/* Group 256.53748 downloaded from the LMFDB on 14 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([8, 2, 2, 2, 2, 2, 2, 2, 2, 1033, 771, 1107, 91, 10757, 1165, 605, 141, 10758, 1374, 166]); a,b,c,d,e := Explode([GPC.1, GPC.2, GPC.3, GPC.4, GPC.6]); AssignNames(~GPC, ["a", "b", "c", "d", "d2", "e", "e2", "e4"]); GPerm := PermutationGroup< 24 | (1,2)(3,9)(4,13)(5,6)(7,12)(8,14)(10,16)(11,15)(17,18)(19,22)(20,21)(23,24), (2,6)(3,10)(8,13)(11,12)(18,21)(19,23), (1,3)(2,7)(4,11)(5,10)(6,15)(8,16)(9,13)(12,14)(17,19)(18,22)(20,23)(21,24), (1,4,5,14)(2,8,6,13)(3,11,10,12)(7,16,15,9)(18,21)(22,24), (1,2)(3,7)(4,8)(5,6)(9,12)(10,15)(11,16)(13,14), (1,5)(2,6)(3,10)(4,14)(7,15)(8,13)(9,16)(11,12)(17,20)(18,21)(19,23)(22,24), (1,4,5,14)(2,8,6,13)(3,12,10,11)(7,9,15,16), (1,5)(2,6)(3,10)(4,14)(7,15)(8,13)(9,16)(11,12) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_256_53748 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := true, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, e^4>,< 2, 1, d^2>,< 2, 1, d^2*e^4>,< 2, 2, c>,< 2, 2, c*d^2>,< 2, 4, b*e^2>,< 2, 4, a*d>,< 2, 4, b*c*e^2>,< 2, 4, a*c*d*e^2>,< 2, 4, a*b*d*e^2>,< 2, 4, a*b*c*d>,< 2, 8, a>,< 2, 8, a*e>,< 2, 8, a*c>,< 2, 8, b*d*e>,< 2, 8, a*c*e>,< 4, 2, c*e^2>,< 4, 2, c*d^2*e^2>,< 4, 2, e^2>,< 4, 2, d^2*e^6>,< 4, 2, b>,< 4, 2, b*e^4>,< 4, 4, b*c>,< 4, 4, a*d*e^2>,< 4, 4, a*c*d>,< 4, 4, a*b*d>,< 4, 4, a*b*c*d*e^2>,< 4, 8, d>,< 4, 8, d*e>,< 4, 8, c*d>,< 4, 8, b*d>,< 4, 8, a*b>,< 4, 8, c*d*e>,< 4, 8, b*c*d>,< 4, 8, a*b*e>,< 4, 8, a*b*c>,< 4, 8, b*c*d*e>,< 4, 8, a*b*c*e>,< 8, 4, c*e>,< 8, 4, c*e^5>,< 8, 4, b*c*e>,< 8, 4, b*c*e^5>,< 8, 8, e>,< 8, 8, b*e>,< 8, 8, a*d*e>,< 8, 8, a*c*d*e>,< 8, 8, a*b*d*e>,< 8, 8, a*b*c*d*e>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, 2, 0, 0, 0, 0, 0, -2, 2, 2, -2, -2, -2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, -2, -2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, -2, 2, 2, -2, -2, -2, -2, 2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, -2, 2, -2, 2, 2, -2, -2, 0, 0, 0, 0, 0, 2, 2, 2, -2, -2, 2, -2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, -2, 2, 2, -2, -2, 2, -2, 0, 0, 0, 0, 0, 2, 2, 2, -2, -2, 2, 2, -2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, -2, -2, 2, -2, 2, -2, 0, 0, 0, 0, 0, 2, -2, -2, -2, -2, 2, -2, 2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, -2, 2, -2, 2, -2, -2, 0, 0, 0, 0, 0, 2, -2, -2, -2, -2, 2, 2, 2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, 2, -2, -2, 2, 2, 2, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, 2, -2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, 2, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, -4, -4, 4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, -4, -4, 4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, -4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, -4, -4, 4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, -4, -4, 4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, -4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,-4*K.1^2,0,0,0,0,4*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^3,2*K.1+2*K.1^-1,2*K.1+2*K.1^3,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^2,0,0,0,0,-4*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,2*K.1+2*K.1^3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^3,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,-4*K.1^2,0,0,0,0,4*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1+2*K.1^3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^3,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^2,0,0,0,0,-4*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,-2*K.1-2*K.1^3,-2*K.1-2*K.1^-1,2*K.1+2*K.1^3,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[8, -8, 8, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_256_53748:= KnownIrreducibles(CR);