Properties

Label 2519424.ju
Order \( 2^{7} \cdot 3^{9} \)
Exponent \( 2^{2} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \cdot 3 \)
$\card{Z(G)}$ \( 1 \)
$\card{\Aut(G)}$ \( 2^{9} \cdot 3^{9} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. $21$
Trans deg. $36$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 21 | (1,3,7)(2,5,11,6,8,15,13,16,17)(4,9,12)(14,18)(20,21), (1,2,4,8,14,17,7,13,9,16,18,11,3,6,12,5,10,15)(19,20) >;
 
Copy content gap:G := Group( (1,3,7)(2,5,11,6,8,15,13,16,17)(4,9,12)(14,18)(20,21), (1,2,4,8,14,17,7,13,9,16,18,11,3,6,12,5,10,15)(19,20) );
 
Copy content sage:G = PermutationGroup(['(1,3,7)(2,5,11,6,8,15,13,16,17)(4,9,12)(14,18)(20,21)', '(1,2,4,8,14,17,7,13,9,16,18,11,3,6,12,5,10,15)(19,20)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2302678768480718510853951309696531506678376602377668854082338271756644700357486533337979304457367382931549360834867552059016355905050161236926935423409713416095911969244569699330684091868615196507980807395237286850732874479764595257636043983864064086592624751125451597999544117404895178247154293133772560495797470381610765701789662837514638661999350448875313742642551500037250286999212649640552729525161037302146430209092277078376784633711629924059466146136912841186573106799469730909749234359457298752235995493966316676315855336884775048278122556614943482374252781325487,2519424)'); a = G.1; b = G.3; c = G.6; d = G.7; e = G.8; f = G.10; g = G.12; h = G.14; i = G.15; j = G.16;
 

Group information

Description:$C_3^6.A_4^2:D_{12}$
Order: \(2519424\)\(\medspace = 2^{7} \cdot 3^{9} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_3^6.C_2^6:S_3^3$, of order \(10077696\)\(\medspace = 2^{9} \cdot 3^{9} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 7, $C_3$ x 9
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 9 12 18
Elements 1 10071 29402 75816 915030 147744 711504 629856 2519424
Conjugacy classes   1 10 41 3 138 33 20 24 270
Divisions 1 10 31 3 108 18 11 12 194
Autjugacy classes 1 10 31 3 94 16 9 12 176

Minimal presentations

Permutation degree:$21$
Transitive degree:$36$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 24 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j \mid b^{12}=e^{6}=f^{6}=g^{6}=h^{3}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([16, 2, 3, 2, 2, 3, 3, 2, 2, 3, 2, 3, 2, 3, 3, 3, 3, 32, 36923921, 58274786, 45339426, 130, 128179971, 20072851, 179, 3844, 214133765, 89043861, 12554533, 7769717, 215509, 188504070, 101727382, 28594982, 22936086, 487286, 583398, 125411335, 86082071, 34836519, 2345527, 2397399, 4455, 375, 26873864, 11943960, 2239528, 20792, 331864, 1256, 305441289, 160565785, 52444841, 8881977, 330329, 209385, 4921, 473, 147806218, 152090, 49268778, 152122, 4314, 4346, 354461195, 228842523, 71898667, 10202171, 5485915, 1156715, 76155, 15131, 571, 453952524, 29742364, 38877740, 1078332, 2443676, 244716, 119932, 10140, 49932301, 31352861, 64557, 3483709, 2612829, 16285, 1244174, 100776990, 6635566, 11197502, 622174, 51998, 8830, 442383, 11943967, 221231, 35831871, 1990751, 27839]); a,b,c,d,e,f,g,h,i,j := Explode([G.1, G.3, G.6, G.7, G.8, G.10, G.12, G.14, G.15, G.16]); AssignNames(~G, ["a", "a2", "b", "b2", "b4", "c", "d", "e", "e2", "f", "f2", "g", "g2", "h", "i", "j"]);
 
Copy content gap:G := PcGroupCode(2302678768480718510853951309696531506678376602377668854082338271756644700357486533337979304457367382931549360834867552059016355905050161236926935423409713416095911969244569699330684091868615196507980807395237286850732874479764595257636043983864064086592624751125451597999544117404895178247154293133772560495797470381610765701789662837514638661999350448875313742642551500037250286999212649640552729525161037302146430209092277078376784633711629924059466146136912841186573106799469730909749234359457298752235995493966316676315855336884775048278122556614943482374252781325487,2519424); a := G.1; b := G.3; c := G.6; d := G.7; e := G.8; f := G.10; g := G.12; h := G.14; i := G.15; j := G.16;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2302678768480718510853951309696531506678376602377668854082338271756644700357486533337979304457367382931549360834867552059016355905050161236926935423409713416095911969244569699330684091868615196507980807395237286850732874479764595257636043983864064086592624751125451597999544117404895178247154293133772560495797470381610765701789662837514638661999350448875313742642551500037250286999212649640552729525161037302146430209092277078376784633711629924059466146136912841186573106799469730909749234359457298752235995493966316676315855336884775048278122556614943482374252781325487,2519424)'); a = G.1; b = G.3; c = G.6; d = G.7; e = G.8; f = G.10; g = G.12; h = G.14; i = G.15; j = G.16;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2302678768480718510853951309696531506678376602377668854082338271756644700357486533337979304457367382931549360834867552059016355905050161236926935423409713416095911969244569699330684091868615196507980807395237286850732874479764595257636043983864064086592624751125451597999544117404895178247154293133772560495797470381610765701789662837514638661999350448875313742642551500037250286999212649640552729525161037302146430209092277078376784633711629924059466146136912841186573106799469730909749234359457298752235995493966316676315855336884775048278122556614943482374252781325487,2519424)'); a = G.1; b = G.3; c = G.6; d = G.7; e = G.8; f = G.10; g = G.12; h = G.14; i = G.15; j = G.16;
 
Permutation group:Degree $21$ $\langle(1,3,7)(2,5,11,6,8,15,13,16,17)(4,9,12)(14,18)(20,21), (1,2,4,8,14,17,7,13,9,16,18,11,3,6,12,5,10,15)(19,20)\rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 21 | (1,3,7)(2,5,11,6,8,15,13,16,17)(4,9,12)(14,18)(20,21), (1,2,4,8,14,17,7,13,9,16,18,11,3,6,12,5,10,15)(19,20) >;
 
Copy content gap:G := Group( (1,3,7)(2,5,11,6,8,15,13,16,17)(4,9,12)(14,18)(20,21), (1,2,4,8,14,17,7,13,9,16,18,11,3,6,12,5,10,15)(19,20) );
 
Copy content sage:G = PermutationGroup(['(1,3,7)(2,5,11,6,8,15,13,16,17)(4,9,12)(14,18)(20,21)', '(1,2,4,8,14,17,7,13,9,16,18,11,3,6,12,5,10,15)(19,20)'])
 
Transitive group: 36T46096 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_3^7$ . $(A_4^2:D_4)$ $(C_3^6.A_4^2)$ . $D_{12}$ $C_3^6$ . $(A_4^2:D_{12})$ $(C_3^4.D_6\wr C_3)$ . $S_3$ all 33

Elements of the group are displayed as permutations of degree 21.

Homology

Abelianization: $C_{2} \times C_{6} \simeq C_{2}^{2} \times C_{3}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{2}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 35 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_1$ $G/Z \simeq$ $C_3^6.A_4^2:D_{12}$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_3^7.C_2^3:A_4$ $G/G' \simeq$ $C_2\times C_6$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $C_3^6.A_4^2:D_{12}$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_3^7$ $G/\operatorname{Fit} \simeq$ $A_4^2:D_4$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_3^6.A_4^2:D_{12}$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_3^7$ $G/\operatorname{soc} \simeq$ $A_4^2:D_4$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^3\wr C_2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3\times C_3^6.C_3^2$

Subgroup diagram and profile

Series

Derived series $C_3^6.A_4^2:D_{12}$ $\rhd$ $C_3^7.C_2^3:A_4$ $\rhd$ $C_3^6.C_2^4$ $\rhd$ $C_3^6$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_3^6.A_4^2:D_{12}$ $\rhd$ $C_3^7.A_4^2.C_2^2$ $\rhd$ $C_3^6.C_2^4.C_3^3.C_2$ $\rhd$ $C_3^7.C_2^3:A_4$ $\rhd$ $C_3^7.C_2^2:A_4$ $\rhd$ $C_3^6:(C_2^2:A_4)$ $\rhd$ $C_3^6.C_2^4$ $\rhd$ $C_3^6$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_3^6.A_4^2:D_{12}$ $\rhd$ $C_3^7.C_2^3:A_4$ $\rhd$ $C_3^7.C_2^2:A_4$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 4 larger groups in the database.

This group is a maximal quotient of 1 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $270 \times 270$ character table is not available for this group.

Rational character table

The $194 \times 194$ rational character table is not available for this group.