/* Group 240.169 downloaded from the LMFDB on 15 November 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([6, -2, -2, -2, -2, -3, -5, 2234, 1484, 50, 1065, 69, 2650, 118]); a,b,c := Explode([GPC.1, GPC.2, GPC.3]); AssignNames(~GPC, ["a", "b", "c", "c2", "c4", "c12"]); GPerm := PermutationGroup< 12 | (2,3), (9,10)(11,12), (10,12), (4,5,6,7,8), (9,11)(10,12), (1,2,3) >; GLZN := MatrixGroup< 2, Integers(22) | [[21, 0, 0, 1], [5, 0, 0, 5], [1, 11, 11, 12], [1, 11, 0, 1], [21, 0, 0, 21], [0, 13, 5, 0]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_240_169 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, c^30>,< 2, 2, a>,< 2, 2, a*c^45>,< 2, 3, b>,< 2, 3, b*c^50>,< 2, 6, a*b>,< 2, 6, a*b*c^25>,< 3, 2, c^40>,< 4, 2, c^15>,< 4, 6, b*c^25>,< 5, 1, c^24>,< 5, 1, c^36>,< 5, 1, c^48>,< 5, 1, c^12>,< 6, 2, c^10>,< 6, 4, a*c^20>,< 6, 4, a*c^5>,< 10, 1, c^42>,< 10, 1, c^18>,< 10, 1, c^6>,< 10, 1, c^54>,< 10, 2, a*c^12>,< 10, 2, a*c^48>,< 10, 2, a*c^36>,< 10, 2, a*c^24>,< 10, 2, a*c^33>,< 10, 2, a*c^57>,< 10, 2, a*c^9>,< 10, 2, a*c^21>,< 10, 3, b*c^12>,< 10, 3, b*c^8>,< 10, 3, b*c^36>,< 10, 3, b*c^4>,< 10, 3, b*c^2>,< 10, 3, b*c^38>,< 10, 3, b*c^6>,< 10, 3, b*c^14>,< 10, 6, a*b*c^12>,< 10, 6, a*b*c^8>,< 10, 6, a*b*c^36>,< 10, 6, a*b*c^4>,< 10, 6, a*b*c>,< 10, 6, a*b*c^9>,< 10, 6, a*b*c^13>,< 10, 6, a*b*c^37>,< 12, 4, c^5>,< 15, 2, c^8>,< 15, 2, c^52>,< 15, 2, c^16>,< 15, 2, c^44>,< 20, 2, c^3>,< 20, 2, c^57>,< 20, 2, c^9>,< 20, 2, c^51>,< 20, 6, b*c>,< 20, 6, b*c^9>,< 20, 6, b*c^13>,< 20, 6, b*c^37>,< 30, 2, c^2>,< 30, 2, c^58>,< 30, 2, c^14>,< 30, 2, c^46>,< 30, 4, a*c^4>,< 30, 4, a*c^16>,< 30, 4, a*c^8>,< 30, 4, a*c^2>,< 30, 4, a*c>,< 30, 4, a*c^49>,< 30, 4, a*c^37>,< 30, 4, a*c^13>,< 60, 4, c>,< 60, 4, c^49>,< 60, 4, c^37>,< 60, 4, c^13>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,K.1^-2,K.1^2,K.1,K.1^-1,1,1,1,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-1,K.1,K.1,K.1^-2,K.1^2,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^2,K.1^2,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1,K.1,K.1^-1,1,K.1^-2,K.1^2,K.1^-1,K.1,K.1,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1^-2,K.1,K.1^-1,K.1,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^2,K.1,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-1,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,K.1^2,K.1^-2,K.1^-1,K.1,1,1,1,K.1^2,K.1^-2,K.1^-1,K.1,K.1,K.1^-2,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-1,K.1,1,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-1,K.1,K.1^-2,K.1^2,K.1^2,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1^-2,K.1^2,1,1,1,K.1^-1,K.1,K.1^-2,K.1^2,K.1^2,K.1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1,K.1,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-1,K.1,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1^2,1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1,K.1,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-2,K.1^2,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^2,K.1^-2,1,1,1,K.1,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1,K.1^-1,K.1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-1,K.1,K.1^-1,K.1,K.1^-2,K.1^2,K.1^2,K.1^-2,1,K.1,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1,K.1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,1,1,1,-1,K.1^-2,K.1^2,K.1,K.1^-1,1,-1,-1,K.1^-2,K.1^2,K.1,K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1,K.1,K.1^-1,1,K.1^-2,K.1^2,K.1^-1,K.1,K.1,K.1^-1,K.1^-2,K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^2,K.1^-2,K.1,K.1^-1,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,1,1,1,-1,K.1^2,K.1^-2,K.1^-1,K.1,1,-1,-1,K.1^2,K.1^-2,K.1^-1,K.1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-1,K.1,1,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-1,K.1,K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1^-2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-2,K.1^2,K.1^-1,K.1,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,1,1,1,-1,K.1^-1,K.1,K.1^-2,K.1^2,1,-1,-1,K.1^-1,K.1,K.1^-2,K.1^2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,K.1,K.1^-1,K.1,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1^2,1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^-2,K.1^2,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1,K.1^-1,K.1^-2,K.1^2,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,1,1,1,-1,K.1,K.1^-1,K.1^2,K.1^-2,1,-1,-1,K.1,K.1^-1,K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,K.1^-1,K.1,K.1^-1,K.1,K.1^-2,K.1^2,K.1^2,K.1^-2,1,K.1,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1^-2,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,K.1,K.1^2,K.1^-2,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,1,1,-1,-1,1,1,1,K.1^-2,K.1^2,K.1,K.1^-1,1,-1,-1,K.1^-2,K.1^2,K.1,K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,K.1^-2,K.1,K.1^-1,K.1^2,K.1^2,K.1,K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,1,K.1^-2,K.1^2,K.1^-1,K.1,K.1,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1^-2,K.1,K.1^-1,K.1,K.1^-1,K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^2,K.1^-2,K.1,K.1^-1,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,1,1,-1,-1,1,1,1,K.1^2,K.1^-2,K.1^-1,K.1,1,-1,-1,K.1^2,K.1^-2,K.1^-1,K.1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,1,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-1,K.1,K.1^-2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-2,K.1^2,K.1^-1,K.1,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,1,1,-1,-1,1,1,1,K.1^-1,K.1,K.1^-2,K.1^2,1,-1,-1,K.1^-1,K.1,K.1^-2,K.1^2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1,K.1,K.1^-2,K.1^-1,K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1,K.1,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1,K.1^-1,K.1^-2,K.1^2,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,1,1,-1,-1,1,1,1,K.1,K.1^-1,K.1^2,K.1^-2,1,-1,-1,K.1,K.1^-1,K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1,K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,1,K.1,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,K.1,K.1^2,K.1^-2,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,1,-1,-1,1,-1,1,-1,1,K.1^-2,K.1^2,K.1,K.1^-1,1,-1,1,K.1^-2,K.1^2,K.1,K.1^-1,-1*K.1^-1,K.1^2,K.1^-1,-1*K.1,K.1,K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1,K.1^-2,K.1^2,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^2,K.1^-2,K.1,K.1^-1,K.1,K.1^-1,K.1^2,K.1^-2,K.1^-2,-1*K.1^-2,K.1,-1*K.1^-1,K.1^2,-1*K.1,K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,1,-1,-1,1,-1,1,-1,1,K.1^2,K.1^-2,K.1^-1,K.1,1,-1,1,K.1^2,K.1^-2,K.1^-1,K.1,-1*K.1,K.1^-2,K.1,-1*K.1^-1,K.1^-1,K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^2,K.1^-2,K.1^2,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1,K.1^2,K.1^-2,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-1,K.1,K.1^-2,K.1^2,K.1^2,-1*K.1^2,K.1^-1,-1*K.1,K.1^-2,-1*K.1^-1,K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,1,-1,-1,1,-1,1,-1,1,K.1^-1,K.1,K.1^-2,K.1^2,1,-1,1,K.1^-1,K.1,K.1^-2,K.1^2,-1*K.1^2,K.1,K.1^2,-1*K.1^-2,K.1^-2,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^2,-1,K.1^-1,K.1,K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-1,-1*K.1^-1,K.1^-2,-1*K.1^2,K.1,-1*K.1^-2,K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,1,-1,-1,1,-1,1,-1,1,K.1,K.1^-1,K.1^2,K.1^-2,1,-1,1,K.1,K.1^-1,K.1^2,K.1^-2,-1*K.1^-2,K.1^-1,K.1^-2,-1*K.1^2,K.1^2,K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1^-2,K.1^2,-1*K.1^2,-1*K.1^-2,-1,K.1,K.1^-1,K.1^-2,K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1,K.1,-1*K.1,K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^2,K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,1,1,1,-1,1,1,-1,-1,K.1^-2,K.1^2,K.1,K.1^-1,1,-1,1,K.1^-2,K.1^2,K.1,K.1^-1,-1*K.1^-1,K.1^2,K.1^-1,-1*K.1,K.1,K.1^-2,-1*K.1^2,-1*K.1^-2,K.1^-2,K.1,K.1^-1,K.1^2,K.1^2,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,K.1,K.1^-1,-1,K.1^-2,K.1^2,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1^2,K.1^-2,K.1^-2,-1*K.1^-2,K.1,-1*K.1^-1,K.1^2,-1*K.1,K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,1,1,1,-1,1,1,-1,-1,K.1^2,K.1^-2,K.1^-1,K.1,1,-1,1,K.1^2,K.1^-2,K.1^-1,K.1,-1*K.1,K.1^-2,K.1,-1*K.1^-1,K.1^-1,K.1^2,-1*K.1^-2,-1*K.1^2,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-2,K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,K.1^-1,K.1,-1,K.1^2,K.1^-2,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1^-2,K.1^2,K.1^2,-1*K.1^2,K.1^-1,-1*K.1,K.1^-2,-1*K.1^-1,K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,1,1,1,-1,1,1,-1,-1,K.1^-1,K.1,K.1^-2,K.1^2,1,-1,1,K.1^-1,K.1,K.1^-2,K.1^2,-1*K.1^2,K.1,K.1^2,-1*K.1^-2,K.1^-2,K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1,K.1,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,K.1^-2,K.1^2,-1,K.1^-1,K.1,K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-1,-1*K.1^-1,K.1^-2,-1*K.1^2,K.1,-1*K.1^-2,K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,1,1,1,-1,1,1,-1,-1,K.1,K.1^-1,K.1^2,K.1^-2,1,-1,1,K.1,K.1^-1,K.1^2,K.1^-2,-1*K.1^-2,K.1^-1,K.1^-2,-1*K.1^2,K.1^2,K.1,-1*K.1^-1,-1*K.1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,K.1^2,K.1^-2,-1,K.1,K.1^-1,K.1^-2,K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1,K.1,-1*K.1,K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^2,K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,-1,-1,-1,-1,1,1,-1,1,K.1^-2,K.1^2,K.1,K.1^-1,1,1,-1,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-1,-1*K.1^2,-1*K.1^-1,K.1,-1*K.1,-1*K.1^-2,K.1^2,K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,K.1^2,K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,K.1,K.1^-1,-1,K.1^-2,K.1^2,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^2,K.1^-2,K.1,K.1^-1,K.1,K.1^-1,K.1^2,K.1^-2,-1*K.1^-2,K.1^-2,-1*K.1,K.1^-1,-1*K.1^2,K.1,-1*K.1^-1,K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,-1,-1,-1,-1,1,1,-1,1,K.1^2,K.1^-2,K.1^-1,K.1,1,1,-1,K.1^2,K.1^-2,K.1^-1,K.1,K.1,-1*K.1^-2,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1^2,K.1^-2,K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,K.1^-2,K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,K.1^-1,K.1,-1,K.1^2,K.1^-2,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-1,K.1,K.1^-2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^-1,K.1,-1*K.1^-2,K.1^-1,-1*K.1,K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,-1,-1,-1,-1,1,1,-1,1,K.1^-1,K.1,K.1^-2,K.1^2,1,1,-1,K.1^-1,K.1,K.1^-2,K.1^2,K.1^2,-1*K.1,-1*K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,K.1^-2,K.1^2,-1,K.1^-1,K.1,K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^-2,K.1^2,-1*K.1,K.1^-2,-1*K.1^2,K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,-1,-1,-1,-1,1,1,-1,1,K.1,K.1^-1,K.1^2,K.1^-2,1,1,-1,K.1,K.1^-1,K.1^2,K.1^-2,K.1^-2,-1*K.1^-1,-1*K.1^-2,K.1^2,-1*K.1^2,-1*K.1,K.1^-1,K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,K.1^2,K.1^-2,-1,K.1,K.1^-1,K.1^-2,K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1,-1*K.1,K.1,-1*K.1^2,K.1^-2,-1*K.1^-1,K.1^2,-1*K.1^-2,K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,-1,1,1,1,-1,1,-1,-1,K.1^-2,K.1^2,K.1,K.1^-1,1,1,-1,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-1,-1*K.1^2,-1*K.1^-1,K.1,-1*K.1,-1*K.1^-2,K.1^2,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^2,K.1^2,K.1,K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1,K.1^-2,K.1^2,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1^2,K.1^-2,-1*K.1^-2,K.1^-2,-1*K.1,K.1^-1,-1*K.1^2,K.1,-1*K.1^-1,K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,-1,1,1,1,-1,1,-1,-1,K.1^2,K.1^-2,K.1^-1,K.1,1,1,-1,K.1^2,K.1^-2,K.1^-1,K.1,K.1,-1*K.1^-2,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1^2,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1,-1*K.1^-2,-1*K.1^2,K.1^-2,K.1^2,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1,K.1^2,K.1^-2,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1^-2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^-1,K.1,-1*K.1^-2,K.1^-1,-1*K.1,K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,-1,1,1,1,-1,1,-1,-1,K.1^-1,K.1,K.1^-2,K.1^2,1,1,-1,K.1^-1,K.1,K.1^-2,K.1^2,K.1^2,-1*K.1,-1*K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1,K.1,K.1^-2,K.1^-1,K.1^2,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^2,-1,K.1^-1,K.1,K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^-2,K.1^2,K.1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^-2,K.1^2,-1*K.1,K.1^-2,-1*K.1^2,K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,-1,1,1,1,-1,1,-1,-1,K.1,K.1^-1,K.1^2,K.1^-2,1,1,-1,K.1,K.1^-1,K.1^2,K.1^-2,K.1^-2,-1*K.1^-1,-1*K.1^-2,K.1^2,-1*K.1^2,-1*K.1,K.1^-1,K.1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1,K.1^-2,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1^-2,K.1^2,-1*K.1^2,-1*K.1^-2,-1,K.1,K.1^-1,K.1^-2,K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1,-1*K.1,K.1,-1*K.1^2,K.1^-2,-1*K.1^-1,K.1^2,-1*K.1^-2,K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,1,1,-1,K.1^-2,K.1^2,K.1,K.1^-1,1,1,1,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-1,K.1,K.1,K.1^-2,K.1^2,K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,1,K.1^-2,K.1^2,K.1^-1,K.1,K.1,K.1^-1,K.1^-2,K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^2,K.1,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-1,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,1,1,-1,K.1^2,K.1^-2,K.1^-1,K.1,1,1,1,K.1^2,K.1^-2,K.1^-1,K.1,K.1,K.1^-2,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,1,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-1,K.1,K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1^-2,K.1^2,K.1^2,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,1,1,-1,K.1^-1,K.1,K.1^-2,K.1^2,1,1,1,K.1^-1,K.1,K.1^-2,K.1^2,K.1^2,K.1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-2,K.1^2,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,1,1,-1,K.1,K.1^-1,K.1^2,K.1^-2,1,1,1,K.1,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1,K.1^-1,K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,1,K.1,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1^-2,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1,K.1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 0, 0, 0, 0, -1, 2, 0, 2, 2, 2, 2, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 2, 2, 2, 2, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 0, 0, -2, 2, 0, 0, 2, 0, 0, 2, 2, 2, 2, -2, 0, 0, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 0, 0, 2, -2, 0, 0, 2, 0, 0, 2, 2, 2, 2, -2, 0, 0, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, 0, 0, 0, 0, -1, 2, 0, 2, 2, 2, 2, -1, 1, 1, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 2, 2, 2, 2, 0, 0, 0, 0, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, 2, 0, 0, 0, 0, -1, -2, 0, 2, 2, 2, 2, -1, 1, -1, 2, 2, 2, 2, -2, 2, 2, -2, 2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, -1, -1, -2, -2, -2, -2, 0, 0, 0, 0, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, -2, 0, 0, 0, 0, -1, -2, 0, 2, 2, 2, 2, -1, -1, 1, 2, 2, 2, 2, 2, -2, -2, 2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, -1, -1, -2, -2, -2, -2, 0, 0, 0, 0, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,-1,2,0,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-1,-1,-1,-1,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^2,2*K.1^-1,2*K.1,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^2,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,-1,2,0,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1,-1,-1,-1,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^-2,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,-1,2,0,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^2,-1,-1,-1,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^2,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1,0,0,0,0,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,-1,2,0,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-2,-1,-1,-1,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1^2,2*K.1,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-1,0,0,0,0,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,0,0,-2,2,0,0,2,0,0,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-1,-2,0,0,-2*K.1^-2,-2*K.1^2,-2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,-2*K.1^-2,-2*K.1,-2*K.1^-1,-2*K.1^2,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^-1,0,0,0,0,0,0,0,0,0,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1^-1,-2*K.1^2,-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,0,0,-2,2,0,0,2,0,0,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1,-2,0,0,-2*K.1^2,-2*K.1^-2,-2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,-2*K.1^2,-2*K.1^-1,-2*K.1,-2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1,0,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,-2*K.1^-1,-2*K.1,-2*K.1^-2,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,0,0,-2,2,0,0,2,0,0,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^2,-2,0,0,-2*K.1^-1,-2*K.1,-2*K.1^-2,-2*K.1^2,0,0,0,0,0,0,0,0,-2*K.1^-1,-2*K.1^-2,-2*K.1^2,-2*K.1,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1^2,0,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^-2,0,0,0,0,0,0,0,0,-2*K.1^-2,-2*K.1^2,-2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,0,0,-2,2,0,0,2,0,0,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-2,-2,0,0,-2*K.1,-2*K.1^-1,-2*K.1^2,-2*K.1^-2,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1^2,-2*K.1^-2,-2*K.1^-1,2*K.1^-1,2*K.1^2,2*K.1,2*K.1^-2,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^2,0,0,0,0,0,0,0,0,-2*K.1^2,-2*K.1^-2,-2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,0,0,2,-2,0,0,2,0,0,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-1,-2,0,0,-2*K.1^-2,-2*K.1^2,-2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^2,-2*K.1^2,-2*K.1,-2*K.1^-2,-2*K.1^-1,0,0,0,0,0,0,0,0,0,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1^-1,-2*K.1^2,-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,0,0,2,-2,0,0,2,0,0,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1,-2,0,0,-2*K.1^2,-2*K.1^-2,-2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-2,-2*K.1^-2,-2*K.1^-1,-2*K.1^2,-2*K.1,0,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,-2*K.1^-1,-2*K.1,-2*K.1^-2,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,0,0,2,-2,0,0,2,0,0,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^2,-2,0,0,-2*K.1^-1,-2*K.1,-2*K.1^-2,-2*K.1^2,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1,-2*K.1,-2*K.1^-2,-2*K.1^-1,-2*K.1^2,0,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^-2,0,0,0,0,0,0,0,0,-2*K.1^-2,-2*K.1^2,-2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,0,0,2,-2,0,0,2,0,0,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-2,-2,0,0,-2*K.1,-2*K.1^-1,-2*K.1^2,-2*K.1^-2,0,0,0,0,0,0,0,0,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-1,-2*K.1^-1,-2*K.1^2,-2*K.1,-2*K.1^-2,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^2,0,0,0,0,0,0,0,0,-2*K.1^2,-2*K.1^-2,-2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,-1,2,0,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-1,-1,1,1,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-1,-2*K.1^-1,-2*K.1^2,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-2,-2*K.1^2,-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^2,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^2,K.1,K.1^-1,K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,-1,2,0,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1,-1,1,1,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1,-2*K.1,-2*K.1^-2,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1^2,-2*K.1^-2,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^-2,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,K.1^2,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-1,K.1,K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,-1,2,0,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^2,-1,1,1,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^2,-2*K.1^2,-2*K.1,-2*K.1^2,-2*K.1^-2,-2*K.1^-2,-2*K.1^-1,-2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1,0,0,0,0,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-2,K.1^2,K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,-1,2,0,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-2,-1,1,1,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-2,-2*K.1^-2,-2*K.1^-1,-2*K.1^-2,-2*K.1^2,-2*K.1^2,-2*K.1,-2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-1,0,0,0,0,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,K.1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,-2,2,0,0,0,0,-1,-2,0,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-1,-1,1,-1,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-1,-2*K.1^-1,2*K.1^2,2*K.1^-1,-2*K.1,2*K.1,2*K.1^-2,-2*K.1^2,-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-2*K.1,-2*K.1^-1,-2*K.1^-2,-2*K.1^2,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,K.1^-2,-1*K.1,K.1^-1,-1*K.1^2,K.1,-1*K.1^-1,K.1^2,K.1^-2,K.1,K.1^-1,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,-2,2,0,0,0,0,-1,-2,0,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1,-1,1,-1,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1,-2*K.1,2*K.1^-2,2*K.1,-2*K.1^-1,2*K.1^-1,2*K.1^2,-2*K.1^-2,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1^2,-2*K.1^-2,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^-1,K.1,-1*K.1^-2,K.1^-1,-1*K.1,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,-2,2,0,0,0,0,-1,-2,0,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^2,-1,1,-1,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^2,-2*K.1^2,2*K.1,2*K.1^2,-2*K.1^-2,2*K.1^-2,2*K.1^-1,-2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1,0,0,0,0,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^-2,K.1^2,-1*K.1,K.1^-2,-1*K.1^2,K.1,K.1^-1,K.1^-2,K.1^2,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,-2,2,0,0,0,0,-1,-2,0,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-2,-1,1,-1,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-2,-2*K.1^-2,2*K.1^-1,2*K.1^-2,-2*K.1^2,2*K.1^2,2*K.1,-2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^-1,0,0,0,0,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1,K.1,-1*K.1^2,K.1^-2,-1*K.1^-1,K.1^2,-1*K.1^-2,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,-2,0,0,0,0,-1,-2,0,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-1,-1,-1,1,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-1,-2*K.1^2,-2*K.1^-1,2*K.1,-2*K.1,-2*K.1^-2,2*K.1^2,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-2*K.1,-2*K.1^-1,-2*K.1^-2,-2*K.1^2,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,K.1^-2,-1*K.1^-2,K.1,-1*K.1^-1,K.1^2,-1*K.1,K.1^-1,-1*K.1^2,K.1^-2,K.1,K.1^-1,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,-2,0,0,0,0,-1,-2,0,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1,-1,-1,1,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1,-2*K.1^-2,-2*K.1,2*K.1^-1,-2*K.1^-1,-2*K.1^2,2*K.1^-2,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1^2,-2*K.1^-2,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^-1,-1*K.1,K.1^-2,-1*K.1^-1,K.1,-1*K.1^-2,K.1^2,K.1^-1,K.1,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,-2,0,0,0,0,-1,-2,0,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^2,-1,-1,1,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^2,-2*K.1,-2*K.1^2,2*K.1^-2,-2*K.1^-2,-2*K.1^-1,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1,0,0,0,0,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1^-2,-1*K.1^2,K.1,-1*K.1^-2,K.1^2,-1*K.1,K.1^-1,K.1^-2,K.1^2,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,-2,0,0,0,0,-1,-2,0,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-2,-1,-1,1,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^-2,-2*K.1^-1,-2*K.1^-2,2*K.1^2,-2*K.1^2,-2*K.1,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^-1,0,0,0,0,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,K.1,-1*K.1,K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^2,K.1^-2,-1*K.1^-1,K.1,K.1^2,K.1^-2,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[4, -4, 0, 0, 0, 0, 0, 0, -2, 0, 0, 4, 4, 4, 4, 2, 0, 0, -4, -4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |4,-4,0,0,0,0,0,0,-2,0,0,4*K.1^-2,4*K.1^2,4*K.1,4*K.1^-1,2,0,0,-4*K.1^-2,-4*K.1^2,-4*K.1,-4*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |4,-4,0,0,0,0,0,0,-2,0,0,4*K.1^2,4*K.1^-2,4*K.1^-1,4*K.1,2,0,0,-4*K.1^2,-4*K.1^-2,-4*K.1^-1,-4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |4,-4,0,0,0,0,0,0,-2,0,0,4*K.1^-1,4*K.1,4*K.1^-2,4*K.1^2,2,0,0,-4*K.1^-1,-4*K.1,-4*K.1^-2,-4*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-1,-2*K.1,-2*K.1^2,-2*K.1^-2,0,0,0,0,0,0,0,0,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |4,-4,0,0,0,0,0,0,-2,0,0,4*K.1,4*K.1^-1,4*K.1^2,4*K.1^-2,2,0,0,-4*K.1,-4*K.1^-1,-4*K.1^2,-4*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1^-1,-2*K.1^-2,-2*K.1^2,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_240_169:= KnownIrreducibles(CR);