/* Group 256.6076 downloaded from the LMFDB on 14 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([8, 2, 2, 2, 2, 2, 2, 2, 2, 66, 1780, 268, 116, 3702, 1142, 1374, 166, 2583]); a,b,c,d,e := Explode([GPC.1, GPC.2, GPC.3, GPC.5, GPC.7]); AssignNames(~GPC, ["a", "b", "c", "c2", "d", "d2", "e", "e2"]); GPerm := PermutationGroup< 12 | (1,2,5,6)(3,7,8,4)(9,10,11,12), (1,3)(2,4)(5,6,7,8)(10,12), (1,4)(2,3)(5,7)(6,8)(10,12), (1,5,4,7)(2,6,3,8)(9,11)(10,12), (9,11)(10,12), (1,5)(2,6)(3,8)(4,7)(9,11)(10,12), (1,4)(5,7), (1,4)(2,3)(5,7)(6,8) >; GLZ := MatrixGroup< 6, Integers() | [[0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0], [1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1], [0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_256_6076 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := true, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPerm; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, G!(1,4)(2,3)(5,7)(6,8)(9,11)(10,12)>,< 2, 1, G!(1,4)(2,3)(5,7)(6,8)>,< 2, 1, G!(9,11)(10,12)>,< 2, 2, G!(10,12)>,< 2, 2, G!(1,4)(2,3)(5,7)(6,8)(10,12)>,< 2, 2, G!(2,3)(6,8)>,< 2, 2, G!(2,3)(6,8)(9,11)(10,12)>,< 2, 4, G!(5,7)(6,8)(10,12)>,< 2, 4, G!(5,7)(6,8)(9,11)>,< 2, 4, G!(5,7)(6,8)(9,11)(10,12)>,< 2, 4, G!(2,3)(6,8)(10,12)>,< 2, 4, G!(5,7)(6,8)>,< 2, 4, G!(1,5)(2,6)(3,8)(4,7)>,< 2, 4, G!(1,5)(2,6)(3,8)(4,7)(9,11)(10,12)>,< 2, 8, G!(1,5)(2,6)(3,8)(4,7)(10,12)>,< 2, 16, G!(2,6)(3,8)(5,7)(9,10)(11,12)>,< 4, 4, G!(1,5,4,7)(2,6,3,8)>,< 4, 4, G!(1,5,4,7)(2,6,3,8)(9,11)(10,12)>,< 4, 8, G!(2,6,3,8)(9,10)(11,12)>,< 4, 8, G!(2,6,3,8)(9,10,11,12)>,< 4, 8, G!(1,4)(2,6,3,8)(5,7)(9,10)(11,12)>,< 4, 8, G!(1,4)(2,6,3,8)(5,7)(9,10,11,12)>,< 4, 8, G!(1,5,4,7)(2,6,3,8)(10,12)>,< 4, 8, G!(1,2)(3,4)(5,6,7,8)>,< 4, 8, G!(1,2)(3,4)(5,8,7,6)>,< 4, 8, G!(1,2)(3,4)(5,6,7,8)(10,12)>,< 4, 8, G!(1,2)(3,4)(5,8,7,6)(10,12)>,< 4, 8, G!(1,2)(3,4)(5,6,7,8)(9,11)>,< 4, 8, G!(1,2)(3,4)(5,8,7,6)(9,11)>,< 4, 8, G!(1,2)(3,4)(5,6,7,8)(9,11)(10,12)>,< 4, 8, G!(1,2)(3,4)(5,8,7,6)(9,11)(10,12)>,< 4, 16, G!(2,6)(3,8)(5,7)(9,10,11,12)>,< 4, 16, G!(1,2,5,6)(3,7,8,4)(9,10)(11,12)>,< 4, 16, G!(1,2,5,8)(3,7,6,4)(9,10)(11,12)>,< 4, 16, G!(1,2,5,6)(3,7,8,4)(9,10,11,12)>,< 4, 16, G!(1,2,5,8)(3,7,6,4)(9,10,11,12)>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,1,-1,1,1,-1,-1*K.1,1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,1,-1,-1,K.1,-1*K.1,-1*K.1,K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,1,-1,1,1,-1,K.1,1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,1,-1,-1,-1*K.1,K.1,K.1,-1*K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,1,1,1,1,1,-1*K.1,-1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1,1,-1,-1*K.1,K.1,K.1,-1*K.1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,1,1,1,1,1,K.1,-1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1,1,-1,K.1,-1*K.1,-1*K.1,K.1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,-1,1,1,1,-1*K.1,1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,1,1,1,K.1,-1*K.1,K.1,-1*K.1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,-1,1,1,1,K.1,1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,1,1,1,-1*K.1,K.1,-1*K.1,K.1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,-1*K.1,-1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1,-1,1,-1*K.1,K.1,-1*K.1,K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,K.1,-1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1,-1,1,K.1,-1*K.1,K.1,-1*K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, 0, 0, -2, 2, 0, 0, -2, 0, -2, 2, 2, 0, 0, 2, -2, 0, -2, 0, 0, 2, -2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, 0, 0, -2, 2, 0, 0, -2, 0, -2, 2, 2, 0, 0, 2, -2, 0, 2, 0, 0, -2, 2, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, 0, 0, -2, 2, 0, 0, -2, 0, 2, -2, 2, 0, 0, -2, 2, 0, 0, 0, -2, 0, 0, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, 0, 0, -2, 2, 0, 0, -2, 0, 2, -2, 2, 0, 0, -2, 2, 0, 0, 0, 2, 0, 0, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, -2, 2, 2, -2, -2, 2, -2, -2, -2, 2, 2, 0, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, -2, 2, 2, 2, 2, -2, -2, 2, 2, -2, -2, 0, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, 2, 2, 2, -2, 2, 0, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, 2, -2, 0, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,0,0,-2,2,0,0,2,0,-2,2,-2,0,0,-2,2,0,0,0,-2*K.1,0,0,2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,0,0,-2,2,0,0,2,0,-2,2,-2,0,0,-2,2,0,0,0,2*K.1,0,0,-2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,0,0,-2,2,0,0,2,0,2,-2,-2,0,0,2,-2,0,-2*K.1,0,0,2*K.1,2*K.1,0,0,0,-2*K.1,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,0,0,-2,2,0,0,2,0,2,-2,-2,0,0,2,-2,0,2*K.1,0,0,-2*K.1,-2*K.1,0,0,0,2*K.1,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[4, -4, -4, 4, 0, 0, 4, -4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, -4, -4, 4, 0, 0, 4, -4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, 4, 4, -4, -4, -4, -4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, 4, 4, 4, 4, -4, -4, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, -4, -4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 2, 0, 0, 0, 0, 0, 0, 0, -2, 2, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, -4, -4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, -2, 0, 0, 0, 0, 0, 0, 0, 2, -2, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, -4, -4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, -2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, -4, -4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, -8, 8, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_256_6076:= KnownIrreducibles(CR);