# Group 240.90 downloaded from the LMFDB on 14 September 2025. ## Various presentations of this group are stored in this file: # GPC is polycyclic presentation GPerm is permutation group # GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups # Many characteristics of the group are stored as booleans in a record: # Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, # metacyclic, monomial, nilpotent, perfect, quasisimple, rational, # solvable, supersolvable # The character table is stored as a record chartbl_n_i where n is the order # of the group and i is which group of that order it is. The record is # converted to a character table using ConvertToLibraryCharacterTableNC # Constructions GPerm := Group( (1,30,35,33,22,21,11,6)(2,12,13,19,18,25,14,7)(3,29,38,34,23,26,15,8)(4,36,37,31,24,27,16,9)(5,40,39,32,20,28,17,10), (1,35,22,11)(2,33,18,6)(3,25,23,12)(4,14,24,13)(5,32,20,10)(7,34,19,8)(9,39,31,17)(15,26,38,29)(16,21,37,30)(27,40,36,28) ); GLFp := Group([[[ Z(3), 0*Z(3), Z(3)^0, Z(3) ], [ 0*Z(3), Z(3), Z(3)^0, 0*Z(3) ], [ Z(3), Z(3), Z(3), Z(3)^0 ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ]], [[ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3) ]], [[ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], [ Z(3)^0, Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3), Z(3)^0, Z(3), Z(3) ]]]); # Booleans booleans_240_90 := rec( Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := false, metacyclic := false, monomial := false, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := false, supersolvable := false); # Character Table chartbl_240_90:=rec(); chartbl_240_90.IsFinite:= true; chartbl_240_90.UnderlyingCharacteristic:= 0; chartbl_240_90.UnderlyingGroup:= GLFp; chartbl_240_90.Size:= 240; chartbl_240_90.InfoText:= "Character table for group 240.90 downloaded from the LMFDB."; chartbl_240_90.Identifier:= " SL(2,5):C2 "; chartbl_240_90.NrConjugacyClasses:= 12; chartbl_240_90.ConjugacyClasses:= [[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2], [0, 0, 1, 0, 1, 2, 2, 2, 1, 0, 0, 0, 1, 0, 2, 1], [0, 1, 1, 0, 0, 0, 0, 1, 2, 2, 2, 2, 0, 2, 0, 2], [0, 2, 0, 1, 0, 2, 2, 2, 1, 0, 2, 2, 2, 2, 2, 2], [2, 2, 2, 1, 2, 2, 1, 0, 2, 0, 1, 2, 0, 0, 1, 0], [0, 2, 1, 0, 0, 2, 0, 1, 2, 1, 1, 1, 0, 0, 0, 2], [1, 1, 0, 1, 1, 1, 2, 0, 2, 2, 2, 0, 1, 2, 2, 2], [2, 2, 2, 2, 1, 0, 2, 1, 0, 1, 1, 0, 1, 1, 2, 0], [0, 1, 0, 1, 2, 2, 1, 0, 2, 2, 0, 0, 1, 0, 2, 1], [1, 2, 2, 2, 2, 1, 0, 1, 0, 1, 2, 0, 2, 2, 0, 2], [2, 2, 1, 0, 1, 0, 0, 0, 2, 1, 0, 1, 0, 2, 2, 2]]; chartbl_240_90.IdentificationOfConjugacyClasses:= [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]; chartbl_240_90.ComputedPowerMaps:= [ , [1, 1, 1, 4, 2, 6, 4, 4, 4, 5, 5, 6], [1, 2, 3, 1, 5, 6, 2, 3, 3, 10, 11, 12], [1, 2, 3, 4, 5, 1, 7, 9, 8, 11, 10, 2]]; chartbl_240_90.SizesCentralizers:= [240, 240, 12, 12, 8, 10, 12, 12, 12, 8, 8, 10]; chartbl_240_90.ClassNames:= ["1A", "2A", "2B", "3A", "4A", "5A", "6A", "6B1", "6B-1", "8A1", "8A-1", "10A"]; chartbl_240_90.OrderClassRepresentatives:= [1, 2, 2, 3, 4, 5, 6, 6, 6, 8, 8, 10]; chartbl_240_90.Irr:= [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1], [4, 4, 2, 1, 0, -1, 1, -1, -1, 0, 0, -1], [4, 4, -2, 1, 0, -1, 1, 1, 1, 0, 0, -1], [4, -4, 0, -2, 0, -1, 2, 0, 0, 0, 0, 1], [4, -4, 0, 1, 0, -1, -1, -1-2*E(3), 1+2*E(3), 0, 0, 1], [4, -4, 0, 1, 0, -1, -1, 1+2*E(3), -1-2*E(3), 0, 0, 1], [5, 5, -1, -1, 1, 0, -1, -1, -1, 1, 1, 0], [5, 5, 1, -1, 1, 0, -1, 1, 1, -1, -1, 0], [6, 6, 0, 0, -2, 1, 0, 0, 0, 0, 0, 1], [6, -6, 0, 0, 0, 1, 0, 0, 0, -1*E(8)-E(8)^3, E(8)+E(8)^3, -1], [6, -6, 0, 0, 0, 1, 0, 0, 0, E(8)+E(8)^3, -1*E(8)-E(8)^3, -1]]; ConvertToLibraryCharacterTableNC(chartbl_240_90);