/* Group 256.30662 downloaded from the LMFDB on 13 November 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([8, 2, 2, 2, 2, 2, 2, 2, 2, 154, 66, 972, 116, 12550, 2710, 166]); a,b,c,d,e := Explode([GPC.1, GPC.2, GPC.3, GPC.5, GPC.7]); AssignNames(~GPC, ["a", "b", "c", "c2", "d", "d2", "e", "e2"]); GPerm := PermutationGroup< 16 | (1,2)(3,7)(4,5)(6,8)(10,12), (1,3)(2,6)(4,7)(5,8)(14,16), (1,2,5,4)(3,7,8,6)(9,10,11,12)(13,14)(15,16), (1,4,5,2)(3,7,8,6), (9,11)(10,12)(13,14)(15,16), (1,5)(2,4)(3,8)(6,7), (1,5)(2,4)(3,8)(6,7)(9,11)(10,12), (1,5)(2,4)(3,8)(6,7)(13,15)(14,16) >; GLZN := MatrixGroup< 2, Integers(48) | [[1, 32, 8, 17], [7, 0, 0, 7], [17, 24, 24, 17], [7, 0, 0, 1], [41, 4, 4, 25], [17, 0, 0, 17], [20, 33, 1, 4], [8, 33, 39, 8]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_256_30662 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := true, perfect := false, quasisimple := false, rational := true, solvable := true, supersolvable := true>; /* Character Table */ G:= GLZN; C := SequenceToConjugacyClasses([car |< 1, 1, Matrix(2, [1, 0, 0, 1])>,< 2, 1, Matrix(2, [1, 24, 24, 1])>,< 2, 1, Matrix(2, [17, 24, 24, 17])>,< 2, 1, Matrix(2, [7, 24, 24, 7])>,< 2, 1, Matrix(2, [17, 0, 0, 17])>,< 2, 1, Matrix(2, [7, 0, 0, 7])>,< 2, 1, Matrix(2, [23, 24, 24, 23])>,< 2, 1, Matrix(2, [23, 0, 0, 23])>,< 2, 2, Matrix(2, [41, 16, 0, 25])>,< 2, 2, Matrix(2, [25, 8, 24, 41])>,< 2, 2, Matrix(2, [47, 40, 24, 31])>,< 2, 2, Matrix(2, [31, 32, 0, 47])>,< 2, 4, Matrix(2, [40, 33, 33, 40])>,< 2, 4, Matrix(2, [32, 33, 33, 32])>,< 2, 4, Matrix(2, [20, 9, 9, 44])>,< 2, 4, Matrix(2, [28, 9, 9, 4])>,< 2, 4, Matrix(2, [25, 24, 32, 41])>,< 2, 4, Matrix(2, [25, 12, 12, 31])>,< 2, 4, Matrix(2, [31, 0, 8, 47])>,< 2, 4, Matrix(2, [41, 36, 36, 47])>,< 2, 4, Matrix(2, [17, 0, 0, 23])>,< 2, 4, Matrix(2, [1, 24, 24, 7])>,< 2, 8, Matrix(2, [17, 28, 12, 7])>,< 2, 8, Matrix(2, [8, 25, 9, 40])>,< 2, 8, Matrix(2, [41, 0, 40, 31])>,< 2, 8, Matrix(2, [25, 32, 0, 47])>,< 2, 8, Matrix(2, [4, 17, 33, 44])>,< 2, 8, Matrix(2, [1, 36, 44, 23])>,< 4, 2, Matrix(2, [41, 36, 12, 41])>,< 4, 2, Matrix(2, [25, 12, 36, 25])>,< 4, 2, Matrix(2, [47, 36, 12, 47])>,< 4, 2, Matrix(2, [31, 12, 36, 31])>,< 4, 4, Matrix(2, [41, 4, 4, 25])>,< 4, 4, Matrix(2, [20, 7, 33, 4])>,< 4, 4, Matrix(2, [1, 8, 32, 17])>,< 4, 4, Matrix(2, [47, 4, 4, 31])>,< 4, 4, Matrix(2, [44, 7, 33, 28])>,< 4, 4, Matrix(2, [40, 47, 9, 8])>,< 4, 4, Matrix(2, [17, 36, 4, 1])>,< 4, 4, Matrix(2, [1, 20, 12, 17])>,< 4, 4, Matrix(2, [4, 15, 9, 4])>,< 4, 4, Matrix(2, [7, 32, 8, 23])>,< 4, 4, Matrix(2, [16, 47, 9, 32])>,< 4, 4, Matrix(2, [23, 36, 4, 7])>,< 4, 4, Matrix(2, [7, 20, 12, 23])>,< 4, 4, Matrix(2, [44, 15, 9, 44])>,< 4, 4, Matrix(2, [8, 39, 33, 8])>,< 4, 4, Matrix(2, [16, 39, 33, 16])>,< 4, 8, Matrix(2, [32, 15, 25, 40])>,< 4, 8, Matrix(2, [44, 25, 25, 28])>,< 4, 8, Matrix(2, [4, 39, 17, 44])>,< 4, 8, Matrix(2, [40, 17, 17, 32])>,< 4, 8, Matrix(2, [32, 7, 1, 40])>,< 4, 8, Matrix(2, [44, 33, 1, 28])>,< 4, 8, Matrix(2, [4, 47, 41, 44])>,< 4, 8, Matrix(2, [40, 9, 41, 32])>,< 4, 8, Matrix(2, [17, 16, 40, 7])>,< 4, 8, Matrix(2, [25, 20, 44, 47])>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, -2, 2, 2, 2, -2, -2, -2, 2, 2, 0, 0, 0, 0, -2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, 2, 0, 0, -2, 0, 2, 0, 2, -2, 0, 2, 2, 0, -2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, -2, 2, 2, 2, -2, -2, -2, 2, 2, 0, 0, 0, 0, -2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, -2, 0, 0, 2, 0, -2, 0, -2, -2, 0, 2, -2, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, -2, 2, 2, 2, -2, -2, -2, 2, 2, 0, 0, 0, 0, 2, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, 2, 0, 0, -2, 0, -2, 0, -2, 2, 0, -2, 2, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, -2, 2, 2, 2, -2, -2, -2, 2, 2, 0, 0, 0, 0, 2, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, -2, 0, 0, 2, 0, 2, 0, 2, 2, 0, -2, -2, 0, -2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, -2, 2, 2, 2, -2, 2, 2, -2, -2, 0, 0, 0, 0, -2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, 2, 0, 0, 2, 0, 2, 0, -2, 2, 0, -2, -2, 0, 2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, -2, 2, 2, 2, -2, 2, 2, -2, -2, 0, 0, 0, 0, -2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, -2, 0, 0, -2, 0, -2, 0, 2, 2, 0, -2, 2, 0, -2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, -2, 2, 2, 2, -2, 2, 2, -2, -2, 0, 0, 0, 0, 2, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, 2, 0, 0, 2, 0, -2, 0, 2, -2, 0, 2, -2, 0, -2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, -2, 2, 2, 2, -2, 2, 2, -2, -2, 0, 0, 0, 0, 2, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, -2, 0, 0, -2, 0, 2, 0, -2, -2, 0, 2, 2, 0, 2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, -2, 2, -2, 2, 0, 0, 0, 0, -2, -2, -2, 2, 0, 2, -2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 2, -2, 2, -2, 2, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, -2, 2, -2, 2, 0, 0, 0, 0, -2, -2, 2, 2, 0, -2, 2, 2, 0, -2, 0, 0, 0, 0, 0, 0, -2, 2, -2, 2, -2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, -2, 2, -2, 2, 0, 0, 0, 0, -2, 2, -2, 2, 0, -2, 2, -2, 0, 2, 0, 0, 0, 0, 0, 0, 2, -2, 2, -2, -2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, -2, 2, -2, 2, 0, 0, 0, 0, -2, 2, 2, 2, 0, 2, -2, -2, 0, -2, 0, 0, 0, 0, 0, 0, -2, 2, -2, 2, 2, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, -2, 2, -2, 2, 0, 0, 0, 0, 2, -2, -2, -2, 0, -2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, -2, 2, -2, 2, 2, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, -2, 2, -2, 2, 0, 0, 0, 0, 2, -2, 2, -2, 0, 2, -2, 2, 0, -2, 0, 0, 0, 0, 0, 0, 2, -2, 2, -2, -2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, -2, 2, -2, 2, 0, 0, 0, 0, 2, 2, -2, -2, 0, 2, -2, -2, 0, 2, 0, 0, 0, 0, 0, 0, -2, 2, -2, 2, -2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, -2, 2, -2, 2, 0, 0, 0, 0, 2, 2, 2, -2, 0, -2, 2, -2, 0, -2, 0, 0, 0, 0, 0, 0, 2, -2, 2, -2, 2, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, -4, 4, -4, 4, -4, -4, 4, -4, 4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, -4, 4, -4, 4, -4, -4, 4, 4, -4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, -4, 4, 4, -4, -4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, -4, 4, 4, -4, -4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, -4, -4, -4, -4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, -4, -4, -4, -4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, -4, 4, 4, -4, -4, -4, -4, 4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, -4, 4, 4, -4, -4, -4, 4, -4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, 4, -4, -4, 4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, 4, -4, -4, 4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, -4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_256_30662:= KnownIrreducibles(CR);