# Group 2420.r downloaded from the LMFDB on 17 November 2025. ## Various presentations of this group are stored in this file: # GPC is polycyclic presentation GPerm is permutation group # GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups # Many characteristics of the group are stored as booleans in a record: # Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, # metacyclic, monomial, nilpotent, perfect, quasisimple, rational, # solvable, supersolvable # The character table is stored as a record chartbl_n_i where n is the order # of the group and i is which group of that order it is. The record is # converted to a character table using ConvertToLibraryCharacterTableNC # Constructions GPC := PcGroupCode(6372473303491881090677902743303909,2420); a := GPC.1; b := GPC.3; c := GPC.4; GPerm := Group( (12,13), (2,11,4,8,7)(3,10,6,5,9)(15,21,17,22,19)(16,23,18,24,20), (14,24,15,20,18,23,21,17,19,16,22), (1,11,9,2,4,8,5,6,3,7,10), (2,3)(4,6)(5,8)(7,9)(10,11)(12,13)(15,16)(17,18)(19,20)(21,23)(22,24) ); GLFp := Group([[[ Z(11)^9, Z(11)^0, Z(11)^3, Z(11)^6 ], [ Z(11)^5, Z(11)^9, Z(11), Z(11)^3 ], [ Z(11)^6, Z(11)^9, Z(11)^8, Z(11)^5 ], [ Z(11)^4, Z(11)^6, Z(11)^0, Z(11)^8 ]], [[ Z(11)^3, Z(11)^9, Z(11)^3, Z(11)^5 ], [ Z(11)^6, Z(11)^3, Z(11)^2, Z(11)^3 ], [ Z(11)^5, Z(11)^8, Z(11)^8, Z(11)^4 ], [ Z(11)^5, Z(11)^5, Z(11), Z(11)^8 ]], [[ 0*Z(11), Z(11)^9, Z(11)^8, Z(11)^7 ], [ Z(11)^0, Z(11)^0, Z(11)^6, Z(11)^8 ], [ Z(11), Z(11)^4, Z(11)^8, Z(11)^4 ], [ Z(11)^9, Z(11), Z(11)^5, Z(11)^2 ]], [[ Z(11)^9, Z(11)^6, Z(11)^0, Z(11)^2 ], [ Z(11)^2, Z(11)^9, Z(11)^8, Z(11)^0 ], [ Z(11)^3, Z(11)^5, Z(11)^7, Z(11) ], [ Z(11), Z(11)^3, Z(11)^7, Z(11)^7 ]], [[ Z(11)^5, 0*Z(11), 0*Z(11), 0*Z(11) ], [ 0*Z(11), Z(11)^5, 0*Z(11), 0*Z(11) ], [ 0*Z(11), 0*Z(11), Z(11)^5, 0*Z(11) ], [ 0*Z(11), 0*Z(11), 0*Z(11), Z(11)^5 ]]]); # Booleans booleans_2420_r := rec( Agroup := true, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true); # Character Table chartbl_2420_r:=rec(); chartbl_2420_r.IsFinite:= true; chartbl_2420_r.UnderlyingCharacteristic:= 0; chartbl_2420_r.UnderlyingGroup:= GPC; chartbl_2420_r.Size:= 2420; chartbl_2420_r.InfoText:= "Character table for group 2420.r downloaded from the LMFDB."; chartbl_2420_r.Identifier:= " C22:F11 "; chartbl_2420_r.NrConjugacyClasses:= 44; chartbl_2420_r.ConjugacyClasses:= [ of ..., f4*f5^5, f1*f2^2*f3^8*f5^9, f1*f2^2*f3^4*f4*f5^2, f2^3*f3^10*f5^2, f2^2*f3^3*f5^3, f2*f3^6*f5^8, f2^4*f3*f5^4, f1*f2*f3^7*f5^5, f1*f2^3*f3^2*f5, f1*f2^4*f3^5*f5^6, f1*f3^9*f5^7, f2^4*f3^3*f4*f5, f2*f3^7*f4*f5^8, f2^2*f3^9*f4*f5^2, f2^3*f3^8*f4*f5^3, f1*f2^3*f3*f4*f5, f1*f2*f3^9*f4*f5^7, f1*f3^10*f4*f5^10, f1*f2^4*f3^8*f4*f5^3, f5, f3^2, f3^2*f5, f3^4*f5^2, f3^6*f5^3, f3^8*f5^4, f3^10*f5^5, f3^4*f5, f3^8*f5^2, f3*f5^3, f3^5*f5^4, f3^9*f5^5, f4, f3*f4*f5^5, f3*f4, f3^9*f4, f3^3*f4, f3^5*f4, f3^4*f4, f3^2*f4, f3^7*f4, f3^6*f4, f3^10*f4, f3^8*f4]; chartbl_2420_r.IdentificationOfConjugacyClasses:= [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]; chartbl_2420_r.ComputedPowerMaps:= [ , [1, 1, 1, 1, 7, 8, 6, 5, 5, 6, 8, 7, 5, 6, 8, 7, 6, 5, 7, 8, 21, 22, 24, 26, 27, 25, 23, 29, 31, 32, 30, 28, 21, 22, 23, 25, 27, 26, 24, 28, 30, 32, 31, 29], [1, 2, 3, 4, 1, 1, 1, 1, 3, 3, 3, 3, 2, 2, 2, 2, 4, 4, 4, 4, 21, 22, 27, 23, 26, 24, 25, 32, 28, 31, 29, 30, 33, 34, 37, 38, 36, 39, 35, 42, 43, 41, 44, 40], [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]]; chartbl_2420_r.SizesCentralizers:= [2420, 2420, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 242, 242, 242, 242, 242, 242, 242, 242, 242, 242, 242, 242, 242, 242, 242, 242, 242, 242, 242, 242, 242, 242, 242, 242]; chartbl_2420_r.ClassNames:= ["1A", "2A", "2B", "2C", "5A1", "5A-1", "5A2", "5A-2", "10A1", "10A-1", "10A3", "10A-3", "10B1", "10B-1", "10B3", "10B-3", "10C1", "10C-1", "10C3", "10C-3", "11A", "11B", "11C1", "11C2", "11C3", "11C4", "11C5", "11D1", "11D2", "11D3", "11D4", "11D5", "22A", "22B", "22C1", "22C3", "22C5", "22C7", "22C9", "22D1", "22D3", "22D5", "22D7", "22D9"]; chartbl_2420_r.OrderClassRepresentatives:= [1, 2, 2, 2, 5, 5, 5, 5, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22]; chartbl_2420_r.Irr:= [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, E(5)^-2, E(5)^2, E(5), E(5)^-1, E(5)^2, E(5)^-1, E(5)^-2, E(5)^2, E(5)^2, E(5), E(5)^-1, E(5)^-2, E(5)^-1, E(5), E(5)^-2, E(5), 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, E(5)^2, E(5)^-2, E(5)^-1, E(5), E(5)^-2, E(5), E(5)^2, E(5)^-2, E(5)^-2, E(5)^-1, E(5), E(5)^2, E(5), E(5)^-1, E(5)^2, E(5)^-1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, E(5)^-1, E(5), E(5)^-2, E(5)^2, E(5), E(5)^2, E(5)^-1, E(5), E(5), E(5)^-2, E(5)^2, E(5)^-1, E(5)^2, E(5)^-2, E(5)^-1, E(5)^-2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, E(5), E(5)^-1, E(5)^2, E(5)^-2, E(5)^-1, E(5)^-2, E(5), E(5)^-1, E(5)^-1, E(5)^2, E(5)^-2, E(5), E(5)^-2, E(5)^2, E(5), E(5)^2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, -1, -1, 1, E(5)^-2, E(5)^2, E(5), E(5)^-1, -1*E(5)^2, -1*E(5)^-1, E(5)^-2, -1*E(5)^2, E(5)^2, E(5), E(5)^-1, -1*E(5)^-2, -1*E(5)^-1, -1*E(5), -1*E(5)^-2, -1*E(5), 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [1, -1, -1, 1, E(5)^2, E(5)^-2, E(5)^-1, E(5), -1*E(5)^-2, -1*E(5), E(5)^2, -1*E(5)^-2, E(5)^-2, E(5)^-1, E(5), -1*E(5)^2, -1*E(5), -1*E(5)^-1, -1*E(5)^2, -1*E(5)^-1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [1, -1, -1, 1, E(5)^-1, E(5), E(5)^-2, E(5)^2, -1*E(5), -1*E(5)^2, E(5)^-1, -1*E(5), E(5), E(5)^-2, E(5)^2, -1*E(5)^-1, -1*E(5)^2, -1*E(5)^-2, -1*E(5)^-1, -1*E(5)^-2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [1, -1, -1, 1, E(5), E(5)^-1, E(5)^2, E(5)^-2, -1*E(5)^-1, -1*E(5)^-2, E(5), -1*E(5)^-1, E(5)^-1, E(5)^2, E(5)^-2, -1*E(5), -1*E(5)^-2, -1*E(5)^2, -1*E(5), -1*E(5)^2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [1, -1, 1, -1, E(5)^-2, E(5)^2, E(5), E(5)^-1, -1*E(5)^2, E(5)^-1, -1*E(5)^-2, E(5)^2, -1*E(5)^2, -1*E(5), -1*E(5)^-1, -1*E(5)^-2, -1*E(5)^-1, E(5), E(5)^-2, -1*E(5), 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [1, -1, 1, -1, E(5)^2, E(5)^-2, E(5)^-1, E(5), -1*E(5)^-2, E(5), -1*E(5)^2, E(5)^-2, -1*E(5)^-2, -1*E(5)^-1, -1*E(5), -1*E(5)^2, -1*E(5), E(5)^-1, E(5)^2, -1*E(5)^-1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [1, -1, 1, -1, E(5)^-1, E(5), E(5)^-2, E(5)^2, -1*E(5), E(5)^2, -1*E(5)^-1, E(5), -1*E(5), -1*E(5)^-2, -1*E(5)^2, -1*E(5)^-1, -1*E(5)^2, E(5)^-2, E(5)^-1, -1*E(5)^-2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [1, -1, 1, -1, E(5), E(5)^-1, E(5)^2, E(5)^-2, -1*E(5)^-1, E(5)^-2, -1*E(5), E(5)^-1, -1*E(5)^-1, -1*E(5)^2, -1*E(5)^-2, -1*E(5), -1*E(5)^-2, E(5)^2, E(5), -1*E(5)^2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [1, 1, -1, -1, E(5)^-2, E(5)^2, E(5), E(5)^-1, E(5)^2, -1*E(5)^-1, -1*E(5)^-2, -1*E(5)^2, -1*E(5)^2, -1*E(5), -1*E(5)^-1, E(5)^-2, E(5)^-1, -1*E(5), -1*E(5)^-2, E(5), 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, -1, -1, E(5)^2, E(5)^-2, E(5)^-1, E(5), E(5)^-2, -1*E(5), -1*E(5)^2, -1*E(5)^-2, -1*E(5)^-2, -1*E(5)^-1, -1*E(5), E(5)^2, E(5), -1*E(5)^-1, -1*E(5)^2, E(5)^-1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, -1, -1, E(5)^-1, E(5), E(5)^-2, E(5)^2, E(5), -1*E(5)^2, -1*E(5)^-1, -1*E(5), -1*E(5), -1*E(5)^-2, -1*E(5)^2, E(5)^-1, E(5)^2, -1*E(5)^-2, -1*E(5)^-1, E(5)^-2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, -1, -1, E(5), E(5)^-1, E(5)^2, E(5)^-2, E(5)^-1, -1*E(5)^-2, -1*E(5), -1*E(5)^-1, -1*E(5)^-1, -1*E(5)^2, -1*E(5)^-2, E(5), E(5)^-2, -1*E(5)^2, -1*E(5), E(5)^2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [10, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 10, -1, -1, -1, -1, -1], [10, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1], [10, -10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 10, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -10, 1, 1, 1, 1, 1], [10, -10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -10, 1, 1, 1, 1, 1, 1, 1, 1, 1], [10, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(11)^3+E(11)^4+2*E(11)^5+2*E(11)^-5+E(11)^-4+2*E(11)^-3, 2+2*E(11)^4+2*E(11)^5+2*E(11)^-5+2*E(11)^-4, -1, E(11)^2+2*E(11)^3+2*E(11)^4+2*E(11)^-4+2*E(11)^-3+E(11)^-2, -1, 2+2*E(11)+2*E(11)^3+2*E(11)^-3+2*E(11)^-1, -1+E(11)^2-E(11)^3+E(11)^4-E(11)^5-E(11)^-5+E(11)^-4-E(11)^-3+E(11)^-2, 2+2*E(11)^2+2*E(11)^5+2*E(11)^-5+2*E(11)^-2, -2-2*E(11)^3-2*E(11)^4-E(11)^5-E(11)^-5-2*E(11)^-4-2*E(11)^-3, 2+2*E(11)+2*E(11)^4+2*E(11)^-4+2*E(11)^-1, -2-2*E(11)^2-E(11)^3-2*E(11)^4-2*E(11)^-4-E(11)^-3-2*E(11)^-2, 2+2*E(11)^2+2*E(11)^3+2*E(11)^-3+2*E(11)^-2, -2-2*E(11)^2-E(11)^3-2*E(11)^4-2*E(11)^-4-E(11)^-3-2*E(11)^-2, 2+2*E(11)^2+2*E(11)^5+2*E(11)^-5+2*E(11)^-2, -1, 2+2*E(11)^2+2*E(11)^3+2*E(11)^-3+2*E(11)^-2, 2+2*E(11)^4+2*E(11)^5+2*E(11)^-5+2*E(11)^-4, E(11)^2+2*E(11)^3+2*E(11)^4+2*E(11)^-4+2*E(11)^-3+E(11)^-2, -1, 2+2*E(11)+2*E(11)^4+2*E(11)^-4+2*E(11)^-1, -2-2*E(11)^3-2*E(11)^4-E(11)^5-E(11)^-5-2*E(11)^-4-2*E(11)^-3, -1+E(11)^2-E(11)^3+E(11)^4-E(11)^5-E(11)^-5+E(11)^-4-E(11)^-3+E(11)^-2, 2+2*E(11)+2*E(11)^3+2*E(11)^-3+2*E(11)^-1, 2*E(11)^3+E(11)^4+2*E(11)^5+2*E(11)^-5+E(11)^-4+2*E(11)^-3], [10, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(11)^2+2*E(11)^3+2*E(11)^4+2*E(11)^-4+2*E(11)^-3+E(11)^-2, 2+2*E(11)^2+2*E(11)^3+2*E(11)^-3+2*E(11)^-2, -1, -1+E(11)^2-E(11)^3+E(11)^4-E(11)^5-E(11)^-5+E(11)^-4-E(11)^-3+E(11)^-2, -1, 2+2*E(11)^4+2*E(11)^5+2*E(11)^-5+2*E(11)^-4, -2-2*E(11)^3-2*E(11)^4-E(11)^5-E(11)^-5-2*E(11)^-4-2*E(11)^-3, 2+2*E(11)+2*E(11)^3+2*E(11)^-3+2*E(11)^-1, -2-2*E(11)^2-E(11)^3-2*E(11)^4-2*E(11)^-4-E(11)^-3-2*E(11)^-2, 2+2*E(11)^2+2*E(11)^5+2*E(11)^-5+2*E(11)^-2, 2*E(11)^3+E(11)^4+2*E(11)^5+2*E(11)^-5+E(11)^-4+2*E(11)^-3, 2+2*E(11)+2*E(11)^4+2*E(11)^-4+2*E(11)^-1, 2*E(11)^3+E(11)^4+2*E(11)^5+2*E(11)^-5+E(11)^-4+2*E(11)^-3, 2+2*E(11)+2*E(11)^3+2*E(11)^-3+2*E(11)^-1, -1, 2+2*E(11)+2*E(11)^4+2*E(11)^-4+2*E(11)^-1, 2+2*E(11)^2+2*E(11)^3+2*E(11)^-3+2*E(11)^-2, -1+E(11)^2-E(11)^3+E(11)^4-E(11)^5-E(11)^-5+E(11)^-4-E(11)^-3+E(11)^-2, -1, 2+2*E(11)^2+2*E(11)^5+2*E(11)^-5+2*E(11)^-2, -2-2*E(11)^2-E(11)^3-2*E(11)^4-2*E(11)^-4-E(11)^-3-2*E(11)^-2, -2-2*E(11)^3-2*E(11)^4-E(11)^5-E(11)^-5-2*E(11)^-4-2*E(11)^-3, 2+2*E(11)^4+2*E(11)^5+2*E(11)^-5+2*E(11)^-4, E(11)^2+2*E(11)^3+2*E(11)^4+2*E(11)^-4+2*E(11)^-3+E(11)^-2], [10, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2-2*E(11)^2-E(11)^3-2*E(11)^4-2*E(11)^-4-E(11)^-3-2*E(11)^-2, 2+2*E(11)+2*E(11)^3+2*E(11)^-3+2*E(11)^-1, -1, 2*E(11)^3+E(11)^4+2*E(11)^5+2*E(11)^-5+E(11)^-4+2*E(11)^-3, -1, 2+2*E(11)^2+2*E(11)^5+2*E(11)^-5+2*E(11)^-2, E(11)^2+2*E(11)^3+2*E(11)^4+2*E(11)^-4+2*E(11)^-3+E(11)^-2, 2+2*E(11)+2*E(11)^4+2*E(11)^-4+2*E(11)^-1, -1+E(11)^2-E(11)^3+E(11)^4-E(11)^5-E(11)^-5+E(11)^-4-E(11)^-3+E(11)^-2, 2+2*E(11)^2+2*E(11)^3+2*E(11)^-3+2*E(11)^-2, -2-2*E(11)^3-2*E(11)^4-E(11)^5-E(11)^-5-2*E(11)^-4-2*E(11)^-3, 2+2*E(11)^4+2*E(11)^5+2*E(11)^-5+2*E(11)^-4, -2-2*E(11)^3-2*E(11)^4-E(11)^5-E(11)^-5-2*E(11)^-4-2*E(11)^-3, 2+2*E(11)+2*E(11)^4+2*E(11)^-4+2*E(11)^-1, -1, 2+2*E(11)^4+2*E(11)^5+2*E(11)^-5+2*E(11)^-4, 2+2*E(11)+2*E(11)^3+2*E(11)^-3+2*E(11)^-1, 2*E(11)^3+E(11)^4+2*E(11)^5+2*E(11)^-5+E(11)^-4+2*E(11)^-3, -1, 2+2*E(11)^2+2*E(11)^3+2*E(11)^-3+2*E(11)^-2, -1+E(11)^2-E(11)^3+E(11)^4-E(11)^5-E(11)^-5+E(11)^-4-E(11)^-3+E(11)^-2, E(11)^2+2*E(11)^3+2*E(11)^4+2*E(11)^-4+2*E(11)^-3+E(11)^-2, 2+2*E(11)^2+2*E(11)^5+2*E(11)^-5+2*E(11)^-2, -2-2*E(11)^2-E(11)^3-2*E(11)^4-2*E(11)^-4-E(11)^-3-2*E(11)^-2], [10, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1+E(11)^2-E(11)^3+E(11)^4-E(11)^5-E(11)^-5+E(11)^-4-E(11)^-3+E(11)^-2, 2+2*E(11)+2*E(11)^4+2*E(11)^-4+2*E(11)^-1, -1, -2-2*E(11)^3-2*E(11)^4-E(11)^5-E(11)^-5-2*E(11)^-4-2*E(11)^-3, -1, 2+2*E(11)^2+2*E(11)^3+2*E(11)^-3+2*E(11)^-2, -2-2*E(11)^2-E(11)^3-2*E(11)^4-2*E(11)^-4-E(11)^-3-2*E(11)^-2, 2+2*E(11)^4+2*E(11)^5+2*E(11)^-5+2*E(11)^-4, 2*E(11)^3+E(11)^4+2*E(11)^5+2*E(11)^-5+E(11)^-4+2*E(11)^-3, 2+2*E(11)+2*E(11)^3+2*E(11)^-3+2*E(11)^-1, E(11)^2+2*E(11)^3+2*E(11)^4+2*E(11)^-4+2*E(11)^-3+E(11)^-2, 2+2*E(11)^2+2*E(11)^5+2*E(11)^-5+2*E(11)^-2, E(11)^2+2*E(11)^3+2*E(11)^4+2*E(11)^-4+2*E(11)^-3+E(11)^-2, 2+2*E(11)^4+2*E(11)^5+2*E(11)^-5+2*E(11)^-4, -1, 2+2*E(11)^2+2*E(11)^5+2*E(11)^-5+2*E(11)^-2, 2+2*E(11)+2*E(11)^4+2*E(11)^-4+2*E(11)^-1, -2-2*E(11)^3-2*E(11)^4-E(11)^5-E(11)^-5-2*E(11)^-4-2*E(11)^-3, -1, 2+2*E(11)+2*E(11)^3+2*E(11)^-3+2*E(11)^-1, 2*E(11)^3+E(11)^4+2*E(11)^5+2*E(11)^-5+E(11)^-4+2*E(11)^-3, -2-2*E(11)^2-E(11)^3-2*E(11)^4-2*E(11)^-4-E(11)^-3-2*E(11)^-2, 2+2*E(11)^2+2*E(11)^3+2*E(11)^-3+2*E(11)^-2, -1+E(11)^2-E(11)^3+E(11)^4-E(11)^5-E(11)^-5+E(11)^-4-E(11)^-3+E(11)^-2], [10, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2-2*E(11)^3-2*E(11)^4-E(11)^5-E(11)^-5-2*E(11)^-4-2*E(11)^-3, 2+2*E(11)^2+2*E(11)^5+2*E(11)^-5+2*E(11)^-2, -1, -2-2*E(11)^2-E(11)^3-2*E(11)^4-2*E(11)^-4-E(11)^-3-2*E(11)^-2, -1, 2+2*E(11)+2*E(11)^4+2*E(11)^-4+2*E(11)^-1, 2*E(11)^3+E(11)^4+2*E(11)^5+2*E(11)^-5+E(11)^-4+2*E(11)^-3, 2+2*E(11)^2+2*E(11)^3+2*E(11)^-3+2*E(11)^-2, E(11)^2+2*E(11)^3+2*E(11)^4+2*E(11)^-4+2*E(11)^-3+E(11)^-2, 2+2*E(11)^4+2*E(11)^5+2*E(11)^-5+2*E(11)^-4, -1+E(11)^2-E(11)^3+E(11)^4-E(11)^5-E(11)^-5+E(11)^-4-E(11)^-3+E(11)^-2, 2+2*E(11)+2*E(11)^3+2*E(11)^-3+2*E(11)^-1, -1+E(11)^2-E(11)^3+E(11)^4-E(11)^5-E(11)^-5+E(11)^-4-E(11)^-3+E(11)^-2, 2+2*E(11)^2+2*E(11)^3+2*E(11)^-3+2*E(11)^-2, -1, 2+2*E(11)+2*E(11)^3+2*E(11)^-3+2*E(11)^-1, 2+2*E(11)^2+2*E(11)^5+2*E(11)^-5+2*E(11)^-2, -2-2*E(11)^2-E(11)^3-2*E(11)^4-2*E(11)^-4-E(11)^-3-2*E(11)^-2, -1, 2+2*E(11)^4+2*E(11)^5+2*E(11)^-5+2*E(11)^-4, E(11)^2+2*E(11)^3+2*E(11)^4+2*E(11)^-4+2*E(11)^-3+E(11)^-2, 2*E(11)^3+E(11)^4+2*E(11)^5+2*E(11)^-5+E(11)^-4+2*E(11)^-3, 2+2*E(11)+2*E(11)^4+2*E(11)^-4+2*E(11)^-1, -2-2*E(11)^3-2*E(11)^4-E(11)^5-E(11)^-5-2*E(11)^-4-2*E(11)^-3], [10, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2+2*E(11)^4+2*E(11)^5+2*E(11)^-5+2*E(11)^-4, -2-2*E(11)^3-2*E(11)^4-E(11)^5-E(11)^-5-2*E(11)^-4-2*E(11)^-3, -1, 2+2*E(11)^2+2*E(11)^3+2*E(11)^-3+2*E(11)^-2, -1, -1+E(11)^2-E(11)^3+E(11)^4-E(11)^5-E(11)^-5+E(11)^-4-E(11)^-3+E(11)^-2, 2+2*E(11)+2*E(11)^4+2*E(11)^-4+2*E(11)^-1, E(11)^2+2*E(11)^3+2*E(11)^4+2*E(11)^-4+2*E(11)^-3+E(11)^-2, 2+2*E(11)^2+2*E(11)^5+2*E(11)^-5+2*E(11)^-2, 2*E(11)^3+E(11)^4+2*E(11)^5+2*E(11)^-5+E(11)^-4+2*E(11)^-3, 2+2*E(11)+2*E(11)^3+2*E(11)^-3+2*E(11)^-1, -2-2*E(11)^2-E(11)^3-2*E(11)^4-2*E(11)^-4-E(11)^-3-2*E(11)^-2, 2+2*E(11)+2*E(11)^3+2*E(11)^-3+2*E(11)^-1, E(11)^2+2*E(11)^3+2*E(11)^4+2*E(11)^-4+2*E(11)^-3+E(11)^-2, -1, -2-2*E(11)^2-E(11)^3-2*E(11)^4-2*E(11)^-4-E(11)^-3-2*E(11)^-2, -2-2*E(11)^3-2*E(11)^4-E(11)^5-E(11)^-5-2*E(11)^-4-2*E(11)^-3, 2+2*E(11)^2+2*E(11)^3+2*E(11)^-3+2*E(11)^-2, -1, 2*E(11)^3+E(11)^4+2*E(11)^5+2*E(11)^-5+E(11)^-4+2*E(11)^-3, 2+2*E(11)^2+2*E(11)^5+2*E(11)^-5+2*E(11)^-2, 2+2*E(11)+2*E(11)^4+2*E(11)^-4+2*E(11)^-1, -1+E(11)^2-E(11)^3+E(11)^4-E(11)^5-E(11)^-5+E(11)^-4-E(11)^-3+E(11)^-2, 2+2*E(11)^4+2*E(11)^5+2*E(11)^-5+2*E(11)^-4], [10, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2+2*E(11)^2+2*E(11)^5+2*E(11)^-5+2*E(11)^-2, E(11)^2+2*E(11)^3+2*E(11)^4+2*E(11)^-4+2*E(11)^-3+E(11)^-2, -1, 2+2*E(11)+2*E(11)^3+2*E(11)^-3+2*E(11)^-1, -1, 2*E(11)^3+E(11)^4+2*E(11)^5+2*E(11)^-5+E(11)^-4+2*E(11)^-3, 2+2*E(11)^4+2*E(11)^5+2*E(11)^-5+2*E(11)^-4, -2-2*E(11)^2-E(11)^3-2*E(11)^4-2*E(11)^-4-E(11)^-3-2*E(11)^-2, 2+2*E(11)^2+2*E(11)^3+2*E(11)^-3+2*E(11)^-2, -2-2*E(11)^3-2*E(11)^4-E(11)^5-E(11)^-5-2*E(11)^-4-2*E(11)^-3, 2+2*E(11)+2*E(11)^4+2*E(11)^-4+2*E(11)^-1, -1+E(11)^2-E(11)^3+E(11)^4-E(11)^5-E(11)^-5+E(11)^-4-E(11)^-3+E(11)^-2, 2+2*E(11)+2*E(11)^4+2*E(11)^-4+2*E(11)^-1, -2-2*E(11)^2-E(11)^3-2*E(11)^4-2*E(11)^-4-E(11)^-3-2*E(11)^-2, -1, -1+E(11)^2-E(11)^3+E(11)^4-E(11)^5-E(11)^-5+E(11)^-4-E(11)^-3+E(11)^-2, E(11)^2+2*E(11)^3+2*E(11)^4+2*E(11)^-4+2*E(11)^-3+E(11)^-2, 2+2*E(11)+2*E(11)^3+2*E(11)^-3+2*E(11)^-1, -1, -2-2*E(11)^3-2*E(11)^4-E(11)^5-E(11)^-5-2*E(11)^-4-2*E(11)^-3, 2+2*E(11)^2+2*E(11)^3+2*E(11)^-3+2*E(11)^-2, 2+2*E(11)^4+2*E(11)^5+2*E(11)^-5+2*E(11)^-4, 2*E(11)^3+E(11)^4+2*E(11)^5+2*E(11)^-5+E(11)^-4+2*E(11)^-3, 2+2*E(11)^2+2*E(11)^5+2*E(11)^-5+2*E(11)^-2], [10, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2+2*E(11)+2*E(11)^4+2*E(11)^-4+2*E(11)^-1, 2*E(11)^3+E(11)^4+2*E(11)^5+2*E(11)^-5+E(11)^-4+2*E(11)^-3, -1, 2+2*E(11)^2+2*E(11)^5+2*E(11)^-5+2*E(11)^-2, -1, -2-2*E(11)^2-E(11)^3-2*E(11)^4-2*E(11)^-4-E(11)^-3-2*E(11)^-2, 2+2*E(11)+2*E(11)^3+2*E(11)^-3+2*E(11)^-1, -2-2*E(11)^3-2*E(11)^4-E(11)^5-E(11)^-5-2*E(11)^-4-2*E(11)^-3, 2+2*E(11)^4+2*E(11)^5+2*E(11)^-5+2*E(11)^-4, -1+E(11)^2-E(11)^3+E(11)^4-E(11)^5-E(11)^-5+E(11)^-4-E(11)^-3+E(11)^-2, 2+2*E(11)^2+2*E(11)^3+2*E(11)^-3+2*E(11)^-2, E(11)^2+2*E(11)^3+2*E(11)^4+2*E(11)^-4+2*E(11)^-3+E(11)^-2, 2+2*E(11)^2+2*E(11)^3+2*E(11)^-3+2*E(11)^-2, -2-2*E(11)^3-2*E(11)^4-E(11)^5-E(11)^-5-2*E(11)^-4-2*E(11)^-3, -1, E(11)^2+2*E(11)^3+2*E(11)^4+2*E(11)^-4+2*E(11)^-3+E(11)^-2, 2*E(11)^3+E(11)^4+2*E(11)^5+2*E(11)^-5+E(11)^-4+2*E(11)^-3, 2+2*E(11)^2+2*E(11)^5+2*E(11)^-5+2*E(11)^-2, -1, -1+E(11)^2-E(11)^3+E(11)^4-E(11)^5-E(11)^-5+E(11)^-4-E(11)^-3+E(11)^-2, 2+2*E(11)^4+2*E(11)^5+2*E(11)^-5+2*E(11)^-4, 2+2*E(11)+2*E(11)^3+2*E(11)^-3+2*E(11)^-1, -2-2*E(11)^2-E(11)^3-2*E(11)^4-2*E(11)^-4-E(11)^-3-2*E(11)^-2, 2+2*E(11)+2*E(11)^4+2*E(11)^-4+2*E(11)^-1], [10, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2+2*E(11)^2+2*E(11)^3+2*E(11)^-3+2*E(11)^-2, -2-2*E(11)^2-E(11)^3-2*E(11)^4-2*E(11)^-4-E(11)^-3-2*E(11)^-2, -1, 2+2*E(11)+2*E(11)^4+2*E(11)^-4+2*E(11)^-1, -1, -2-2*E(11)^3-2*E(11)^4-E(11)^5-E(11)^-5-2*E(11)^-4-2*E(11)^-3, 2+2*E(11)^2+2*E(11)^5+2*E(11)^-5+2*E(11)^-2, -1+E(11)^2-E(11)^3+E(11)^4-E(11)^5-E(11)^-5+E(11)^-4-E(11)^-3+E(11)^-2, 2+2*E(11)+2*E(11)^3+2*E(11)^-3+2*E(11)^-1, E(11)^2+2*E(11)^3+2*E(11)^4+2*E(11)^-4+2*E(11)^-3+E(11)^-2, 2+2*E(11)^4+2*E(11)^5+2*E(11)^-5+2*E(11)^-4, 2*E(11)^3+E(11)^4+2*E(11)^5+2*E(11)^-5+E(11)^-4+2*E(11)^-3, 2+2*E(11)^4+2*E(11)^5+2*E(11)^-5+2*E(11)^-4, -1+E(11)^2-E(11)^3+E(11)^4-E(11)^5-E(11)^-5+E(11)^-4-E(11)^-3+E(11)^-2, -1, 2*E(11)^3+E(11)^4+2*E(11)^5+2*E(11)^-5+E(11)^-4+2*E(11)^-3, -2-2*E(11)^2-E(11)^3-2*E(11)^4-2*E(11)^-4-E(11)^-3-2*E(11)^-2, 2+2*E(11)+2*E(11)^4+2*E(11)^-4+2*E(11)^-1, -1, E(11)^2+2*E(11)^3+2*E(11)^4+2*E(11)^-4+2*E(11)^-3+E(11)^-2, 2+2*E(11)+2*E(11)^3+2*E(11)^-3+2*E(11)^-1, 2+2*E(11)^2+2*E(11)^5+2*E(11)^-5+2*E(11)^-2, -2-2*E(11)^3-2*E(11)^4-E(11)^5-E(11)^-5-2*E(11)^-4-2*E(11)^-3, 2+2*E(11)^2+2*E(11)^3+2*E(11)^-3+2*E(11)^-2], [10, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2+2*E(11)+2*E(11)^3+2*E(11)^-3+2*E(11)^-1, -1+E(11)^2-E(11)^3+E(11)^4-E(11)^5-E(11)^-5+E(11)^-4-E(11)^-3+E(11)^-2, -1, 2+2*E(11)^4+2*E(11)^5+2*E(11)^-5+2*E(11)^-4, -1, E(11)^2+2*E(11)^3+2*E(11)^4+2*E(11)^-4+2*E(11)^-3+E(11)^-2, 2+2*E(11)^2+2*E(11)^3+2*E(11)^-3+2*E(11)^-2, 2*E(11)^3+E(11)^4+2*E(11)^5+2*E(11)^-5+E(11)^-4+2*E(11)^-3, 2+2*E(11)+2*E(11)^4+2*E(11)^-4+2*E(11)^-1, -2-2*E(11)^2-E(11)^3-2*E(11)^4-2*E(11)^-4-E(11)^-3-2*E(11)^-2, 2+2*E(11)^2+2*E(11)^5+2*E(11)^-5+2*E(11)^-2, -2-2*E(11)^3-2*E(11)^4-E(11)^5-E(11)^-5-2*E(11)^-4-2*E(11)^-3, 2+2*E(11)^2+2*E(11)^5+2*E(11)^-5+2*E(11)^-2, 2*E(11)^3+E(11)^4+2*E(11)^5+2*E(11)^-5+E(11)^-4+2*E(11)^-3, -1, -2-2*E(11)^3-2*E(11)^4-E(11)^5-E(11)^-5-2*E(11)^-4-2*E(11)^-3, -1+E(11)^2-E(11)^3+E(11)^4-E(11)^5-E(11)^-5+E(11)^-4-E(11)^-3+E(11)^-2, 2+2*E(11)^4+2*E(11)^5+2*E(11)^-5+2*E(11)^-4, -1, -2-2*E(11)^2-E(11)^3-2*E(11)^4-2*E(11)^-4-E(11)^-3-2*E(11)^-2, 2+2*E(11)+2*E(11)^4+2*E(11)^-4+2*E(11)^-1, 2+2*E(11)^2+2*E(11)^3+2*E(11)^-3+2*E(11)^-2, E(11)^2+2*E(11)^3+2*E(11)^4+2*E(11)^-4+2*E(11)^-3+E(11)^-2, 2+2*E(11)+2*E(11)^3+2*E(11)^-3+2*E(11)^-1], [10, -10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(11)^3+E(11)^4+2*E(11)^5+2*E(11)^-5+E(11)^-4+2*E(11)^-3, 2+2*E(11)^4+2*E(11)^5+2*E(11)^-5+2*E(11)^-4, -1, E(11)^2+2*E(11)^3+2*E(11)^4+2*E(11)^-4+2*E(11)^-3+E(11)^-2, -1, 2+2*E(11)+2*E(11)^3+2*E(11)^-3+2*E(11)^-1, -1+E(11)^2-E(11)^3+E(11)^4-E(11)^5-E(11)^-5+E(11)^-4-E(11)^-3+E(11)^-2, 2+2*E(11)^2+2*E(11)^5+2*E(11)^-5+2*E(11)^-2, -2-2*E(11)^3-2*E(11)^4-E(11)^5-E(11)^-5-2*E(11)^-4-2*E(11)^-3, 2+2*E(11)+2*E(11)^4+2*E(11)^-4+2*E(11)^-1, -2-2*E(11)^2-E(11)^3-2*E(11)^4-2*E(11)^-4-E(11)^-3-2*E(11)^-2, 2+2*E(11)^2+2*E(11)^3+2*E(11)^-3+2*E(11)^-2, 2+2*E(11)^2+E(11)^3+2*E(11)^4+2*E(11)^-4+E(11)^-3+2*E(11)^-2, -2-2*E(11)^2-2*E(11)^5-2*E(11)^-5-2*E(11)^-2, 1, -2-2*E(11)^2-2*E(11)^3-2*E(11)^-3-2*E(11)^-2, -2-2*E(11)^4-2*E(11)^5-2*E(11)^-5-2*E(11)^-4, -1*E(11)^2-2*E(11)^3-2*E(11)^4-2*E(11)^-4-2*E(11)^-3-E(11)^-2, 1, -2-2*E(11)-2*E(11)^4-2*E(11)^-4-2*E(11)^-1, 2+2*E(11)^3+2*E(11)^4+E(11)^5+E(11)^-5+2*E(11)^-4+2*E(11)^-3, 1-E(11)^2+E(11)^3-E(11)^4+E(11)^5+E(11)^-5-E(11)^-4+E(11)^-3-E(11)^-2, -2-2*E(11)-2*E(11)^3-2*E(11)^-3-2*E(11)^-1, -2*E(11)^3-E(11)^4-2*E(11)^5-2*E(11)^-5-E(11)^-4-2*E(11)^-3], [10, -10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(11)^2+2*E(11)^3+2*E(11)^4+2*E(11)^-4+2*E(11)^-3+E(11)^-2, 2+2*E(11)^2+2*E(11)^3+2*E(11)^-3+2*E(11)^-2, -1, -1+E(11)^2-E(11)^3+E(11)^4-E(11)^5-E(11)^-5+E(11)^-4-E(11)^-3+E(11)^-2, -1, 2+2*E(11)^4+2*E(11)^5+2*E(11)^-5+2*E(11)^-4, -2-2*E(11)^3-2*E(11)^4-E(11)^5-E(11)^-5-2*E(11)^-4-2*E(11)^-3, 2+2*E(11)+2*E(11)^3+2*E(11)^-3+2*E(11)^-1, -2-2*E(11)^2-E(11)^3-2*E(11)^4-2*E(11)^-4-E(11)^-3-2*E(11)^-2, 2+2*E(11)^2+2*E(11)^5+2*E(11)^-5+2*E(11)^-2, 2*E(11)^3+E(11)^4+2*E(11)^5+2*E(11)^-5+E(11)^-4+2*E(11)^-3, 2+2*E(11)+2*E(11)^4+2*E(11)^-4+2*E(11)^-1, -2*E(11)^3-E(11)^4-2*E(11)^5-2*E(11)^-5-E(11)^-4-2*E(11)^-3, -2-2*E(11)-2*E(11)^3-2*E(11)^-3-2*E(11)^-1, 1, -2-2*E(11)-2*E(11)^4-2*E(11)^-4-2*E(11)^-1, -2-2*E(11)^2-2*E(11)^3-2*E(11)^-3-2*E(11)^-2, 1-E(11)^2+E(11)^3-E(11)^4+E(11)^5+E(11)^-5-E(11)^-4+E(11)^-3-E(11)^-2, 1, -2-2*E(11)^2-2*E(11)^5-2*E(11)^-5-2*E(11)^-2, 2+2*E(11)^2+E(11)^3+2*E(11)^4+2*E(11)^-4+E(11)^-3+2*E(11)^-2, 2+2*E(11)^3+2*E(11)^4+E(11)^5+E(11)^-5+2*E(11)^-4+2*E(11)^-3, -2-2*E(11)^4-2*E(11)^5-2*E(11)^-5-2*E(11)^-4, -1*E(11)^2-2*E(11)^3-2*E(11)^4-2*E(11)^-4-2*E(11)^-3-E(11)^-2], [10, -10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2-2*E(11)^2-E(11)^3-2*E(11)^4-2*E(11)^-4-E(11)^-3-2*E(11)^-2, 2+2*E(11)+2*E(11)^3+2*E(11)^-3+2*E(11)^-1, -1, 2*E(11)^3+E(11)^4+2*E(11)^5+2*E(11)^-5+E(11)^-4+2*E(11)^-3, -1, 2+2*E(11)^2+2*E(11)^5+2*E(11)^-5+2*E(11)^-2, E(11)^2+2*E(11)^3+2*E(11)^4+2*E(11)^-4+2*E(11)^-3+E(11)^-2, 2+2*E(11)+2*E(11)^4+2*E(11)^-4+2*E(11)^-1, -1+E(11)^2-E(11)^3+E(11)^4-E(11)^5-E(11)^-5+E(11)^-4-E(11)^-3+E(11)^-2, 2+2*E(11)^2+2*E(11)^3+2*E(11)^-3+2*E(11)^-2, -2-2*E(11)^3-2*E(11)^4-E(11)^5-E(11)^-5-2*E(11)^-4-2*E(11)^-3, 2+2*E(11)^4+2*E(11)^5+2*E(11)^-5+2*E(11)^-4, 2+2*E(11)^3+2*E(11)^4+E(11)^5+E(11)^-5+2*E(11)^-4+2*E(11)^-3, -2-2*E(11)-2*E(11)^4-2*E(11)^-4-2*E(11)^-1, 1, -2-2*E(11)^4-2*E(11)^5-2*E(11)^-5-2*E(11)^-4, -2-2*E(11)-2*E(11)^3-2*E(11)^-3-2*E(11)^-1, -2*E(11)^3-E(11)^4-2*E(11)^5-2*E(11)^-5-E(11)^-4-2*E(11)^-3, 1, -2-2*E(11)^2-2*E(11)^3-2*E(11)^-3-2*E(11)^-2, 1-E(11)^2+E(11)^3-E(11)^4+E(11)^5+E(11)^-5-E(11)^-4+E(11)^-3-E(11)^-2, -1*E(11)^2-2*E(11)^3-2*E(11)^4-2*E(11)^-4-2*E(11)^-3-E(11)^-2, -2-2*E(11)^2-2*E(11)^5-2*E(11)^-5-2*E(11)^-2, 2+2*E(11)^2+E(11)^3+2*E(11)^4+2*E(11)^-4+E(11)^-3+2*E(11)^-2], [10, -10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1+E(11)^2-E(11)^3+E(11)^4-E(11)^5-E(11)^-5+E(11)^-4-E(11)^-3+E(11)^-2, 2+2*E(11)+2*E(11)^4+2*E(11)^-4+2*E(11)^-1, -1, -2-2*E(11)^3-2*E(11)^4-E(11)^5-E(11)^-5-2*E(11)^-4-2*E(11)^-3, -1, 2+2*E(11)^2+2*E(11)^3+2*E(11)^-3+2*E(11)^-2, -2-2*E(11)^2-E(11)^3-2*E(11)^4-2*E(11)^-4-E(11)^-3-2*E(11)^-2, 2+2*E(11)^4+2*E(11)^5+2*E(11)^-5+2*E(11)^-4, 2*E(11)^3+E(11)^4+2*E(11)^5+2*E(11)^-5+E(11)^-4+2*E(11)^-3, 2+2*E(11)+2*E(11)^3+2*E(11)^-3+2*E(11)^-1, E(11)^2+2*E(11)^3+2*E(11)^4+2*E(11)^-4+2*E(11)^-3+E(11)^-2, 2+2*E(11)^2+2*E(11)^5+2*E(11)^-5+2*E(11)^-2, -1*E(11)^2-2*E(11)^3-2*E(11)^4-2*E(11)^-4-2*E(11)^-3-E(11)^-2, -2-2*E(11)^4-2*E(11)^5-2*E(11)^-5-2*E(11)^-4, 1, -2-2*E(11)^2-2*E(11)^5-2*E(11)^-5-2*E(11)^-2, -2-2*E(11)-2*E(11)^4-2*E(11)^-4-2*E(11)^-1, 2+2*E(11)^3+2*E(11)^4+E(11)^5+E(11)^-5+2*E(11)^-4+2*E(11)^-3, 1, -2-2*E(11)-2*E(11)^3-2*E(11)^-3-2*E(11)^-1, -2*E(11)^3-E(11)^4-2*E(11)^5-2*E(11)^-5-E(11)^-4-2*E(11)^-3, 2+2*E(11)^2+E(11)^3+2*E(11)^4+2*E(11)^-4+E(11)^-3+2*E(11)^-2, -2-2*E(11)^2-2*E(11)^3-2*E(11)^-3-2*E(11)^-2, 1-E(11)^2+E(11)^3-E(11)^4+E(11)^5+E(11)^-5-E(11)^-4+E(11)^-3-E(11)^-2], [10, -10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2-2*E(11)^3-2*E(11)^4-E(11)^5-E(11)^-5-2*E(11)^-4-2*E(11)^-3, 2+2*E(11)^2+2*E(11)^5+2*E(11)^-5+2*E(11)^-2, -1, -2-2*E(11)^2-E(11)^3-2*E(11)^4-2*E(11)^-4-E(11)^-3-2*E(11)^-2, -1, 2+2*E(11)+2*E(11)^4+2*E(11)^-4+2*E(11)^-1, 2*E(11)^3+E(11)^4+2*E(11)^5+2*E(11)^-5+E(11)^-4+2*E(11)^-3, 2+2*E(11)^2+2*E(11)^3+2*E(11)^-3+2*E(11)^-2, E(11)^2+2*E(11)^3+2*E(11)^4+2*E(11)^-4+2*E(11)^-3+E(11)^-2, 2+2*E(11)^4+2*E(11)^5+2*E(11)^-5+2*E(11)^-4, -1+E(11)^2-E(11)^3+E(11)^4-E(11)^5-E(11)^-5+E(11)^-4-E(11)^-3+E(11)^-2, 2+2*E(11)+2*E(11)^3+2*E(11)^-3+2*E(11)^-1, 1-E(11)^2+E(11)^3-E(11)^4+E(11)^5+E(11)^-5-E(11)^-4+E(11)^-3-E(11)^-2, -2-2*E(11)^2-2*E(11)^3-2*E(11)^-3-2*E(11)^-2, 1, -2-2*E(11)-2*E(11)^3-2*E(11)^-3-2*E(11)^-1, -2-2*E(11)^2-2*E(11)^5-2*E(11)^-5-2*E(11)^-2, 2+2*E(11)^2+E(11)^3+2*E(11)^4+2*E(11)^-4+E(11)^-3+2*E(11)^-2, 1, -2-2*E(11)^4-2*E(11)^5-2*E(11)^-5-2*E(11)^-4, -1*E(11)^2-2*E(11)^3-2*E(11)^4-2*E(11)^-4-2*E(11)^-3-E(11)^-2, -2*E(11)^3-E(11)^4-2*E(11)^5-2*E(11)^-5-E(11)^-4-2*E(11)^-3, -2-2*E(11)-2*E(11)^4-2*E(11)^-4-2*E(11)^-1, 2+2*E(11)^3+2*E(11)^4+E(11)^5+E(11)^-5+2*E(11)^-4+2*E(11)^-3], [10, -10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2+2*E(11)^4+2*E(11)^5+2*E(11)^-5+2*E(11)^-4, -2-2*E(11)^3-2*E(11)^4-E(11)^5-E(11)^-5-2*E(11)^-4-2*E(11)^-3, -1, 2+2*E(11)^2+2*E(11)^3+2*E(11)^-3+2*E(11)^-2, -1, -1+E(11)^2-E(11)^3+E(11)^4-E(11)^5-E(11)^-5+E(11)^-4-E(11)^-3+E(11)^-2, 2+2*E(11)+2*E(11)^4+2*E(11)^-4+2*E(11)^-1, E(11)^2+2*E(11)^3+2*E(11)^4+2*E(11)^-4+2*E(11)^-3+E(11)^-2, 2+2*E(11)^2+2*E(11)^5+2*E(11)^-5+2*E(11)^-2, 2*E(11)^3+E(11)^4+2*E(11)^5+2*E(11)^-5+E(11)^-4+2*E(11)^-3, 2+2*E(11)+2*E(11)^3+2*E(11)^-3+2*E(11)^-1, -2-2*E(11)^2-E(11)^3-2*E(11)^4-2*E(11)^-4-E(11)^-3-2*E(11)^-2, -2-2*E(11)-2*E(11)^3-2*E(11)^-3-2*E(11)^-1, -1*E(11)^2-2*E(11)^3-2*E(11)^4-2*E(11)^-4-2*E(11)^-3-E(11)^-2, 1, 2+2*E(11)^2+E(11)^3+2*E(11)^4+2*E(11)^-4+E(11)^-3+2*E(11)^-2, 2+2*E(11)^3+2*E(11)^4+E(11)^5+E(11)^-5+2*E(11)^-4+2*E(11)^-3, -2-2*E(11)^2-2*E(11)^3-2*E(11)^-3-2*E(11)^-2, 1, -2*E(11)^3-E(11)^4-2*E(11)^5-2*E(11)^-5-E(11)^-4-2*E(11)^-3, -2-2*E(11)^2-2*E(11)^5-2*E(11)^-5-2*E(11)^-2, -2-2*E(11)-2*E(11)^4-2*E(11)^-4-2*E(11)^-1, 1-E(11)^2+E(11)^3-E(11)^4+E(11)^5+E(11)^-5-E(11)^-4+E(11)^-3-E(11)^-2, -2-2*E(11)^4-2*E(11)^5-2*E(11)^-5-2*E(11)^-4], [10, -10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2+2*E(11)^2+2*E(11)^5+2*E(11)^-5+2*E(11)^-2, E(11)^2+2*E(11)^3+2*E(11)^4+2*E(11)^-4+2*E(11)^-3+E(11)^-2, -1, 2+2*E(11)+2*E(11)^3+2*E(11)^-3+2*E(11)^-1, -1, 2*E(11)^3+E(11)^4+2*E(11)^5+2*E(11)^-5+E(11)^-4+2*E(11)^-3, 2+2*E(11)^4+2*E(11)^5+2*E(11)^-5+2*E(11)^-4, -2-2*E(11)^2-E(11)^3-2*E(11)^4-2*E(11)^-4-E(11)^-3-2*E(11)^-2, 2+2*E(11)^2+2*E(11)^3+2*E(11)^-3+2*E(11)^-2, -2-2*E(11)^3-2*E(11)^4-E(11)^5-E(11)^-5-2*E(11)^-4-2*E(11)^-3, 2+2*E(11)+2*E(11)^4+2*E(11)^-4+2*E(11)^-1, -1+E(11)^2-E(11)^3+E(11)^4-E(11)^5-E(11)^-5+E(11)^-4-E(11)^-3+E(11)^-2, -2-2*E(11)-2*E(11)^4-2*E(11)^-4-2*E(11)^-1, 2+2*E(11)^2+E(11)^3+2*E(11)^4+2*E(11)^-4+E(11)^-3+2*E(11)^-2, 1, 1-E(11)^2+E(11)^3-E(11)^4+E(11)^5+E(11)^-5-E(11)^-4+E(11)^-3-E(11)^-2, -1*E(11)^2-2*E(11)^3-2*E(11)^4-2*E(11)^-4-2*E(11)^-3-E(11)^-2, -2-2*E(11)-2*E(11)^3-2*E(11)^-3-2*E(11)^-1, 1, 2+2*E(11)^3+2*E(11)^4+E(11)^5+E(11)^-5+2*E(11)^-4+2*E(11)^-3, -2-2*E(11)^2-2*E(11)^3-2*E(11)^-3-2*E(11)^-2, -2-2*E(11)^4-2*E(11)^5-2*E(11)^-5-2*E(11)^-4, -2*E(11)^3-E(11)^4-2*E(11)^5-2*E(11)^-5-E(11)^-4-2*E(11)^-3, -2-2*E(11)^2-2*E(11)^5-2*E(11)^-5-2*E(11)^-2], [10, -10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2+2*E(11)+2*E(11)^4+2*E(11)^-4+2*E(11)^-1, 2*E(11)^3+E(11)^4+2*E(11)^5+2*E(11)^-5+E(11)^-4+2*E(11)^-3, -1, 2+2*E(11)^2+2*E(11)^5+2*E(11)^-5+2*E(11)^-2, -1, -2-2*E(11)^2-E(11)^3-2*E(11)^4-2*E(11)^-4-E(11)^-3-2*E(11)^-2, 2+2*E(11)+2*E(11)^3+2*E(11)^-3+2*E(11)^-1, -2-2*E(11)^3-2*E(11)^4-E(11)^5-E(11)^-5-2*E(11)^-4-2*E(11)^-3, 2+2*E(11)^4+2*E(11)^5+2*E(11)^-5+2*E(11)^-4, -1+E(11)^2-E(11)^3+E(11)^4-E(11)^5-E(11)^-5+E(11)^-4-E(11)^-3+E(11)^-2, 2+2*E(11)^2+2*E(11)^3+2*E(11)^-3+2*E(11)^-2, E(11)^2+2*E(11)^3+2*E(11)^4+2*E(11)^-4+2*E(11)^-3+E(11)^-2, -2-2*E(11)^2-2*E(11)^3-2*E(11)^-3-2*E(11)^-2, 2+2*E(11)^3+2*E(11)^4+E(11)^5+E(11)^-5+2*E(11)^-4+2*E(11)^-3, 1, -1*E(11)^2-2*E(11)^3-2*E(11)^4-2*E(11)^-4-2*E(11)^-3-E(11)^-2, -2*E(11)^3-E(11)^4-2*E(11)^5-2*E(11)^-5-E(11)^-4-2*E(11)^-3, -2-2*E(11)^2-2*E(11)^5-2*E(11)^-5-2*E(11)^-2, 1, 1-E(11)^2+E(11)^3-E(11)^4+E(11)^5+E(11)^-5-E(11)^-4+E(11)^-3-E(11)^-2, -2-2*E(11)^4-2*E(11)^5-2*E(11)^-5-2*E(11)^-4, -2-2*E(11)-2*E(11)^3-2*E(11)^-3-2*E(11)^-1, 2+2*E(11)^2+E(11)^3+2*E(11)^4+2*E(11)^-4+E(11)^-3+2*E(11)^-2, -2-2*E(11)-2*E(11)^4-2*E(11)^-4-2*E(11)^-1], [10, -10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2+2*E(11)^2+2*E(11)^3+2*E(11)^-3+2*E(11)^-2, -2-2*E(11)^2-E(11)^3-2*E(11)^4-2*E(11)^-4-E(11)^-3-2*E(11)^-2, -1, 2+2*E(11)+2*E(11)^4+2*E(11)^-4+2*E(11)^-1, -1, -2-2*E(11)^3-2*E(11)^4-E(11)^5-E(11)^-5-2*E(11)^-4-2*E(11)^-3, 2+2*E(11)^2+2*E(11)^5+2*E(11)^-5+2*E(11)^-2, -1+E(11)^2-E(11)^3+E(11)^4-E(11)^5-E(11)^-5+E(11)^-4-E(11)^-3+E(11)^-2, 2+2*E(11)+2*E(11)^3+2*E(11)^-3+2*E(11)^-1, E(11)^2+2*E(11)^3+2*E(11)^4+2*E(11)^-4+2*E(11)^-3+E(11)^-2, 2+2*E(11)^4+2*E(11)^5+2*E(11)^-5+2*E(11)^-4, 2*E(11)^3+E(11)^4+2*E(11)^5+2*E(11)^-5+E(11)^-4+2*E(11)^-3, -2-2*E(11)^4-2*E(11)^5-2*E(11)^-5-2*E(11)^-4, 1-E(11)^2+E(11)^3-E(11)^4+E(11)^5+E(11)^-5-E(11)^-4+E(11)^-3-E(11)^-2, 1, -2*E(11)^3-E(11)^4-2*E(11)^5-2*E(11)^-5-E(11)^-4-2*E(11)^-3, 2+2*E(11)^2+E(11)^3+2*E(11)^4+2*E(11)^-4+E(11)^-3+2*E(11)^-2, -2-2*E(11)-2*E(11)^4-2*E(11)^-4-2*E(11)^-1, 1, -1*E(11)^2-2*E(11)^3-2*E(11)^4-2*E(11)^-4-2*E(11)^-3-E(11)^-2, -2-2*E(11)-2*E(11)^3-2*E(11)^-3-2*E(11)^-1, -2-2*E(11)^2-2*E(11)^5-2*E(11)^-5-2*E(11)^-2, 2+2*E(11)^3+2*E(11)^4+E(11)^5+E(11)^-5+2*E(11)^-4+2*E(11)^-3, -2-2*E(11)^2-2*E(11)^3-2*E(11)^-3-2*E(11)^-2], [10, -10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2+2*E(11)+2*E(11)^3+2*E(11)^-3+2*E(11)^-1, -1+E(11)^2-E(11)^3+E(11)^4-E(11)^5-E(11)^-5+E(11)^-4-E(11)^-3+E(11)^-2, -1, 2+2*E(11)^4+2*E(11)^5+2*E(11)^-5+2*E(11)^-4, -1, E(11)^2+2*E(11)^3+2*E(11)^4+2*E(11)^-4+2*E(11)^-3+E(11)^-2, 2+2*E(11)^2+2*E(11)^3+2*E(11)^-3+2*E(11)^-2, 2*E(11)^3+E(11)^4+2*E(11)^5+2*E(11)^-5+E(11)^-4+2*E(11)^-3, 2+2*E(11)+2*E(11)^4+2*E(11)^-4+2*E(11)^-1, -2-2*E(11)^2-E(11)^3-2*E(11)^4-2*E(11)^-4-E(11)^-3-2*E(11)^-2, 2+2*E(11)^2+2*E(11)^5+2*E(11)^-5+2*E(11)^-2, -2-2*E(11)^3-2*E(11)^4-E(11)^5-E(11)^-5-2*E(11)^-4-2*E(11)^-3, -2-2*E(11)^2-2*E(11)^5-2*E(11)^-5-2*E(11)^-2, -2*E(11)^3-E(11)^4-2*E(11)^5-2*E(11)^-5-E(11)^-4-2*E(11)^-3, 1, 2+2*E(11)^3+2*E(11)^4+E(11)^5+E(11)^-5+2*E(11)^-4+2*E(11)^-3, 1-E(11)^2+E(11)^3-E(11)^4+E(11)^5+E(11)^-5-E(11)^-4+E(11)^-3-E(11)^-2, -2-2*E(11)^4-2*E(11)^5-2*E(11)^-5-2*E(11)^-4, 1, 2+2*E(11)^2+E(11)^3+2*E(11)^4+2*E(11)^-4+E(11)^-3+2*E(11)^-2, -2-2*E(11)-2*E(11)^4-2*E(11)^-4-2*E(11)^-1, -2-2*E(11)^2-2*E(11)^3-2*E(11)^-3-2*E(11)^-2, -1*E(11)^2-2*E(11)^3-2*E(11)^4-2*E(11)^-4-2*E(11)^-3-E(11)^-2, -2-2*E(11)-2*E(11)^3-2*E(11)^-3-2*E(11)^-1]]; ConvertToLibraryCharacterTableNC(chartbl_2420_r);