/* Group 256.5886 downloaded from the LMFDB on 24 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([8, 2, 2, 2, 2, 2, 2, 2, 2, 16, 41, 66, 1924, 116, 10758, 166]); a,b,c := Explode([GPC.1, GPC.5, GPC.7]); AssignNames(~GPC, ["a", "a2", "a4", "a8", "b", "b2", "c", "c2"]); GPerm := PermutationGroup< 24 | (2,4)(6,8)(9,10,11,14,12,15,17,20,13,16,18,21,19,22,23,24), (5,6,7,8), (1,2,3,4), (5,7)(6,8), (1,3)(2,4), (9,11,12,17,13,18,19,23)(10,14,15,20,16,21,22,24), (9,12,13,19)(10,15,16,22)(11,17,18,23)(14,20,21,24), (9,13)(10,16)(11,18)(12,19)(14,21)(15,22)(17,23)(20,24) >; GLZN := MatrixGroup< 2, Integers(48) | [[1, 12, 0, 1], [25, 0, 0, 25], [1, 24, 0, 1], [5, 1, 0, 1], [25, 6, 0, 1], [37, 24, 24, 13], [25, 44, 32, 17], [41, 0, 0, 41]] >; GLZq := MatrixGroup< 2, Integers(32) | [[13, 6, 22, 31], [1, 8, 0, 1], [3, 18, 18, 17], [9, 16, 16, 25], [1, 16, 0, 1], [13, 8, 8, 5], [17, 0, 0, 17], [17, 16, 16, 17]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_256_5886 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := true, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, c^2>,< 2, 1, b^2>,< 2, 1, b^2*c^2>,< 2, 1, a^8*c^2>,< 2, 1, a^8*b^2>,< 2, 1, a^8*b^2*c^2>,< 2, 1, a^8>,< 4, 1, a^4>,< 4, 1, a^12>,< 4, 1, a^4*c^2>,< 4, 1, a^12*c^2>,< 4, 1, a^4*b^2>,< 4, 1, a^12*b^2>,< 4, 1, a^4*b^2*c^2>,< 4, 1, a^12*b^2*c^2>,< 4, 2, c>,< 4, 2, b>,< 4, 2, b^2*c>,< 4, 2, b*c^2>,< 4, 2, b*c>,< 4, 2, a^8*c>,< 4, 2, a^8*b>,< 4, 2, b*c^3>,< 4, 2, a^8*b^2*c>,< 4, 2, a^8*b*c^2>,< 4, 2, a^8*b*c>,< 4, 2, a^8*b*c^3>,< 4, 2, a^4*c>,< 4, 2, a^12*c>,< 4, 2, a^4*b>,< 4, 2, a^12*b>,< 4, 2, a^4*b^2*c>,< 4, 2, a^12*b^2*c>,< 4, 2, a^4*b*c^2>,< 4, 2, a^12*b*c^2>,< 4, 2, a^4*b*c>,< 4, 2, a^12*b*c>,< 4, 2, a^4*b*c^3>,< 4, 2, a^12*b*c^3>,< 8, 1, a^2*c^2>,< 8, 1, a^14*c^2>,< 8, 1, a^6*c^2>,< 8, 1, a^10*c^2>,< 8, 1, a^2*b^2>,< 8, 1, a^14*b^2>,< 8, 1, a^6*b^2>,< 8, 1, a^10*b^2>,< 8, 1, a^2*b^2*c^2>,< 8, 1, a^14*b^2*c^2>,< 8, 1, a^6*b^2*c^2>,< 8, 1, a^10*b^2*c^2>,< 8, 1, a^2>,< 8, 1, a^14>,< 8, 1, a^6>,< 8, 1, a^10>,< 8, 2, a^2*c>,< 8, 2, a^14*c>,< 8, 2, a^6*c>,< 8, 2, a^10*c>,< 8, 2, a^2*b>,< 8, 2, a^14*b>,< 8, 2, a^6*b>,< 8, 2, a^10*b>,< 8, 2, a^2*b^2*c>,< 8, 2, a^14*b^2*c>,< 8, 2, a^6*b^2*c>,< 8, 2, a^10*b^2*c>,< 8, 2, a^2*b*c^2>,< 8, 2, a^14*b*c^2>,< 8, 2, a^6*b*c^2>,< 8, 2, a^10*b*c^2>,< 8, 2, a^2*b*c>,< 8, 2, a^14*b*c>,< 8, 2, a^6*b*c>,< 8, 2, a^10*b*c>,< 8, 2, a^2*b*c^3>,< 8, 2, a^14*b*c^3>,< 8, 2, a^6*b*c^3>,< 8, 2, a^10*b*c^3>,< 16, 4, a>,< 16, 4, a^15>,< 16, 4, a^3>,< 16, 4, a^13>,< 16, 4, a^5>,< 16, 4, a^11>,< 16, 4, a^7>,< 16, 4, a^9>,< 16, 4, a*c>,< 16, 4, a^15*c>,< 16, 4, a^3*c>,< 16, 4, a^13*c>,< 16, 4, a^5*c>,< 16, 4, a^11*c>,< 16, 4, a^7*c>,< 16, 4, a^9*c>,< 16, 4, a*b>,< 16, 4, a^15*b>,< 16, 4, a^3*b>,< 16, 4, a^13*b>,< 16, 4, a^5*b>,< 16, 4, a^11*b>,< 16, 4, a^7*b>,< 16, 4, a^9*b>,< 16, 4, a*b*c>,< 16, 4, a^15*b*c>,< 16, 4, a^3*b*c>,< 16, 4, a^13*b*c>,< 16, 4, a^5*b*c>,< 16, 4, a^11*b*c>,< 16, 4, a^7*b*c>,< 16, 4, a^9*b*c>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,1,-1,1,-1,1,1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,1,-1,1,-1,1,1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,1,1,-1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,1,-1,1,1,1,1,1,1,1,1,-1,1,1,1,-1,1,1,-1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,1,1,1,-1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,1,-1,1,1,1,1,1,1,1,1,-1,1,1,1,-1,1,1,-1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,1,-1,-1,-1,1,-1,-1,1,-1,1,-1,-1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,1,1,-1,1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,1,-1,-1,-1,1,-1,-1,1,-1,1,-1,-1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,1,1,-1,1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,1,-1,1,-1,-1,-1,1,-1,1,-1,1,1,1,1,-1,1,1,1,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^3,K.1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1,K.1,K.1^3,-1*K.1,-1*K.1,K.1,-1*K.1^3,K.1,-1*K.1,-1*K.1^3,-1*K.1^3,K.1,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1,K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,1,-1,1,-1,-1,-1,1,-1,1,-1,1,1,1,1,-1,1,1,1,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,-1*K.1,-1*K.1,K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^3,K.1^3,-1*K.1^3,K.1,-1*K.1^3,K.1^3,K.1,K.1,-1*K.1^3,K.1^3,K.1,K.1,-1*K.1,-1*K.1,K.1^3,K.1^3,K.1,-1*K.1^3,-1*K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,1,-1,1,-1,-1,-1,1,-1,1,-1,1,1,1,1,-1,1,1,1,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1,K.1,-1*K.1,K.1^3,-1*K.1,K.1,K.1^3,K.1^3,-1*K.1,K.1,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1,K.1,K.1^3,-1*K.1,-1*K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,1,-1,1,-1,-1,-1,1,-1,1,-1,1,1,1,1,-1,1,1,1,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1,K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,K.1,K.1,-1*K.1,K.1^3,K.1^3,K.1,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1,K.1^3,-1*K.1^3,-1*K.1,-1*K.1,K.1^3,-1*K.1^3,-1*K.1,-1*K.1,K.1,K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^3,K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,-1,1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,-1,-1,1,-1,1,-1,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^3,-1*K.1,K.1^3,K.1^3,K.1,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1,K.1,-1*K.1^3,K.1,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1,K.1,-1*K.1^3,K.1,K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,-1,1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,-1,-1,1,-1,1,-1,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1,K.1^3,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1,K.1,-1*K.1,-1*K.1,K.1^3,K.1^3,K.1,K.1^3,K.1^3,-1*K.1^3,K.1,-1*K.1^3,K.1^3,K.1,K.1,K.1^3,-1*K.1^3,-1*K.1,-1*K.1,K.1,K.1,-1*K.1^3,-1*K.1^3,K.1,-1*K.1^3,-1*K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,-1,1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,-1,-1,1,-1,1,-1,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^3,K.1,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1,K.1,K.1^3,K.1,K.1,-1*K.1,K.1^3,-1*K.1,K.1,K.1^3,K.1^3,K.1,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1,-1*K.1,K.1^3,-1*K.1,-1*K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,-1,1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,-1,-1,1,-1,1,-1,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1,-1*K.1^3,K.1,K.1,K.1^3,K.1,-1*K.1,K.1,K.1,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1,K.1^3,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1^3,K.1,K.1,-1*K.1,-1*K.1,K.1^3,K.1^3,-1*K.1,K.1^3,K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,1,-1,-1,-1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^3,K.1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1,-1*K.1,K.1^3,-1*K.1,-1*K.1,K.1,K.1^3,K.1,K.1,-1*K.1^3,-1*K.1^3,K.1,K.1,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1,-1*K.1,K.1^3,-1*K.1,-1*K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,1,-1,-1,-1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1,-1*K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,K.1,-1*K.1,-1*K.1,K.1^3,K.1^3,-1*K.1,K.1^3,K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,K.1,K.1,-1*K.1^3,-1*K.1^3,K.1,K.1,K.1,-1*K.1,K.1^3,K.1^3,-1*K.1,K.1^3,K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,1,-1,-1,-1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^3,-1*K.1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1,K.1,-1*K.1^3,K.1,K.1,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1,K.1^3,K.1^3,-1*K.1,-1*K.1,K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1,K.1,-1*K.1^3,K.1,K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,1,-1,-1,-1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1,K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,-1*K.1,K.1,K.1,-1*K.1^3,-1*K.1^3,K.1,-1*K.1^3,-1*K.1^3,K.1^3,K.1,K.1^3,K.1^3,-1*K.1,-1*K.1,K.1^3,K.1^3,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1^3,-1*K.1^3,K.1,-1*K.1^3,-1*K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,1,-1,1,-1,1,1,-1,-1,-1,1,-1,-1,1,-1,1,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,-1*K.1,K.1,K.1^3,K.1,K.1,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1,K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1,K.1,K.1^3,-1*K.1,-1*K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,1,-1,1,-1,1,1,-1,-1,-1,1,-1,-1,1,-1,1,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1,K.1^3,K.1,K.1,K.1^3,K.1,-1*K.1,-1*K.1,K.1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,K.1,K.1,K.1^3,K.1^3,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^3,K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,1,-1,1,-1,1,1,-1,-1,-1,1,-1,-1,1,-1,1,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^3,K.1,K.1^3,K.1^3,K.1,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,K.1,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1,K.1^3,K.1^3,K.1,K.1,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1,K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,1,-1,1,-1,1,1,-1,-1,-1,1,-1,-1,1,-1,1,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1,K.1,K.1,-1*K.1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,K.1,K.1^3,K.1^3,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1^3,K.1,K.1,K.1,-1*K.1,K.1^3,K.1^3,K.1,-1*K.1^3,-1*K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,1,-1,1,-1,-1,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,-1,-1*K.1^4,-1,1,-1,K.1^4,-1,K.1^4,-1*K.1^4,-1*K.1^4,-1,1,1,1,K.1^4,-1,K.1^4,K.1^4,K.1^4,1,1,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^6,K.1^6,K.1^2,-1*K.1^6,-1*K.1^2,K.1^2,K.1^6,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,K.1^6,K.1^6,K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^2,K.1^6,K.1^2,K.1^2,K.1^6,K.1^6,-1*K.1^6,-1*K.1^3,K.1,K.1^7,-1*K.1^7,K.1,-1*K.1^3,-1*K.1^7,K.1^3,K.1^3,K.1^5,-1*K.1^5,K.1^3,K.1^5,-1*K.1^5,-1*K.1,K.1^3,K.1,K.1,-1*K.1^7,K.1^7,-1*K.1,-1*K.1,K.1^7,-1*K.1^7,K.1^7,-1*K.1^3,-1*K.1^5,K.1^5,-1*K.1^3,-1*K.1^5,K.1^5,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,1,-1,1,-1,-1,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1,K.1^4,-1,1,-1,-1*K.1^4,-1,-1*K.1^4,K.1^4,K.1^4,-1,1,1,1,-1*K.1^4,-1,-1*K.1^4,-1*K.1^4,-1*K.1^4,1,1,K.1^4,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^2,K.1^6,-1*K.1^6,-1*K.1^2,K.1^2,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,K.1^6,K.1^2,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^2,K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^2,K.1^6,K.1^2,K.1^2,K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^2,K.1^5,-1*K.1^7,-1*K.1,K.1,-1*K.1^7,K.1^5,K.1,-1*K.1^5,-1*K.1^5,-1*K.1^3,K.1^3,-1*K.1^5,-1*K.1^3,K.1^3,K.1^7,-1*K.1^5,-1*K.1^7,-1*K.1^7,K.1,-1*K.1,K.1^7,K.1^7,-1*K.1,K.1,-1*K.1,K.1^5,K.1^3,-1*K.1^3,K.1^5,K.1^3,-1*K.1^3,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,1,-1,1,-1,-1,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,-1,-1*K.1^4,-1,1,-1,K.1^4,-1,K.1^4,-1*K.1^4,-1*K.1^4,-1,1,1,1,K.1^4,-1,K.1^4,K.1^4,K.1^4,1,1,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^6,K.1^6,K.1^2,-1*K.1^6,-1*K.1^2,K.1^2,K.1^6,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,K.1^6,K.1^6,K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^2,K.1^6,K.1^2,K.1^2,K.1^6,K.1^6,-1*K.1^6,K.1^3,-1*K.1,-1*K.1^7,K.1^7,-1*K.1,K.1^3,K.1^7,-1*K.1^3,-1*K.1^3,-1*K.1^5,K.1^5,-1*K.1^3,-1*K.1^5,K.1^5,K.1,-1*K.1^3,-1*K.1,-1*K.1,K.1^7,-1*K.1^7,K.1,K.1,-1*K.1^7,K.1^7,-1*K.1^7,K.1^3,K.1^5,-1*K.1^5,K.1^3,K.1^5,-1*K.1^5,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,1,-1,1,-1,-1,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1,K.1^4,-1,1,-1,-1*K.1^4,-1,-1*K.1^4,K.1^4,K.1^4,-1,1,1,1,-1*K.1^4,-1,-1*K.1^4,-1*K.1^4,-1*K.1^4,1,1,K.1^4,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^2,K.1^6,-1*K.1^6,-1*K.1^2,K.1^2,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,K.1^6,K.1^2,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^2,K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^2,K.1^6,K.1^2,K.1^2,K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^5,K.1^7,K.1,-1*K.1,K.1^7,-1*K.1^5,-1*K.1,K.1^5,K.1^5,K.1^3,-1*K.1^3,K.1^5,K.1^3,-1*K.1^3,-1*K.1^7,K.1^5,K.1^7,K.1^7,-1*K.1,K.1,-1*K.1^7,-1*K.1^7,K.1,-1*K.1,K.1,-1*K.1^5,-1*K.1^3,K.1^3,-1*K.1^5,-1*K.1^3,K.1^3,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,1,-1,1,-1,-1,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,-1,-1*K.1^4,-1,1,-1,K.1^4,-1,K.1^4,-1*K.1^4,-1*K.1^4,-1,1,1,1,K.1^4,-1,K.1^4,K.1^4,K.1^4,1,1,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^6,K.1^2,-1*K.1^2,-1*K.1^6,K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,K.1^2,K.1^6,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^6,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^6,K.1^2,K.1^6,K.1^6,K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^6,K.1^7,K.1^5,K.1^3,-1*K.1^3,K.1^5,K.1^7,-1*K.1^3,-1*K.1^7,-1*K.1^7,-1*K.1,K.1,-1*K.1^7,-1*K.1,K.1,-1*K.1^5,-1*K.1^7,K.1^5,K.1^5,-1*K.1^3,K.1^3,-1*K.1^5,-1*K.1^5,K.1^3,-1*K.1^3,K.1^3,K.1^7,K.1,-1*K.1,K.1^7,K.1,-1*K.1,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,1,-1,1,-1,-1,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1,K.1^4,-1,1,-1,-1*K.1^4,-1,-1*K.1^4,K.1^4,K.1^4,-1,1,1,1,-1*K.1^4,-1,-1*K.1^4,-1*K.1^4,-1*K.1^4,1,1,K.1^4,K.1^4,K.1^4,K.1^2,K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,-1*K.1^6,-1*K.1^2,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^6,K.1^2,K.1^6,K.1^6,K.1^2,K.1^2,-1*K.1^2,-1*K.1,-1*K.1^3,-1*K.1^5,K.1^5,-1*K.1^3,-1*K.1,K.1^5,K.1,K.1,K.1^7,-1*K.1^7,K.1,K.1^7,-1*K.1^7,K.1^3,K.1,-1*K.1^3,-1*K.1^3,K.1^5,-1*K.1^5,K.1^3,K.1^3,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1,-1*K.1^7,K.1^7,-1*K.1,-1*K.1^7,K.1^7,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,1,-1,1,-1,-1,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,-1,-1*K.1^4,-1,1,-1,K.1^4,-1,K.1^4,-1*K.1^4,-1*K.1^4,-1,1,1,1,K.1^4,-1,K.1^4,K.1^4,K.1^4,1,1,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^6,K.1^2,-1*K.1^2,-1*K.1^6,K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,K.1^2,K.1^6,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^6,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^6,K.1^2,K.1^6,K.1^6,K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^7,-1*K.1^5,-1*K.1^3,K.1^3,-1*K.1^5,-1*K.1^7,K.1^3,K.1^7,K.1^7,K.1,-1*K.1,K.1^7,K.1,-1*K.1,K.1^5,K.1^7,-1*K.1^5,-1*K.1^5,K.1^3,-1*K.1^3,K.1^5,K.1^5,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^7,-1*K.1,K.1,-1*K.1^7,-1*K.1,K.1,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,1,-1,1,-1,-1,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1,K.1^4,-1,1,-1,-1*K.1^4,-1,-1*K.1^4,K.1^4,K.1^4,-1,1,1,1,-1*K.1^4,-1,-1*K.1^4,-1*K.1^4,-1*K.1^4,1,1,K.1^4,K.1^4,K.1^4,K.1^2,K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,-1*K.1^6,-1*K.1^2,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^6,K.1^2,K.1^6,K.1^6,K.1^2,K.1^2,-1*K.1^2,K.1,K.1^3,K.1^5,-1*K.1^5,K.1^3,K.1,-1*K.1^5,-1*K.1,-1*K.1,-1*K.1^7,K.1^7,-1*K.1,-1*K.1^7,K.1^7,-1*K.1^3,-1*K.1,K.1^3,K.1^3,-1*K.1^5,K.1^5,-1*K.1^3,-1*K.1^3,K.1^5,-1*K.1^5,K.1^5,K.1,K.1^7,-1*K.1^7,K.1,K.1^7,-1*K.1^7,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,1,-1,1,-1,-1,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,-1,K.1^4,1,-1,-1,-1*K.1^4,1,-1*K.1^4,-1*K.1^4,K.1^4,1,1,-1,1,-1*K.1^4,1,K.1^4,K.1^4,-1*K.1^4,-1,-1,K.1^4,-1*K.1^4,K.1^4,K.1^6,K.1^6,K.1^2,-1*K.1^6,-1*K.1^2,K.1^2,K.1^6,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^6,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^2,K.1^2,K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^6,K.1^6,-1*K.1^3,-1*K.1,K.1^7,-1*K.1^7,-1*K.1,K.1^3,K.1^7,K.1^3,-1*K.1^3,-1*K.1^5,K.1^5,-1*K.1^3,K.1^5,-1*K.1^5,-1*K.1,K.1^3,K.1,K.1,-1*K.1^7,K.1^7,K.1,K.1,-1*K.1^7,K.1^7,-1*K.1^7,K.1^3,K.1^5,-1*K.1^5,-1*K.1^3,-1*K.1^5,K.1^5,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,1,-1,1,-1,-1,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1,-1*K.1^4,1,-1,-1,K.1^4,1,K.1^4,K.1^4,-1*K.1^4,1,1,-1,1,K.1^4,1,-1*K.1^4,-1*K.1^4,K.1^4,-1,-1,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^2,K.1^6,-1*K.1^6,-1*K.1^2,K.1^2,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,K.1^6,K.1^2,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^6,-1*K.1^2,K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^6,K.1^2,K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^6,K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,K.1^5,K.1^7,-1*K.1,K.1,K.1^7,-1*K.1^5,-1*K.1,-1*K.1^5,K.1^5,K.1^3,-1*K.1^3,K.1^5,-1*K.1^3,K.1^3,K.1^7,-1*K.1^5,-1*K.1^7,-1*K.1^7,K.1,-1*K.1,-1*K.1^7,-1*K.1^7,K.1,-1*K.1,K.1,-1*K.1^5,-1*K.1^3,K.1^3,K.1^5,K.1^3,-1*K.1^3,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,1,-1,1,-1,-1,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,-1,K.1^4,1,-1,-1,-1*K.1^4,1,-1*K.1^4,-1*K.1^4,K.1^4,1,1,-1,1,-1*K.1^4,1,K.1^4,K.1^4,-1*K.1^4,-1,-1,K.1^4,-1*K.1^4,K.1^4,K.1^6,K.1^6,K.1^2,-1*K.1^6,-1*K.1^2,K.1^2,K.1^6,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^6,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^2,K.1^2,K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^6,K.1^6,K.1^3,K.1,-1*K.1^7,K.1^7,K.1,-1*K.1^3,-1*K.1^7,-1*K.1^3,K.1^3,K.1^5,-1*K.1^5,K.1^3,-1*K.1^5,K.1^5,K.1,-1*K.1^3,-1*K.1,-1*K.1,K.1^7,-1*K.1^7,-1*K.1,-1*K.1,K.1^7,-1*K.1^7,K.1^7,-1*K.1^3,-1*K.1^5,K.1^5,K.1^3,K.1^5,-1*K.1^5,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,1,-1,1,-1,-1,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1,-1*K.1^4,1,-1,-1,K.1^4,1,K.1^4,K.1^4,-1*K.1^4,1,1,-1,1,K.1^4,1,-1*K.1^4,-1*K.1^4,K.1^4,-1,-1,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^2,K.1^6,-1*K.1^6,-1*K.1^2,K.1^2,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,K.1^6,K.1^2,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^6,-1*K.1^2,K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^6,K.1^2,K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^6,K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^5,-1*K.1^7,K.1,-1*K.1,-1*K.1^7,K.1^5,K.1,K.1^5,-1*K.1^5,-1*K.1^3,K.1^3,-1*K.1^5,K.1^3,-1*K.1^3,-1*K.1^7,K.1^5,K.1^7,K.1^7,-1*K.1,K.1,K.1^7,K.1^7,-1*K.1,K.1,-1*K.1,K.1^5,K.1^3,-1*K.1^3,-1*K.1^5,-1*K.1^3,K.1^3,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,1,-1,1,-1,-1,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,-1,K.1^4,1,-1,-1,-1*K.1^4,1,-1*K.1^4,-1*K.1^4,K.1^4,1,1,-1,1,-1*K.1^4,1,K.1^4,K.1^4,-1*K.1^4,-1,-1,K.1^4,-1*K.1^4,K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^6,K.1^2,-1*K.1^2,-1*K.1^6,K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,K.1^2,K.1^6,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,K.1^6,K.1^6,K.1^2,-1*K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^2,K.1^6,K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^2,K.1^2,K.1^6,-1*K.1^6,-1*K.1^6,K.1^7,-1*K.1^5,K.1^3,-1*K.1^3,-1*K.1^5,-1*K.1^7,K.1^3,-1*K.1^7,K.1^7,K.1,-1*K.1,K.1^7,-1*K.1,K.1,-1*K.1^5,-1*K.1^7,K.1^5,K.1^5,-1*K.1^3,K.1^3,K.1^5,K.1^5,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^7,-1*K.1,K.1,K.1^7,K.1,-1*K.1,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,1,-1,1,-1,-1,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1,-1*K.1^4,1,-1,-1,K.1^4,1,K.1^4,K.1^4,-1*K.1^4,1,1,-1,1,K.1^4,1,-1*K.1^4,-1*K.1^4,K.1^4,-1,-1,-1*K.1^4,K.1^4,-1*K.1^4,K.1^2,K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,-1*K.1^6,-1*K.1^2,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^2,-1*K.1^6,K.1^6,K.1^6,K.1^6,K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^6,K.1^6,K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^2,K.1^2,-1*K.1,K.1^3,-1*K.1^5,K.1^5,K.1^3,K.1,-1*K.1^5,K.1,-1*K.1,-1*K.1^7,K.1^7,-1*K.1,K.1^7,-1*K.1^7,K.1^3,K.1,-1*K.1^3,-1*K.1^3,K.1^5,-1*K.1^5,-1*K.1^3,-1*K.1^3,K.1^5,-1*K.1^5,K.1^5,K.1,K.1^7,-1*K.1^7,-1*K.1,-1*K.1^7,K.1^7,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,1,-1,1,-1,-1,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,-1,K.1^4,1,-1,-1,-1*K.1^4,1,-1*K.1^4,-1*K.1^4,K.1^4,1,1,-1,1,-1*K.1^4,1,K.1^4,K.1^4,-1*K.1^4,-1,-1,K.1^4,-1*K.1^4,K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^6,K.1^2,-1*K.1^2,-1*K.1^6,K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,K.1^2,K.1^6,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,K.1^6,K.1^6,K.1^2,-1*K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^2,K.1^6,K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^2,K.1^2,K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^7,K.1^5,-1*K.1^3,K.1^3,K.1^5,K.1^7,-1*K.1^3,K.1^7,-1*K.1^7,-1*K.1,K.1,-1*K.1^7,K.1,-1*K.1,K.1^5,K.1^7,-1*K.1^5,-1*K.1^5,K.1^3,-1*K.1^3,-1*K.1^5,-1*K.1^5,K.1^3,-1*K.1^3,K.1^3,K.1^7,K.1,-1*K.1,-1*K.1^7,-1*K.1,K.1,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,1,-1,1,-1,-1,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1,-1*K.1^4,1,-1,-1,K.1^4,1,K.1^4,K.1^4,-1*K.1^4,1,1,-1,1,K.1^4,1,-1*K.1^4,-1*K.1^4,K.1^4,-1,-1,-1*K.1^4,K.1^4,-1*K.1^4,K.1^2,K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,-1*K.1^6,-1*K.1^2,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^2,-1*K.1^6,K.1^6,K.1^6,K.1^6,K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^6,K.1^6,K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^2,K.1^2,K.1,-1*K.1^3,K.1^5,-1*K.1^5,-1*K.1^3,-1*K.1,K.1^5,-1*K.1,K.1,K.1^7,-1*K.1^7,K.1,-1*K.1^7,K.1^7,-1*K.1^3,-1*K.1,K.1^3,K.1^3,-1*K.1^5,K.1^5,K.1^3,K.1^3,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1,-1*K.1^7,K.1^7,K.1,K.1^7,-1*K.1^7,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,1,-1,1,-1,-1,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,1,-1*K.1^4,-1,-1,1,K.1^4,-1,K.1^4,K.1^4,-1*K.1^4,1,-1,1,-1,-1*K.1^4,1,-1*K.1^4,-1*K.1^4,-1*K.1^4,1,-1,K.1^4,K.1^4,K.1^4,K.1^6,K.1^6,K.1^2,-1*K.1^6,-1*K.1^2,K.1^2,K.1^6,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^6,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^6,K.1^2,K.1^6,K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^3,K.1,-1*K.1^7,K.1^7,-1*K.1,K.1^3,K.1^7,K.1^3,-1*K.1^3,-1*K.1^5,K.1^5,K.1^3,K.1^5,-1*K.1^5,-1*K.1,-1*K.1^3,K.1,-1*K.1,-1*K.1^7,K.1^7,-1*K.1,K.1,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^3,-1*K.1^5,K.1^5,K.1^3,K.1^5,-1*K.1^5,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,1,-1,1,-1,-1,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,1,K.1^4,-1,-1,1,-1*K.1^4,-1,-1*K.1^4,-1*K.1^4,K.1^4,1,-1,1,-1,K.1^4,1,K.1^4,K.1^4,K.1^4,1,-1,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^2,K.1^6,-1*K.1^6,-1*K.1^2,K.1^2,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,K.1^6,K.1^2,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^6,K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^6,K.1^6,K.1^2,K.1^6,-1*K.1^6,K.1^2,K.1^2,K.1^2,K.1^5,-1*K.1^7,K.1,-1*K.1,K.1^7,-1*K.1^5,-1*K.1,-1*K.1^5,K.1^5,K.1^3,-1*K.1^3,-1*K.1^5,-1*K.1^3,K.1^3,K.1^7,K.1^5,-1*K.1^7,K.1^7,K.1,-1*K.1,K.1^7,-1*K.1^7,-1*K.1,K.1,K.1,K.1^5,K.1^3,-1*K.1^3,-1*K.1^5,-1*K.1^3,K.1^3,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,1,-1,1,-1,-1,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,1,-1*K.1^4,-1,-1,1,K.1^4,-1,K.1^4,K.1^4,-1*K.1^4,1,-1,1,-1,-1*K.1^4,1,-1*K.1^4,-1*K.1^4,-1*K.1^4,1,-1,K.1^4,K.1^4,K.1^4,K.1^6,K.1^6,K.1^2,-1*K.1^6,-1*K.1^2,K.1^2,K.1^6,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^6,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^6,K.1^2,K.1^6,K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^3,-1*K.1,K.1^7,-1*K.1^7,K.1,-1*K.1^3,-1*K.1^7,-1*K.1^3,K.1^3,K.1^5,-1*K.1^5,-1*K.1^3,-1*K.1^5,K.1^5,K.1,K.1^3,-1*K.1,K.1,K.1^7,-1*K.1^7,K.1,-1*K.1,-1*K.1^7,K.1^7,K.1^7,K.1^3,K.1^5,-1*K.1^5,-1*K.1^3,-1*K.1^5,K.1^5,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,1,-1,1,-1,-1,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,1,K.1^4,-1,-1,1,-1*K.1^4,-1,-1*K.1^4,-1*K.1^4,K.1^4,1,-1,1,-1,K.1^4,1,K.1^4,K.1^4,K.1^4,1,-1,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^2,K.1^6,-1*K.1^6,-1*K.1^2,K.1^2,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,K.1^6,K.1^2,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^6,K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^6,K.1^6,K.1^2,K.1^6,-1*K.1^6,K.1^2,K.1^2,K.1^2,-1*K.1^5,K.1^7,-1*K.1,K.1,-1*K.1^7,K.1^5,K.1,K.1^5,-1*K.1^5,-1*K.1^3,K.1^3,K.1^5,K.1^3,-1*K.1^3,-1*K.1^7,-1*K.1^5,K.1^7,-1*K.1^7,-1*K.1,K.1,-1*K.1^7,K.1^7,K.1,-1*K.1,-1*K.1,-1*K.1^5,-1*K.1^3,K.1^3,K.1^5,K.1^3,-1*K.1^3,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,1,-1,1,-1,-1,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,1,-1*K.1^4,-1,-1,1,K.1^4,-1,K.1^4,K.1^4,-1*K.1^4,1,-1,1,-1,-1*K.1^4,1,-1*K.1^4,-1*K.1^4,-1*K.1^4,1,-1,K.1^4,K.1^4,K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^6,K.1^2,-1*K.1^2,-1*K.1^6,K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,K.1^2,K.1^6,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^2,K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^2,K.1^2,K.1^6,K.1^2,-1*K.1^2,K.1^6,K.1^6,K.1^6,K.1^7,K.1^5,-1*K.1^3,K.1^3,-1*K.1^5,-1*K.1^7,K.1^3,-1*K.1^7,K.1^7,K.1,-1*K.1,-1*K.1^7,-1*K.1,K.1,-1*K.1^5,K.1^7,K.1^5,-1*K.1^5,-1*K.1^3,K.1^3,-1*K.1^5,K.1^5,K.1^3,-1*K.1^3,-1*K.1^3,K.1^7,K.1,-1*K.1,-1*K.1^7,-1*K.1,K.1,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,1,-1,1,-1,-1,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,1,K.1^4,-1,-1,1,-1*K.1^4,-1,-1*K.1^4,-1*K.1^4,K.1^4,1,-1,1,-1,K.1^4,1,K.1^4,K.1^4,K.1^4,1,-1,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,-1*K.1^6,-1*K.1^2,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^2,K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^2,K.1^6,K.1^2,K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^3,K.1^5,-1*K.1^5,K.1^3,K.1,-1*K.1^5,K.1,-1*K.1,-1*K.1^7,K.1^7,K.1,K.1^7,-1*K.1^7,K.1^3,-1*K.1,-1*K.1^3,K.1^3,K.1^5,-1*K.1^5,K.1^3,-1*K.1^3,-1*K.1^5,K.1^5,K.1^5,-1*K.1,-1*K.1^7,K.1^7,K.1,K.1^7,-1*K.1^7,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,1,-1,1,-1,-1,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,1,-1*K.1^4,-1,-1,1,K.1^4,-1,K.1^4,K.1^4,-1*K.1^4,1,-1,1,-1,-1*K.1^4,1,-1*K.1^4,-1*K.1^4,-1*K.1^4,1,-1,K.1^4,K.1^4,K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^6,K.1^2,-1*K.1^2,-1*K.1^6,K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,K.1^2,K.1^6,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^2,K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^2,K.1^2,K.1^6,K.1^2,-1*K.1^2,K.1^6,K.1^6,K.1^6,-1*K.1^7,-1*K.1^5,K.1^3,-1*K.1^3,K.1^5,K.1^7,-1*K.1^3,K.1^7,-1*K.1^7,-1*K.1,K.1,K.1^7,K.1,-1*K.1,K.1^5,-1*K.1^7,-1*K.1^5,K.1^5,K.1^3,-1*K.1^3,K.1^5,-1*K.1^5,-1*K.1^3,K.1^3,K.1^3,-1*K.1^7,-1*K.1,K.1,K.1^7,K.1,-1*K.1,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,1,-1,1,-1,-1,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,1,K.1^4,-1,-1,1,-1*K.1^4,-1,-1*K.1^4,-1*K.1^4,K.1^4,1,-1,1,-1,K.1^4,1,K.1^4,K.1^4,K.1^4,1,-1,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,-1*K.1^6,-1*K.1^2,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^2,K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^2,K.1^6,K.1^2,K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1,K.1^3,-1*K.1^5,K.1^5,-1*K.1^3,-1*K.1,K.1^5,-1*K.1,K.1,K.1^7,-1*K.1^7,-1*K.1,-1*K.1^7,K.1^7,-1*K.1^3,K.1,K.1^3,-1*K.1^3,-1*K.1^5,K.1^5,-1*K.1^3,K.1^3,K.1^5,-1*K.1^5,-1*K.1^5,K.1,K.1^7,-1*K.1^7,-1*K.1,-1*K.1^7,K.1^7,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,1,-1,1,-1,-1,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,1,K.1^4,1,1,1,-1*K.1^4,1,-1*K.1^4,K.1^4,K.1^4,-1,-1,-1,-1,K.1^4,-1,-1*K.1^4,-1*K.1^4,K.1^4,-1,1,-1*K.1^4,K.1^4,-1*K.1^4,K.1^6,K.1^6,K.1^2,-1*K.1^6,-1*K.1^2,K.1^2,K.1^6,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^2,K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^2,K.1^6,K.1^6,K.1^2,-1*K.1^2,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,K.1^6,-1*K.1^3,-1*K.1,-1*K.1^7,K.1^7,K.1,-1*K.1^3,-1*K.1^7,K.1^3,K.1^3,K.1^5,-1*K.1^5,-1*K.1^3,K.1^5,-1*K.1^5,-1*K.1,-1*K.1^3,K.1,-1*K.1,-1*K.1^7,K.1^7,K.1,-1*K.1,-1*K.1^7,K.1^7,K.1^7,K.1^3,K.1^5,-1*K.1^5,K.1^3,K.1^5,-1*K.1^5,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,1,-1,1,-1,-1,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,1,-1*K.1^4,1,1,1,K.1^4,1,K.1^4,-1*K.1^4,-1*K.1^4,-1,-1,-1,-1,-1*K.1^4,-1,K.1^4,K.1^4,-1*K.1^4,-1,1,K.1^4,-1*K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^2,K.1^6,-1*K.1^6,-1*K.1^2,K.1^2,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,K.1^6,K.1^2,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^6,K.1^6,K.1^6,K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^6,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^2,K.1^5,K.1^7,K.1,-1*K.1,-1*K.1^7,K.1^5,K.1,-1*K.1^5,-1*K.1^5,-1*K.1^3,K.1^3,K.1^5,-1*K.1^3,K.1^3,K.1^7,K.1^5,-1*K.1^7,K.1^7,K.1,-1*K.1,-1*K.1^7,K.1^7,K.1,-1*K.1,-1*K.1,-1*K.1^5,-1*K.1^3,K.1^3,-1*K.1^5,-1*K.1^3,K.1^3,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,1,-1,1,-1,-1,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,1,K.1^4,1,1,1,-1*K.1^4,1,-1*K.1^4,K.1^4,K.1^4,-1,-1,-1,-1,K.1^4,-1,-1*K.1^4,-1*K.1^4,K.1^4,-1,1,-1*K.1^4,K.1^4,-1*K.1^4,K.1^6,K.1^6,K.1^2,-1*K.1^6,-1*K.1^2,K.1^2,K.1^6,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^2,K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^2,K.1^6,K.1^6,K.1^2,-1*K.1^2,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,K.1^6,K.1^3,K.1,K.1^7,-1*K.1^7,-1*K.1,K.1^3,K.1^7,-1*K.1^3,-1*K.1^3,-1*K.1^5,K.1^5,K.1^3,-1*K.1^5,K.1^5,K.1,K.1^3,-1*K.1,K.1,K.1^7,-1*K.1^7,-1*K.1,K.1,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^3,-1*K.1^5,K.1^5,-1*K.1^3,-1*K.1^5,K.1^5,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,1,-1,1,-1,-1,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,1,-1*K.1^4,1,1,1,K.1^4,1,K.1^4,-1*K.1^4,-1*K.1^4,-1,-1,-1,-1,-1*K.1^4,-1,K.1^4,K.1^4,-1*K.1^4,-1,1,K.1^4,-1*K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^2,K.1^6,-1*K.1^6,-1*K.1^2,K.1^2,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,K.1^6,K.1^2,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^6,K.1^6,K.1^6,K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^6,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^5,-1*K.1^7,-1*K.1,K.1,K.1^7,-1*K.1^5,-1*K.1,K.1^5,K.1^5,K.1^3,-1*K.1^3,-1*K.1^5,K.1^3,-1*K.1^3,-1*K.1^7,-1*K.1^5,K.1^7,-1*K.1^7,-1*K.1,K.1,K.1^7,-1*K.1^7,-1*K.1,K.1,K.1,K.1^5,K.1^3,-1*K.1^3,K.1^5,K.1^3,-1*K.1^3,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,1,-1,1,-1,-1,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,1,K.1^4,1,1,1,-1*K.1^4,1,-1*K.1^4,K.1^4,K.1^4,-1,-1,-1,-1,K.1^4,-1,-1*K.1^4,-1*K.1^4,K.1^4,-1,1,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^6,K.1^2,-1*K.1^2,-1*K.1^6,K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,K.1^2,K.1^6,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^2,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,K.1^6,-1*K.1^6,K.1^7,-1*K.1^5,-1*K.1^3,K.1^3,K.1^5,K.1^7,-1*K.1^3,-1*K.1^7,-1*K.1^7,-1*K.1,K.1,K.1^7,-1*K.1,K.1,-1*K.1^5,K.1^7,K.1^5,-1*K.1^5,-1*K.1^3,K.1^3,K.1^5,-1*K.1^5,-1*K.1^3,K.1^3,K.1^3,-1*K.1^7,-1*K.1,K.1,-1*K.1^7,-1*K.1,K.1,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,1,-1,1,-1,-1,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,1,-1*K.1^4,1,1,1,K.1^4,1,K.1^4,-1*K.1^4,-1*K.1^4,-1,-1,-1,-1,-1*K.1^4,-1,K.1^4,K.1^4,-1*K.1^4,-1,1,K.1^4,-1*K.1^4,K.1^4,K.1^2,K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,-1*K.1^6,-1*K.1^2,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^6,K.1^2,K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^6,K.1^2,K.1^2,K.1^6,-1*K.1^6,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^2,-1*K.1,K.1^3,K.1^5,-1*K.1^5,-1*K.1^3,-1*K.1,K.1^5,K.1,K.1,K.1^7,-1*K.1^7,-1*K.1,K.1^7,-1*K.1^7,K.1^3,-1*K.1,-1*K.1^3,K.1^3,K.1^5,-1*K.1^5,-1*K.1^3,K.1^3,K.1^5,-1*K.1^5,-1*K.1^5,K.1,K.1^7,-1*K.1^7,K.1,K.1^7,-1*K.1^7,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,1,-1,1,-1,-1,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,1,K.1^4,1,1,1,-1*K.1^4,1,-1*K.1^4,K.1^4,K.1^4,-1,-1,-1,-1,K.1^4,-1,-1*K.1^4,-1*K.1^4,K.1^4,-1,1,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^6,K.1^2,-1*K.1^2,-1*K.1^6,K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,K.1^2,K.1^6,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^2,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^7,K.1^5,K.1^3,-1*K.1^3,-1*K.1^5,-1*K.1^7,K.1^3,K.1^7,K.1^7,K.1,-1*K.1,-1*K.1^7,K.1,-1*K.1,K.1^5,-1*K.1^7,-1*K.1^5,K.1^5,K.1^3,-1*K.1^3,-1*K.1^5,K.1^5,K.1^3,-1*K.1^3,-1*K.1^3,K.1^7,K.1,-1*K.1,K.1^7,K.1,-1*K.1,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,1,-1,1,-1,-1,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,1,-1*K.1^4,1,1,1,K.1^4,1,K.1^4,-1*K.1^4,-1*K.1^4,-1,-1,-1,-1,-1*K.1^4,-1,K.1^4,K.1^4,-1*K.1^4,-1,1,K.1^4,-1*K.1^4,K.1^4,K.1^2,K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,-1*K.1^6,-1*K.1^2,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^6,K.1^2,K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^6,K.1^2,K.1^2,K.1^6,-1*K.1^6,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^2,K.1,-1*K.1^3,-1*K.1^5,K.1^5,K.1^3,K.1,-1*K.1^5,-1*K.1,-1*K.1,-1*K.1^7,K.1^7,K.1,-1*K.1^7,K.1^7,-1*K.1^3,K.1,K.1^3,-1*K.1^3,-1*K.1^5,K.1^5,K.1^3,-1*K.1^3,-1*K.1^5,K.1^5,K.1^5,-1*K.1,-1*K.1^7,K.1^7,-1*K.1,-1*K.1^7,K.1^7,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[2, -2, -2, -2, 2, 2, 2, -2, -2, -2, 2, -2, 2, 2, -2, 2, -2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, -2, 0, 2, 0, 0, -2, 2, 0, 0, 0, 0, -2, 0, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, -2, 2, -2, 0, -2, -2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, -2, 2, 2, 2, -2, -2, -2, 2, -2, 2, 2, -2, 2, 2, 0, 0, 0, -2, 0, 0, 0, -2, 0, 0, 2, 0, -2, 0, 0, 2, -2, 0, 0, 0, 0, 2, 0, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, -2, 0, 2, -2, 2, 0, 2, 2, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, 2, -2, -2, 2, 2, -2, -2, -2, -2, 2, 2, 2, 0, -2, 2, 0, 0, -2, -2, 2, 0, 2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, -2, 2, 2, 2, 2, -2, -2, -2, -2, 2, -2, 2, -2, 2, -2, 2, 2, 2, -2, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, -2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, 2, -2, -2, 2, 2, -2, -2, -2, -2, 2, 2, 2, 0, 2, -2, 0, 0, 2, 2, -2, 0, -2, 0, 0, 2, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, -2, 2, 2, 2, 2, -2, -2, -2, -2, 2, -2, 2, -2, 2, -2, 2, -2, -2, 2, 0, 0, -2, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, 2, 2, -2, -2, -2, -2, 2, -2, 2, -2, 2, -2, 2, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 2, 2, 0, 0, -2, 0, 2, -2, 0, 2, -2, 2, -2, -2, 2, -2, 2, 2, -2, 2, 2, -2, -2, 2, 2, -2, 0, 0, 0, 2, 2, 0, -2, 0, 0, 2, -2, 0, -2, 0, 0, 0, 0, 0, 0, 2, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, 2, 2, -2, -2, -2, -2, 2, -2, 2, -2, 2, -2, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, -2, -2, 0, 0, 2, 0, -2, 2, 0, -2, -2, 2, -2, -2, 2, -2, 2, 2, -2, 2, 2, -2, -2, 2, 2, -2, 0, 0, 0, -2, -2, 0, 2, 0, 0, -2, 2, 0, 2, 0, 0, 0, 0, 0, 0, -2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, -2, 2, 2, 2, -2, -2, -2, 2, -2, 2, 2, -2, 2, -2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, -2, 0, 2, 0, 0, -2, 2, 0, 0, 0, 0, -2, 0, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, -2, 0, 2, -2, 2, 0, 2, 2, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[2, -2, -2, -2, 2, 2, 2, -2, -2, -2, 2, -2, 2, 2, -2, 2, 2, 0, 0, 0, -2, 0, 0, 0, -2, 0, 0, 2, 0, -2, 0, 0, 2, -2, 0, 0, 0, 0, 2, 0, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, -2, 2, -2, 0, -2, -2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, 2, -2, -2, 2, 2, -2, -2, -2, -2, 2, 2, 2, 0, -2, 2, 0, 0, -2, -2, 2, 0, 2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, -2, -2, -2, -2, 2, 2, 2, 2, -2, 2, -2, 2, -2, 2, -2, -2, -2, 2, 0, 0, -2, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, 2, -2, -2, 2, 2, -2, -2, -2, -2, 2, 2, 2, 0, 2, -2, 0, 0, 2, 2, -2, 0, -2, 0, 0, 2, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 2, -2, -2, -2, -2, 2, 2, 2, 2, -2, 2, -2, 2, -2, 2, -2, 2, 2, -2, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, -2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[2, 2, -2, 2, 2, -2, -2, -2, -2, 2, -2, 2, -2, 2, -2, 2, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 2, 2, 0, 0, -2, 0, 2, -2, 0, 2, 2, -2, 2, 2, -2, 2, -2, -2, 2, -2, -2, 2, 2, -2, -2, 2, 0, 0, 0, -2, -2, 0, 2, 0, 0, -2, 2, 0, 2, 0, 0, 0, 0, 0, 0, -2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[2, 2, -2, 2, 2, -2, -2, -2, -2, 2, -2, 2, -2, 2, -2, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, -2, -2, 0, 0, 2, 0, -2, 2, 0, -2, 2, -2, 2, 2, -2, 2, -2, -2, 2, -2, -2, 2, 2, -2, -2, 2, 0, 0, 0, 2, 2, 0, -2, 0, 0, 2, -2, 0, -2, 0, 0, 0, 0, 0, 0, 2, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,-2,2,2,2,-2,2,2,-2,2,-2,-2,2,-2,-2,0,0,0,2,0,0,0,-2,0,0,-2,0,2,0,0,2,-2,0,0,0,0,2,0,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,2*K.1,0,0,2*K.1,0,-2*K.1,-2*K.1,2*K.1,0,-2*K.1,2*K.1,0,0,0,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,-2,2,2,2,-2,2,2,-2,2,-2,-2,2,-2,-2,0,0,0,2,0,0,0,-2,0,0,-2,0,2,0,0,2,-2,0,0,0,0,2,0,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,0,0,0,0,0,0,0,0,-2*K.1,0,0,-2*K.1,0,2*K.1,2*K.1,-2*K.1,0,2*K.1,-2*K.1,0,0,0,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,-2,2,2,2,-2,2,2,-2,2,-2,-2,2,-2,2,0,0,0,-2,0,0,0,2,0,0,2,0,-2,0,0,-2,2,0,0,0,0,-2,0,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,-2*K.1,0,0,-2*K.1,0,2*K.1,2*K.1,-2*K.1,0,2*K.1,-2*K.1,0,0,0,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,-2,2,2,2,-2,2,2,-2,2,-2,-2,2,-2,2,0,0,0,-2,0,0,0,2,0,0,2,0,-2,0,0,-2,2,0,0,0,0,-2,0,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,0,0,0,0,0,0,0,0,2*K.1,0,0,2*K.1,0,-2*K.1,-2*K.1,2*K.1,0,-2*K.1,2*K.1,0,0,0,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,2,-2,2,-2,-2,2,-2,2,2,2,2,-2,-2,-2,0,-2,-2,0,0,-2,2,2,0,2,0,0,2,0,0,0,0,0,0,-2,0,0,0,0,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,0,0,-2*K.1,0,-2*K.1,0,0,0,0,0,0,0,0,-2*K.1,0,0,0,-2*K.1,0,0,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,2,-2,2,-2,-2,2,-2,2,2,2,2,-2,-2,-2,0,-2,-2,0,0,-2,2,2,0,2,0,0,2,0,0,0,0,0,0,-2,0,0,0,0,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,0,0,2*K.1,0,2*K.1,0,0,0,0,0,0,0,0,2*K.1,0,0,0,2*K.1,0,0,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,2,-2,2,-2,-2,2,-2,2,2,2,2,-2,-2,-2,0,2,2,0,0,2,-2,-2,0,-2,0,0,-2,0,0,0,0,0,0,2,0,0,0,0,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,0,0,2*K.1,0,2*K.1,0,0,0,0,0,0,0,0,2*K.1,0,0,0,2*K.1,0,0,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,2,-2,2,-2,-2,2,-2,2,2,2,2,-2,-2,-2,0,2,2,0,0,2,-2,-2,0,-2,0,0,-2,0,0,0,0,0,0,2,0,0,0,0,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,0,0,-2*K.1,0,-2*K.1,0,0,0,0,0,0,0,0,-2*K.1,0,0,0,-2*K.1,0,0,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,-2,2,2,-2,-2,-2,2,-2,2,-2,2,-2,2,-2,0,0,0,-2,0,0,0,0,0,0,-2,0,0,0,-2,2,0,0,2,0,2,2,0,-2,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,0,0,0,2*K.1,2*K.1,0,2*K.1,0,0,-2*K.1,2*K.1,0,-2*K.1,0,0,0,0,0,0,-2*K.1,0,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,-2,2,2,-2,-2,-2,2,-2,2,-2,2,-2,2,-2,0,0,0,-2,0,0,0,0,0,0,-2,0,0,0,-2,2,0,0,2,0,2,2,0,-2,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,0,0,0,-2*K.1,-2*K.1,0,-2*K.1,0,0,2*K.1,-2*K.1,0,2*K.1,0,0,0,0,0,0,2*K.1,0,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,-2,2,2,-2,-2,-2,2,-2,2,-2,2,-2,2,-2,0,0,0,2,0,0,0,0,0,0,2,0,0,0,2,-2,0,0,-2,0,-2,-2,0,2,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,0,0,0,-2*K.1,-2*K.1,0,-2*K.1,0,0,2*K.1,-2*K.1,0,2*K.1,0,0,0,0,0,0,2*K.1,0,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,-2,2,2,-2,-2,-2,2,-2,2,-2,2,-2,2,-2,0,0,0,2,0,0,0,0,0,0,2,0,0,0,2,-2,0,0,-2,0,-2,-2,0,2,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,0,0,0,2*K.1,2*K.1,0,2*K.1,0,0,-2*K.1,2*K.1,0,-2*K.1,0,0,0,0,0,0,-2*K.1,0,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,-2,2,-2,-2,2,2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,0,0,0,-2,0,0,0,0,0,0,2,0,0,0,-2*K.1^2,-2,0,0,2*K.1^2,0,2,-2*K.1^2,0,2*K.1^2,-2*K.1,2*K.1,-2*K.1^3,2*K.1,-2*K.1^3,-2*K.1^3,2*K.1,-2*K.1,2*K.1,2*K.1^3,-2*K.1^3,-2*K.1,2*K.1^3,-2*K.1,2*K.1^3,2*K.1^3,0,0,0,-2*K.1,2*K.1,0,-2*K.1^3,0,0,-2*K.1^3,2*K.1^3,0,2*K.1,0,0,0,0,0,0,2*K.1^3,0,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,-2,2,-2,-2,2,2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,0,0,0,-2,0,0,0,0,0,0,2,0,0,0,2*K.1^2,-2,0,0,-2*K.1^2,0,2,2*K.1^2,0,-2*K.1^2,2*K.1^3,-2*K.1^3,2*K.1,-2*K.1^3,2*K.1,2*K.1,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1,2*K.1,2*K.1^3,-2*K.1,2*K.1^3,-2*K.1,-2*K.1,0,0,0,2*K.1^3,-2*K.1^3,0,2*K.1,0,0,2*K.1,-2*K.1,0,-2*K.1^3,0,0,0,0,0,0,-2*K.1,0,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,-2,2,-2,-2,2,2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,0,0,0,-2,0,0,0,0,0,0,2,0,0,0,-2*K.1^2,-2,0,0,2*K.1^2,0,2,-2*K.1^2,0,2*K.1^2,2*K.1,-2*K.1,2*K.1^3,-2*K.1,2*K.1^3,2*K.1^3,-2*K.1,2*K.1,-2*K.1,-2*K.1^3,2*K.1^3,2*K.1,-2*K.1^3,2*K.1,-2*K.1^3,-2*K.1^3,0,0,0,2*K.1,-2*K.1,0,2*K.1^3,0,0,2*K.1^3,-2*K.1^3,0,-2*K.1,0,0,0,0,0,0,-2*K.1^3,0,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,-2,2,-2,-2,2,2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,0,0,0,-2,0,0,0,0,0,0,2,0,0,0,2*K.1^2,-2,0,0,-2*K.1^2,0,2,2*K.1^2,0,-2*K.1^2,-2*K.1^3,2*K.1^3,-2*K.1,2*K.1^3,-2*K.1,-2*K.1,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1,-2*K.1,-2*K.1^3,2*K.1,-2*K.1^3,2*K.1,2*K.1,0,0,0,-2*K.1^3,2*K.1^3,0,-2*K.1,0,0,-2*K.1,2*K.1,0,2*K.1^3,0,0,0,0,0,0,2*K.1,0,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,-2,2,-2,-2,2,2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,0,0,0,2,0,0,0,0,0,0,-2,0,0,0,2*K.1^2,2,0,0,-2*K.1^2,0,-2,2*K.1^2,0,-2*K.1^2,-2*K.1,2*K.1,-2*K.1^3,2*K.1,-2*K.1^3,-2*K.1^3,2*K.1,-2*K.1,2*K.1,2*K.1^3,-2*K.1^3,-2*K.1,2*K.1^3,-2*K.1,2*K.1^3,2*K.1^3,0,0,0,2*K.1,-2*K.1,0,2*K.1^3,0,0,2*K.1^3,-2*K.1^3,0,-2*K.1,0,0,0,0,0,0,-2*K.1^3,0,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,-2,2,-2,-2,2,2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,0,0,0,2,0,0,0,0,0,0,-2,0,0,0,-2*K.1^2,2,0,0,2*K.1^2,0,-2,-2*K.1^2,0,2*K.1^2,2*K.1^3,-2*K.1^3,2*K.1,-2*K.1^3,2*K.1,2*K.1,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1,2*K.1,2*K.1^3,-2*K.1,2*K.1^3,-2*K.1,-2*K.1,0,0,0,-2*K.1^3,2*K.1^3,0,-2*K.1,0,0,-2*K.1,2*K.1,0,2*K.1^3,0,0,0,0,0,0,2*K.1,0,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,-2,2,-2,-2,2,2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,0,0,0,2,0,0,0,0,0,0,-2,0,0,0,2*K.1^2,2,0,0,-2*K.1^2,0,-2,2*K.1^2,0,-2*K.1^2,2*K.1,-2*K.1,2*K.1^3,-2*K.1,2*K.1^3,2*K.1^3,-2*K.1,2*K.1,-2*K.1,-2*K.1^3,2*K.1^3,2*K.1,-2*K.1^3,2*K.1,-2*K.1^3,-2*K.1^3,0,0,0,-2*K.1,2*K.1,0,-2*K.1^3,0,0,-2*K.1^3,2*K.1^3,0,2*K.1,0,0,0,0,0,0,2*K.1^3,0,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,-2,2,-2,-2,2,2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,0,0,0,2,0,0,0,0,0,0,-2,0,0,0,-2*K.1^2,2,0,0,2*K.1^2,0,-2,-2*K.1^2,0,2*K.1^2,-2*K.1^3,2*K.1^3,-2*K.1,2*K.1^3,-2*K.1,-2*K.1,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1,-2*K.1,-2*K.1^3,2*K.1,-2*K.1^3,2*K.1,2*K.1,0,0,0,2*K.1^3,-2*K.1^3,0,2*K.1,0,0,2*K.1,-2*K.1,0,-2*K.1^3,0,0,0,0,0,0,-2*K.1,0,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,-2,-2,-2,2,-2,2,-2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,-2,0,0,0,2,0,0,0,-2*K.1^2,0,0,2,0,-2,0,0,-2*K.1^2,2*K.1^2,0,0,0,0,2*K.1^2,0,-2*K.1,-2*K.1,2*K.1^3,-2*K.1,2*K.1^3,-2*K.1^3,2*K.1,-2*K.1,2*K.1,-2*K.1^3,-2*K.1^3,2*K.1,2*K.1^3,2*K.1,2*K.1^3,-2*K.1^3,0,0,0,0,0,0,0,0,-2*K.1^3,0,0,2*K.1^3,0,2*K.1^3,-2*K.1,2*K.1,0,-2*K.1^3,-2*K.1,0,0,0,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,-2,-2,-2,2,-2,2,2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,-2,0,0,0,2,0,0,0,2*K.1^2,0,0,2,0,-2,0,0,2*K.1^2,-2*K.1^2,0,0,0,0,-2*K.1^2,0,2*K.1^3,2*K.1^3,-2*K.1,2*K.1^3,-2*K.1,2*K.1,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1,2*K.1,-2*K.1^3,-2*K.1,-2*K.1^3,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,2*K.1,0,0,-2*K.1,0,-2*K.1,2*K.1^3,-2*K.1^3,0,2*K.1,2*K.1^3,0,0,0,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,-2,-2,-2,2,-2,2,-2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,-2,0,0,0,2,0,0,0,-2*K.1^2,0,0,2,0,-2,0,0,-2*K.1^2,2*K.1^2,0,0,0,0,2*K.1^2,0,2*K.1,2*K.1,-2*K.1^3,2*K.1,-2*K.1^3,2*K.1^3,-2*K.1,2*K.1,-2*K.1,2*K.1^3,2*K.1^3,-2*K.1,-2*K.1^3,-2*K.1,-2*K.1^3,2*K.1^3,0,0,0,0,0,0,0,0,2*K.1^3,0,0,-2*K.1^3,0,-2*K.1^3,2*K.1,-2*K.1,0,2*K.1^3,2*K.1,0,0,0,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,-2,-2,-2,2,-2,2,2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,-2,0,0,0,2,0,0,0,2*K.1^2,0,0,2,0,-2,0,0,2*K.1^2,-2*K.1^2,0,0,0,0,-2*K.1^2,0,-2*K.1^3,-2*K.1^3,2*K.1,-2*K.1^3,2*K.1,-2*K.1,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1,-2*K.1,2*K.1^3,2*K.1,2*K.1^3,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,-2*K.1,0,0,2*K.1,0,2*K.1,-2*K.1^3,2*K.1^3,0,-2*K.1,-2*K.1^3,0,0,0,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,-2,-2,-2,2,-2,2,-2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,2,0,0,0,-2,0,0,0,2*K.1^2,0,0,-2,0,2,0,0,2*K.1^2,-2*K.1^2,0,0,0,0,-2*K.1^2,0,-2*K.1,-2*K.1,2*K.1^3,-2*K.1,2*K.1^3,-2*K.1^3,2*K.1,-2*K.1,2*K.1,-2*K.1^3,-2*K.1^3,2*K.1,2*K.1^3,2*K.1,2*K.1^3,-2*K.1^3,0,0,0,0,0,0,0,0,2*K.1^3,0,0,-2*K.1^3,0,-2*K.1^3,2*K.1,-2*K.1,0,2*K.1^3,2*K.1,0,0,0,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,-2,-2,-2,2,-2,2,2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2,0,0,0,-2,0,0,0,-2*K.1^2,0,0,-2,0,2,0,0,-2*K.1^2,2*K.1^2,0,0,0,0,2*K.1^2,0,2*K.1^3,2*K.1^3,-2*K.1,2*K.1^3,-2*K.1,2*K.1,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1,2*K.1,-2*K.1^3,-2*K.1,-2*K.1^3,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,-2*K.1,0,0,2*K.1,0,2*K.1,-2*K.1^3,2*K.1^3,0,-2*K.1,-2*K.1^3,0,0,0,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,-2,-2,-2,2,-2,2,-2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,2,0,0,0,-2,0,0,0,2*K.1^2,0,0,-2,0,2,0,0,2*K.1^2,-2*K.1^2,0,0,0,0,-2*K.1^2,0,2*K.1,2*K.1,-2*K.1^3,2*K.1,-2*K.1^3,2*K.1^3,-2*K.1,2*K.1,-2*K.1,2*K.1^3,2*K.1^3,-2*K.1,-2*K.1^3,-2*K.1,-2*K.1^3,2*K.1^3,0,0,0,0,0,0,0,0,-2*K.1^3,0,0,2*K.1^3,0,2*K.1^3,-2*K.1,2*K.1,0,-2*K.1^3,-2*K.1,0,0,0,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,-2,-2,-2,2,-2,2,2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2,0,0,0,-2,0,0,0,-2*K.1^2,0,0,-2,0,2,0,0,-2*K.1^2,2*K.1^2,0,0,0,0,2*K.1^2,0,-2*K.1^3,-2*K.1^3,2*K.1,-2*K.1^3,2*K.1,-2*K.1,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1,-2*K.1,2*K.1^3,2*K.1,2*K.1^3,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,2*K.1,0,0,-2*K.1,0,-2*K.1,2*K.1^3,-2*K.1^3,0,2*K.1,2*K.1^3,0,0,0,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,2,-2,-2,-2,2,-2,-2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,0,2*K.1^2,-2,0,0,-2*K.1^2,2,2*K.1^2,0,-2*K.1^2,0,0,-2,0,0,0,0,0,0,2,0,0,0,0,2*K.1^3,-2*K.1^3,-2*K.1,2*K.1^3,2*K.1,2*K.1,2*K.1^3,-2*K.1^3,-2*K.1^3,-2*K.1,-2*K.1,-2*K.1^3,-2*K.1,2*K.1^3,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1^3,0,0,-2*K.1^3,0,2*K.1^3,0,0,0,0,0,0,0,0,-2*K.1,0,0,0,2*K.1,0,0,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,2,-2,-2,-2,2,-2,2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,0,-2*K.1^2,-2,0,0,2*K.1^2,2,-2*K.1^2,0,2*K.1^2,0,0,-2,0,0,0,0,0,0,2,0,0,0,0,-2*K.1,2*K.1,2*K.1^3,-2*K.1,-2*K.1^3,-2*K.1^3,-2*K.1,2*K.1,2*K.1,2*K.1^3,2*K.1^3,2*K.1,2*K.1^3,-2*K.1,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1,0,0,2*K.1,0,-2*K.1,0,0,0,0,0,0,0,0,2*K.1^3,0,0,0,-2*K.1^3,0,0,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,2,-2,-2,-2,2,-2,-2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,0,2*K.1^2,-2,0,0,-2*K.1^2,2,2*K.1^2,0,-2*K.1^2,0,0,-2,0,0,0,0,0,0,2,0,0,0,0,-2*K.1^3,2*K.1^3,2*K.1,-2*K.1^3,-2*K.1,-2*K.1,-2*K.1^3,2*K.1^3,2*K.1^3,2*K.1,2*K.1,2*K.1^3,2*K.1,-2*K.1^3,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1^3,0,0,2*K.1^3,0,-2*K.1^3,0,0,0,0,0,0,0,0,2*K.1,0,0,0,-2*K.1,0,0,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,2,-2,-2,-2,2,-2,2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,0,-2*K.1^2,-2,0,0,2*K.1^2,2,-2*K.1^2,0,2*K.1^2,0,0,-2,0,0,0,0,0,0,2,0,0,0,0,2*K.1,-2*K.1,-2*K.1^3,2*K.1,2*K.1^3,2*K.1^3,2*K.1,-2*K.1,-2*K.1,-2*K.1^3,-2*K.1^3,-2*K.1,-2*K.1^3,2*K.1,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1,0,0,-2*K.1,0,2*K.1,0,0,0,0,0,0,0,0,-2*K.1^3,0,0,0,2*K.1^3,0,0,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,2,-2,-2,-2,2,-2,-2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,0,-2*K.1^2,2,0,0,2*K.1^2,-2,-2*K.1^2,0,2*K.1^2,0,0,2,0,0,0,0,0,0,-2,0,0,0,0,2*K.1^3,-2*K.1^3,-2*K.1,2*K.1^3,2*K.1,2*K.1,2*K.1^3,-2*K.1^3,-2*K.1^3,-2*K.1,-2*K.1,-2*K.1^3,-2*K.1,2*K.1^3,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1^3,0,0,2*K.1^3,0,-2*K.1^3,0,0,0,0,0,0,0,0,2*K.1,0,0,0,-2*K.1,0,0,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,2,-2,-2,-2,2,-2,2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,0,2*K.1^2,2,0,0,-2*K.1^2,-2,2*K.1^2,0,-2*K.1^2,0,0,2,0,0,0,0,0,0,-2,0,0,0,0,-2*K.1,2*K.1,2*K.1^3,-2*K.1,-2*K.1^3,-2*K.1^3,-2*K.1,2*K.1,2*K.1,2*K.1^3,2*K.1^3,2*K.1,2*K.1^3,-2*K.1,-2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1,0,0,-2*K.1,0,2*K.1,0,0,0,0,0,0,0,0,-2*K.1^3,0,0,0,2*K.1^3,0,0,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,2,-2,-2,-2,2,-2,-2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,0,-2*K.1^2,2,0,0,2*K.1^2,-2,-2*K.1^2,0,2*K.1^2,0,0,2,0,0,0,0,0,0,-2,0,0,0,0,-2*K.1^3,2*K.1^3,2*K.1,-2*K.1^3,-2*K.1,-2*K.1,-2*K.1^3,2*K.1^3,2*K.1^3,2*K.1,2*K.1,2*K.1^3,2*K.1,-2*K.1^3,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1^3,0,0,-2*K.1^3,0,2*K.1^3,0,0,0,0,0,0,0,0,-2*K.1,0,0,0,2*K.1,0,0,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,2,-2,-2,-2,2,-2,2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,0,2*K.1^2,2,0,0,-2*K.1^2,-2,2*K.1^2,0,-2*K.1^2,0,0,2,0,0,0,0,0,0,-2,0,0,0,0,2*K.1,-2*K.1,-2*K.1^3,2*K.1,2*K.1^3,2*K.1^3,2*K.1,-2*K.1,-2*K.1,-2*K.1^3,-2*K.1^3,-2*K.1,-2*K.1^3,2*K.1,2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1,0,0,2*K.1,0,-2*K.1,0,0,0,0,0,0,0,0,2*K.1^3,0,0,0,-2*K.1^3,0,0,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_256_5886:= KnownIrreducibles(CR);