/* Group 24192.u downloaded from the LMFDB on 29 December 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPerm := PermutationGroup< 15 | (3,5)(4,6), (3,6)(4,5), (1,2), (1,2)(3,5,6,4)(7,13,14)(8,15,10), (4,5), (1,2)(4,5)(7,12,10)(8,11,15)(9,13,14) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_24192_u := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := false, metacyclic := false, monomial := false, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := false, supersolvable := false>; /* Character Table */ G:= GPerm; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, G!(1,2)>,< 2, 1, G!(1,2)(3,6)(4,5)>,< 2, 1, G!(3,6)(4,5)>,< 2, 2, G!(1,2)(3,6)>,< 2, 2, G!(1,2)(3,5)(4,6)>,< 2, 2, G!(3,6)>,< 2, 2, G!(3,4)(5,6)>,< 2, 63, G!(3,6)(4,5)(8,15)(9,14)(10,13)(11,12)>,< 2, 63, G!(1,2)(3,6)(4,5)(7,11)(8,15)(9,13)(12,14)>,< 2, 63, G!(1,2)(7,14)(8,12)(9,11)(10,13)>,< 2, 63, G!(7,13)(8,10)(9,14)(11,15)>,< 2, 126, G!(1,2)(3,4)(5,6)(8,9)(10,11)(12,13)(14,15)>,< 2, 126, G!(3,5)(4,6)(7,13)(8,9)(10,15)(12,14)>,< 2, 126, G!(1,2)(3,6)(7,12)(8,14)(9,13)(10,11)>,< 2, 126, G!(3,6)(7,10)(8,11)(9,15)(12,14)>,< 3, 56, G!(7,10,12)(8,15,11)(9,14,13)>,< 3, 84, G!(10,15,12)(11,14,13)>,< 3, 84, G!(10,12,15)(11,13,14)>,< 4, 2, G!(3,5,6,4)>,< 4, 2, G!(1,2)(3,5,6,4)>,< 4, 126, G!(3,4,6,5)(7,8)(9,10)(11,13)(12,14)>,< 4, 126, G!(1,2)(3,4,6,5)(7,14)(8,13)(9,15)(11,12)>,< 6, 56, G!(1,2)(3,6)(4,5)(7,12,10)(8,11,15)(9,13,14)>,< 6, 56, G!(1,2)(7,12,10)(8,11,15)(9,13,14)>,< 6, 56, G!(3,6)(4,5)(7,8,10)(9,15,14)(11,12,13)>,< 6, 84, G!(1,2)(10,12,15)(11,13,14)>,< 6, 84, G!(1,2)(10,15,12)(11,14,13)>,< 6, 84, G!(1,2)(3,6)(4,5)(10,12,15)(11,13,14)>,< 6, 84, G!(1,2)(3,6)(4,5)(10,15,12)(11,14,13)>,< 6, 84, G!(3,6)(4,5)(7,13,12)(8,11,14)>,< 6, 84, G!(3,6)(4,5)(7,12,13)(8,14,11)>,< 6, 112, G!(1,2)(3,6)(7,14,8)(9,13,10)(11,15,12)>,< 6, 112, G!(1,2)(3,5)(4,6)(7,15,9)(8,12,11)(10,14,13)>,< 6, 112, G!(3,6)(7,15,11)(8,9,10)(12,14,13)>,< 6, 112, G!(3,4)(5,6)(7,14,15)(8,11,13)(9,12,10)>,< 6, 168, G!(1,2)(4,5)(8,13,14)(9,12,15)>,< 6, 168, G!(1,2)(4,5)(8,14,13)(9,15,12)>,< 6, 168, G!(3,6)(7,15,12)(9,11,14)>,< 6, 168, G!(3,6)(7,12,15)(9,14,11)>,< 6, 168, G!(1,2)(3,4)(5,6)(8,15,9)(10,13,11)>,< 6, 168, G!(1,2)(3,4)(5,6)(8,9,15)(10,11,13)>,< 6, 168, G!(3,4)(5,6)(9,15,11)(10,14,12)>,< 6, 168, G!(3,4)(5,6)(9,11,15)(10,12,14)>,< 6, 252, G!(3,6)(4,5)(8,15)(9,11,13,14,12,10)>,< 6, 252, G!(3,6)(4,5)(8,15)(9,10,12,14,13,11)>,< 6, 252, G!(1,2)(3,6)(4,5)(7,11)(8,12,13,15,14,9)>,< 6, 252, G!(1,2)(3,6)(4,5)(7,11)(8,9,14,15,13,12)>,< 6, 252, G!(1,2)(7,14)(8,10,11,12,13,9)>,< 6, 252, G!(1,2)(7,14)(8,9,13,12,11,10)>,< 6, 252, G!(7,15,8,13,11,10)(9,14)>,< 6, 252, G!(7,10,11,13,8,15)(9,14)>,< 6, 504, G!(1,2)(3,4)(5,6)(8,15,13,9,14,12)(10,11)>,< 6, 504, G!(1,2)(3,4)(5,6)(8,12,14,9,13,15)(10,11)>,< 6, 504, G!(3,5)(4,6)(7,13)(8,14,15,9,12,10)>,< 6, 504, G!(3,5)(4,6)(7,13)(8,10,12,9,15,14)>,< 6, 504, G!(1,2)(3,6)(7,8,11,12,14,10)(9,13)>,< 6, 504, G!(1,2)(3,6)(7,10,14,12,11,8)(9,13)>,< 6, 504, G!(3,6)(7,8,14,10,11,12)(9,15)>,< 6, 504, G!(3,6)(7,12,11,10,14,8)(9,15)>,< 7, 216, G!(7,14,11,10,9,8,13)>,< 9, 168, G!(7,13,8,10,9,15,12,14,11)>,< 9, 168, G!(7,11,10,8,12,13,14,15,9)>,< 9, 168, G!(7,9,15,14,13,12,8,10,11)>,< 12, 112, G!(3,5,6,4)(7,10,8)(9,14,15)(11,13,12)>,< 12, 112, G!(1,2)(3,5,6,4)(7,14,8)(9,13,10)(11,15,12)>,< 12, 168, G!(1,2)(3,5,6,4)(9,10,13)(11,15,12)>,< 12, 168, G!(1,2)(3,4,6,5)(9,13,10)(11,12,15)>,< 12, 168, G!(3,5,6,4)(7,12,15)(8,13,10)>,< 12, 168, G!(3,4,6,5)(7,15,12)(8,10,13)>,< 12, 504, G!(3,5,6,4)(7,14,13,8,12,11)(9,10)>,< 12, 504, G!(3,4,6,5)(7,11,12,8,13,14)(9,10)>,< 12, 504, G!(1,2)(3,5,6,4)(7,14)(8,12,9,13,11,15)>,< 12, 504, G!(1,2)(3,4,6,5)(7,14)(8,15,11,13,9,12)>,< 14, 216, G!(3,6)(4,5)(7,9,14,8,11,13,10)>,< 14, 216, G!(1,2)(3,6)(4,5)(8,13,14,15,11,12,10)>,< 14, 216, G!(1,2)(7,9,12,11,10,13,8)>,< 14, 432, G!(1,2)(3,6)(8,12,11,13,15,10,9)>,< 14, 432, G!(3,5)(4,6)(7,11,10,8,15,13,12)>,< 14, 432, G!(1,2)(3,5)(4,6)(7,10,14,8,15,9,13)>,< 14, 432, G!(4,5)(7,11,8,14,10,12,15)>,< 18, 168, G!(1,2)(3,6)(4,5)(7,15,13,12,8,14,10,11,9)>,< 18, 168, G!(1,2)(7,8,9,12,11,13,10,15,14)>,< 18, 168, G!(3,6)(4,5)(7,14,13,8,9,11,10,15,12)>,< 18, 168, G!(1,2)(7,9,10,11,14,15,8,12,13)>,< 18, 168, G!(1,2)(7,13,12,8,15,14,11,10,9)>,< 18, 168, G!(3,6)(4,5)(7,11,10,8,12,13,14,15,9)>,< 18, 168, G!(3,6)(4,5)(7,9,15,14,13,12,8,10,11)>,< 18, 168, G!(1,2)(3,6)(4,5)(7,14,10,15,13,8,11,12,9)>,< 18, 168, G!(1,2)(3,6)(4,5)(7,9,12,11,8,13,15,10,14)>,< 18, 336, G!(1,2)(3,5)(4,6)(7,8,13,15,12,10,9,11,14)>,< 18, 336, G!(3,6)(7,13,10,15,12,8,11,14,9)>,< 18, 336, G!(1,2)(4,5)(7,13,9,10,12,14,8,11,15)>,< 18, 336, G!(3,5)(4,6)(7,11,15,12,10,8,14,13,9)>,< 18, 336, G!(1,2)(3,6)(7,13,11,14,10,15,8,9,12)>,< 18, 336, G!(1,2)(3,6)(7,12,9,8,15,10,14,11,13)>,< 18, 336, G!(3,6)(7,15,13,14,9,10,12,8,11)>,< 18, 336, G!(3,6)(7,11,8,12,10,9,14,13,15)>,< 18, 336, G!(1,2)(3,5)(4,6)(7,11,8,12,10,9,14,13,15)>,< 18, 336, G!(1,2)(3,5)(4,6)(7,15,13,14,9,10,12,8,11)>,< 18, 336, G!(3,4)(5,6)(7,11,10,14,13,9,15,8,12)>,< 18, 336, G!(3,4)(5,6)(7,12,8,15,9,13,14,10,11)>,< 28, 432, G!(3,4,6,5)(7,11,9,13,14,10,8)>,< 28, 432, G!(1,2)(3,4,6,5)(7,14,9,15,12,10,13)>,< 36, 336, G!(3,4,6,5)(7,11,14,10,13,15,8,12,9)>,< 36, 336, G!(1,2)(3,5,6,4)(7,11,8,10,14,9,13,15,12)>,< 36, 336, G!(1,2)(3,4,6,5)(7,13,11,14,10,15,8,9,12)>,< 36, 336, G!(1,2)(3,5,6,4)(7,12,9,8,15,10,14,11,13)>,< 36, 336, G!(3,4,6,5)(7,14,13,11,12,10,8,9,15)>,< 36, 336, G!(3,5,6,4)(7,15,9,8,10,12,11,13,14)>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1,1,1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,1,1,1,1,K.1^-1,1,K.1^-1,1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,1,K.1,1,1,K.1^-1,K.1,1,K.1,1,1,K.1,1,K.1^-1,K.1^-1,1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,1,1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,1,1,1,1,K.1,1,K.1,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,1,K.1^-1,1,1,K.1,K.1^-1,1,K.1^-1,1,1,K.1^-1,1,K.1,K.1,1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,1,-1,1,K.1^-1,K.1,-1,1,-1,1,-1,-1,1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,1,-1,-1,1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1^-1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-1,K.1,-1*K.1,-1*K.1,1,1,K.1^-1,K.1,-1,1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,1,-1,-1,1,1,-1,-1,-1,-1*K.1^-1,1,-1*K.1^-1,-1,K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,1,-1*K.1,-1,-1,K.1^-1,K.1,1,K.1,-1,1,-1*K.1,1,-1*K.1^-1,K.1^-1,-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,1,-1,1,K.1,K.1^-1,-1,1,-1,1,-1,-1,1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,1,-1,-1,1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1,-1*K.1,K.1^-1,K.1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,1,1,K.1,K.1^-1,-1,1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,1,-1,-1,1,1,-1,-1,-1,-1*K.1,1,-1*K.1,-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,-1*K.1^-1,1,-1*K.1^-1,-1,-1,K.1,K.1^-1,1,K.1^-1,-1,1,-1*K.1^-1,1,-1*K.1,K.1,-1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,K.1^-1,K.1,1,-1,1,-1,-1,-1,1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,1,1,-1*K.1,K.1^-1,-1*K.1^-1,K.1,-1*K.1,K.1^-1,-1*K.1^-1,K.1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1,K.1,1,1,K.1^-1,K.1,1,-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,1,-1,-1,1,-1,1,-1,-1,-1*K.1^-1,1,-1*K.1^-1,-1,K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1,1,-1*K.1,1,-1,K.1^-1,K.1,-1,-1*K.1,1,-1,K.1,-1,K.1^-1,-1*K.1^-1,1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,K.1,K.1^-1,1,-1,1,-1,-1,-1,1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1,1,1,-1*K.1^-1,K.1,-1*K.1,K.1^-1,-1*K.1^-1,K.1,-1*K.1,K.1^-1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1,K.1,-1*K.1^-1,-1*K.1,-1*K.1,K.1^-1,-1*K.1^-1,K.1^-1,1,1,K.1,K.1^-1,1,-1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,1,-1,-1,1,-1,1,-1,-1,-1*K.1,1,-1*K.1,-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1*K.1,K.1^-1,1,-1*K.1^-1,1,-1,K.1,K.1^-1,-1,-1*K.1^-1,1,-1,K.1^-1,-1,K.1,-1*K.1,1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,1,-1,-1,1,1,-1,1,-1,-1,1,-1,1,1,K.1^-1,K.1,1,-1,1,-1,-1,-1,1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,1,1,-1,-1,K.1,-1*K.1^-1,K.1^-1,-1*K.1,K.1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,K.1^-1,K.1^-1,-1*K.1,K.1,-1*K.1,1,1,K.1^-1,K.1,1,-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,1,-1,-1,-1,1,-1,1,-1,-1*K.1^-1,1,-1*K.1^-1,-1,K.1^-1,K.1,-1*K.1,-1*K.1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,-1,K.1,-1,1,-1*K.1^-1,-1*K.1,1,K.1,1,-1,K.1,-1,K.1^-1,-1*K.1^-1,1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,1,-1,-1,1,1,-1,1,-1,-1,1,-1,1,1,K.1,K.1^-1,1,-1,1,-1,-1,-1,1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,1,1,-1,-1,K.1^-1,-1*K.1,K.1,-1*K.1^-1,K.1^-1,-1*K.1,K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1,-1*K.1,K.1^-1,K.1,K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,1,1,K.1,K.1^-1,1,-1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,1,-1,-1,-1,1,-1,1,-1,-1*K.1,1,-1*K.1,-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1,K.1,-1*K.1^-1,-1,K.1^-1,-1,1,-1*K.1,-1*K.1^-1,1,K.1^-1,1,-1,K.1^-1,-1,K.1,-1*K.1,1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,1,K.1^-1,K.1,-1,1,-1,1,-1,-1,1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,1,1,-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1,K.1,K.1,1,1,K.1^-1,K.1,-1,1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,1,-1,-1,-1,-1,1,1,-1,-1*K.1^-1,1,-1*K.1^-1,-1,K.1^-1,K.1,-1*K.1,-1*K.1,K.1^-1,K.1^-1,-1*K.1^-1,K.1,-1,K.1,1,1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1,1,-1*K.1,1,-1*K.1^-1,K.1^-1,-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,1,K.1,K.1^-1,-1,1,-1,1,-1,-1,1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,1,1,-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1,K.1,-1*K.1^-1,-1*K.1,K.1,-1*K.1^-1,K.1^-1,K.1^-1,1,1,K.1,K.1^-1,-1,1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,1,-1,-1,-1,-1,1,1,-1,-1*K.1,1,-1*K.1,-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,K.1,-1*K.1,K.1^-1,-1,K.1^-1,1,1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1,1,-1*K.1^-1,1,-1*K.1,K.1,-1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,K.1^-1,K.1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,-1,-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,1,1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,-1,-1,-1,-1,1,K.1^-1,1,K.1^-1,1,K.1^-1,K.1,K.1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1,-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,1,1,K.1,1,K.1^-1,K.1^-1,1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,K.1,K.1^-1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,-1,-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,1,1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,-1,-1,-1,-1,1,K.1,1,K.1,1,K.1,K.1^-1,K.1^-1,K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1,-1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,1,1,K.1^-1,1,K.1,K.1,1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,-1,-1,1,K.1^-1,K.1,-1,-1,-1,-1,1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,-1,1,-1,-1*K.1,K.1^-1,K.1^-1,-1*K.1,K.1,-1*K.1^-1,-1*K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1^-1,K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,1,1,K.1^-1,K.1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,1,1,1,-1,1,1,-1,1,K.1^-1,1,K.1^-1,1,K.1^-1,K.1,K.1,K.1,-1*K.1^-1,K.1^-1,K.1^-1,K.1,-1,-1*K.1,1,-1,-1*K.1^-1,-1*K.1,1,K.1,-1,-1,-1*K.1,-1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,-1,-1,1,K.1,K.1^-1,-1,-1,-1,-1,1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,1,-1,1,-1,-1*K.1^-1,K.1,K.1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1,K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,1,1,K.1,K.1^-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,1,1,1,-1,1,1,-1,1,K.1,1,K.1,1,K.1,K.1^-1,K.1^-1,K.1^-1,-1*K.1,K.1,K.1,K.1^-1,-1,-1*K.1^-1,1,-1,-1*K.1,-1*K.1^-1,1,K.1^-1,-1,-1,-1*K.1^-1,-1,-1*K.1,-1*K.1,-1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,1,1,1,1,-1,-1,1,1,1,K.1^-1,K.1,-1,-1,-1,-1,1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,-1,1,-1,1,K.1,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1,K.1^-1,K.1^-1,-1*K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1,-1*K.1,1,1,K.1^-1,K.1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,1,1,1,1,-1,-1,1,1,K.1^-1,1,K.1^-1,1,K.1^-1,K.1,K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,1,K.1,-1,1,K.1^-1,K.1,-1,-1*K.1,-1,-1,-1*K.1,-1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,1,1,1,1,-1,-1,1,1,1,K.1,K.1^-1,-1,-1,-1,-1,1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,-1,1,-1,1,K.1^-1,-1*K.1,-1*K.1,K.1^-1,-1*K.1^-1,K.1,K.1,-1*K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1^-1,-1*K.1^-1,1,1,K.1,K.1^-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,1,1,1,1,-1,-1,1,1,K.1,1,K.1,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,1,K.1^-1,-1,1,K.1,K.1^-1,-1,-1*K.1^-1,-1,-1,-1*K.1^-1,-1,-1*K.1,-1*K.1,-1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, 0, 0, 0, 0, -2, 2, 2, -2, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, -2, 2, -2, 2, -2, -2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 2, 2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, 0, 0, 0, 0, -2, 2, -2, -2, 2, -2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, 0, 0, 0, 0, -2, -2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 2, -2, -2, -2, -2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, -2, -2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, -2, 0, 0, 0, 0, 2, -2, -2, 2, -2, -2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,-2,2,2,-2,0,0,0,0,2,2*K.1^-1,2*K.1,0,0,0,0,-2,2,-2,2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1,-2*K.1^-1,2*K.1^-1,2*K.1,-2*K.1^-1,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,2,2,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,0,0,-2,-2,2,0,0,0,0,-2,2*K.1^-1,-2,-2*K.1^-1,2,-2*K.1^-1,-2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,-2,2,2,-2,0,0,0,0,2,2*K.1,2*K.1^-1,0,0,0,0,-2,2,-2,2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-1,-2*K.1^-1,-2*K.1,2*K.1,2*K.1^-1,-2*K.1,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,2,2,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,-2,-2,2,0,0,0,0,-2,2*K.1,-2,-2*K.1,2,-2*K.1,-2*K.1^-1,-2*K.1^-1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,-2,-2,2,2,0,0,0,0,2,2*K.1^-1,2*K.1,0,0,0,0,2,-2,-2,-2*K.1,-2*K.1^-1,-2*K.1,2*K.1^-1,-2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1,2*K.1^-1,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,2,2,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,2,-2*K.1^-1,-2,2*K.1^-1,-2,-2*K.1^-1,-2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,-2,-2,2,2,0,0,0,0,2,2*K.1,2*K.1^-1,0,0,0,0,2,-2,-2,-2*K.1^-1,-2*K.1,-2*K.1^-1,2*K.1,-2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-1,2*K.1,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,2,2,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,2,-2*K.1,-2,2*K.1,-2,-2*K.1,-2*K.1^-1,2*K.1^-1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[7, -7, 7, -7, -7, 7, -7, 7, -1, 1, -1, 1, 1, -1, -1, 1, -2, 1, 1, -7, 7, 1, -1, 2, 2, -2, -1, 1, 1, -1, -1, -1, -2, 2, 2, -2, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 0, 1, 1, 1, 2, -2, 1, 1, -1, -1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 0, 0, -1, 1, -1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[7, -7, 7, -7, -7, 7, 7, -7, -1, 1, -1, 1, -1, 1, -1, 1, -2, 1, 1, 7, -7, -1, 1, 2, 2, -2, -1, 1, 1, -1, -1, -1, 2, 2, -2, -2, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 0, 1, 1, 1, -2, 2, -1, -1, 1, 1, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 0, 0, 1, -1, 1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[7, -7, 7, -7, 7, -7, -7, 7, -1, 1, -1, 1, 1, -1, 1, -1, -2, 1, 1, 7, -7, -1, 1, 2, 2, -2, -1, 1, 1, -1, -1, -1, -2, -2, 2, 2, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 0, 1, 1, 1, -2, 2, -1, -1, 1, 1, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 0, 0, 1, -1, 1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[7, -7, 7, -7, 7, -7, 7, -7, -1, 1, -1, 1, -1, 1, 1, -1, -2, 1, 1, -7, 7, 1, -1, 2, 2, -2, -1, 1, 1, -1, -1, -1, 2, -2, -2, 2, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 0, 1, 1, 1, 2, -2, 1, 1, -1, -1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 0, 0, -1, 1, -1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[7, 7, 7, 7, -7, -7, -7, -7, -1, -1, -1, -1, 1, 1, 1, 1, -2, 1, 1, 7, 7, -1, -1, -2, -2, -2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, -2, -2, 1, 1, 1, 1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[7, 7, 7, 7, -7, -7, 7, 7, -1, -1, -1, -1, -1, -1, 1, 1, -2, 1, 1, -7, -7, 1, 1, -2, -2, -2, 1, 1, 1, 1, 1, 1, -2, 2, -2, 2, -1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, -1, 0, 1, 1, 1, 2, 2, -1, -1, -1, -1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 0, 0, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[7, 7, 7, 7, 7, 7, -7, -7, -1, -1, -1, -1, 1, 1, -1, -1, -2, 1, 1, -7, -7, 1, 1, -2, -2, -2, 1, 1, 1, 1, 1, 1, 2, -2, 2, -2, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 0, 1, 1, 1, 2, 2, -1, -1, -1, -1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 0, 0, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[7, 7, 7, 7, 7, 7, 7, 7, -1, -1, -1, -1, -1, -1, -1, -1, -2, 1, 1, 7, 7, -1, -1, -2, -2, -2, 1, 1, 1, 1, 1, 1, -2, -2, -2, -2, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 1, 1, -2, -2, 1, 1, 1, 1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |7,-7,7,-7,-7,7,-7,7,-1,1,-1,1,1,-1,-1,1,-2,K.1^-1,K.1,-7,7,1,-1,2,2,-2,-1*K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-2,2,2,-2,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1,K.1,K.1,0,1,K.1^-1,K.1,2,-2,K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,-1,-1*K.1^-1,1,-1*K.1^-1,-1,K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,1,-1*K.1,-1,-1,K.1^-1,K.1,1,K.1,0,0,-1*K.1,1,-1*K.1^-1,K.1^-1,-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |7,-7,7,-7,-7,7,-7,7,-1,1,-1,1,1,-1,-1,1,-2,K.1,K.1^-1,-7,7,1,-1,2,2,-2,-1*K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-2,2,2,-2,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,-1*K.1^-1,-1*K.1,K.1,-1*K.1^-1,K.1^-1,K.1^-1,0,1,K.1,K.1^-1,2,-2,K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,-1,-1*K.1,1,-1*K.1,-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,-1*K.1^-1,1,-1*K.1^-1,-1,-1,K.1,K.1^-1,1,K.1^-1,0,0,-1*K.1^-1,1,-1*K.1,K.1,-1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |7,-7,7,-7,-7,7,7,-7,-1,1,-1,1,-1,1,-1,1,-2,K.1^-1,K.1,7,-7,-1,1,2,2,-2,-1*K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,2,2,-2,-2,-1*K.1,K.1^-1,-1*K.1^-1,K.1,-1*K.1,K.1^-1,-1*K.1^-1,K.1,K.1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,K.1^-1,K.1^-1,-1*K.1,K.1,-1*K.1,0,1,K.1^-1,K.1,-2,2,-1*K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,0,0,0,0,0,0,0,-1,-1*K.1^-1,1,-1*K.1^-1,-1,K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1,1,-1*K.1,1,-1,K.1^-1,K.1,-1,-1*K.1,0,0,K.1,-1,K.1^-1,-1*K.1^-1,1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |7,-7,7,-7,-7,7,7,-7,-1,1,-1,1,-1,1,-1,1,-2,K.1,K.1^-1,7,-7,-1,1,2,2,-2,-1*K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,2,2,-2,-2,-1*K.1^-1,K.1,-1*K.1,K.1^-1,-1*K.1^-1,K.1,-1*K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,K.1^-1,K.1,K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,0,1,K.1,K.1^-1,-2,2,-1*K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,0,0,0,0,0,0,0,-1,-1*K.1,1,-1*K.1,-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1*K.1,K.1^-1,1,-1*K.1^-1,1,-1,K.1,K.1^-1,-1,-1*K.1^-1,0,0,K.1^-1,-1,K.1,-1*K.1,1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |7,-7,7,-7,7,-7,-7,7,-1,1,-1,1,1,-1,1,-1,-2,K.1^-1,K.1,7,-7,-1,1,2,2,-2,-1*K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-2,-2,2,2,K.1,-1*K.1^-1,K.1^-1,-1*K.1,K.1,-1*K.1^-1,K.1^-1,-1*K.1,K.1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1,K.1,0,1,K.1^-1,K.1,-2,2,-1*K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,0,0,0,0,0,0,0,-1,-1*K.1^-1,1,-1*K.1^-1,-1,K.1^-1,K.1,-1*K.1,-1*K.1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,-1,K.1,-1,1,-1*K.1^-1,-1*K.1,1,K.1,0,0,K.1,-1,K.1^-1,-1*K.1^-1,1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |7,-7,7,-7,7,-7,-7,7,-1,1,-1,1,1,-1,1,-1,-2,K.1,K.1^-1,7,-7,-1,1,2,2,-2,-1*K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-2,-2,2,2,K.1^-1,-1*K.1,K.1,-1*K.1^-1,K.1^-1,-1*K.1,K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1,K.1,-1*K.1^-1,-1*K.1,-1*K.1,K.1^-1,-1*K.1^-1,K.1^-1,0,1,K.1,K.1^-1,-2,2,-1*K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,0,0,0,0,0,0,0,-1,-1*K.1,1,-1*K.1,-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1,K.1,-1*K.1^-1,-1,K.1^-1,-1,1,-1*K.1,-1*K.1^-1,1,K.1^-1,0,0,K.1^-1,-1,K.1,-1*K.1,1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |7,-7,7,-7,7,-7,7,-7,-1,1,-1,1,-1,1,1,-1,-2,K.1^-1,K.1,-7,7,1,-1,2,2,-2,-1*K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,2,-2,-2,2,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-1,K.1,-1*K.1,-1*K.1,0,1,K.1^-1,K.1,2,-2,K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,-1,-1*K.1^-1,1,-1*K.1^-1,-1,K.1^-1,K.1,-1*K.1,-1*K.1,K.1^-1,K.1^-1,-1*K.1^-1,K.1,-1,K.1,1,1,-1*K.1^-1,-1*K.1,-1,-1*K.1,0,0,-1*K.1,1,-1*K.1^-1,K.1^-1,-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |7,-7,7,-7,7,-7,7,-7,-1,1,-1,1,-1,1,1,-1,-2,K.1,K.1^-1,-7,7,1,-1,2,2,-2,-1*K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,2,-2,-2,2,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1,-1*K.1,K.1^-1,K.1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,0,1,K.1,K.1^-1,2,-2,K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,-1,-1*K.1,1,-1*K.1,-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,K.1,-1*K.1,K.1^-1,-1,K.1^-1,1,1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,0,0,-1*K.1^-1,1,-1*K.1,K.1,-1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |7,7,7,7,-7,-7,-7,-7,-1,-1,-1,-1,1,1,1,1,-2,K.1^-1,K.1,7,7,-1,-1,-2,-2,-2,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,2,2,2,2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1,0,1,K.1^-1,K.1,-2,-2,K.1,K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,1,K.1^-1,1,K.1^-1,1,K.1^-1,K.1,K.1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1,-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,0,0,K.1,1,K.1^-1,K.1^-1,1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |7,7,7,7,-7,-7,-7,-7,-1,-1,-1,-1,1,1,1,1,-2,K.1,K.1^-1,7,7,-1,-1,-2,-2,-2,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,2,2,2,2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,0,1,K.1,K.1^-1,-2,-2,K.1^-1,K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,1,K.1,1,K.1,1,K.1,K.1^-1,K.1^-1,K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1,-1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,0,0,K.1^-1,1,K.1,K.1,1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |7,7,7,7,-7,-7,7,7,-1,-1,-1,-1,-1,-1,1,1,-2,K.1^-1,K.1,-7,-7,1,1,-2,-2,-2,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,-2,2,-2,2,-1*K.1,K.1^-1,K.1^-1,-1*K.1,K.1,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1,-1*K.1,0,1,K.1^-1,K.1,2,2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1,K.1^-1,0,0,0,0,0,0,0,1,K.1^-1,1,K.1^-1,1,K.1^-1,K.1,K.1,K.1,-1*K.1^-1,K.1^-1,K.1^-1,K.1,-1,-1*K.1,1,-1,-1*K.1^-1,-1*K.1,1,K.1,0,0,-1*K.1,-1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |7,7,7,7,-7,-7,7,7,-1,-1,-1,-1,-1,-1,1,1,-2,K.1,K.1^-1,-7,-7,1,1,-2,-2,-2,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,-2,2,-2,2,-1*K.1^-1,K.1,K.1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1^-1,-1*K.1^-1,0,1,K.1,K.1^-1,2,2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1^-1,K.1,0,0,0,0,0,0,0,1,K.1,1,K.1,1,K.1,K.1^-1,K.1^-1,K.1^-1,-1*K.1,K.1,K.1,K.1^-1,-1,-1*K.1^-1,1,-1,-1*K.1,-1*K.1^-1,1,K.1^-1,0,0,-1*K.1^-1,-1,-1*K.1,-1*K.1,-1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |7,7,7,7,7,7,-7,-7,-1,-1,-1,-1,1,1,-1,-1,-2,K.1^-1,K.1,-7,-7,1,1,-2,-2,-2,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,2,-2,2,-2,K.1,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1,K.1^-1,K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,0,1,K.1^-1,K.1,2,2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1,K.1^-1,0,0,0,0,0,0,0,1,K.1^-1,1,K.1^-1,1,K.1^-1,K.1,K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,1,K.1,-1,1,K.1^-1,K.1,-1,-1*K.1,0,0,-1*K.1,-1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |7,7,7,7,7,7,-7,-7,-1,-1,-1,-1,1,1,-1,-1,-2,K.1,K.1^-1,-7,-7,1,1,-2,-2,-2,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,2,-2,2,-2,K.1^-1,-1*K.1,-1*K.1,K.1^-1,-1*K.1^-1,K.1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,0,1,K.1,K.1^-1,2,2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1^-1,K.1,0,0,0,0,0,0,0,1,K.1,1,K.1,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,1,K.1^-1,-1,1,K.1,K.1^-1,-1,-1*K.1^-1,0,0,-1*K.1^-1,-1,-1*K.1,-1*K.1,-1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |7,7,7,7,7,7,7,7,-1,-1,-1,-1,-1,-1,-1,-1,-2,K.1^-1,K.1,7,7,-1,-1,-2,-2,-2,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,-2,-2,-2,-2,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,0,1,K.1^-1,K.1,-2,-2,K.1,K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,1,K.1^-1,1,K.1^-1,1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,1,K.1,1,1,K.1^-1,K.1,1,K.1,0,0,K.1,1,K.1^-1,K.1^-1,1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |7,7,7,7,7,7,7,7,-1,-1,-1,-1,-1,-1,-1,-1,-2,K.1,K.1^-1,7,7,-1,-1,-2,-2,-2,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,-2,-2,-2,-2,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,0,1,K.1,K.1^-1,-2,-2,K.1^-1,K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,1,K.1,1,K.1,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,1,K.1^-1,1,1,K.1,K.1^-1,1,K.1^-1,0,0,K.1^-1,1,K.1,K.1,1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[8, 8, 8, 8, 8, 8, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, -1, 2, 2, 8, 8, 0, 0, -1, -1, -1, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, -8, 8, -8, -8, 8, -8, 8, 0, 0, 0, 0, 0, 0, 0, 0, -1, 2, 2, -8, 8, 0, 0, 1, 1, -1, -2, 2, 2, -2, -2, -2, -1, 1, 1, -1, -2, -2, 2, 2, 2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, -1, 1, -1, 2, 2, -2, -2, 0, 0, 0, 0, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, -8, 8, -8, -8, 8, 8, -8, 0, 0, 0, 0, 0, 0, 0, 0, -1, 2, 2, 8, -8, 0, 0, 1, 1, -1, -2, 2, 2, -2, -2, -2, 1, 1, -1, -1, -2, 2, -2, 2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, -1, -1, 1, -2, -2, 2, 2, 0, 0, 0, 0, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, -8, 8, -8, 8, -8, -8, 8, 0, 0, 0, 0, 0, 0, 0, 0, -1, 2, 2, 8, -8, 0, 0, 1, 1, -1, -2, 2, 2, -2, -2, -2, -1, -1, 1, 1, 2, -2, 2, -2, 2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, -1, -1, 1, -2, -2, 2, 2, 0, 0, 0, 0, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, -8, 8, -8, 8, -8, 8, -8, 0, 0, 0, 0, 0, 0, 0, 0, -1, 2, 2, -8, 8, 0, 0, 1, 1, -1, -2, 2, 2, -2, -2, -2, 1, -1, -1, 1, 2, 2, -2, -2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, -1, 1, -1, 2, 2, -2, -2, 0, 0, 0, 0, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, 8, 8, 8, -8, -8, -8, -8, 0, 0, 0, 0, 0, 0, 0, 0, -1, 2, 2, 8, 8, 0, 0, -1, -1, -1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 0, 0, 0, 0, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, 8, 8, 8, -8, -8, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, -1, 2, 2, -8, -8, 0, 0, -1, -1, -1, 2, 2, 2, 2, 2, 2, -1, 1, -1, 1, -2, 2, 2, -2, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, -1, 1, 1, -2, -2, -2, -2, 0, 0, 0, 0, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, 8, 8, 8, 8, 8, -8, -8, 0, 0, 0, 0, 0, 0, 0, 0, -1, 2, 2, -8, -8, 0, 0, -1, -1, -1, 2, 2, 2, 2, 2, 2, 1, -1, 1, -1, 2, -2, -2, 2, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, -1, 1, 1, -2, -2, -2, -2, 0, 0, 0, 0, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |8,8,8,8,8,8,8,8,0,0,0,0,0,0,0,0,-1,2*K.1^-1,2*K.1,8,8,0,0,-1,-1,-1,2*K.1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,-1,-1,-1,-1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1*K.1^-1,-1*K.1,-1,-1,2*K.1,2*K.1^-1,2*K.1,2*K.1^-1,0,0,0,0,1,1,1,1,1,1,1,-1,-1*K.1^-1,-1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1,-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,1,1,-1*K.1,-1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |8,8,8,8,8,8,8,8,0,0,0,0,0,0,0,0,-1,2*K.1,2*K.1^-1,8,8,0,0,-1,-1,-1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,-1,-1,-1,-1,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1*K.1,-1*K.1^-1,-1,-1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1,0,0,0,0,1,1,1,1,1,1,1,-1,-1*K.1,-1,-1*K.1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1,-1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,1,1,-1*K.1^-1,-1,-1*K.1,-1*K.1,-1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |8,-8,8,-8,-8,8,-8,8,0,0,0,0,0,0,0,0,-1,2*K.1^-1,2*K.1,-8,8,0,0,1,1,-1,-2*K.1,2*K.1^-1,2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1,-1,1,1,-1,-2*K.1,-2*K.1^-1,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,-2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1*K.1^-1,-1*K.1,1,-1,2*K.1,2*K.1^-1,-2*K.1,-2*K.1^-1,0,0,0,0,1,-1,-1,1,1,-1,-1,1,K.1^-1,-1,K.1^-1,1,-1*K.1^-1,-1*K.1,K.1,K.1,K.1^-1,K.1^-1,-1*K.1^-1,K.1,-1,K.1,1,1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1,1,K.1,-1,K.1^-1,-1*K.1^-1,1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |8,-8,8,-8,-8,8,-8,8,0,0,0,0,0,0,0,0,-1,2*K.1,2*K.1^-1,-8,8,0,0,1,1,-1,-2*K.1^-1,2*K.1,2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-1,-1,1,1,-1,-2*K.1^-1,-2*K.1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,-2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1*K.1,-1*K.1^-1,1,-1,2*K.1^-1,2*K.1,-2*K.1^-1,-2*K.1,0,0,0,0,1,-1,-1,1,1,-1,-1,1,K.1,-1,K.1,1,-1*K.1,-1*K.1^-1,K.1^-1,K.1^-1,K.1,K.1,-1*K.1,K.1^-1,-1,K.1^-1,1,1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1,1,K.1^-1,-1,K.1,-1*K.1,1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |8,-8,8,-8,-8,8,8,-8,0,0,0,0,0,0,0,0,-1,2*K.1^-1,2*K.1,8,-8,0,0,1,1,-1,-2*K.1,2*K.1^-1,2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1,1,1,-1,-1,-2*K.1,2*K.1^-1,-2*K.1^-1,2*K.1,-2*K.1,2*K.1^-1,-2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1*K.1^-1,-1*K.1,-1,1,-2*K.1,-2*K.1^-1,2*K.1,2*K.1^-1,0,0,0,0,1,-1,-1,1,-1,1,-1,1,K.1^-1,-1,K.1^-1,1,-1*K.1^-1,-1*K.1,K.1,K.1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,-1,K.1,-1,1,-1*K.1^-1,-1*K.1,1,K.1,1,-1,-1*K.1,1,-1*K.1^-1,K.1^-1,-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |8,-8,8,-8,-8,8,8,-8,0,0,0,0,0,0,0,0,-1,2*K.1,2*K.1^-1,8,-8,0,0,1,1,-1,-2*K.1^-1,2*K.1,2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-1,1,1,-1,-1,-2*K.1^-1,2*K.1,-2*K.1,2*K.1^-1,-2*K.1^-1,2*K.1,-2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1*K.1,-1*K.1^-1,-1,1,-2*K.1^-1,-2*K.1,2*K.1^-1,2*K.1,0,0,0,0,1,-1,-1,1,-1,1,-1,1,K.1,-1,K.1,1,-1*K.1,-1*K.1^-1,K.1^-1,K.1^-1,K.1,-1*K.1,K.1,-1*K.1^-1,-1,K.1^-1,-1,1,-1*K.1,-1*K.1^-1,1,K.1^-1,1,-1,-1*K.1^-1,1,-1*K.1,K.1,-1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |8,-8,8,-8,8,-8,-8,8,0,0,0,0,0,0,0,0,-1,2*K.1^-1,2*K.1,8,-8,0,0,1,1,-1,-2*K.1,2*K.1^-1,2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1,-1,-1,1,1,2*K.1,-2*K.1^-1,2*K.1^-1,-2*K.1,2*K.1,-2*K.1^-1,2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1*K.1^-1,-1*K.1,-1,1,-2*K.1,-2*K.1^-1,2*K.1,2*K.1^-1,0,0,0,0,1,-1,-1,-1,1,-1,1,1,K.1^-1,-1,K.1^-1,1,-1*K.1^-1,-1*K.1,K.1,K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1,1,-1*K.1,1,-1,K.1^-1,K.1,-1,-1*K.1,1,-1,-1*K.1,1,-1*K.1^-1,K.1^-1,-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |8,-8,8,-8,8,-8,-8,8,0,0,0,0,0,0,0,0,-1,2*K.1,2*K.1^-1,8,-8,0,0,1,1,-1,-2*K.1^-1,2*K.1,2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-1,-1,-1,1,1,2*K.1^-1,-2*K.1,2*K.1,-2*K.1^-1,2*K.1^-1,-2*K.1,2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1*K.1,-1*K.1^-1,-1,1,-2*K.1^-1,-2*K.1,2*K.1^-1,2*K.1,0,0,0,0,1,-1,-1,-1,1,-1,1,1,K.1,-1,K.1,1,-1*K.1,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1,K.1,-1*K.1,K.1^-1,1,-1*K.1^-1,1,-1,K.1,K.1^-1,-1,-1*K.1^-1,1,-1,-1*K.1^-1,1,-1*K.1,K.1,-1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |8,-8,8,-8,8,-8,8,-8,0,0,0,0,0,0,0,0,-1,2*K.1^-1,2*K.1,-8,8,0,0,1,1,-1,-2*K.1,2*K.1^-1,2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1,1,-1,-1,1,2*K.1,2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-1,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1*K.1^-1,-1*K.1,1,-1,2*K.1,2*K.1^-1,-2*K.1,-2*K.1^-1,0,0,0,0,1,-1,-1,-1,-1,1,1,1,K.1^-1,-1,K.1^-1,1,-1*K.1^-1,-1*K.1,K.1,K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,1,-1*K.1,-1,-1,K.1^-1,K.1,1,K.1,-1,1,K.1,-1,K.1^-1,-1*K.1^-1,1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |8,-8,8,-8,8,-8,8,-8,0,0,0,0,0,0,0,0,-1,2*K.1,2*K.1^-1,-8,8,0,0,1,1,-1,-2*K.1^-1,2*K.1,2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-1,1,-1,-1,1,2*K.1^-1,2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1*K.1,-1*K.1^-1,1,-1,2*K.1^-1,2*K.1,-2*K.1^-1,-2*K.1,0,0,0,0,1,-1,-1,-1,-1,1,1,1,K.1,-1,K.1,1,-1*K.1,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1,-1*K.1,K.1,-1*K.1^-1,1,-1*K.1^-1,-1,-1,K.1,K.1^-1,1,K.1^-1,-1,1,K.1^-1,-1,K.1,-1*K.1,1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |8,8,8,8,-8,-8,-8,-8,0,0,0,0,0,0,0,0,-1,2*K.1^-1,2*K.1,8,8,0,0,-1,-1,-1,2*K.1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,1,1,1,1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1*K.1^-1,-1*K.1,-1,-1,2*K.1,2*K.1^-1,2*K.1,2*K.1^-1,0,0,0,0,1,1,1,-1,-1,-1,-1,-1,-1*K.1^-1,-1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,K.1^-1,K.1^-1,K.1^-1,K.1,1,K.1,1,1,K.1^-1,K.1,1,K.1,1,1,-1*K.1,-1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |8,8,8,8,-8,-8,-8,-8,0,0,0,0,0,0,0,0,-1,2*K.1,2*K.1^-1,8,8,0,0,-1,-1,-1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,1,1,1,1,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1*K.1,-1*K.1^-1,-1,-1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1,0,0,0,0,1,1,1,-1,-1,-1,-1,-1,-1*K.1,-1,-1*K.1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,K.1,K.1,K.1^-1,1,K.1^-1,1,1,K.1,K.1^-1,1,K.1^-1,1,1,-1*K.1^-1,-1,-1*K.1,-1*K.1,-1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |8,8,8,8,-8,-8,8,8,0,0,0,0,0,0,0,0,-1,2*K.1^-1,2*K.1,-8,-8,0,0,-1,-1,-1,2*K.1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,-1,1,-1,1,-2*K.1,2*K.1^-1,2*K.1^-1,-2*K.1,2*K.1,-2*K.1^-1,-2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1*K.1^-1,-1*K.1,1,1,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,0,0,0,0,1,1,1,-1,1,1,-1,-1,-1*K.1^-1,-1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,1,K.1,-1,1,K.1^-1,K.1,-1,-1*K.1,-1,-1,K.1,1,K.1^-1,K.1^-1,1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |8,8,8,8,-8,-8,8,8,0,0,0,0,0,0,0,0,-1,2*K.1,2*K.1^-1,-8,-8,0,0,-1,-1,-1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,-1,1,-1,1,-2*K.1^-1,2*K.1,2*K.1,-2*K.1^-1,2*K.1^-1,-2*K.1,-2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1*K.1,-1*K.1^-1,1,1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,0,0,0,0,1,1,1,-1,1,1,-1,-1,-1*K.1,-1,-1*K.1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,1,K.1^-1,-1,1,K.1,K.1^-1,-1,-1*K.1^-1,-1,-1,K.1^-1,1,K.1,K.1,1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |8,8,8,8,8,8,-8,-8,0,0,0,0,0,0,0,0,-1,2*K.1^-1,2*K.1,-8,-8,0,0,-1,-1,-1,2*K.1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,1,-1,1,-1,2*K.1,-2*K.1^-1,-2*K.1^-1,2*K.1,-2*K.1,2*K.1^-1,2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1*K.1^-1,-1*K.1,1,1,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,0,0,0,0,1,1,1,1,-1,-1,1,-1,-1*K.1^-1,-1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,K.1^-1,K.1,-1,-1*K.1,1,-1,-1*K.1^-1,-1*K.1,1,K.1,-1,-1,K.1,1,K.1^-1,K.1^-1,1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |8,8,8,8,8,8,-8,-8,0,0,0,0,0,0,0,0,-1,2*K.1,2*K.1^-1,-8,-8,0,0,-1,-1,-1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,1,-1,1,-1,2*K.1^-1,-2*K.1,-2*K.1,2*K.1^-1,-2*K.1^-1,2*K.1,2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1*K.1,-1*K.1^-1,1,1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,0,0,0,0,1,1,1,1,-1,-1,1,-1,-1*K.1,-1,-1*K.1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,K.1,K.1^-1,-1,-1*K.1^-1,1,-1,-1*K.1,-1*K.1^-1,1,K.1^-1,-1,-1,K.1^-1,1,K.1,K.1,1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[14, -14, -14, 14, 0, 0, 0, 0, 2, -2, -2, 2, 0, 0, 0, 0, -4, 2, 2, 0, 0, 0, 0, 4, -4, 4, 2, -2, -2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, -2, -2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, -2, -2, 2, -2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[14, 14, -14, -14, 0, 0, 0, 0, 2, 2, -2, -2, 0, 0, 0, 0, -4, 2, 2, 0, 0, 0, 0, -4, 4, 4, -2, -2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, 2, 2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, -2, 2, -2, -2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |14,-14,-14,14,0,0,0,0,2,-2,-2,2,0,0,0,0,-4,2*K.1^-1,2*K.1,0,0,0,0,4,-4,4,2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1,2*K.1^-1,-2*K.1^-1,-2*K.1,2*K.1^-1,-2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,2,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2*K.1^-1,-2,-2*K.1^-1,2,-2*K.1^-1,-2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |14,-14,-14,14,0,0,0,0,2,-2,-2,2,0,0,0,0,-4,2*K.1,2*K.1^-1,0,0,0,0,4,-4,4,2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1^-1,2*K.1,-2*K.1,-2*K.1^-1,2*K.1,-2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,0,2,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2*K.1,-2,-2*K.1,2,-2*K.1,-2*K.1^-1,-2*K.1^-1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |14,14,-14,-14,0,0,0,0,2,2,-2,-2,0,0,0,0,-4,2*K.1^-1,2*K.1,0,0,0,0,-4,4,4,-2*K.1,-2*K.1^-1,-2*K.1,2*K.1^-1,-2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,2,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*K.1^-1,-2,2*K.1^-1,-2,-2*K.1^-1,-2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |14,14,-14,-14,0,0,0,0,2,2,-2,-2,0,0,0,0,-4,2*K.1,2*K.1^-1,0,0,0,0,-4,4,4,-2*K.1^-1,-2*K.1,-2*K.1^-1,2*K.1,-2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-1,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,0,2,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*K.1,-2,2*K.1,-2,-2*K.1,-2*K.1^-1,2*K.1^-1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[16, -16, -16, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 4, 4, 0, 0, 0, 0, 2, -2, 2, 4, -4, -4, -4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, 0, 0, 0, 0, 2, -2, 2, 2, -2, 2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[16, 16, -16, -16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 4, 4, 0, 0, 0, 0, -2, 2, 2, -4, -4, -4, 4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, -2, 0, 0, 0, 0, -2, 2, 2, -2, 2, 2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |16,-16,-16,16,0,0,0,0,0,0,0,0,0,0,0,0,-2,4*K.1^-1,4*K.1,0,0,0,0,2,-2,2,4*K.1,-4*K.1^-1,-4*K.1,-4*K.1^-1,4*K.1^-1,-4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,0,0,-2,-2,2,0,0,0,0,2,-2*K.1^-1,2,2*K.1^-1,-2,2*K.1^-1,2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |16,-16,-16,16,0,0,0,0,0,0,0,0,0,0,0,0,-2,4*K.1,4*K.1^-1,0,0,0,0,2,-2,2,4*K.1^-1,-4*K.1,-4*K.1^-1,-4*K.1,4*K.1,-4*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,-2,-2,2,0,0,0,0,2,-2*K.1,2,2*K.1,-2,2*K.1,2*K.1^-1,2*K.1^-1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |16,16,-16,-16,0,0,0,0,0,0,0,0,0,0,0,0,-2,4*K.1^-1,4*K.1,0,0,0,0,-2,2,2,-4*K.1,-4*K.1^-1,-4*K.1,4*K.1^-1,-4*K.1^-1,4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,-2,2*K.1^-1,2,-2*K.1^-1,2,2*K.1^-1,2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |16,16,-16,-16,0,0,0,0,0,0,0,0,0,0,0,0,-2,4*K.1,4*K.1^-1,0,0,0,0,-2,2,2,-4*K.1^-1,-4*K.1,-4*K.1^-1,4*K.1,-4*K.1,4*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,-2,2*K.1,2,-2*K.1,2,2*K.1,2*K.1^-1,-2*K.1^-1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[21, -21, 21, -21, -21, 21, -21, 21, -3, 3, -3, 3, 3, -3, -3, 3, 3, 0, 0, -21, 21, 3, -3, -3, -3, 3, 0, 0, 0, 0, 0, 0, 3, -3, -3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[21, -21, 21, -21, -21, 21, 21, -21, -3, 3, -3, 3, -3, 3, -3, 3, 3, 0, 0, 21, -21, -3, 3, -3, -3, 3, 0, 0, 0, 0, 0, 0, -3, -3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[21, -21, 21, -21, 21, -21, -21, 21, -3, 3, -3, 3, 3, -3, 3, -3, 3, 0, 0, 21, -21, -3, 3, -3, -3, 3, 0, 0, 0, 0, 0, 0, 3, 3, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[21, -21, 21, -21, 21, -21, 21, -21, -3, 3, -3, 3, -3, 3, 3, -3, 3, 0, 0, -21, 21, 3, -3, -3, -3, 3, 0, 0, 0, 0, 0, 0, -3, 3, 3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[21, 21, 21, 21, -21, -21, -21, -21, -3, -3, -3, -3, 3, 3, 3, 3, 3, 0, 0, 21, 21, -3, -3, 3, 3, 3, 0, 0, 0, 0, 0, 0, -3, -3, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[21, 21, 21, 21, -21, -21, 21, 21, -3, -3, -3, -3, -3, -3, 3, 3, 3, 0, 0, -21, -21, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 3, -3, 3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[21, 21, 21, 21, 21, 21, -21, -21, -3, -3, -3, -3, 3, 3, -3, -3, 3, 0, 0, -21, -21, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, -3, 3, -3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[21, 21, 21, 21, 21, 21, 21, 21, -3, -3, -3, -3, -3, -3, -3, -3, 3, 0, 0, 21, 21, -3, -3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[27, 27, 27, 27, 27, 27, 27, 27, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 27, 27, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[27, -27, 27, -27, -27, 27, -27, 27, 3, -3, 3, -3, -3, 3, 3, -3, 0, 0, 0, -27, 27, -3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[27, -27, 27, -27, -27, 27, 27, -27, 3, -3, 3, -3, 3, -3, 3, -3, 0, 0, 0, 27, -27, 3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[27, -27, 27, -27, 27, -27, -27, 27, 3, -3, 3, -3, -3, 3, -3, 3, 0, 0, 0, 27, -27, 3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[27, -27, 27, -27, 27, -27, 27, -27, 3, -3, 3, -3, 3, -3, -3, 3, 0, 0, 0, -27, 27, -3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[27, 27, 27, 27, -27, -27, -27, -27, 3, 3, 3, 3, -3, -3, -3, -3, 0, 0, 0, 27, 27, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[27, 27, 27, 27, -27, -27, 27, 27, 3, 3, 3, 3, 3, 3, -3, -3, 0, 0, 0, -27, -27, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[27, 27, 27, 27, 27, 27, -27, -27, 3, 3, 3, 3, -3, -3, 3, 3, 0, 0, 0, -27, -27, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[42, -42, -42, 42, 0, 0, 0, 0, 6, -6, -6, 6, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, -6, 6, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[42, 42, -42, -42, 0, 0, 0, 0, 6, 6, -6, -6, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 6, -6, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[54, -54, -54, 54, 0, 0, 0, 0, -6, 6, 6, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[54, 54, -54, -54, 0, 0, 0, 0, -6, -6, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_24192_u:= KnownIrreducibles(CR);