,-2*K.1^16,-2*K.1^4,-1*K.1^20,K.1^6,-1*K.1^4,-1*K.1^16,K.1^10,-1*K.1^8,K.1^2,K.1^18,-1*K.1^12,K.1^14,-2*K.1^19,-2*K.1^7,2*K.1^13,-2*K.1^21,-2*K.1^13,-2*K.1,-2*K.1^9,-2*K.1^3,-2*K.1^5,2*K.1^5,2*K.1^21,2*K.1^7,2*K.1^19,2*K.1^9,-2*K.1^15,-2*K.1^17,2*K.1,2*K.1^17,2*K.1^15,2*K.1^3,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^14,K.1^4,K.1^20,-1*K.1^10,K.1^16,-1*K.1^18,K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^19,K.1^13,-1*K.1,-1*K.1^7,-1*K.1^15,-1*K.1^13,K.1^19,-1*K.1^21,-1*K.1^17,-1*K.1^9,K.1^7,K.1^15,K.1^17,K.1^9,-1*K.1^3,K.1,K.1^21,K.1^3,K.1^5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-1,-2*K.1^11,2*K.1^11,1,0,0,0,0,2*K.1^16,-2*K.1^18,-2*K.1^14,-2*K.1^6,2*K.1^12,2*K.1^20,-2*K.1^2,2*K.1^8,-2*K.1^10,2*K.1^4,K.1^11,-1*K.1^11,2*K.1^18,2*K.1^10,2*K.1^2,-2*K.1^20,-2*K.1^8,2*K.1^14,-2*K.1^12,2*K.1^6,-2*K.1^16,-2*K.1^4,-1*K.1^20,K.1^6,-1*K.1^4,-1*K.1^16,K.1^10,-1*K.1^8,K.1^2,K.1^18,-1*K.1^12,K.1^14,2*K.1^19,2*K.1^7,-2*K.1^13,2*K.1^21,2*K.1^13,2*K.1,2*K.1^9,2*K.1^3,2*K.1^5,-2*K.1^5,-2*K.1^21,-2*K.1^7,-2*K.1^19,-2*K.1^9,2*K.1^15,2*K.1^17,-2*K.1,-2*K.1^17,-2*K.1^15,-2*K.1^3,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^14,K.1^4,K.1^20,-1*K.1^10,K.1^16,-1*K.1^18,K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^19,-1*K.1^13,K.1,K.1^7,K.1^15,K.1^13,-1*K.1^19,K.1^21,K.1^17,K.1^9,-1*K.1^7,-1*K.1^15,-1*K.1^17,-1*K.1^9,K.1^3,-1*K.1,-1*K.1^21,-1*K.1^3,-1*K.1^5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-1,2*K.1^11,-2*K.1^11,1,0,0,0,0,-2*K.1^6,2*K.1^4,2*K.1^8,2*K.1^16,-2*K.1^10,-2*K.1^2,2*K.1^20,-2*K.1^14,2*K.1^12,-2*K.1^18,-1*K.1^11,K.1^11,-2*K.1^4,-2*K.1^12,-2*K.1^20,2*K.1^2,2*K.1^14,-2*K.1^8,2*K.1^10,-2*K.1^16,2*K.1^6,2*K.1^18,K.1^2,-1*K.1^16,K.1^18,K.1^6,-1*K.1^12,K.1^14,-1*K.1^20,-1*K.1^4,K.1^10,-1*K.1^8,-2*K.1^3,-2*K.1^15,2*K.1^9,-2*K.1,-2*K.1^9,-2*K.1^21,-2*K.1^13,-2*K.1^19,-2*K.1^17,2*K.1^17,2*K.1,2*K.1^15,2*K.1^3,2*K.1^13,-2*K.1^7,-2*K.1^5,2*K.1^21,2*K.1^5,2*K.1^7,2*K.1^19,K.1^20,-1*K.1^14,K.1^16,K.1^8,-1*K.1^18,-1*K.1^2,K.1^12,-1*K.1^6,K.1^4,-1*K.1^10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3,K.1^9,-1*K.1^21,-1*K.1^15,-1*K.1^7,-1*K.1^9,K.1^3,-1*K.1,-1*K.1^5,-1*K.1^13,K.1^15,K.1^7,K.1^5,K.1^13,-1*K.1^19,K.1^21,K.1,K.1^19,K.1^17,-1*K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-1,-2*K.1^11,2*K.1^11,1,0,0,0,0,-2*K.1^10,-2*K.1^14,-2*K.1^6,2*K.1^12,-2*K.1^2,-2*K.1^18,2*K.1^4,2*K.1^16,2*K.1^20,2*K.1^8,K.1^11,-1*K.1^11,2*K.1^14,-2*K.1^20,-2*K.1^4,2*K.1^18,-2*K.1^16,2*K.1^6,2*K.1^2,-2*K.1^12,2*K.1^10,-2*K.1^8,K.1^18,-1*K.1^12,-1*K.1^8,K.1^10,-1*K.1^20,-1*K.1^16,-1*K.1^4,K.1^14,K.1^2,K.1^6,-2*K.1^5,2*K.1^3,2*K.1^15,2*K.1^9,-2*K.1^15,2*K.1^13,-2*K.1^7,-2*K.1^17,2*K.1^21,-2*K.1^21,-2*K.1^9,-2*K.1^3,2*K.1^5,2*K.1^7,2*K.1^19,2*K.1,-2*K.1^13,-2*K.1,-2*K.1^19,2*K.1^17,K.1^4,K.1^16,K.1^12,-1*K.1^6,K.1^8,-1*K.1^18,K.1^20,-1*K.1^10,-1*K.1^14,-1*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^5,K.1^15,K.1^13,K.1^3,K.1^19,-1*K.1^15,K.1^5,K.1^9,K.1,-1*K.1^7,-1*K.1^3,-1*K.1^19,-1*K.1,K.1^7,-1*K.1^17,-1*K.1^13,-1*K.1^9,K.1^17,-1*K.1^21,K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-1,2*K.1^11,-2*K.1^11,1,0,0,0,0,2*K.1^12,2*K.1^8,2*K.1^16,-2*K.1^10,2*K.1^20,2*K.1^4,-2*K.1^18,-2*K.1^6,-2*K.1^2,-2*K.1^14,-1*K.1^11,K.1^11,-2*K.1^8,2*K.1^2,2*K.1^18,-2*K.1^4,2*K.1^6,-2*K.1^16,-2*K.1^20,2*K.1^10,-2*K.1^12,2*K.1^14,-1*K.1^4,K.1^10,K.1^14,-1*K.1^12,K.1^2,K.1^6,K.1^18,-1*K.1^8,-1*K.1^20,-1*K.1^16,2*K.1^17,-2*K.1^19,-2*K.1^7,-2*K.1^13,2*K.1^7,-2*K.1^9,2*K.1^15,2*K.1^5,-2*K.1,2*K.1,2*K.1^13,2*K.1^19,-2*K.1^17,-2*K.1^15,-2*K.1^3,-2*K.1^21,2*K.1^9,2*K.1^21,2*K.1^3,-2*K.1^5,-1*K.1^18,-1*K.1^6,-1*K.1^10,K.1^16,-1*K.1^14,K.1^4,-1*K.1^2,K.1^12,K.1^8,K.1^20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^17,-1*K.1^7,-1*K.1^9,-1*K.1^19,-1*K.1^3,K.1^7,-1*K.1^17,-1*K.1^13,-1*K.1^21,K.1^15,K.1^19,K.1^3,K.1^21,-1*K.1^15,K.1^5,K.1^9,K.1^13,-1*K.1^5,K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-1,-2*K.1^11,2*K.1^11,1,0,0,0,0,2*K.1^12,2*K.1^8,2*K.1^16,-2*K.1^10,2*K.1^20,2*K.1^4,-2*K.1^18,-2*K.1^6,-2*K.1^2,-2*K.1^14,K.1^11,-1*K.1^11,-2*K.1^8,2*K.1^2,2*K.1^18,-2*K.1^4,2*K.1^6,-2*K.1^16,-2*K.1^20,2*K.1^10,-2*K.1^12,2*K.1^14,-1*K.1^4,K.1^10,K.1^14,-1*K.1^12,K.1^2,K.1^6,K.1^18,-1*K.1^8,-1*K.1^20,-1*K.1^16,-2*K.1^17,2*K.1^19,2*K.1^7,2*K.1^13,-2*K.1^7,2*K.1^9,-2*K.1^15,-2*K.1^5,2*K.1,-2*K.1,-2*K.1^13,-2*K.1^19,2*K.1^17,2*K.1^15,2*K.1^3,2*K.1^21,-2*K.1^9,-2*K.1^21,-2*K.1^3,2*K.1^5,-1*K.1^18,-1*K.1^6,-1*K.1^10,K.1^16,-1*K.1^14,K.1^4,-1*K.1^2,K.1^12,K.1^8,K.1^20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^17,K.1^7,K.1^9,K.1^19,K.1^3,-1*K.1^7,K.1^17,K.1^13,K.1^21,-1*K.1^15,-1*K.1^19,-1*K.1^3,-1*K.1^21,K.1^15,-1*K.1^5,-1*K.1^9,-1*K.1^13,K.1^5,-1*K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-1,2*K.1^11,-2*K.1^11,1,0,0,0,0,-2*K.1^10,-2*K.1^14,-2*K.1^6,2*K.1^12,-2*K.1^2,-2*K.1^18,2*K.1^4,2*K.1^16,2*K.1^20,2*K.1^8,-1*K.1^11,K.1^11,2*K.1^14,-2*K.1^20,-2*K.1^4,2*K.1^18,-2*K.1^16,2*K.1^6,2*K.1^2,-2*K.1^12,2*K.1^10,-2*K.1^8,K.1^18,-1*K.1^12,-1*K.1^8,K.1^10,-1*K.1^20,-1*K.1^16,-1*K.1^4,K.1^14,K.1^2,K.1^6,2*K.1^5,-2*K.1^3,-2*K.1^15,-2*K.1^9,2*K.1^15,-2*K.1^13,2*K.1^7,2*K.1^17,-2*K.1^21,2*K.1^21,2*K.1^9,2*K.1^3,-2*K.1^5,-2*K.1^7,-2*K.1^19,-2*K.1,2*K.1^13,2*K.1,2*K.1^19,-2*K.1^17,K.1^4,K.1^16,K.1^12,-1*K.1^6,K.1^8,-1*K.1^18,K.1^20,-1*K.1^10,-1*K.1^14,-1*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^5,-1*K.1^15,-1*K.1^13,-1*K.1^3,-1*K.1^19,K.1^15,-1*K.1^5,-1*K.1^9,-1*K.1,K.1^7,K.1^3,K.1^19,K.1,-1*K.1^7,K.1^17,K.1^13,K.1^9,-1*K.1^17,K.1^21,-1*K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-1,-2*K.1^11,2*K.1^11,1,0,0,0,0,-2*K.1^14,-2*K.1^2,2*K.1^4,2*K.1^8,2*K.1^16,2*K.1^12,-2*K.1^10,-2*K.1^18,-2*K.1^6,2*K.1^20,K.1^11,-1*K.1^11,2*K.1^2,2*K.1^6,2*K.1^10,-2*K.1^12,2*K.1^18,-2*K.1^4,-2*K.1^16,-2*K.1^8,2*K.1^14,-2*K.1^20,-1*K.1^12,-1*K.1^8,-1*K.1^20,K.1^14,K.1^6,K.1^18,K.1^10,K.1^2,-1*K.1^16,-1*K.1^4,2*K.1^7,-2*K.1^13,-2*K.1^21,2*K.1^17,2*K.1^21,2*K.1^5,2*K.1,2*K.1^15,-2*K.1^3,2*K.1^3,-2*K.1^17,2*K.1^13,-2*K.1^7,-2*K.1,-2*K.1^9,-2*K.1^19,-2*K.1^5,2*K.1^19,2*K.1^9,-2*K.1^15,-1*K.1^10,-1*K.1^18,K.1^8,K.1^4,K.1^20,K.1^12,-1*K.1^6,-1*K.1^14,-1*K.1^2,K.1^16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^7,-1*K.1^21,K.1^5,-1*K.1^13,-1*K.1^9,K.1^21,-1*K.1^7,K.1^17,-1*K.1^19,K.1,K.1^13,K.1^9,K.1^19,-1*K.1,K.1^15,-1*K.1^5,-1*K.1^17,-1*K.1^15,K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-1,2*K.1^11,-2*K.1^11,1,0,0,0,0,2*K.1^8,2*K.1^20,-2*K.1^18,-2*K.1^14,-2*K.1^6,-2*K.1^10,2*K.1^12,2*K.1^4,2*K.1^16,-2*K.1^2,-1*K.1^11,K.1^11,-2*K.1^20,-2*K.1^16,-2*K.1^12,2*K.1^10,-2*K.1^4,2*K.1^18,2*K.1^6,2*K.1^14,-2*K.1^8,2*K.1^2,K.1^10,K.1^14,K.1^2,-1*K.1^8,-1*K.1^16,-1*K.1^4,-1*K.1^12,-1*K.1^20,K.1^6,K.1^18,-2*K.1^15,2*K.1^9,2*K.1,-2*K.1^5,-2*K.1,-2*K.1^17,-2*K.1^21,-2*K.1^7,2*K.1^19,-2*K.1^19,2*K.1^5,-2*K.1^9,2*K.1^15,2*K.1^21,2*K.1^13,2*K.1^3,2*K.1^17,-2*K.1^3,-2*K.1^13,2*K.1^7,K.1^12,K.1^4,-1*K.1^14,-1*K.1^18,-1*K.1^2,-1*K.1^10,K.1^16,K.1^8,K.1^20,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^15,K.1,-1*K.1^17,K.1^9,K.1^13,-1*K.1,K.1^15,-1*K.1^5,K.1^3,-1*K.1^21,-1*K.1^9,-1*K.1^13,-1*K.1^3,K.1^21,-1*K.1^7,K.1^17,K.1^5,K.1^7,-1*K.1^19,K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-1,-2*K.1^11,2*K.1^11,1,0,0,0,0,2*K.1^8,2*K.1^20,-2*K.1^18,-2*K.1^14,-2*K.1^6,-2*K.1^10,2*K.1^12,2*K.1^4,2*K.1^16,-2*K.1^2,K.1^11,-1*K.1^11,-2*K.1^20,-2*K.1^16,-2*K.1^12,2*K.1^10,-2*K.1^4,2*K.1^18,2*K.1^6,2*K.1^14,-2*K.1^8,2*K.1^2,K.1^10,K.1^14,K.1^2,-1*K.1^8,-1*K.1^16,-1*K.1^4,-1*K.1^12,-1*K.1^20,K.1^6,K.1^18,2*K.1^15,-2*K.1^9,-2*K.1,2*K.1^5,2*K.1,2*K.1^17,2*K.1^21,2*K.1^7,-2*K.1^19,2*K.1^19,-2*K.1^5,2*K.1^9,-2*K.1^15,-2*K.1^21,-2*K.1^13,-2*K.1^3,-2*K.1^17,2*K.1^3,2*K.1^13,-2*K.1^7,K.1^12,K.1^4,-1*K.1^14,-1*K.1^18,-1*K.1^2,-1*K.1^10,K.1^16,K.1^8,K.1^20,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^15,-1*K.1,K.1^17,-1*K.1^9,-1*K.1^13,K.1,-1*K.1^15,K.1^5,-1*K.1^3,K.1^21,K.1^9,K.1^13,K.1^3,-1*K.1^21,K.1^7,-1*K.1^17,-1*K.1^5,-1*K.1^7,K.1^19,-1*K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-1,2*K.1^11,-2*K.1^11,1,0,0,0,0,-2*K.1^14,-2*K.1^2,2*K.1^4,2*K.1^8,2*K.1^16,2*K.1^12,-2*K.1^10,-2*K.1^18,-2*K.1^6,2*K.1^20,-1*K.1^11,K.1^11,2*K.1^2,2*K.1^6,2*K.1^10,-2*K.1^12,2*K.1^18,-2*K.1^4,-2*K.1^16,-2*K.1^8,2*K.1^14,-2*K.1^20,-1*K.1^12,-1*K.1^8,-1*K.1^20,K.1^14,K.1^6,K.1^18,K.1^10,K.1^2,-1*K.1^16,-1*K.1^4,-2*K.1^7,2*K.1^13,2*K.1^21,-2*K.1^17,-2*K.1^21,-2*K.1^5,-2*K.1,-2*K.1^15,2*K.1^3,-2*K.1^3,2*K.1^17,-2*K.1^13,2*K.1^7,2*K.1,2*K.1^9,2*K.1^19,2*K.1^5,-2*K.1^19,-2*K.1^9,2*K.1^15,-1*K.1^10,-1*K.1^18,K.1^8,K.1^4,K.1^20,K.1^12,-1*K.1^6,-1*K.1^14,-1*K.1^2,K.1^16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^7,K.1^21,-1*K.1^5,K.1^13,K.1^9,-1*K.1^21,K.1^7,-1*K.1^17,K.1^19,-1*K.1,-1*K.1^13,-1*K.1^9,-1*K.1^19,K.1,-1*K.1^15,K.1^5,K.1^17,K.1^15,-1*K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-1,-2*K.1^11,2*K.1^11,1,0,0,0,0,-2*K.1^18,2*K.1^12,-2*K.1^2,2*K.1^4,2*K.1^8,-2*K.1^6,2*K.1^16,2*K.1^20,-2*K.1^14,-2*K.1^10,K.1^11,-1*K.1^11,-2*K.1^12,2*K.1^14,-2*K.1^16,2*K.1^6,-2*K.1^20,2*K.1^2,-2*K.1^8,-2*K.1^4,2*K.1^18,2*K.1^10,K.1^6,-1*K.1^4,K.1^10,K.1^18,K.1^14,-1*K.1^20,-1*K.1^16,-1*K.1^12,-1*K.1^8,K.1^2,-2*K.1^9,-2*K.1,-2*K.1^5,-2*K.1^3,2*K.1^5,-2*K.1^19,2*K.1^17,-2*K.1^13,-2*K.1^7,2*K.1^7,2*K.1^3,2*K.1,2*K.1^9,-2*K.1^17,-2*K.1^21,-2*K.1^15,2*K.1^19,2*K.1^15,2*K.1^21,2*K.1^13,K.1^16,K.1^20,K.1^4,-1*K.1^2,-1*K.1^10,-1*K.1^6,-1*K.1^14,-1*K.1^18,K.1^12,K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^9,-1*K.1^5,-1*K.1^19,-1*K.1,-1*K.1^21,K.1^5,K.1^9,-1*K.1^3,-1*K.1^15,K.1^17,K.1,K.1^21,K.1^15,-1*K.1^17,-1*K.1^13,K.1^19,K.1^3,K.1^13,K.1^7,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-1,2*K.1^11,-2*K.1^11,1,0,0,0,0,2*K.1^4,-2*K.1^10,2*K.1^20,-2*K.1^18,-2*K.1^14,2*K.1^16,-2*K.1^6,-2*K.1^2,2*K.1^8,2*K.1^12,-1*K.1^11,K.1^11,2*K.1^10,-2*K.1^8,2*K.1^6,-2*K.1^16,2*K.1^2,-2*K.1^20,2*K.1^14,2*K.1^18,-2*K.1^4,-2*K.1^12,-1*K.1^16,K.1^18,-1*K.1^12,-1*K.1^4,-1*K.1^8,K.1^2,K.1^6,K.1^10,K.1^14,-1*K.1^20,2*K.1^13,2*K.1^21,2*K.1^17,2*K.1^19,-2*K.1^17,2*K.1^3,-2*K.1^5,2*K.1^9,2*K.1^15,-2*K.1^15,-2*K.1^19,-2*K.1^21,-2*K.1^13,2*K.1^5,2*K.1,2*K.1^7,-2*K.1^3,-2*K.1^7,-2*K.1,-2*K.1^9,-1*K.1^6,-1*K.1^2,-1*K.1^18,K.1^20,K.1^12,K.1^16,K.1^8,K.1^4,-1*K.1^10,-1*K.1^14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^13,K.1^17,K.1^3,K.1^21,K.1,-1*K.1^17,-1*K.1^13,K.1^19,K.1^7,-1*K.1^5,-1*K.1^21,-1*K.1,-1*K.1^7,K.1^5,K.1^9,-1*K.1^3,-1*K.1^19,-1*K.1^9,-1*K.1^15,K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-1,-2*K.1^11,2*K.1^11,1,0,0,0,0,2*K.1^4,-2*K.1^10,2*K.1^20,-2*K.1^18,-2*K.1^14,2*K.1^16,-2*K.1^6,-2*K.1^2,2*K.1^8,2*K.1^12,K.1^11,-1*K.1^11,2*K.1^10,-2*K.1^8,2*K.1^6,-2*K.1^16,2*K.1^2,-2*K.1^20,2*K.1^14,2*K.1^18,-2*K.1^4,-2*K.1^12,-1*K.1^16,K.1^18,-1*K.1^12,-1*K.1^4,-1*K.1^8,K.1^2,K.1^6,K.1^10,K.1^14,-1*K.1^20,-2*K.1^13,-2*K.1^21,-2*K.1^17,-2*K.1^19,2*K.1^17,-2*K.1^3,2*K.1^5,-2*K.1^9,-2*K.1^15,2*K.1^15,2*K.1^19,2*K.1^21,2*K.1^13,-2*K.1^5,-2*K.1,-2*K.1^7,2*K.1^3,2*K.1^7,2*K.1,2*K.1^9,-1*K.1^6,-1*K.1^2,-1*K.1^18,K.1^20,K.1^12,K.1^16,K.1^8,K.1^4,-1*K.1^10,-1*K.1^14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^13,-1*K.1^17,-1*K.1^3,-1*K.1^21,-1*K.1,K.1^17,K.1^13,-1*K.1^19,-1*K.1^7,K.1^5,K.1^21,K.1,K.1^7,-1*K.1^5,-1*K.1^9,K.1^3,K.1^19,K.1^9,K.1^15,-1*K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(44: Sparse := true); S := [ K |2,-2,-1,2*K.1^11,-2*K.1^11,1,0,0,0,0,-2*K.1^18,2*K.1^12,-2*K.1^2,2*K.1^4,2*K.1^8,-2*K.1^6,2*K.1^16,2*K.1^20,-2*K.1^14,-2*K.1^10,-1*K.1^11,K.1^11,-2*K.1^12,2*K.1^14,-2*K.1^16,2*K.1^6,-2*K.1^20,2*K.1^2,-2*K.1^8,-2*K.1^4,2*K.1^18,2*K.1^10,K.1^6,-1*K.1^4,K.1^10,K.1^18,K.1^14,-1*K.1^20,-1*K.1^16,-1*K.1^12,-1*K.1^8,K.1^2,2*K.1^9,2*K.1,2*K.1^5,2*K.1^3,-2*K.1^5,2*K.1^19,-2*K.1^17,2*K.1^13,2*K.1^7,-2*K.1^7,-2*K.1^3,-2*K.1,-2*K.1^9,2*K.1^17,2*K.1^21,2*K.1^15,-2*K.1^19,-2*K.1^15,-2*K.1^21,-2*K.1^13,K.1^16,K.1^20,K.1^4,-1*K.1^2,-1*K.1^10,-1*K.1^6,-1*K.1^14,-1*K.1^18,K.1^12,K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^9,K.1^5,K.1^19,K.1,K.1^21,-1*K.1^5,-1*K.1^9,K.1^3,K.1^15,-1*K.1^17,-1*K.1,-1*K.1^21,-1*K.1^15,K.1^17,K.1^13,-1*K.1^19,-1*K.1^3,-1*K.1^13,-1*K.1^7,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_264_1:= KnownIrreducibles(CR);