/* Group 256.53563 downloaded from the LMFDB on 11 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([8, 2, 2, 2, 2, 2, 2, 2, 2, 1594, 91, 11525, 5389, 989, 141, 10758, 5390, 166]); a,b,c,d,e := Explode([GPC.1, GPC.2, GPC.3, GPC.4, GPC.6]); AssignNames(~GPC, ["a", "b", "c", "d", "d2", "e", "e2", "e4"]); GPerm := PermutationGroup< 24 | (1,2,5,11)(3,7,12,8)(4,9,14,16)(6,15,13,10)(18,21)(22,24), (1,3)(2,7)(4,6)(5,12)(8,11)(9,15)(10,16)(13,14)(17,18)(19,22)(20,21)(23,24), (1,4)(2,8)(3,6)(5,14)(7,11)(9,15)(10,16)(12,13)(17,18)(19,22)(20,21)(23,24), (1,5)(3,12)(4,14)(6,13)(17,19,20,23)(18,22,21,24), (1,4)(2,9)(3,13)(5,14)(6,12)(7,10)(8,15)(11,16), (17,20)(18,21)(19,23)(22,24), (1,6,5,13)(2,10,11,15)(3,4,12,14)(7,16,8,9)(17,20)(18,21)(19,23)(22,24), (1,5)(2,11)(3,12)(4,14)(6,13)(7,8)(9,16)(10,15) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_256_53563 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := true, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, e^4>,< 2, 1, d^2>,< 2, 1, d^2*e^4>,< 2, 2, c>,< 2, 2, c*d^2>,< 2, 4, b>,< 2, 4, a>,< 2, 4, b*d^2>,< 2, 4, a*e^2>,< 2, 4, a*c>,< 2, 4, a*b>,< 2, 4, a*c*e^2>,< 2, 4, a*b*c*e^2>,< 2, 8, b*e>,< 4, 2, c*e^2>,< 4, 2, c*d^2*e^2>,< 4, 2, e^2>,< 4, 2, d^2*e^6>,< 4, 2, d>,< 4, 2, d^3>,< 4, 2, d*e^2>,< 4, 2, d^3*e^2>,< 4, 2, c*d>,< 4, 2, c*d^3>,< 4, 2, c*d*e^2>,< 4, 2, c*d^3*e^2>,< 4, 4, b*c>,< 4, 4, b*c*d^2>,< 4, 4, a*b*e^2>,< 4, 4, a*b*d>,< 4, 4, a*b*c>,< 4, 4, a*b*d*e^2>,< 4, 4, a*b*c*d>,< 4, 4, a*b*c*d*e^2>,< 4, 4, b*d>,< 4, 4, b*d^3>,< 4, 4, a*d>,< 4, 4, a*d*e^2>,< 4, 4, b*c*d>,< 4, 4, b*c*d^3>,< 4, 4, a*c*d>,< 4, 4, a*c*d*e^2>,< 4, 8, a*e>,< 4, 8, b*d*e>,< 4, 8, b*c*e>,< 4, 8, a*d*e>,< 4, 8, a*c*e>,< 4, 8, b*c*d*e>,< 4, 8, a*c*d*e>,< 8, 8, e>,< 8, 8, d*e>,< 8, 8, c*e>,< 8, 8, c*d*e>,< 8, 8, a*b*e>,< 8, 8, a*b*d*e>,< 8, 8, a*b*c*e>,< 8, 8, a*b*c*d*e>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, -2, 0, 0, 0, -2, -2, 0, 0, 0, 0, -2, -2, -2, 2, -2, 2, 2, 2, 2, -2, 2, -2, 2, 2, 2, -2, 0, 0, 0, -2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, -2, 0, 0, 0, -2, -2, 0, 0, 0, 0, 2, 2, -2, 2, 2, -2, -2, -2, 2, 2, -2, -2, 2, -2, 2, 2, 0, 0, 0, 2, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, -2, 0, 0, 0, 2, 2, 0, 0, 0, 0, -2, -2, -2, 2, -2, 2, 2, 2, 2, -2, 2, -2, -2, -2, -2, 2, 0, 0, 0, 2, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, -2, 0, 0, 0, 2, 2, 0, 0, 0, 0, 2, 2, -2, 2, 2, -2, -2, -2, 2, 2, -2, -2, -2, 2, -2, -2, 0, 0, 0, -2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, 0, 0, 0, -2, 2, 0, 0, 0, 0, -2, 2, -2, -2, 2, -2, -2, 2, -2, -2, 2, -2, -2, 2, 2, 2, 0, 0, 0, -2, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, 0, 0, 0, -2, 2, 0, 0, 0, 0, 2, -2, -2, -2, -2, 2, 2, -2, -2, 2, -2, -2, -2, -2, 2, -2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, 0, 0, 0, 2, -2, 0, 0, 0, 0, -2, 2, -2, -2, 2, -2, -2, 2, -2, -2, 2, -2, 2, -2, -2, -2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, 0, 0, 0, 2, -2, 0, 0, 0, 0, 2, -2, -2, -2, -2, 2, 2, -2, -2, 2, -2, -2, 2, 2, -2, 2, 0, 0, 0, -2, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,-2,2,-2,0,2,0,0,0,-2,2,0,-2*K.1,-2*K.1,2,2,2*K.1,2*K.1,-2*K.1,2*K.1,-2,2*K.1,-2*K.1,-2,0,0,0,0,0,-2*K.1,0,0,-2*K.1,2*K.1,0,0,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,-2,2,-2,0,2,0,0,0,-2,2,0,2*K.1,2*K.1,2,2,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2,-2*K.1,2*K.1,-2,0,0,0,0,0,2*K.1,0,0,2*K.1,-2*K.1,0,0,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,-2,2,0,-2,0,0,0,2,0,0,0,-2*K.1,2*K.1,-2,-2,-2*K.1,2*K.1,-2*K.1,-2*K.1,2,2*K.1,2*K.1,2,0,0,0,0,-2*K.1,0,2*K.1,0,0,0,-2,0,0,-2*K.1,2,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,-2,2,0,-2,0,0,0,2,0,0,0,2*K.1,-2*K.1,-2,-2,2*K.1,-2*K.1,2*K.1,2*K.1,2,-2*K.1,-2*K.1,2,0,0,0,0,2*K.1,0,-2*K.1,0,0,0,-2,0,0,2*K.1,2,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,-2,2,0,2,0,0,0,-2,0,0,0,-2*K.1,2*K.1,-2,-2,-2*K.1,2*K.1,-2*K.1,-2*K.1,2,2*K.1,2*K.1,2,0,0,0,0,2*K.1,0,-2*K.1,0,0,0,2,0,0,2*K.1,-2,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,-2,2,0,2,0,0,0,-2,0,0,0,2*K.1,-2*K.1,-2,-2,2*K.1,-2*K.1,2*K.1,2*K.1,2,-2*K.1,-2*K.1,2,0,0,0,0,-2*K.1,0,2*K.1,0,0,0,2,0,0,-2*K.1,-2,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,-2,2,2,0,-2,0,0,0,2,-2,0,-2*K.1,-2*K.1,2,2,2*K.1,2*K.1,-2*K.1,2*K.1,-2,2*K.1,-2*K.1,-2,0,0,0,0,0,2*K.1,0,0,2*K.1,-2*K.1,0,0,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,-2,2,2,0,-2,0,0,0,2,-2,0,2*K.1,2*K.1,2,2,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2,-2*K.1,2*K.1,-2,0,0,0,0,0,-2*K.1,0,0,-2*K.1,2*K.1,0,0,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,0,2,0,0,0,2,-2,0,-2*K.1,2*K.1,2,-2,-2*K.1,-2*K.1,2*K.1,2*K.1,2,2*K.1,-2*K.1,-2,0,0,0,0,0,2*K.1,0,0,-2*K.1,2*K.1,0,0,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,0,2,0,0,0,2,-2,0,2*K.1,-2*K.1,2,-2,2*K.1,2*K.1,-2*K.1,-2*K.1,2,-2*K.1,2*K.1,-2,0,0,0,0,0,-2*K.1,0,0,2*K.1,-2*K.1,0,0,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,2,-2,0,-2,0,0,0,2,0,0,0,-2*K.1,-2*K.1,-2,2,2*K.1,-2*K.1,2*K.1,-2*K.1,-2,2*K.1,2*K.1,2,0,0,0,0,-2*K.1,0,-2*K.1,0,0,0,2,0,0,2*K.1,-2,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,2,-2,0,-2,0,0,0,2,0,0,0,2*K.1,2*K.1,-2,2,-2*K.1,2*K.1,-2*K.1,2*K.1,-2,-2*K.1,-2*K.1,2,0,0,0,0,2*K.1,0,2*K.1,0,0,0,2,0,0,-2*K.1,-2,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,2,-2,0,2,0,0,0,-2,0,0,0,-2*K.1,-2*K.1,-2,2,2*K.1,-2*K.1,2*K.1,-2*K.1,-2,2*K.1,2*K.1,2,0,0,0,0,2*K.1,0,2*K.1,0,0,0,-2,0,0,-2*K.1,2,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,2,-2,0,2,0,0,0,-2,0,0,0,2*K.1,2*K.1,-2,2,-2*K.1,2*K.1,-2*K.1,2*K.1,-2,-2*K.1,-2*K.1,2,0,0,0,0,-2*K.1,0,-2*K.1,0,0,0,-2,0,0,2*K.1,2,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,2,-2,2,0,-2,0,0,0,-2,2,0,-2*K.1,2*K.1,2,-2,-2*K.1,-2*K.1,2*K.1,2*K.1,2,2*K.1,-2*K.1,-2,0,0,0,0,0,-2*K.1,0,0,2*K.1,-2*K.1,0,0,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,2,-2,2,0,-2,0,0,0,-2,2,0,2*K.1,-2*K.1,2,-2,2*K.1,2*K.1,-2*K.1,-2*K.1,2,-2*K.1,2*K.1,-2,0,0,0,0,0,2*K.1,0,0,-2*K.1,2*K.1,0,0,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[8, 8, -8, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, -8, 8, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_256_53563:= KnownIrreducibles(CR);