/* Group 2304433152.a downloaded from the LMFDB on 29 December 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPerm := PermutationGroup< 27 | (1,24,15,5,20,10,4,21,16,8,26,18,2,23,13,3,22,14,7,27,17,9,25,12,6,19,11), (1,26,8,19,3,23,9,22,4,20,2,21,6,27,7,25,5,24)(10,16,14,17,13,11,12,18,15) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_2304433152_a := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := false, metacyclic := false, monomial := false, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := false, supersolvable := false>; /* Character Table */ G:= GPerm; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 189, G!(10,18)(11,12)(13,14)(15,16)>,< 2, 1512, G!(1,10)(2,13)(3,17)(4,16)(5,12)(6,14)(7,15)(8,11)(9,18)>,< 2, 11907, G!(10,18)(11,12)(13,14)(15,16)(19,20)(21,23)(22,24)(25,26)>,< 2, 95256, G!(1,25)(2,22)(3,20)(4,27)(5,19)(6,21)(7,24)(8,23)(9,26)(10,16)(11,17)(12,15)(13,14)>,< 2, 250047, G!(2,8)(3,7)(4,6)(5,9)(10,11)(12,18)(13,16)(14,15)(20,27)(21,22)(23,26)(24,25)>,< 3, 168, G!(19,26,22)(20,27,21)(23,25,24)>,< 3, 9408, G!(1,7,5)(2,3,8)(4,6,9)(19,24,20)(21,27,22)(23,26,25)>,< 3, 175616, G!(1,4,5)(2,3,6)(7,9,8)(10,16,11)(12,14,15)(13,17,18)(19,23,21)(20,22,27)(24,25,26)>,< 3, 508032, G!(1,14,27)(2,11,24)(3,12,26)(4,18,22)(5,17,23)(6,10,19)(7,15,21)(8,13,20)(9,16,25)>,< 3, 508032, G!(1,17,19)(2,12,26)(3,10,22)(4,15,20)(5,16,25)(6,14,27)(7,11,21)(8,18,23)(9,13,24)>,< 3, 508032, G!(1,19,17)(2,26,12)(3,22,10)(4,20,15)(5,25,16)(6,27,14)(7,21,11)(8,23,18)(9,24,13)>,< 3, 592704, G!(1,8,9)(2,4,6)(11,15,13)(12,16,14)(19,23,22)(20,21,24)>,< 3, 592704, G!(1,9,8)(2,6,4)(11,13,15)(12,14,16)(19,22,23)(20,24,21)>,< 4, 95256, G!(1,16)(2,12,3,11)(4,17,9,14)(5,18,6,15)(7,10,8,13)>,< 4, 6001128, G!(1,6)(2,8)(3,5)(4,9)(10,25,18,26)(11,24,12,22)(13,21,14,23)(15,20,16,19)(17,27)>,< 6, 21168, G!(10,11,12)(13,15,16)(14,18,17)(19,23)(20,27)(21,24)(22,26)>,< 6, 84672, G!(1,13)(2,18)(3,11)(4,15)(5,10)(6,16)(7,17)(8,12)(9,14)(19,27,25)(20,22,21)(23,26,24)>,< 6, 84672, G!(10,26,12,23,13,22)(11,20,14,24,16,27)(15,19,17,25,18,21)>,< 6, 592704, G!(1,7,6)(2,5,4)(3,8,9)(10,18)(11,12)(13,14)(15,16)(19,27,26)(20,22,24)(21,25,23)>,< 6, 666792, G!(2,3)(4,9)(5,6)(7,8)(10,13)(11,12)(14,17)(15,18)(19,22,26)(20,21,27)(23,24,25)>,< 6, 4741632, G!(1,6,8)(2,3,7)(4,5,9)(10,20,16,26,17,25)(11,19,14,21,18,27)(12,23,13,24,15,22)>,< 6, 5334336, G!(1,23,2,25,8,22)(3,19,4,20,5,27)(6,26,7,21,9,24)(10,16)(11,17)(12,15)(13,14)>,< 6, 5334336, G!(2,7,9)(3,5,8)(11,15,18,12,14,13)(16,17)(19,20,21)(22,25,24)>,< 6, 5334336, G!(2,9,7)(3,8,5)(11,13,14,12,18,15)(16,17)(19,21,20)(22,24,25)>,< 6, 10668672, G!(1,12,7,13,9,15)(2,16,4,10,3,17)(5,18)(6,11)(8,14)(19,21,25)(22,26,23)>,< 6, 10668672, G!(1,15,9,13,7,12)(2,17,3,10,4,16)(5,18)(6,11)(8,14)(19,25,21)(22,23,26)>,< 6, 16003008, G!(1,9,8)(2,6,4)(10,18)(11,14,15,12,13,16)(19,24,23,20,22,21)(25,26)>,< 6, 16003008, G!(1,8,9)(2,4,6)(10,18)(11,16,13,12,15,14)(19,21,22,20,23,24)(25,26)>,< 6, 16003008, G!(2,6,9,3,5,4)(7,8)(10,16,11,12,13,17)(15,18)(19,27,21,25,24,23)(20,22)>,< 6, 16003008, G!(2,4,5,3,9,6)(7,8)(10,17,13,12,11,16)(15,18)(19,23,24,25,21,27)(20,22)>,< 6, 32006016, G!(1,26,16,4,19,10)(2,22,18,6,21,11)(3,23,15,8,24,14)(5,20,12,7,25,17)(9,27,13)>,< 6, 32006016, G!(1,19,17)(2,23,12,8,26,18)(3,21,10,7,22,11)(4,27,15,6,20,14)(5,24,16,9,25,13)>,< 6, 32006016, G!(1,17,19)(2,18,26,8,12,23)(3,11,22,7,10,21)(4,14,20,6,15,27)(5,13,25,9,16,24)>,< 6, 32006016, G!(1,24)(2,20,7,25,6,22)(3,26,4,19,8,23)(5,21)(9,27)(10,15,17,16,13,14)(12,18)>,< 6, 32006016, G!(1,24)(2,22,6,25,7,20)(3,23,8,19,4,26)(5,21)(9,27)(10,14,13,16,17,15)(12,18)>,< 7, 648, G!(10,15,12,11,18,13,16)>,< 7, 46656, G!(1,6,2,8,3,7,9)(11,17,14,13,16,18,12)>,< 7, 93312, G!(10,13,15,17,16,14,18)(19,24,21,20,27,22,25)>,< 7, 1119744, G!(1,9,6,4,3,7,2)(10,18,12,15,11,14,16)(19,22,26,21,24,27,25)>,< 7, 2239488, G!(1,2,3,5,7,9,4)(10,13,14,17,15,16,11)(19,21,20,25,27,24,23)>,< 7, 3359232, G!(1,8,4,6,9,5,3)(10,11,16,14,18,12,17)(19,25,21,27,22,20,26)>,< 7, 3359232, G!(1,9,2,3,7,8,5)(10,14,11,18,15,16,13)(19,25,22,27,20,21,24)>,< 9, 504, G!(19,24,21,25,26,22,27,23,20)>,< 9, 28224, G!(10,13,15,11,14,17,18,16,12)(19,23,27,25,22,21,24,20,26)>,< 9, 56448, G!(1,3,4,7,8,6,5,2,9)(19,26,21,24,25,27,20,23,22)>,< 9, 56448, G!(1,3,7)(2,9,6)(4,5,8)(10,16,18,12,15,14,11,13,17)>,< 9, 526848, G!(1,8,3,6,7,9,2,5,4)(10,18,16,14,11,12,15,17,13)(19,21,24,20,25,23,22,26,27)>,< 9, 1053696, G!(1,8,3,2,4,7,5,6,9)(10,15,12,14,13,11,16,18,17)(19,26,25,24,20,23,21,22,27)>,< 9, 1580544, G!(1,2,3)(4,6,7)(5,9,8)(10,18,11,13,17,12,14,16,15)(19,24,20,27,23,25,21,22,26)>,< 9, 1580544, G!(1,2,7,4,3,5,8,9,6)(10,17,15,18,11,12,13,14,16)(19,21,20,23,22,24,27,26,25)>,< 9, 1580544, G!(1,5,6,7,9,8,4,3,2)(10,18,13)(11,14,17)(12,16,15)(19,22,21)(20,25,23)(24,27,26)>,< 9, 1580544, G!(1,6,7,2,8,9,5,4,3)(10,14,17,12,16,13,15,18,11)(19,25,22,24,23,21,20,26,27)>,< 9, 3161088, G!(1,9,4,7,2,8,3,6,5)(10,17,12,14,18,13,15,11,16)(19,27,20)(21,26,24)(22,25,23)>,< 9, 3556224, G!(4,7,6)(5,9,8)(10,15,17)(13,18,14)(19,23,27,26,25,21,22,24,20)>,< 9, 3556224, G!(4,6,7)(5,8,9)(10,17,15)(13,14,18)(19,20,24,22,21,25,26,27,23)>,< 9, 4741632, G!(1,3,4,8,2,9,6,7,5)(10,13,14,16,15,18,17,12,11)(19,20,24,21,26,22,27,25,23)>,< 9, 4741632, G!(1,5,7,6,9,2,8,4,3)(10,11,12,17,18,15,16,14,13)(19,23,25,27,22,26,21,24,20)>,< 9, 7112448, G!(1,9,5,2,6,3,8,7,4)(10,17,14)(11,13,16)(19,22,21,20,23,24,27,25,26)>,< 9, 7112448, G!(1,4,7,8,3,6,2,5,9)(10,14,17)(11,16,13)(19,26,25,27,24,23,20,21,22)>,< 9, 28449792, G!(1,14,19,2,17,20,7,16,21)(3,12,23,6,18,27,5,13,26)(4,11,25,9,10,22,8,15,24)>,< 9, 28449792, G!(1,26,17,4,24,18,5,25,13)(2,21,10,3,19,16,6,23,11)(7,20,14,9,22,15,8,27,12)>,< 9, 28449792, G!(1,13,25,5,18,24,4,17,26)(2,11,23,6,16,19,3,10,21)(7,12,27,8,15,22,9,14,20)>,< 12, 5334336, G!(1,16)(2,11,3,12)(4,14,9,17)(5,15,6,18)(7,13,8,10)(19,26,22)(20,27,21)(23,25,24)>,< 12, 32006016, G!(2,9,8)(3,4,7)(10,26,17,24,16,21,12,19,15,27,18,25)(11,22)(13,20,14,23)>,< 12, 32006016, G!(2,8,9)(3,7,4)(10,25,18,27,15,19,12,21,16,24,17,26)(11,22)(13,23,14,20)>,< 12, 96018048, G!(1,2,9,6,8,4)(3,5)(10,26,18,25)(11,19,14,24,15,23,12,20,13,22,16,21)(17,27)>,< 12, 96018048, G!(1,4,8,6,9,2)(3,5)(10,25,18,26)(11,21,16,22,13,20,12,23,15,24,14,19)(17,27)>,< 14, 81648, G!(1,7)(2,3)(4,8)(5,9)(10,18,12,13,16,15,17)>,< 14, 326592, G!(1,11,6,17,2,14,8,13,3,16,7,18,9,12)(4,15)(5,10)>,< 14, 326592, G!(1,17)(2,18)(3,13)(4,11)(5,14)(6,10)(7,16)(8,12)(9,15)(19,21,27,25,24,20,22)>,< 14, 2571912, G!(1,3)(2,7)(4,9)(5,8)(10,15)(11,16)(12,18)(13,17)(19,25,27,23,22,24,20)>,< 14, 2939328, G!(1,8,9,2,7,6,3)(10,13,15,17,16,14,18)(19,21)(20,24)(23,27)(25,26)>,< 14, 5878656, G!(1,9)(2,7)(3,5)(6,8)(11,17,12,14,15,16,13)(19,22,25,26,23,24,21)>,< 14, 20575296, G!(1,21,9,20,6,26,8,23,2,22,4,25,5,27)(3,24)(7,19)(11,13)(12,18)(14,16)(15,17)>,< 14, 23514624, G!(1,18,8,12,4,17,6,10,9,11,5,16,3,14)(2,13)(7,15)(19,22,25,20,21,26,27)>,< 14, 23514624, G!(1,18,9,15,2,16,3,13,7,10,8,14,5,11)(4,17)(6,12)(19,20,25,21,22,24,27)>,< 14, 23514624, G!(1,16)(2,18,5,14,6,13,9,10,3,12,4,17,8,11)(7,15)(19,20,23,22,27,24,21)>,< 18, 63504, G!(1,7)(2,3)(4,8)(5,9)(19,23,25,21,24,27,26,20,22)>,< 18, 254016, G!(1,13)(2,18)(3,11)(4,15)(5,10)(6,16)(7,17)(8,12)(9,14)(19,22,24,27,21,23,25,20,26)>,< 18, 254016, G!(1,11,3,10,5,16,8,15,2,17,4,13,6,14,7,12,9,18)>,< 18, 1778112, G!(1,6,5,9,3,4,2,8,7)(10,12,11,17,15,16,14,18,13)(19,24)(20,21)(23,25)(26,27)>,< 18, 2000376, G!(1,5)(2,3)(4,7)(6,8)(10,14)(11,18)(12,15)(13,17)(19,27,23,22,20,24,26,21,25)>,< 18, 3556224, G!(1,7,3)(2,6,9)(4,8,5)(10,14,16,11,18,13,12,17,15)(19,23)(20,27)(21,24)(22,26)>,< 18, 3556224, G!(1,2,3,4,8,9,7,6,5)(10,17,14,16,18,15,11,13,12)(19,26)(20,23)(21,25)(24,27)>,< 18, 14224896, G!(1,3,2)(4,7,6)(5,8,9)(10,27,18,23,11,25,13,21,17,22,12,26,14,19,16,24,15,20)>,< 18, 14224896, G!(1,23,2,22,3,26,4,20,8,21,9,25,7,27,6,24,5,19)(10,13,17,15,12,11,14,16,18)>,< 18, 14224896, G!(1,5,2,8,7,9,4,6,3)(10,23,17,22,15,24,18,27,11,26,12,25,13,19,14,21,16,20)>,< 18, 14224896, G!(1,8,5,4,6,3,7,2,9)(10,25,18,23,13,20)(11,27,14,26,17,24)(12,19,16,22,15,21)>,< 18, 14224896, G!(1,17,6,12,7,16,2,13,8,15,9,18,5,11,4,10,3,14)(19,21,25,20,22,26,24,27,23)>,< 18, 16003008, G!(1,4)(2,6)(3,8)(5,7)(10,23,13,27,15,25,11,22,14,21,17,24,18,20,16,26,12,19)>,< 18, 21337344, G!(2,7,4)(3,9,6)(10,24,18,26,16,21,12,27,15,23,11,19,13,20,17,22,14,25)>,< 18, 21337344, G!(2,4,7)(3,6,9)(10,25,14,22,17,20,13,19,11,23,15,27,12,21,16,26,18,24)>,< 18, 21337344, G!(1,9,3,4,8,6,5,7,2)(10,19)(11,21,13,27,15,22)(12,26,14,23,16,25)(17,20)(18,24)>,< 18, 21337344, G!(1,2,7,5,6,8,4,3,9)(10,19)(11,22,15,27,13,21)(12,25,16,23,14,26)(17,20)(18,24)>,< 18, 21337344, G!(1,2,9,7,5,3,6,4,8)(10,18)(11,14,15,12,13,16)(19,23,20,27,21,22,26,25,24)>,< 18, 21337344, G!(1,8,4,6,3,5,7,9,2)(10,18)(11,16,13,12,15,14)(19,24,25,26,22,21,27,20,23)>,< 18, 21337344, G!(2,8,9)(3,7,4)(11,13,15,16,14,18)(12,17)(19,26,22,25,20,24,23,21,27)>,< 18, 21337344, G!(2,9,8)(3,4,7)(11,18,14,16,15,13)(12,17)(19,27,21,23,24,20,25,22,26)>,< 18, 32006016, G!(2,3)(4,5,7,9,6,8)(10,14,15,13,17,18)(11,12)(19,21,23,22,27,24,26,20,25)>,< 18, 32006016, G!(2,3)(4,8,6,9,7,5)(10,18,17,13,15,14)(11,12)(19,25,20,26,24,27,22,23,21)>,< 18, 42674688, G!(1,9,3,6,4,7,8,5,2)(10,19,13,20,14,24,16,21,15,26,18,22,17,27,12,25,11,23)>,< 18, 42674688, G!(1,2,5,8,7,4,6,3,9)(10,23,11,25,12,27,17,22,18,26,15,21,16,24,14,20,13,19)>,< 18, 64012032, G!(1,20,9,23,5,24,2,27,6,25,3,26,8,19,7,22,4,21)(10,13,17,16,14,11)(12,15)>,< 18, 64012032, G!(1,21,4,22,7,19,8,26,3,25,6,27,2,24,5,23,9,20)(10,11,14,16,17,13)(12,15)>,< 21, 72576, G!(1,7,4,3,8,5,2)(19,26,24)(20,25,21)(22,27,23)>,< 21, 2032128, G!(1,7,5)(2,3,8)(4,6,9)(10,13,11,15,16,18,12)(19,24,20)(21,27,22)(23,26,25)>,< 21, 2612736, G!(1,7,8,6,9,3,2)(11,18,13,17,12,16,14)(19,25,27)(20,21,22)(23,24,26)>,< 21, 5225472, G!(1,7,6)(2,5,4)(3,8,9)(10,14,17,13,18,16,15)(19,22,20,24,25,27,21)>,< 21, 109734912, G!(1,15,22,9,11,26,6,14,21,4,16,24,3,10,27,7,18,25,2,12,19)(5,17,23)(8,13,20)>,< 21, 109734912, G!(1,27,16,2,24,11,3,23,10,5,19,13,7,21,14,9,20,17,4,25,15)(6,26,12)(8,22,18)>,< 21, 109734912, G!(1,15,25,4,17,20,9,14,21,7,13,19,5,10,23,3,11,24,2,16,27)(6,12,26)(8,18,22)>,< 27, 85349376, G!(1,18,26,8,16,27,3,14,19,6,11,21,7,12,24,9,15,20,2,17,25,5,13,23,4,10,22)>,< 27, 85349376, G!(1,21,18,8,22,17,3,27,10,2,19,15,4,26,12,7,25,14,5,24,13,6,20,11,9,23,16)>,< 27, 85349376, G!(1,16,23,9,11,20,6,13,24,5,14,25,7,12,26,4,15,19,2,10,27,3,17,22,8,18,21)>,< 28, 20575296, G!(1,15,3,10)(2,12,7,18)(4,16,9,11)(5,17,8,13)(6,14)(19,22,25,24,27,20,23)>,< 36, 16003008, G!(1,18,5,11)(2,12,3,15)(4,10,7,14)(6,17,8,13)(9,16)(19,24,27,26,23,21,22,25,20)>,< 36, 64012032, G!(1,16)(2,12,3,11)(4,10,5,14,7,15,9,13,6,17,8,18)(19,24,21,26,23,20,22,25,27)>,< 36, 64012032, G!(1,16)(2,11,3,12)(4,18,8,17,6,13,9,15,7,14,5,10)(19,27,25,22,20,23,26,21,24)>,< 42, 4572288, G!(1,7)(2,3)(4,8)(5,9)(10,15,13,18,17,16,12)(19,21,26)(20,23,24)(22,25,27)>,< 42, 18289152, G!(1,14,7,11,8,18,6,13,9,17,3,12,2,16)(4,15)(5,10)(19,27,25)(20,22,21)(23,26,24)>,< 42, 18289152, G!(1,10,8,17,6,12)(2,13,7,18,3,16)(4,14,9,11,5,15)(19,20,25,21,22,24,27)>,< 63, 72576, G!(10,18,12,13,16,15,17)(19,22,20,26,27,24,21,25,23)>,< 63, 72576, G!(10,15,13,18,17,16,12)(19,24,22,21,20,25,26,23,27)>,< 63, 72576, G!(10,16,18,15,12,17,13)(19,20,27,21,23,22,26,24,25)>,< 63, 2032128, G!(1,2,9,8,7,5,6,3,4)(10,13,11,17,18,15,12,16,14)(19,21,27,25,24,20,22)>,< 63, 2032128, G!(1,5,2,6,9,3,8,4,7)(10,15,13,12,11,16,17,14,18)(19,20,25,21,22,24,27)>,< 63, 2032128, G!(1,9,7,6,4,2,8,5,3)(10,11,18,12,14,13,17,15,16)(19,24,21,20,27,22,25)>,< 63, 2612736, G!(1,3,6,7,2,9,8)(11,16,17,18,14,12,13)(19,26,20,25,23,21,27,24,22)>,< 63, 2612736, G!(1,9,7,3,8,2,6)(11,12,18,16,13,14,17)(19,21,26,27,20,24,25,22,23)>,< 63, 2612736, G!(1,2,3,9,6,8,7)(11,14,16,12,17,13,18)(19,20,23,27,22,26,25,21,24)>,< 63, 4064256, G!(1,8,9,7,2,4,5,3,6)(10,18,15,13,12,16,11)(19,25,22,24,23,21,20,26,27)>,< 63, 4064256, G!(1,4,8,5,9,3,7,6,2)(10,16,13,18,11,12,15)(19,21,25,20,22,26,24,27,23)>,< 63, 4064256, G!(1,9,2,5,6,8,7,4,3)(10,12,18,16,15,11,13)(19,22,23,20,27,25,24,21,26)>,< 63, 4064256, G!(1,5,3,7,2,8,4)(10,12,13)(11,14,16)(15,17,18)(19,20,27,26,25,23,24,21,22)>,< 63, 4064256, G!(1,8,7,5,4,2,3)(10,13,12)(11,16,14)(15,18,17)(19,23,20,24,27,21,26,22,25)>,< 63, 4064256, G!(1,2,5,8,3,4,7)(10,13,12)(11,16,14)(15,18,17)(19,27,25,24,22,20,26,23,21)>,< 63, 5225472, G!(1,2,3,7,5,8,6,4,9)(10,16,13,14,15,18,17)(19,27,24,22,21,25,20)>,< 63, 5225472, G!(1,8,2,6,3,4,7,9,5)(10,18,14,16,17,15,13)(19,25,22,27,20,21,24)>,< 63, 5225472, G!(1,3,5,6,9,2,7,8,4)(10,15,16,18,13,17,14)(19,21,27,25,24,20,22)>,< 126, 4572288, G!(1,7)(2,3)(4,8)(5,9)(10,16,18,15,12,17,13)(19,24,22,21,20,25,26,23,27)>,< 126, 4572288, G!(1,7)(2,3)(4,8)(5,9)(10,17,15,16,13,12,18)(19,25,24,26,22,23,21,27,20)>,< 126, 4572288, G!(1,7)(2,3)(4,8)(5,9)(10,12,16,17,18,13,15)(19,22,20,26,27,24,21,25,23)>,< 126, 18289152, G!(1,18,3,14,6,12,7,13,2,11,9,16,8,17)(4,15)(5,10)(19,21,26,27,20,24,25,22,23)>,< 126, 18289152, G!(1,12,9,18,7,16,3,13,8,14,2,17,6,11)(4,15)(5,10)(19,24,21,25,26,22,27,23,20)>,< 126, 18289152, G!(1,16,2,12,3,17,9,13,6,18,8,11,7,14)(4,15)(5,10)(19,26,20,25,23,21,27,24,22)>,< 126, 18289152, G!(1,14,2,10,9,13,8,11,7,17,5,18,6,15,3,12,4,16)(19,24,21,20,27,22,25)>,< 126, 18289152, G!(1,13,5,12,2,11,6,16,9,17,3,14,8,18,4,10,7,15)(19,22,20,24,25,27,21)>,< 126, 18289152, G!(1,18,9,12,7,14,6,13,4,17,2,15,8,16,5,10,3,11)(19,27,24,22,21,25,20)>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,K.1^-1,K.1,1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,1,K.1^-1,K.1,1,K.1,K.1^-1,1,1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,1,K.1,K.1^-1,1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,K.1,K.1^-1,1,K.1^-1,K.1,1,1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,1,-1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,-1,-1,1,-1,-1,1,1,-1,-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,K.1^-1,K.1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,1,1,1,1,1,K.1^-1,K.1,1,K.1,K.1^-1,-1,-1,-1*K.1,-1*K.1^-1,1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,1,-1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,-1,-1,1,-1,-1,1,1,-1,-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1,K.1^-1,1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,1,K.1,K.1^-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,1,1,1,1,1,K.1,K.1^-1,1,K.1^-1,K.1,-1,-1,-1*K.1^-1,-1*K.1,1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[2, 2, 0, 2, 0, 2, 2, 2, 2, -1, -1, -1, 2, 2, 0, 0, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 2, 2, -1, -1, -1, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, 0, 0, 0, 0, 0, 2, 0, 0, 2, 2, 2, 0, 0, 0, 0, 2, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 2, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,0,2,0,2,2,2,2,-1,-1*K.1,-1*K.1^-1,2*K.1^-1,2*K.1,0,0,2,0,0,2,2,0,0,2*K.1,2*K.1^-1,0,0,2*K.1,2*K.1^-1,2*K.1,2*K.1^-1,-1,-1*K.1^-1,-1*K.1,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,2,0,0,2,2,2,0,0,0,0,2,0,0,2,2,2,2,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,0,0,0,0,2,2,2,2,-1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,0,0,0,0,2,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,0,2,0,2,2,2,2,-1,-1*K.1^-1,-1*K.1,2*K.1,2*K.1^-1,0,0,2,0,0,2,2,0,0,2*K.1^-1,2*K.1,0,0,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1,-1,-1*K.1,-1*K.1^-1,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2*K.1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,2,0,0,2,2,2,0,0,0,0,2,0,0,2,2,2,2,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,0,0,0,0,2,2,2,2,-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1*K.1^-1,0,0,0,0,2,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[21, 13, -7, 5, 1, -3, 12, 3, -6, 0, 0, 0, 3, 3, -7, 1, 4, 2, -7, -5, -4, 2, 1, 1, 1, -1, -1, -1, -1, -3, -3, 0, 0, 0, 1, 1, 14, 7, 7, 0, 0, 0, 0, 15, 9, 9, 6, 3, 3, 3, -3, 0, 3, 0, 3, 3, 3, 3, 3, 3, 0, 0, 0, 2, -1, -1, 1, 1, 6, -7, 0, -2, -1, -1, 1, 0, 0, 0, 7, -1, -7, 1, -1, -2, 1, -1, -1, -1, 2, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 5, -4, -2, -2, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -3, 2, 0, 8, 8, 8, 2, 2, 2, 1, 1, 1, 2, 2, 2, -1, -1, -1, 1, 1, 1, 0, 0, 0, -1, -1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[21, 13, 7, 5, -1, -3, 12, 3, -6, 0, 0, 0, 3, 3, 7, -1, 4, -2, 7, -5, -4, -2, -1, 1, 1, 1, 1, -1, -1, -3, -3, 0, 0, 0, -1, -1, 14, 7, 7, 0, 0, 0, 0, 15, 9, 9, 6, 3, 3, 3, -3, 0, 3, 0, 3, 3, 3, 3, 3, 3, 0, 0, 0, -2, 1, 1, -1, -1, 6, 7, 0, -2, -1, -1, -1, 0, 0, 0, 7, 1, 7, 1, -1, -2, 1, 1, 1, 1, -2, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 5, -4, -2, -2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, -3, -2, 0, 8, 8, 8, 2, 2, 2, 1, 1, 1, 2, 2, 2, -1, -1, -1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |21,13,-7,5,1,-3,12,3,-6,0,0,0,3*K.1^-1,3*K.1,-7,1,4,2,-7,-5,-4,2,1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-3*K.1,-3*K.1^-1,0,0,0,K.1,K.1^-1,14,7,7,0,0,0,0,15,9,9,6,3,3,3,-3,0,3,0,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,0,0,0,2,-1*K.1,-1*K.1^-1,K.1^-1,K.1,6,-7,0,-2,-1,-1,1,0,0,0,7,-1,-7,1,-1,-2,1,-1,-1,-1,2,-1,1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,5,-4,-2,-2,0,0,0,0,0,0,0,-1,-1*K.1^-1,-1*K.1,-3,2,0,8,8,8,2,2,2,1,1,1,2,2,2,-1,-1,-1,1,1,1,0,0,0,-1,-1,-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |21,13,-7,5,1,-3,12,3,-6,0,0,0,3*K.1,3*K.1^-1,-7,1,4,2,-7,-5,-4,2,1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-3*K.1^-1,-3*K.1,0,0,0,K.1^-1,K.1,14,7,7,0,0,0,0,15,9,9,6,3,3,3,-3,0,3,0,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,0,0,0,2,-1*K.1^-1,-1*K.1,K.1,K.1^-1,6,-7,0,-2,-1,-1,1,0,0,0,7,-1,-7,1,-1,-2,1,-1,-1,-1,2,-1,1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,5,-4,-2,-2,0,0,0,0,0,0,0,-1,-1*K.1,-1*K.1^-1,-3,2,0,8,8,8,2,2,2,1,1,1,2,2,2,-1,-1,-1,1,1,1,0,0,0,-1,-1,-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |21,13,7,5,-1,-3,12,3,-6,0,0,0,3*K.1^-1,3*K.1,7,-1,4,-2,7,-5,-4,-2,-1,K.1,K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-3*K.1,-3*K.1^-1,0,0,0,-1*K.1,-1*K.1^-1,14,7,7,0,0,0,0,15,9,9,6,3,3,3,-3,0,3,0,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,0,0,0,-2,K.1,K.1^-1,-1*K.1^-1,-1*K.1,6,7,0,-2,-1,-1,-1,0,0,0,7,1,7,1,-1,-2,1,1,1,1,-2,1,-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,5,-4,-2,-2,0,0,0,0,0,0,0,1,K.1^-1,K.1,-3,-2,0,8,8,8,2,2,2,1,1,1,2,2,2,-1,-1,-1,1,1,1,0,0,0,1,1,1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |21,13,7,5,-1,-3,12,3,-6,0,0,0,3*K.1,3*K.1^-1,7,-1,4,-2,7,-5,-4,-2,-1,K.1^-1,K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-3*K.1^-1,-3*K.1,0,0,0,-1*K.1^-1,-1*K.1,14,7,7,0,0,0,0,15,9,9,6,3,3,3,-3,0,3,0,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,0,0,0,-2,K.1^-1,K.1,-1*K.1,-1*K.1^-1,6,7,0,-2,-1,-1,-1,0,0,0,7,1,7,1,-1,-2,1,1,1,1,-2,1,-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,5,-4,-2,-2,0,0,0,0,0,0,0,1,K.1,K.1^-1,-3,-2,0,8,8,8,2,2,2,1,1,1,2,2,2,-1,-1,-1,1,1,1,0,0,0,1,1,1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[24, 16, 8, 8, 0, 0, 15, 6, -3, 0, 0, 0, 6, 6, 8, 0, 7, -1, 8, -2, -1, -1, 0, 4, 4, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 17, 10, 10, 3, 3, 3, 3, 15, 6, 6, 6, -3, -3, -3, -3, -3, -3, -3, 3, 3, -3, -3, 0, 0, 0, 0, 0, -1, 2, 2, 0, 0, 9, 8, 1, 1, 2, 2, 0, 1, 1, 1, 7, -1, 8, -2, -1, -2, -2, -1, -1, -1, -1, -1, 0, 2, -1, -1, 2, 1, -2, -2, 1, -1, -1, -1, -1, 0, 0, 8, -1, 1, 1, 0, 0, 0, 0, 0, 0, 1, -1, -1, -1, 0, -1, 1, 8, 8, 8, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 0, 0, 0, -1, -1, -1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[24, 16, -8, 8, 0, 0, 15, 6, -3, 0, 0, 0, 6, 6, -8, 0, 7, 1, -8, -2, -1, 1, 0, 4, 4, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 17, 10, 10, 3, 3, 3, 3, 15, 6, 6, 6, -3, -3, -3, -3, -3, -3, -3, 3, 3, -3, -3, 0, 0, 0, 0, 0, 1, -2, -2, 0, 0, 9, -8, -1, 1, 2, 2, 0, -1, -1, -1, 7, 1, -8, -2, -1, -2, -2, 1, 1, 1, 1, 1, 0, -2, 1, 1, -2, 1, -2, -2, 1, -1, -1, 1, 1, 0, 0, 8, -1, 1, 1, 0, 0, 0, 0, 0, 0, -1, 1, 1, 1, 0, 1, -1, 8, 8, 8, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 0, 0, 0, 1, 1, 1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |24,16,8,8,0,0,15,6,-3,0,0,0,6*K.1^-1,6*K.1,8,0,7,-1,8,-2,-1,-1,0,4*K.1,4*K.1^-1,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,17,10,10,3,3,3,3,15,6,6,6,-3,-3,-3,-3,-3,-3,-3,3*K.1^-1,3*K.1,-3*K.1^-1,-3*K.1,0,0,0,0,0,-1,2*K.1,2*K.1^-1,0,0,9,8,1,1,2,2,0,1,1,1,7,-1,8,-2,-1,-2,-2,-1,-1,-1,-1,-1,0,2*K.1,-1*K.1^-1,-1*K.1,2*K.1^-1,K.1^-1,-2*K.1,-2*K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,0,0,8,-1,1,1,0,0,0,0,0,0,1,-1,-1*K.1^-1,-1*K.1,0,-1,1,8,8,8,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,0,0,0,-1,-1,-1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |24,16,8,8,0,0,15,6,-3,0,0,0,6*K.1,6*K.1^-1,8,0,7,-1,8,-2,-1,-1,0,4*K.1^-1,4*K.1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,17,10,10,3,3,3,3,15,6,6,6,-3,-3,-3,-3,-3,-3,-3,3*K.1,3*K.1^-1,-3*K.1,-3*K.1^-1,0,0,0,0,0,-1,2*K.1^-1,2*K.1,0,0,9,8,1,1,2,2,0,1,1,1,7,-1,8,-2,-1,-2,-2,-1,-1,-1,-1,-1,0,2*K.1^-1,-1*K.1,-1*K.1^-1,2*K.1,K.1,-2*K.1^-1,-2*K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,0,0,8,-1,1,1,0,0,0,0,0,0,1,-1,-1*K.1,-1*K.1^-1,0,-1,1,8,8,8,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,0,0,0,-1,-1,-1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |24,16,-8,8,0,0,15,6,-3,0,0,0,6*K.1^-1,6*K.1,-8,0,7,1,-8,-2,-1,1,0,4*K.1,4*K.1^-1,-2*K.1^-1,-2*K.1,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,17,10,10,3,3,3,3,15,6,6,6,-3,-3,-3,-3,-3,-3,-3,3*K.1^-1,3*K.1,-3*K.1^-1,-3*K.1,0,0,0,0,0,1,-2*K.1,-2*K.1^-1,0,0,9,-8,-1,1,2,2,0,-1,-1,-1,7,1,-8,-2,-1,-2,-2,1,1,1,1,1,0,-2*K.1,K.1^-1,K.1,-2*K.1^-1,K.1^-1,-2*K.1,-2*K.1^-1,K.1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,0,0,8,-1,1,1,0,0,0,0,0,0,-1,1,K.1^-1,K.1,0,1,-1,8,8,8,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,0,0,0,1,1,1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |24,16,-8,8,0,0,15,6,-3,0,0,0,6*K.1,6*K.1^-1,-8,0,7,1,-8,-2,-1,1,0,4*K.1^-1,4*K.1,-2*K.1,-2*K.1^-1,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,17,10,10,3,3,3,3,15,6,6,6,-3,-3,-3,-3,-3,-3,-3,3*K.1,3*K.1^-1,-3*K.1,-3*K.1^-1,0,0,0,0,0,1,-2*K.1^-1,-2*K.1,0,0,9,-8,-1,1,2,2,0,-1,-1,-1,7,1,-8,-2,-1,-2,-2,1,1,1,1,1,0,-2*K.1^-1,K.1,K.1^-1,-2*K.1,K.1,-2*K.1^-1,-2*K.1,K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,0,0,8,-1,1,1,0,0,0,0,0,0,-1,1,K.1,K.1^-1,0,1,-1,8,8,8,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,0,0,0,1,1,1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[63, 39, -21, 15, 3, -9, 45, 27, 9, 0, 0, 0, 0, 0, -21, 3, 21, -3, -21, 3, -3, -3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 42, 21, 21, 0, 0, 0, 0, 42, 21, 21, 24, 0, 0, 0, 6, 3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 18, -21, 0, -6, -3, -3, 3, 0, 0, 0, 18, 0, -21, -3, -6, 0, -3, 0, 0, 0, -3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 6, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 21, 21, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0, -3, -3, -3, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[63, 39, 21, 15, -3, -9, 45, 27, 9, 0, 0, 0, 0, 0, 21, -3, 21, 3, 21, 3, -3, 3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 42, 21, 21, 0, 0, 0, 0, 42, 21, 21, 24, 0, 0, 0, 6, 3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 18, 21, 0, -6, -3, -3, -3, 0, 0, 0, 18, 0, 21, -3, -6, 0, -3, 0, 0, 0, 3, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 6, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 21, 21, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0, -3, -3, -3, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[81, 57, 27, 33, 3, 9, 54, 27, 0, 0, 0, 0, 0, 0, 27, 3, 30, 0, 27, 3, 6, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 53, 25, 25, -3, -3, -3, -3, 54, 27, 27, 27, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 29, 27, -1, 5, 1, 1, 3, -1, -1, -1, 30, 0, 27, 3, 6, 3, 3, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, -1, -2, -2, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 2, 0, -1, 26, 26, 26, -1, -1, -1, -2, -2, -2, -1, -1, -1, -1, -1, -1, -2, -2, -2, 2, 2, 2, 0, 0, 0, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[81, 57, -27, 33, -3, 9, 54, 27, 0, 0, 0, 0, 0, 0, -27, -3, 30, 0, -27, 3, 6, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 53, 25, 25, -3, -3, -3, -3, 54, 27, 27, 27, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 29, -27, 1, 5, 1, 1, -3, 1, 1, 1, 30, 0, -27, 3, 6, 3, 3, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, -1, -2, -2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 26, 26, 26, -1, -1, -1, -2, -2, -2, -1, -1, -1, -1, -1, -1, -2, -2, -2, 2, 2, 2, 0, 0, 0, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[147, 35, 7, -13, 7, 3, 21, -24, 12, 0, 0, 0, 3, 3, -1, -1, -19, 7, -2, 8, 5, -2, -2, -1, -1, 1, 1, -1, -1, 3, 3, 0, 0, 0, 1, 1, 49, 0, 0, 0, 0, 0, 0, 63, 15, 15, -9, 3, 3, 3, 0, -3, 3, -3, 3, 3, 3, 3, 3, 3, 0, 0, 0, -1, -1, -1, -1, -1, -7, 0, 7, 1, 0, 0, 0, 0, 0, 0, -1, 7, 1, -1, -1, -1, -1, 1, -2, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -14, 4, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 2, 0, -2, 7, 7, 7, 1, 1, 1, 0, 0, 0, 1, 1, 1, -2, -2, -2, 0, 0, 0, -1, -1, -1, 0, 0, 0, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[147, 35, -7, -13, -7, 3, 21, -24, 12, 0, 0, 0, 3, 3, 1, 1, -19, -7, 2, 8, 5, 2, 2, -1, -1, -1, -1, -1, -1, 3, 3, 0, 0, 0, -1, -1, 49, 0, 0, 0, 0, 0, 0, 63, 15, 15, -9, 3, 3, 3, 0, -3, 3, -3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 1, 1, 1, 1, 1, -7, 0, -7, 1, 0, 0, 0, 0, 0, 0, -1, -7, -1, -1, -1, -1, -1, -1, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -14, 4, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 0, 2, 7, 7, 7, 1, 1, 1, 0, 0, 0, 1, 1, 1, -2, -2, -2, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |147,35,7,-13,7,3,21,-24,12,0,0,0,3*K.1^-1,3*K.1,-1,-1,-19,7,-2,8,5,-2,-2,-1*K.1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,3*K.1,3*K.1^-1,0,0,0,K.1,K.1^-1,49,0,0,0,0,0,0,63,15,15,-9,3,3,3,0,-3,3,-3,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,0,0,0,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-7,0,7,1,0,0,0,0,0,0,-1,7,1,-1,-1,-1,-1,1,-2,1,1,1,1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1^-1,K.1,-14,4,0,0,0,0,0,0,0,0,-1,-1,-1*K.1^-1,-1*K.1,2,0,-2,7,7,7,1,1,1,0,0,0,1,1,1,-2,-2,-2,0,0,0,-1,-1,-1,0,0,0,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |147,35,7,-13,7,3,21,-24,12,0,0,0,3*K.1,3*K.1^-1,-1,-1,-19,7,-2,8,5,-2,-2,-1*K.1^-1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,3*K.1^-1,3*K.1,0,0,0,K.1^-1,K.1,49,0,0,0,0,0,0,63,15,15,-9,3,3,3,0,-3,3,-3,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,0,0,0,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-7,0,7,1,0,0,0,0,0,0,-1,7,1,-1,-1,-1,-1,1,-2,1,1,1,1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1,K.1^-1,-14,4,0,0,0,0,0,0,0,0,-1,-1,-1*K.1,-1*K.1^-1,2,0,-2,7,7,7,1,1,1,0,0,0,1,1,1,-2,-2,-2,0,0,0,-1,-1,-1,0,0,0,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |147,35,-7,-13,-7,3,21,-24,12,0,0,0,3*K.1^-1,3*K.1,1,1,-19,-7,2,8,5,2,2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,3*K.1,3*K.1^-1,0,0,0,-1*K.1,-1*K.1^-1,49,0,0,0,0,0,0,63,15,15,-9,3,3,3,0,-3,3,-3,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,0,0,0,1,K.1,K.1^-1,K.1^-1,K.1,-7,0,-7,1,0,0,0,0,0,0,-1,-7,-1,-1,-1,-1,-1,-1,2,-1,-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-14,4,0,0,0,0,0,0,0,0,1,1,K.1^-1,K.1,2,0,2,7,7,7,1,1,1,0,0,0,1,1,1,-2,-2,-2,0,0,0,-1,-1,-1,0,0,0,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |147,35,-7,-13,-7,3,21,-24,12,0,0,0,3*K.1,3*K.1^-1,1,1,-19,-7,2,8,5,2,2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,3*K.1^-1,3*K.1,0,0,0,-1*K.1^-1,-1*K.1,49,0,0,0,0,0,0,63,15,15,-9,3,3,3,0,-3,3,-3,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,0,0,0,1,K.1^-1,K.1,K.1,K.1^-1,-7,0,-7,1,0,0,0,0,0,0,-1,-7,-1,-1,-1,-1,-1,-1,2,-1,-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-14,4,0,0,0,0,0,0,0,0,1,1,K.1,K.1^-1,2,0,2,7,7,7,1,1,1,0,0,0,1,1,1,-2,-2,-2,0,0,0,-1,-1,-1,0,0,0,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[192, 64, 8, 0, 8, 0, 48, -15, 3, 0, 0, 0, 12, 12, 0, 0, -8, 8, -1, 1, 0, -1, -1, 4, 4, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 80, 17, 17, 3, 3, 3, 3, 48, -15, -15, -15, 3, 3, 3, 3, 3, 3, 3, 0, 0, 3, 3, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 8, 1, 8, 0, 1, 1, 1, 1, 1, 1, -8, 8, -1, 1, 0, 1, 1, -1, -1, -1, -1, -1, -1, -1, 2, 2, -1, -2, 1, 1, -2, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[192, 64, -8, 0, -8, 0, 48, -15, 3, 0, 0, 0, 12, 12, 0, 0, -8, -8, 1, 1, 0, 1, 1, 4, 4, -2, -2, 0, 0, 0, 0, 0, 0, 0, -2, -2, 80, 17, 17, 3, 3, 3, 3, 48, -15, -15, -15, 3, 3, 3, 3, 3, 3, 3, 0, 0, 3, 3, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 8, -1, -8, 0, 1, 1, -1, -1, -1, -1, -8, -8, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, -2, -2, 1, -2, 1, 1, -2, 0, 0, 1, 1, 1, 1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |192,64,8,0,8,0,48,-15,3,0,0,0,12*K.1^-1,12*K.1,0,0,-8,8,-1,1,0,-1,-1,4*K.1,4*K.1^-1,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,2*K.1,2*K.1^-1,80,17,17,3,3,3,3,48,-15,-15,-15,3,3,3,3,3,3,3,0,0,3*K.1^-1,3*K.1,-3*K.1,-3*K.1^-1,0,0,0,0,0,0,0,0,8,1,8,0,1,1,1,1,1,1,-8,8,-1,1,0,1,1,-1,-1,-1,-1,-1,-1,-1*K.1,2*K.1^-1,2*K.1,-1*K.1^-1,-2*K.1^-1,K.1,K.1^-1,-2*K.1,0,0,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |192,64,8,0,8,0,48,-15,3,0,0,0,12*K.1,12*K.1^-1,0,0,-8,8,-1,1,0,-1,-1,4*K.1^-1,4*K.1,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,2*K.1^-1,2*K.1,80,17,17,3,3,3,3,48,-15,-15,-15,3,3,3,3,3,3,3,0,0,3*K.1,3*K.1^-1,-3*K.1^-1,-3*K.1,0,0,0,0,0,0,0,0,8,1,8,0,1,1,1,1,1,1,-8,8,-1,1,0,1,1,-1,-1,-1,-1,-1,-1,-1*K.1^-1,2*K.1,2*K.1^-1,-1*K.1,-2*K.1,K.1^-1,K.1,-2*K.1^-1,0,0,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |192,64,-8,0,-8,0,48,-15,3,0,0,0,12*K.1^-1,12*K.1,0,0,-8,-8,1,1,0,1,1,4*K.1,4*K.1^-1,-2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,-2*K.1,-2*K.1^-1,80,17,17,3,3,3,3,48,-15,-15,-15,3,3,3,3,3,3,3,0,0,3*K.1^-1,3*K.1,-3*K.1,-3*K.1^-1,0,0,0,0,0,0,0,0,8,-1,-8,0,1,1,-1,-1,-1,-1,-8,-8,1,1,0,1,1,1,1,1,1,1,1,K.1,-2*K.1^-1,-2*K.1,K.1^-1,-2*K.1^-1,K.1,K.1^-1,-2*K.1,0,0,K.1,K.1^-1,K.1^-1,K.1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |192,64,-8,0,-8,0,48,-15,3,0,0,0,12*K.1,12*K.1^-1,0,0,-8,-8,1,1,0,1,1,4*K.1^-1,4*K.1,-2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,-2*K.1^-1,-2*K.1,80,17,17,3,3,3,3,48,-15,-15,-15,3,3,3,3,3,3,3,0,0,3*K.1,3*K.1^-1,-3*K.1^-1,-3*K.1,0,0,0,0,0,0,0,0,8,-1,-8,0,1,1,-1,-1,-1,-1,-8,-8,1,1,0,1,1,1,1,1,1,1,1,K.1^-1,-2*K.1,-2*K.1^-1,K.1,-2*K.1,K.1^-1,K.1,-2*K.1^-1,0,0,K.1^-1,K.1,K.1,K.1^-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[336, 96, 0, -16, 0, 0, 66, -42, 12, 0, 0, 0, 12, 12, 0, 0, -30, 0, 0, 6, 2, 0, 0, 0, 0, 0, 0, -4, -4, 0, 0, 0, 0, 0, 0, 0, 126, 14, 14, 0, 0, 0, 0, 114, 0, 0, -21, -6, -6, -6, 6, 0, -6, 0, 6, 6, -6, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, -2, -2, -2, 0, 0, 0, 0, -6, 0, 0, 0, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, -18, 0, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 9, 9, 9, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |336,96,0,-16,0,0,66,-42,12,0,0,0,12*K.1^-1,12*K.1,0,0,-30,0,0,6,2,0,0,0,0,0,0,-4*K.1,-4*K.1^-1,0,0,0,0,0,0,0,126,14,14,0,0,0,0,114,0,0,-21,-6,-6,-6,6,0,-6,0,6*K.1^-1,6*K.1,-6*K.1^-1,-6*K.1,0,0,0,0,0,0,0,0,0,0,-2,0,0,-2,-2,-2,0,0,0,0,-6,0,0,0,2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-1,0,0,0,0,-18,0,-4,-4,0,0,0,0,0,0,0,0,0,0,-2,0,0,9,9,9,0,0,0,2,2,2,0,0,0,0,0,0,2,2,2,1,1,1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |336,96,0,-16,0,0,66,-42,12,0,0,0,12*K.1,12*K.1^-1,0,0,-30,0,0,6,2,0,0,0,0,0,0,-4*K.1^-1,-4*K.1,0,0,0,0,0,0,0,126,14,14,0,0,0,0,114,0,0,-21,-6,-6,-6,6,0,-6,0,6*K.1,6*K.1^-1,-6*K.1,-6*K.1^-1,0,0,0,0,0,0,0,0,0,0,-2,0,0,-2,-2,-2,0,0,0,0,-6,0,0,0,2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1,0,0,0,0,-18,0,-4,-4,0,0,0,0,0,0,0,0,0,0,-2,0,0,9,9,9,0,0,0,2,2,2,0,0,0,0,0,0,2,2,2,1,1,1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[343, -49, -49, 7, 7, -1, -98, 28, -8, 7, 7, 7, 1, 1, 7, -1, 14, 14, 14, -4, -2, -4, -2, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 49, 7, 7, -14, 1, 1, 1, 4, -2, 1, -2, 1, 1, 1, 1, 1, 1, -2, -2, -2, -2, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -7, -7, -7, -1, 1, 2, -1, -1, 2, -1, 2, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[343, -49, 49, 7, -7, -1, -98, 28, -8, 7, 7, 7, 1, 1, -7, 1, 14, -14, -14, -4, -2, 4, 2, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 49, 7, 7, -14, 1, 1, 1, 4, -2, 1, -2, 1, 1, 1, 1, 1, 1, -2, -2, -2, 2, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -7, 7, 7, -1, 1, 2, -1, 1, -2, 1, -2, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |343,-49,-49,7,7,-1,-98,28,-8,7,7*K.1^-1,7*K.1,K.1,K.1^-1,7,-1,14,14,14,-4,-2,-4,-2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,0,0,0,0,0,0,0,49,7,7,-14,1,1,1,4,-2,1,-2,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,-2,-2*K.1^-1,-2*K.1,-2,K.1^-1,K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,-7,-7,-7,-1,1,2,-1,-1,2,-1,2,-1,1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,0,0,0,0,0,0,0,1,K.1,K.1^-1,0,1,K.1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |343,-49,-49,7,7,-1,-98,28,-8,7,7*K.1,7*K.1^-1,K.1^-1,K.1,7,-1,14,14,14,-4,-2,-4,-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,0,0,0,0,0,0,0,49,7,7,-14,1,1,1,4,-2,1,-2,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,-2,-2*K.1,-2*K.1^-1,-2,K.1,K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,-7,-7,-7,-1,1,2,-1,-1,2,-1,2,-1,1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,0,0,0,0,0,0,0,1,K.1^-1,K.1,0,1,K.1^-1,K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |343,-49,49,7,-7,-1,-98,28,-8,7,7*K.1^-1,7*K.1,K.1,K.1^-1,-7,1,14,-14,-14,-4,-2,4,2,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,49,7,7,-14,1,1,1,4,-2,1,-2,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,-2,-2*K.1^-1,-2*K.1,2,-1*K.1^-1,-1*K.1,K.1,K.1^-1,0,0,0,0,0,0,0,0,0,0,-7,7,7,-1,1,2,-1,1,-2,1,-2,1,-1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,1,K.1,K.1^-1,0,-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |343,-49,49,7,-7,-1,-98,28,-8,7,7*K.1,7*K.1^-1,K.1^-1,K.1,-7,1,14,-14,-14,-4,-2,4,2,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,49,7,7,-14,1,1,1,4,-2,1,-2,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,-2,-2*K.1,-2*K.1^-1,2,-1*K.1,-1*K.1^-1,K.1^-1,K.1,0,0,0,0,0,0,0,0,0,0,-7,7,7,-1,1,2,-1,1,-2,1,-2,1,-1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,1,K.1^-1,K.1,0,-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[441, 105, 21, -39, 21, 9, 189, 45, 9, 0, 0, 0, 0, 0, -3, -3, -3, 21, 3, -3, -3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 147, 0, 0, 0, 0, 0, 0, 147, 6, -3, 21, 18, -9, 0, 3, 6, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, -21, 0, 21, 3, 0, 0, 0, 0, 0, 0, -21, 21, 0, 6, 3, -3, -3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 3, 0, 0, 0, 0, 0, 0, 0, 0, -3, -3, 0, 0, -3, 0, 3, 0, 0, 0, 6, 6, 6, 0, 0, 0, -3, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[441, 105, -21, -39, -21, 9, 189, 45, 9, 0, 0, 0, 0, 0, 3, 3, -3, -21, -3, -3, -3, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 147, 0, 0, 0, 0, 0, 0, 147, 6, -3, 21, 18, -9, 0, 3, 6, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, -21, 0, -21, 3, 0, 0, 0, 0, 0, 0, -21, -21, 0, 6, 3, -3, -3, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 3, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, -3, 0, -3, 0, 0, 0, 6, 6, 6, 0, 0, 0, -3, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[512, 0, 64, 0, 0, 0, -64, 8, -1, 8, 8, 8, 8, 8, 0, 0, 0, -8, -8, 0, 0, 1, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 8, 8, 1, 1, 1, 1, -64, 8, 8, 8, -1, -1, -1, -1, -1, -1, -1, -4, -4, -1, -1, 2, 2, -1, -1, -1, 0, 0, 0, 0, 0, 0, 8, 8, 0, 0, 0, 0, 1, 1, 1, 0, -8, -8, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, -8, 1, -1, -1, 1, 1, 1, -1, -1, -1, 0, 0, 0, 0, 0, -1, -1, -8, -8, -8, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 0, 0, 0, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[512, 0, -64, 0, 0, 0, -64, 8, -1, 8, 8, 8, 8, 8, 0, 0, 0, 8, 8, 0, 0, -1, 0, 0, 0, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 8, 8, 1, 1, 1, 1, -64, 8, 8, 8, -1, -1, -1, -1, -1, -1, -1, -4, -4, -1, -1, 2, 2, -1, -1, -1, 0, 0, 0, 0, 0, 0, -8, -8, 0, 0, 0, 0, -1, -1, -1, 0, 8, 8, 0, 0, 0, 0, -1, -1, -1, -1, -1, 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, -8, 1, -1, -1, 1, 1, 1, -1, -1, -1, 0, 0, 0, 0, 0, 1, 1, -8, -8, -8, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 0, 0, 0, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |512,0,64,0,0,0,-64,8,-1,8,8*K.1^-1,8*K.1,8*K.1,8*K.1^-1,0,0,0,-8,-8,0,0,1,0,0,0,4*K.1,4*K.1^-1,0,0,0,0,0,0,0,0,0,64,8,8,1,1,1,1,-64,8,8,8,-1,-1,-1,-1,-1,-1,-1,-4*K.1,-4*K.1^-1,-1*K.1,-1*K.1^-1,2*K.1^-1,2*K.1,-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,8,8,0,0,0,0,1,1,1,0,-8,-8,0,0,0,0,1,1,1,1,1,0,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,0,0,0,0,0,0,K.1^-1,K.1,0,0,-8,1,-1,-1,1,K.1^-1,K.1,-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,-1,-1,-8,-8,-8,1,1,1,-1,-1,-1,1,1,1,1,1,1,-1,-1,-1,0,0,0,-1,-1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |512,0,64,0,0,0,-64,8,-1,8,8*K.1,8*K.1^-1,8*K.1^-1,8*K.1,0,0,0,-8,-8,0,0,1,0,0,0,4*K.1^-1,4*K.1,0,0,0,0,0,0,0,0,0,64,8,8,1,1,1,1,-64,8,8,8,-1,-1,-1,-1,-1,-1,-1,-4*K.1^-1,-4*K.1,-1*K.1^-1,-1*K.1,2*K.1,2*K.1^-1,-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,8,8,0,0,0,0,1,1,1,0,-8,-8,0,0,0,0,1,1,1,1,1,0,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,0,0,0,0,0,0,K.1,K.1^-1,0,0,-8,1,-1,-1,1,K.1,K.1^-1,-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,-1,-1,-8,-8,-8,1,1,1,-1,-1,-1,1,1,1,1,1,1,-1,-1,-1,0,0,0,-1,-1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |512,0,-64,0,0,0,-64,8,-1,8,8*K.1^-1,8*K.1,8*K.1,8*K.1^-1,0,0,0,8,8,0,0,-1,0,0,0,-4*K.1,-4*K.1^-1,0,0,0,0,0,0,0,0,0,64,8,8,1,1,1,1,-64,8,8,8,-1,-1,-1,-1,-1,-1,-1,-4*K.1,-4*K.1^-1,-1*K.1,-1*K.1^-1,2*K.1^-1,2*K.1,-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,-8,-8,0,0,0,0,-1,-1,-1,0,8,8,0,0,0,0,-1,-1,-1,-1,-1,0,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,0,0,-8,1,-1,-1,1,K.1^-1,K.1,-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,1,1,-8,-8,-8,1,1,1,-1,-1,-1,1,1,1,1,1,1,-1,-1,-1,0,0,0,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |512,0,-64,0,0,0,-64,8,-1,8,8*K.1,8*K.1^-1,8*K.1^-1,8*K.1,0,0,0,8,8,0,0,-1,0,0,0,-4*K.1^-1,-4*K.1,0,0,0,0,0,0,0,0,0,64,8,8,1,1,1,1,-64,8,8,8,-1,-1,-1,-1,-1,-1,-1,-4*K.1^-1,-4*K.1,-1*K.1^-1,-1*K.1,2*K.1,2*K.1^-1,-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,-8,-8,0,0,0,0,-1,-1,-1,0,8,8,0,0,0,0,-1,-1,-1,-1,-1,0,2*K.1,2*K.1^-1,2*K.1,2*K.1^-1,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,0,0,-8,1,-1,-1,1,K.1,K.1^-1,-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,1,1,-8,-8,-8,1,1,1,-1,-1,-1,1,1,1,1,1,1,-1,-1,-1,0,0,0,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[686, -98, 0, 14, 0, -2, -196, 56, -16, -7, -7, -7, 2, 2, 0, 0, 28, 0, 0, -8, -4, 0, 0, -2, -2, 0, 0, 2, 2, -2, -2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 98, 14, 14, -28, 2, 2, 2, 8, -4, 2, -4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14, 0, 0, -2, 2, 4, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |686,-98,0,14,0,-2,-196,56,-16,-7,-7*K.1,-7*K.1^-1,2*K.1^-1,2*K.1,0,0,28,0,0,-8,-4,0,0,-2*K.1,-2*K.1^-1,0,0,2*K.1,2*K.1^-1,-2*K.1,-2*K.1^-1,1,K.1^-1,K.1,0,0,0,0,0,0,0,0,0,98,14,14,-28,2,2,2,8,-4,2,-4,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,2,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-14,0,0,-2,2,4,-2,0,0,0,0,0,0,0,0,0,0,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |686,-98,0,14,0,-2,-196,56,-16,-7,-7*K.1^-1,-7*K.1,2*K.1,2*K.1^-1,0,0,28,0,0,-8,-4,0,0,-2*K.1^-1,-2*K.1,0,0,2*K.1^-1,2*K.1,-2*K.1^-1,-2*K.1,1,K.1,K.1^-1,0,0,0,0,0,0,0,0,0,98,14,14,-28,2,2,2,8,-4,2,-4,2*K.1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,2,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-14,0,0,-2,2,4,-2,0,0,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[729, 297, 27, 57, 27, 9, 243, 0, 0, 0, 0, 0, 0, 0, 3, 3, 27, 27, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 225, -13, -20, 15, -6, 1, 1, 243, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 17, -1, 27, 1, 3, -4, -1, -1, -1, -1, 27, 27, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -9, 0, 5, -2, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, -1, -1, 0, -9, -9, -9, 0, 0, 0, 5, 5, 5, 0, 0, 0, 0, 0, 0, -2, -2, -2, -1, -1, -1, -1, -1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[729, 297, -27, 57, -27, 9, 243, 0, 0, 0, 0, 0, 0, 0, -3, -3, 27, -27, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 225, -13, -20, 15, -6, 1, 1, 243, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 17, 1, -27, 1, 3, -4, 1, 1, 1, 1, 27, -27, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -9, 0, 5, -2, 0, 0, 0, 0, 0, 0, -3, -3, 0, 0, -1, 1, 0, -9, -9, -9, 0, 0, 0, 5, 5, 5, 0, 0, 0, 0, 0, 0, -2, -2, -2, -1, -1, -1, 1, 1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[882, 210, 0, -78, 0, 18, 378, 90, 18, 0, 0, 0, 0, 0, 0, 0, -6, 0, 0, -6, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 294, 0, 0, 0, 0, 0, 0, 294, -6, 3, 42, -18, 9, 0, 6, -6, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -42, 0, 0, 6, 0, 0, 0, 0, 0, 0, -42, 0, 0, -6, 6, -6, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 42, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, 0, 0, 0, 0, 0, -6, -6, -6, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[882, 210, 0, -78, 0, 18, 252, -54, -36, 0, 0, 0, 0, 0, 0, 0, -60, 0, 0, -6, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 294, 0, 0, 0, 0, 0, 0, 336, 42, 42, 3, 0, 0, 0, -6, 6, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -42, 0, 0, 6, 0, 0, 0, 0, 0, 0, -24, 0, 0, -6, 0, 3, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -21, -12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 21, 21, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0, -3, -3, -3, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1008, 288, 0, -48, 0, 0, 342, 0, -18, 0, 0, 0, 0, 0, 0, 0, -18, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 378, 42, 42, 0, 0, 0, 0, 294, -42, -42, -21, 0, 0, 0, -12, -6, 0, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, 0, 0, -6, -6, -6, 0, 0, 0, 0, -42, 0, 0, 6, 6, 3, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 27, 0, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1024, 0, 0, 0, 0, 0, -128, 16, -2, -8, -8, -8, 16, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 128, 16, 16, 2, 2, 2, 2, -128, 16, 16, 16, -2, -2, -2, -2, -2, -2, -2, -8, -8, -2, -2, 4, 4, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -16, 2, -2, -2, -1, -1, -1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, -16, -16, -16, 2, 2, 2, -2, -2, -2, 2, 2, 2, 2, 2, 2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1024,0,0,0,0,0,-128,16,-2,-8,-8*K.1,-8*K.1^-1,16*K.1^-1,16*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,128,16,16,2,2,2,2,-128,16,16,16,-2,-2,-2,-2,-2,-2,-2,-8*K.1^-1,-8*K.1,-2*K.1^-1,-2*K.1,4*K.1,4*K.1^-1,1,K.1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-16,2,-2,-2,-1,-1*K.1,-1*K.1^-1,1,K.1^-1,K.1,0,0,0,0,0,0,0,-16,-16,-16,2,2,2,-2,-2,-2,2,2,2,2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1024,0,0,0,0,0,-128,16,-2,-8,-8*K.1^-1,-8*K.1,16*K.1,16*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,128,16,16,2,2,2,2,-128,16,16,16,-2,-2,-2,-2,-2,-2,-2,-8*K.1,-8*K.1^-1,-2*K.1,-2*K.1^-1,4*K.1^-1,4*K.1,1,K.1^-1,K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-16,2,-2,-2,-1,-1*K.1^-1,-1*K.1,1,K.1,K.1^-1,0,0,0,0,0,0,0,-16,-16,-16,2,2,2,-2,-2,-2,2,2,2,2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[1029, -147, -147, 21, 21, -3, 147, 21, 3, 21, 0, 0, 0, 0, 21, -3, -21, -21, -21, -3, 3, -3, 3, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 42, -21, 0, 3, 3, -6, 0, 6, 3, -3, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, 0, 0, 3, 3, 0, -6, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1029, -147, 147, 21, -21, -3, 147, 21, 3, 21, 0, 0, 0, 0, -21, 3, -21, 21, 21, -3, 3, 3, -3, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 42, -21, 0, 3, 3, -6, 0, 6, 3, -3, 0, 0, 0, 0, 0, 0, 3, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, 0, 0, 3, -3, 0, 6, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1134, 366, 0, -18, 0, -18, 270, -108, 0, 0, 0, 0, 0, 0, 0, 0, -66, 0, 0, -12, -18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 364, -14, -14, 0, 0, 0, 0, 432, 54, 54, -27, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -12, 0, 0, -4, 2, 2, 0, 0, 0, 0, 24, 0, 0, 6, 0, -3, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -59, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 19, 19, 19, -2, -2, -2, -2, -2, -2, -2, -2, -2, 1, 1, 1, -2, -2, -2, 3, 3, 3, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(63: Sparse := true); S := [ K |1134,366,0,-18,0,-18,432,54,0,0,0,0,0,0,0,0,24,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,364,-14,-14,0,0,0,0,378,0,0,27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-12,0,0,-4,2,2,0,0,0,0,-6,0,0,0,-6,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,19,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,3,0,0,-7-2*K.1-3*K.1^2-K.1^4+2*K.1^5+K.1^7-K.1^10-2*K.1^11+K.1^13+K.1^14+2*K.1^17-K.1^20-K.1^22-K.1^23+K.1^25+3*K.1^26-K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+2*K.1^-28,-7+K.1+2*K.1^4-K.1^5-K.1^7-K.1^10+K.1^11+K.1^13-K.1^17-K.1^20+2*K.1^22-K.1^23+K.1^25-K.1^28-K.1^29+K.1^31+K.1^-31-K.1^-29,-7+K.1+3*K.1^2-K.1^4-K.1^5+2*K.1^10+K.1^11-2*K.1^13-K.1^14-K.1^17+2*K.1^20-K.1^22+2*K.1^23-2*K.1^25-3*K.1^26+K.1^28+2*K.1^29+K.1^31+K.1^-31-K.1^-29-2*K.1^-28,2*K.1+4*K.1^4-2*K.1^5-2*K.1^7-2*K.1^10+2*K.1^11+2*K.1^13-2*K.1^17-2*K.1^20+4*K.1^22-2*K.1^23+2*K.1^25-2*K.1^28-2*K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29,2*K.1+6*K.1^2-2*K.1^4-2*K.1^5+4*K.1^10+2*K.1^11-4*K.1^13-2*K.1^14-2*K.1^17+4*K.1^20-2*K.1^22+4*K.1^23-4*K.1^25-6*K.1^26+2*K.1^28+4*K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-4*K.1^-28,-4*K.1-6*K.1^2-2*K.1^4+4*K.1^5+2*K.1^7-2*K.1^10-4*K.1^11+2*K.1^13+2*K.1^14+4*K.1^17-2*K.1^20-2*K.1^22-2*K.1^23+2*K.1^25+6*K.1^26-2*K.1^29-4*K.1^31-4*K.1^-31+4*K.1^-29+4*K.1^-28,2*K.1+6*K.1^2-2*K.1^4-2*K.1^5+4*K.1^10+2*K.1^11-4*K.1^13-2*K.1^14-2*K.1^17+4*K.1^20-2*K.1^22+4*K.1^23-4*K.1^25-6*K.1^26+2*K.1^28+4*K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-4*K.1^-28,-4*K.1-6*K.1^2-2*K.1^4+4*K.1^5+2*K.1^7-2*K.1^10-4*K.1^11+2*K.1^13+2*K.1^14+4*K.1^17-2*K.1^20-2*K.1^22-2*K.1^23+2*K.1^25+6*K.1^26-2*K.1^29-4*K.1^31-4*K.1^-31+4*K.1^-29+4*K.1^-28,2*K.1+4*K.1^4-2*K.1^5-2*K.1^7-2*K.1^10+2*K.1^11+2*K.1^13-2*K.1^17-2*K.1^20+4*K.1^22-2*K.1^23+2*K.1^25-2*K.1^28-2*K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29,-1*K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,-1*K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,-1+K.1+2*K.1^4-K.1^5-K.1^7-K.1^10+K.1^11+K.1^13-K.1^17-K.1^20+2*K.1^22-K.1^23+K.1^25-K.1^28-K.1^29+K.1^31+K.1^-31-K.1^-29,-1-2*K.1-3*K.1^2-K.1^4+2*K.1^5+K.1^7-K.1^10-2*K.1^11+K.1^13+K.1^14+2*K.1^17-K.1^20-K.1^22-K.1^23+K.1^25+3*K.1^26-K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+2*K.1^-28,-1+K.1+3*K.1^2-K.1^4-K.1^5+2*K.1^10+K.1^11-2*K.1^13-K.1^14-K.1^17+2*K.1^20-K.1^22+2*K.1^23-2*K.1^25-3*K.1^26+K.1^28+2*K.1^29+K.1^31+K.1^-31-K.1^-29-2*K.1^-28,2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,-1*K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,-1*K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,1-2*K.1-3*K.1^2-K.1^4+2*K.1^5+K.1^7-K.1^10-2*K.1^11+K.1^13+K.1^14+2*K.1^17-K.1^20-K.1^22-K.1^23+K.1^25+3*K.1^26-K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+2*K.1^-28,1+K.1+2*K.1^4-K.1^5-K.1^7-K.1^10+K.1^11+K.1^13-K.1^17-K.1^20+2*K.1^22-K.1^23+K.1^25-K.1^28-K.1^29+K.1^31+K.1^-31-K.1^-29,1+K.1+3*K.1^2-K.1^4-K.1^5+2*K.1^10+K.1^11-2*K.1^13-K.1^14-K.1^17+2*K.1^20-K.1^22+2*K.1^23-2*K.1^25-3*K.1^26+K.1^28+2*K.1^29+K.1^31+K.1^-31-K.1^-29-2*K.1^-28,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(63: Sparse := true); S := [ K |1134,366,0,-18,0,-18,432,54,0,0,0,0,0,0,0,0,24,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,364,-14,-14,0,0,0,0,378,0,0,27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-12,0,0,-4,2,2,0,0,0,0,-6,0,0,0,-6,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,19,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,3,0,0,-7+K.1+2*K.1^4-K.1^5-K.1^7-K.1^10+K.1^11+K.1^13-K.1^17-K.1^20+2*K.1^22-K.1^23+K.1^25-K.1^28-K.1^29+K.1^31+K.1^-31-K.1^-29,-7+K.1+3*K.1^2-K.1^4-K.1^5+2*K.1^10+K.1^11-2*K.1^13-K.1^14-K.1^17+2*K.1^20-K.1^22+2*K.1^23-2*K.1^25-3*K.1^26+K.1^28+2*K.1^29+K.1^31+K.1^-31-K.1^-29-2*K.1^-28,-7-2*K.1-3*K.1^2-K.1^4+2*K.1^5+K.1^7-K.1^10-2*K.1^11+K.1^13+K.1^14+2*K.1^17-K.1^20-K.1^22-K.1^23+K.1^25+3*K.1^26-K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+2*K.1^-28,2*K.1+6*K.1^2-2*K.1^4-2*K.1^5+4*K.1^10+2*K.1^11-4*K.1^13-2*K.1^14-2*K.1^17+4*K.1^20-2*K.1^22+4*K.1^23-4*K.1^25-6*K.1^26+2*K.1^28+4*K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-4*K.1^-28,-4*K.1-6*K.1^2-2*K.1^4+4*K.1^5+2*K.1^7-2*K.1^10-4*K.1^11+2*K.1^13+2*K.1^14+4*K.1^17-2*K.1^20-2*K.1^22-2*K.1^23+2*K.1^25+6*K.1^26-2*K.1^29-4*K.1^31-4*K.1^-31+4*K.1^-29+4*K.1^-28,2*K.1+4*K.1^4-2*K.1^5-2*K.1^7-2*K.1^10+2*K.1^11+2*K.1^13-2*K.1^17-2*K.1^20+4*K.1^22-2*K.1^23+2*K.1^25-2*K.1^28-2*K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29,-4*K.1-6*K.1^2-2*K.1^4+4*K.1^5+2*K.1^7-2*K.1^10-4*K.1^11+2*K.1^13+2*K.1^14+4*K.1^17-2*K.1^20-2*K.1^22-2*K.1^23+2*K.1^25+6*K.1^26-2*K.1^29-4*K.1^31-4*K.1^-31+4*K.1^-29+4*K.1^-28,2*K.1+4*K.1^4-2*K.1^5-2*K.1^7-2*K.1^10+2*K.1^11+2*K.1^13-2*K.1^17-2*K.1^20+4*K.1^22-2*K.1^23+2*K.1^25-2*K.1^28-2*K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29,2*K.1+6*K.1^2-2*K.1^4-2*K.1^5+4*K.1^10+2*K.1^11-4*K.1^13-2*K.1^14-2*K.1^17+4*K.1^20-2*K.1^22+4*K.1^23-4*K.1^25-6*K.1^26+2*K.1^28+4*K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-4*K.1^-28,2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,-1*K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,-1*K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,-1+K.1+3*K.1^2-K.1^4-K.1^5+2*K.1^10+K.1^11-2*K.1^13-K.1^14-K.1^17+2*K.1^20-K.1^22+2*K.1^23-2*K.1^25-3*K.1^26+K.1^28+2*K.1^29+K.1^31+K.1^-31-K.1^-29-2*K.1^-28,-1+K.1+2*K.1^4-K.1^5-K.1^7-K.1^10+K.1^11+K.1^13-K.1^17-K.1^20+2*K.1^22-K.1^23+K.1^25-K.1^28-K.1^29+K.1^31+K.1^-31-K.1^-29,-1-2*K.1-3*K.1^2-K.1^4+2*K.1^5+K.1^7-K.1^10-2*K.1^11+K.1^13+K.1^14+2*K.1^17-K.1^20-K.1^22-K.1^23+K.1^25+3*K.1^26-K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+2*K.1^-28,-1*K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,-1*K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,1+K.1+2*K.1^4-K.1^5-K.1^7-K.1^10+K.1^11+K.1^13-K.1^17-K.1^20+2*K.1^22-K.1^23+K.1^25-K.1^28-K.1^29+K.1^31+K.1^-31-K.1^-29,1+K.1+3*K.1^2-K.1^4-K.1^5+2*K.1^10+K.1^11-2*K.1^13-K.1^14-K.1^17+2*K.1^20-K.1^22+2*K.1^23-2*K.1^25-3*K.1^26+K.1^28+2*K.1^29+K.1^31+K.1^-31-K.1^-29-2*K.1^-28,1-2*K.1-3*K.1^2-K.1^4+2*K.1^5+K.1^7-K.1^10-2*K.1^11+K.1^13+K.1^14+2*K.1^17-K.1^20-K.1^22-K.1^23+K.1^25+3*K.1^26-K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+2*K.1^-28,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(63: Sparse := true); S := [ K |1134,366,0,-18,0,-18,432,54,0,0,0,0,0,0,0,0,24,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,364,-14,-14,0,0,0,0,378,0,0,27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-12,0,0,-4,2,2,0,0,0,0,-6,0,0,0,-6,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,19,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,3,0,0,-7+K.1+3*K.1^2-K.1^4-K.1^5+2*K.1^10+K.1^11-2*K.1^13-K.1^14-K.1^17+2*K.1^20-K.1^22+2*K.1^23-2*K.1^25-3*K.1^26+K.1^28+2*K.1^29+K.1^31+K.1^-31-K.1^-29-2*K.1^-28,-7-2*K.1-3*K.1^2-K.1^4+2*K.1^5+K.1^7-K.1^10-2*K.1^11+K.1^13+K.1^14+2*K.1^17-K.1^20-K.1^22-K.1^23+K.1^25+3*K.1^26-K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+2*K.1^-28,-7+K.1+2*K.1^4-K.1^5-K.1^7-K.1^10+K.1^11+K.1^13-K.1^17-K.1^20+2*K.1^22-K.1^23+K.1^25-K.1^28-K.1^29+K.1^31+K.1^-31-K.1^-29,-4*K.1-6*K.1^2-2*K.1^4+4*K.1^5+2*K.1^7-2*K.1^10-4*K.1^11+2*K.1^13+2*K.1^14+4*K.1^17-2*K.1^20-2*K.1^22-2*K.1^23+2*K.1^25+6*K.1^26-2*K.1^29-4*K.1^31-4*K.1^-31+4*K.1^-29+4*K.1^-28,2*K.1+4*K.1^4-2*K.1^5-2*K.1^7-2*K.1^10+2*K.1^11+2*K.1^13-2*K.1^17-2*K.1^20+4*K.1^22-2*K.1^23+2*K.1^25-2*K.1^28-2*K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29,2*K.1+6*K.1^2-2*K.1^4-2*K.1^5+4*K.1^10+2*K.1^11-4*K.1^13-2*K.1^14-2*K.1^17+4*K.1^20-2*K.1^22+4*K.1^23-4*K.1^25-6*K.1^26+2*K.1^28+4*K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-4*K.1^-28,2*K.1+4*K.1^4-2*K.1^5-2*K.1^7-2*K.1^10+2*K.1^11+2*K.1^13-2*K.1^17-2*K.1^20+4*K.1^22-2*K.1^23+2*K.1^25-2*K.1^28-2*K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29,2*K.1+6*K.1^2-2*K.1^4-2*K.1^5+4*K.1^10+2*K.1^11-4*K.1^13-2*K.1^14-2*K.1^17+4*K.1^20-2*K.1^22+4*K.1^23-4*K.1^25-6*K.1^26+2*K.1^28+4*K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-4*K.1^-28,-4*K.1-6*K.1^2-2*K.1^4+4*K.1^5+2*K.1^7-2*K.1^10-4*K.1^11+2*K.1^13+2*K.1^14+4*K.1^17-2*K.1^20-2*K.1^22-2*K.1^23+2*K.1^25+6*K.1^26-2*K.1^29-4*K.1^31-4*K.1^-31+4*K.1^-29+4*K.1^-28,-1*K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,-1*K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,-1-2*K.1-3*K.1^2-K.1^4+2*K.1^5+K.1^7-K.1^10-2*K.1^11+K.1^13+K.1^14+2*K.1^17-K.1^20-K.1^22-K.1^23+K.1^25+3*K.1^26-K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+2*K.1^-28,-1+K.1+3*K.1^2-K.1^4-K.1^5+2*K.1^10+K.1^11-2*K.1^13-K.1^14-K.1^17+2*K.1^20-K.1^22+2*K.1^23-2*K.1^25-3*K.1^26+K.1^28+2*K.1^29+K.1^31+K.1^-31-K.1^-29-2*K.1^-28,-1+K.1+2*K.1^4-K.1^5-K.1^7-K.1^10+K.1^11+K.1^13-K.1^17-K.1^20+2*K.1^22-K.1^23+K.1^25-K.1^28-K.1^29+K.1^31+K.1^-31-K.1^-29,-1*K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,-1*K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,1+K.1+3*K.1^2-K.1^4-K.1^5+2*K.1^10+K.1^11-2*K.1^13-K.1^14-K.1^17+2*K.1^20-K.1^22+2*K.1^23-2*K.1^25-3*K.1^26+K.1^28+2*K.1^29+K.1^31+K.1^-31-K.1^-29-2*K.1^-28,1-2*K.1-3*K.1^2-K.1^4+2*K.1^5+K.1^7-K.1^10-2*K.1^11+K.1^13+K.1^14+2*K.1^17-K.1^20-K.1^22-K.1^23+K.1^25+3*K.1^26-K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+2*K.1^-28,1+K.1+2*K.1^4-K.1^5-K.1^7-K.1^10+K.1^11+K.1^13-K.1^17-K.1^20+2*K.1^22-K.1^23+K.1^25-K.1^28-K.1^29+K.1^31+K.1^-31-K.1^-29,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1176, -112, 56, 8, 0, 0, -273, 60, -12, 0, 0, 0, 6, 6, -8, 0, 23, -7, -16, -4, -1, 2, 0, -4, -4, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 49, 0, 0, 0, 0, 0, 0, 63, -6, -6, -9, -3, -3, -3, 0, 3, -3, 3, 3, 3, -3, -3, 0, 0, 0, 0, 0, 1, -2, -2, 0, 0, -7, 0, 7, 1, 0, 0, 0, 0, 0, 0, -1, -7, 8, 2, -1, -1, 2, -1, 2, -1, -1, -1, 0, 2, -1, -1, 2, -1, 2, 2, -1, -1, -1, -1, -1, 0, 0, -14, 4, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 1, 2, 0, -2, 7, 7, 7, 1, 1, 1, 0, 0, 0, 1, 1, 1, -2, -2, -2, 0, 0, 0, -1, -1, -1, 0, 0, 0, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1176, -112, -56, 8, 0, 0, -273, 60, -12, 0, 0, 0, 6, 6, 8, 0, 23, 7, 16, -4, -1, -2, 0, -4, -4, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 49, 0, 0, 0, 0, 0, 0, 63, -6, -6, -9, -3, -3, -3, 0, 3, -3, 3, 3, 3, -3, -3, 0, 0, 0, 0, 0, -1, 2, 2, 0, 0, -7, 0, -7, 1, 0, 0, 0, 0, 0, 0, -1, 7, -8, 2, -1, -1, 2, 1, -2, 1, 1, 1, 0, -2, 1, 1, -2, -1, 2, 2, -1, -1, -1, 1, 1, 0, 0, -14, 4, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, -1, 2, 0, 2, 7, 7, 7, 1, 1, 1, 0, 0, 0, 1, 1, 1, -2, -2, -2, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1176,-112,56,8,0,0,-273,60,-12,0,0,0,6*K.1^-1,6*K.1,-8,0,23,-7,-16,-4,-1,2,0,-4*K.1,-4*K.1^-1,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,49,0,0,0,0,0,0,63,-6,-6,-9,-3,-3,-3,0,3,-3,3,3*K.1^-1,3*K.1,-3*K.1^-1,-3*K.1,0,0,0,0,0,1,-2*K.1,-2*K.1^-1,0,0,-7,0,7,1,0,0,0,0,0,0,-1,-7,8,2,-1,-1,2,-1,2,-1,-1,-1,0,2*K.1,-1*K.1^-1,-1*K.1,2*K.1^-1,-1*K.1^-1,2*K.1,2*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,0,0,-14,4,0,0,0,0,0,0,0,0,-1,1,K.1^-1,K.1,2,0,-2,7,7,7,1,1,1,0,0,0,1,1,1,-2,-2,-2,0,0,0,-1,-1,-1,0,0,0,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1176,-112,56,8,0,0,-273,60,-12,0,0,0,6*K.1,6*K.1^-1,-8,0,23,-7,-16,-4,-1,2,0,-4*K.1^-1,-4*K.1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,49,0,0,0,0,0,0,63,-6,-6,-9,-3,-3,-3,0,3,-3,3,3*K.1,3*K.1^-1,-3*K.1,-3*K.1^-1,0,0,0,0,0,1,-2*K.1^-1,-2*K.1,0,0,-7,0,7,1,0,0,0,0,0,0,-1,-7,8,2,-1,-1,2,-1,2,-1,-1,-1,0,2*K.1^-1,-1*K.1,-1*K.1^-1,2*K.1,-1*K.1,2*K.1^-1,2*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,0,0,-14,4,0,0,0,0,0,0,0,0,-1,1,K.1,K.1^-1,2,0,-2,7,7,7,1,1,1,0,0,0,1,1,1,-2,-2,-2,0,0,0,-1,-1,-1,0,0,0,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1176,-112,-56,8,0,0,-273,60,-12,0,0,0,6*K.1^-1,6*K.1,8,0,23,7,16,-4,-1,-2,0,-4*K.1,-4*K.1^-1,-2*K.1^-1,-2*K.1,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,49,0,0,0,0,0,0,63,-6,-6,-9,-3,-3,-3,0,3,-3,3,3*K.1^-1,3*K.1,-3*K.1^-1,-3*K.1,0,0,0,0,0,-1,2*K.1,2*K.1^-1,0,0,-7,0,-7,1,0,0,0,0,0,0,-1,7,-8,2,-1,-1,2,1,-2,1,1,1,0,-2*K.1,K.1^-1,K.1,-2*K.1^-1,-1*K.1^-1,2*K.1,2*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,0,0,-14,4,0,0,0,0,0,0,0,0,1,-1,-1*K.1^-1,-1*K.1,2,0,2,7,7,7,1,1,1,0,0,0,1,1,1,-2,-2,-2,0,0,0,-1,-1,-1,0,0,0,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1176,-112,-56,8,0,0,-273,60,-12,0,0,0,6*K.1,6*K.1^-1,8,0,23,7,16,-4,-1,-2,0,-4*K.1^-1,-4*K.1,-2*K.1,-2*K.1^-1,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,49,0,0,0,0,0,0,63,-6,-6,-9,-3,-3,-3,0,3,-3,3,3*K.1,3*K.1^-1,-3*K.1,-3*K.1^-1,0,0,0,0,0,-1,2*K.1^-1,2*K.1,0,0,-7,0,-7,1,0,0,0,0,0,0,-1,7,-8,2,-1,-1,2,1,-2,1,1,1,0,-2*K.1^-1,K.1,K.1^-1,-2*K.1,-1*K.1,2*K.1^-1,2*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,0,0,-14,4,0,0,0,0,0,0,0,0,1,-1,-1*K.1,-1*K.1^-1,2,0,2,7,7,7,1,1,1,0,0,0,1,1,1,-2,-2,-2,0,0,0,-1,-1,-1,0,0,0,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[1296, 480, 0, 48, 0, 0, 378, -54, 0, 0, 0, 0, 0, 0, 0, 0, -6, 0, 0, -6, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 470, 36, 36, -6, -6, -6, -6, 378, -54, -54, -54, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 46, 0, 0, 6, 4, 4, 0, 0, 0, 0, -6, 0, 0, -6, -6, -6, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -7, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -7, -7, -7, 2, 2, 2, 0, 0, 0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1344, -64, -56, 0, 8, 0, -240, 39, -6, 0, 0, 0, 12, 12, 0, 0, 8, 16, 7, -1, 0, -2, -1, -4, -4, -2, -2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 112, 7, 7, 0, 0, 0, 0, -48, -9, -9, 15, 3, 3, 3, -3, 0, 3, 0, 0, 0, 3, 3, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, -8, -7, 0, 0, -1, -1, 1, 0, 0, 0, 8, -8, 7, -1, 0, -1, -1, 1, 1, 1, -2, 1, -1, 1, -2, -2, 1, 2, -1, -1, 2, 0, 0, 1, 1, -1, -1, -23, 4, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 1, 1, -2, -2, -2, 1, 1, 1, -2, -2, -2, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1344, -64, 56, 0, -8, 0, -240, 39, -6, 0, 0, 0, 12, 12, 0, 0, 8, -16, -7, -1, 0, 2, 1, -4, -4, 2, 2, 0, 0, 0, 0, 0, 0, 0, -2, -2, 112, 7, 7, 0, 0, 0, 0, -48, -9, -9, 15, 3, 3, 3, -3, 0, 3, 0, 0, 0, 3, 3, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, -8, 7, 0, 0, -1, -1, -1, 0, 0, 0, 8, 8, -7, -1, 0, -1, -1, -1, -1, -1, 2, -1, 1, -1, 2, 2, -1, 2, -1, -1, 2, 0, 0, -1, -1, 1, 1, -23, 4, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -2, 0, 1, 1, 1, -2, -2, -2, 1, 1, 1, -2, -2, -2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1344,-64,-56,0,8,0,-240,39,-6,0,0,0,12*K.1^-1,12*K.1,0,0,8,16,7,-1,0,-2,-1,-4*K.1,-4*K.1^-1,-2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,2*K.1,2*K.1^-1,112,7,7,0,0,0,0,-48,-9,-9,15,3,3,3,-3,0,3,0,0,0,3*K.1^-1,3*K.1,-3*K.1,-3*K.1^-1,0,0,0,0,0,0,0,0,-8,-7,0,0,-1,-1,1,0,0,0,8,-8,7,-1,0,-1,-1,1,1,1,-2,1,-1,K.1,-2*K.1^-1,-2*K.1,K.1^-1,2*K.1^-1,-1*K.1,-1*K.1^-1,2*K.1,0,0,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-23,4,-2,-2,0,0,0,0,0,0,0,0,0,0,1,2,0,1,1,1,-2,-2,-2,1,1,1,-2,-2,-2,1,1,1,1,1,1,1,1,1,-1,-1,-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1344,-64,-56,0,8,0,-240,39,-6,0,0,0,12*K.1,12*K.1^-1,0,0,8,16,7,-1,0,-2,-1,-4*K.1^-1,-4*K.1,-2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,2*K.1^-1,2*K.1,112,7,7,0,0,0,0,-48,-9,-9,15,3,3,3,-3,0,3,0,0,0,3*K.1,3*K.1^-1,-3*K.1^-1,-3*K.1,0,0,0,0,0,0,0,0,-8,-7,0,0,-1,-1,1,0,0,0,8,-8,7,-1,0,-1,-1,1,1,1,-2,1,-1,K.1^-1,-2*K.1,-2*K.1^-1,K.1,2*K.1,-1*K.1^-1,-1*K.1,2*K.1^-1,0,0,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-23,4,-2,-2,0,0,0,0,0,0,0,0,0,0,1,2,0,1,1,1,-2,-2,-2,1,1,1,-2,-2,-2,1,1,1,1,1,1,1,1,1,-1,-1,-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1344,-64,56,0,-8,0,-240,39,-6,0,0,0,12*K.1^-1,12*K.1,0,0,8,-16,-7,-1,0,2,1,-4*K.1,-4*K.1^-1,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,-2*K.1,-2*K.1^-1,112,7,7,0,0,0,0,-48,-9,-9,15,3,3,3,-3,0,3,0,0,0,3*K.1^-1,3*K.1,-3*K.1,-3*K.1^-1,0,0,0,0,0,0,0,0,-8,7,0,0,-1,-1,-1,0,0,0,8,8,-7,-1,0,-1,-1,-1,-1,-1,2,-1,1,-1*K.1,2*K.1^-1,2*K.1,-1*K.1^-1,2*K.1^-1,-1*K.1,-1*K.1^-1,2*K.1,0,0,-1*K.1,-1*K.1^-1,K.1^-1,K.1,-23,4,-2,-2,0,0,0,0,0,0,0,0,0,0,1,-2,0,1,1,1,-2,-2,-2,1,1,1,-2,-2,-2,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1344,-64,56,0,-8,0,-240,39,-6,0,0,0,12*K.1,12*K.1^-1,0,0,8,-16,-7,-1,0,2,1,-4*K.1^-1,-4*K.1,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,-2*K.1^-1,-2*K.1,112,7,7,0,0,0,0,-48,-9,-9,15,3,3,3,-3,0,3,0,0,0,3*K.1,3*K.1^-1,-3*K.1^-1,-3*K.1,0,0,0,0,0,0,0,0,-8,7,0,0,-1,-1,-1,0,0,0,8,8,-7,-1,0,-1,-1,-1,-1,-1,2,-1,1,-1*K.1^-1,2*K.1,2*K.1^-1,-1*K.1,2*K.1,-1*K.1^-1,-1*K.1,2*K.1^-1,0,0,-1*K.1^-1,-1*K.1,K.1,K.1^-1,-23,4,-2,-2,0,0,0,0,0,0,0,0,0,0,1,-2,0,1,1,1,-2,-2,-2,1,1,1,-2,-2,-2,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[1458, 594, 0, 114, 0, 18, 486, 0, 0, 0, 0, 0, 0, 0, 0, 0, 54, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 450, -40, -33, -12, 9, 2, 2, 486, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 34, 0, 0, 2, -8, -1, 0, 0, 0, 0, 54, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -18, 0, -4, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, -18, -18, -18, 0, 0, 0, -4, -4, -4, 0, 0, 0, 0, 0, 0, 3, 3, 3, -2, -2, -2, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2058, -294, 0, 42, 0, -6, 294, 42, 6, 0, 21, 21, 0, 0, 0, 0, -42, 0, 0, -6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -42, 21, 0, 6, 6, -12, 0, -6, 6, 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2058, -294, 0, 42, 0, -6, 294, 42, 6, -21, 0, 0, 0, 0, 0, 0, -42, 0, 0, -6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 84, -42, 0, 6, 6, -12, 0, 12, 6, -6, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -12, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2058,-294,0,42,0,-6,294,42,6,0,21*K.1^-1,21*K.1,0,0,0,0,-42,0,0,-6,6,0,0,0,0,0,0,0,0,0,0,0,-3*K.1,-3*K.1^-1,0,0,0,0,0,0,0,0,0,0,-42,21,0,6,6,-12,0,-6,6,3,0,0,0,0,0,0,0,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2058,-294,0,42,0,-6,294,42,6,0,21*K.1,21*K.1^-1,0,0,0,0,-42,0,0,-6,6,0,0,0,0,0,0,0,0,0,0,0,-3*K.1^-1,-3*K.1,0,0,0,0,0,0,0,0,0,0,-42,21,0,6,6,-12,0,-6,6,3,0,0,0,0,0,0,0,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[2187, 243, 243, 27, 27, 3, 0, 0, 0, 27, 0, 0, 0, 0, 27, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, -81, 45, -18, -4, 3, -4, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -9, -9, -9, -1, 5, -2, -1, -2, 5, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2187, 243, -243, 27, -27, 3, 0, 0, 0, 27, 0, 0, 0, 0, -27, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, -81, 45, -18, -4, 3, -4, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -9, 9, 9, -1, 5, -2, 1, 2, -5, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3087, -441, -147, 63, 21, -9, -441, 0, 36, 0, 0, 0, 0, 0, 21, -3, 63, -21, 42, 0, -9, 6, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 294, 21, 21, -21, 0, 0, 0, -12, 3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -42, 0, -21, -3, 6, 3, -3, 0, 0, 0, -3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3087, -441, -147, 63, 21, -9, 0, -63, -18, 0, 0, 0, 0, 0, 21, -3, 0, 42, -21, 9, 0, 6, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 147, 42, -21, 21, 18, -9, 0, 3, -12, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -21, -21, 0, -6, 3, -3, 3, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3087, -441, -147, 63, 21, -9, 441, 63, 9, 0, 0, 0, 0, 0, 21, -3, -63, -21, -21, -9, 9, -3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -18, -18, 9, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, 0, 3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3087, -441, -147, 63, 21, -9, 441, 63, 9, 0, 0, 0, 0, 0, 21, -3, -63, -21, -21, -9, 9, -3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9, 0, 0, -18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 3, 0, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3087, -441, 147, 63, -21, -9, -441, 0, 36, 0, 0, 0, 0, 0, -21, 3, 63, 21, -42, 0, -9, -6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 294, 21, 21, -21, 0, 0, 0, -12, 3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -42, 0, 21, -3, 6, 3, -3, 0, 0, 0, 3, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3087, -441, 147, 63, -21, -9, 0, -63, -18, 0, 0, 0, 0, 0, -21, 3, 0, -42, 21, 9, 0, -6, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 147, 42, -21, 21, 18, -9, 0, 3, -12, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -21, 21, 0, -6, 3, -3, 3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3087, -441, 147, 63, -21, -9, 441, 63, 9, 0, 0, 0, 0, 0, -21, 3, -63, 21, 21, -9, 9, 3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -18, -18, 9, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, -3, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3087, -441, 147, 63, -21, -9, 441, 63, 9, 0, 0, 0, 0, 0, -21, 3, -63, 21, 21, -9, 9, 3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9, 0, 0, -18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, -3, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3528, -336, 168, 24, 0, 0, 189, -18, -9, 0, 0, 0, 0, 0, -24, 0, -3, -21, 24, 6, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 147, 0, 0, 0, 0, 0, 0, -147, 48, -24, -21, -18, 9, 0, -3, -6, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, -21, 0, 21, 3, 0, 0, 0, 0, 0, 0, 21, -21, 0, 0, -3, 3, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 3, 0, 0, 0, 0, 0, 0, 0, 0, -3, 3, 0, 0, -3, 0, 3, 0, 0, 0, 6, 6, 6, 0, 0, 0, -3, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3528, -336, -168, 24, 0, 0, 189, -18, -9, 0, 0, 0, 0, 0, 24, 0, -3, 21, -24, 6, -3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 147, 0, 0, 0, 0, 0, 0, -147, 48, -24, -21, -18, 9, 0, -3, -6, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, -21, 0, -21, 3, 0, 0, 0, 0, 0, 0, 21, 21, 0, 0, -3, 3, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 3, 0, 0, 0, 0, 0, 0, 0, 0, 3, -3, 0, 0, -3, 0, -3, 0, 0, 0, 6, 6, 6, 0, 0, 0, -3, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3969, -231, 189, -15, 21, 9, -756, 108, 0, 0, 0, 0, 0, 0, -27, -3, 12, 0, -54, 12, 12, 0, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -49, 0, 0, 0, 0, 0, 0, 378, 27, 27, -54, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, -7, -1, 0, 0, 0, 0, 0, 0, -6, 0, 27, 3, -6, -6, 3, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, -4, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -2, 0, 2, -7, -7, -7, -1, -1, -1, 0, 0, 0, -1, -1, -1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 0, 0, 0, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3969, -231, -189, -15, -21, 9, -756, 108, 0, 0, 0, 0, 0, 0, 27, 3, 12, 0, 54, 12, 12, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -49, 0, 0, 0, 0, 0, 0, 378, 27, 27, -54, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 7, -1, 0, 0, 0, 0, 0, 0, -6, 0, -27, 3, -6, -6, 3, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, -4, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -2, 0, -2, -7, -7, -7, -1, -1, -1, 0, 0, 0, -1, -1, -1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(63: Sparse := true); S := [ K |3969,-231,189,-15,21,9,378,27,0,0,0,0,0,0,-27,-3,-6,0,27,3,-6,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,-49,0,0,0,0,0,0,0,54,-27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,-7,-1,0,0,0,0,0,0,0,0,0,6,0,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-7,-1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,-1,-14*K.1-21*K.1^2-7*K.1^4+14*K.1^5+7*K.1^7-7*K.1^10-14*K.1^11+7*K.1^13+7*K.1^14+14*K.1^17-7*K.1^20-7*K.1^22-7*K.1^23+7*K.1^25+21*K.1^26-7*K.1^29-14*K.1^31-14*K.1^-31+14*K.1^-29+14*K.1^-28,7*K.1+14*K.1^4-7*K.1^5-7*K.1^7-7*K.1^10+7*K.1^11+7*K.1^13-7*K.1^17-7*K.1^20+14*K.1^22-7*K.1^23+7*K.1^25-7*K.1^28-7*K.1^29+7*K.1^31+7*K.1^-31-7*K.1^-29,7*K.1+21*K.1^2-7*K.1^4-7*K.1^5+14*K.1^10+7*K.1^11-14*K.1^13-7*K.1^14-7*K.1^17+14*K.1^20-7*K.1^22+14*K.1^23-14*K.1^25-21*K.1^26+7*K.1^28+14*K.1^29+7*K.1^31+7*K.1^-31-7*K.1^-29-14*K.1^-28,-2-K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,-2+2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,-2-K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,0,0,0,1+2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,1-K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,1-K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,K.1+2*K.1^4-K.1^5-K.1^7-K.1^10+K.1^11+K.1^13-K.1^17-K.1^20+2*K.1^22-K.1^23+K.1^25-K.1^28-K.1^29+K.1^31+K.1^-31-K.1^-29,-2*K.1-3*K.1^2-K.1^4+2*K.1^5+K.1^7-K.1^10-2*K.1^11+K.1^13+K.1^14+2*K.1^17-K.1^20-K.1^22-K.1^23+K.1^25+3*K.1^26-K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+2*K.1^-28,K.1+3*K.1^2-K.1^4-K.1^5+2*K.1^10+K.1^11-2*K.1^13-K.1^14-K.1^17+2*K.1^20-K.1^22+2*K.1^23-2*K.1^25-3*K.1^26+K.1^28+2*K.1^29+K.1^31+K.1^-31-K.1^-29-2*K.1^-28,0,0,0,2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,-1*K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,-1*K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,0,0,0,-2*K.1-3*K.1^2-K.1^4+2*K.1^5+K.1^7-K.1^10-2*K.1^11+K.1^13+K.1^14+2*K.1^17-K.1^20-K.1^22-K.1^23+K.1^25+3*K.1^26-K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+2*K.1^-28,K.1+2*K.1^4-K.1^5-K.1^7-K.1^10+K.1^11+K.1^13-K.1^17-K.1^20+2*K.1^22-K.1^23+K.1^25-K.1^28-K.1^29+K.1^31+K.1^-31-K.1^-29,K.1+3*K.1^2-K.1^4-K.1^5+2*K.1^10+K.1^11-2*K.1^13-K.1^14-K.1^17+2*K.1^20-K.1^22+2*K.1^23-2*K.1^25-3*K.1^26+K.1^28+2*K.1^29+K.1^31+K.1^-31-K.1^-29-2*K.1^-28]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(63: Sparse := true); S := [ K |3969,-231,189,-15,21,9,378,27,0,0,0,0,0,0,-27,-3,-6,0,27,3,-6,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,-49,0,0,0,0,0,0,0,54,-27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,-7,-1,0,0,0,0,0,0,0,0,0,6,0,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-7,-1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,-1,7*K.1+14*K.1^4-7*K.1^5-7*K.1^7-7*K.1^10+7*K.1^11+7*K.1^13-7*K.1^17-7*K.1^20+14*K.1^22-7*K.1^23+7*K.1^25-7*K.1^28-7*K.1^29+7*K.1^31+7*K.1^-31-7*K.1^-29,7*K.1+21*K.1^2-7*K.1^4-7*K.1^5+14*K.1^10+7*K.1^11-14*K.1^13-7*K.1^14-7*K.1^17+14*K.1^20-7*K.1^22+14*K.1^23-14*K.1^25-21*K.1^26+7*K.1^28+14*K.1^29+7*K.1^31+7*K.1^-31-7*K.1^-29-14*K.1^-28,-14*K.1-21*K.1^2-7*K.1^4+14*K.1^5+7*K.1^7-7*K.1^10-14*K.1^11+7*K.1^13+7*K.1^14+14*K.1^17-7*K.1^20-7*K.1^22-7*K.1^23+7*K.1^25+21*K.1^26-7*K.1^29-14*K.1^31-14*K.1^-31+14*K.1^-29+14*K.1^-28,-2+2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,-2-K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,-2-K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,0,0,0,1-K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,1+2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,1-K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,K.1+3*K.1^2-K.1^4-K.1^5+2*K.1^10+K.1^11-2*K.1^13-K.1^14-K.1^17+2*K.1^20-K.1^22+2*K.1^23-2*K.1^25-3*K.1^26+K.1^28+2*K.1^29+K.1^31+K.1^-31-K.1^-29-2*K.1^-28,K.1+2*K.1^4-K.1^5-K.1^7-K.1^10+K.1^11+K.1^13-K.1^17-K.1^20+2*K.1^22-K.1^23+K.1^25-K.1^28-K.1^29+K.1^31+K.1^-31-K.1^-29,-2*K.1-3*K.1^2-K.1^4+2*K.1^5+K.1^7-K.1^10-2*K.1^11+K.1^13+K.1^14+2*K.1^17-K.1^20-K.1^22-K.1^23+K.1^25+3*K.1^26-K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+2*K.1^-28,0,0,0,-1*K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,-1*K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,0,0,0,K.1+2*K.1^4-K.1^5-K.1^7-K.1^10+K.1^11+K.1^13-K.1^17-K.1^20+2*K.1^22-K.1^23+K.1^25-K.1^28-K.1^29+K.1^31+K.1^-31-K.1^-29,K.1+3*K.1^2-K.1^4-K.1^5+2*K.1^10+K.1^11-2*K.1^13-K.1^14-K.1^17+2*K.1^20-K.1^22+2*K.1^23-2*K.1^25-3*K.1^26+K.1^28+2*K.1^29+K.1^31+K.1^-31-K.1^-29-2*K.1^-28,-2*K.1-3*K.1^2-K.1^4+2*K.1^5+K.1^7-K.1^10-2*K.1^11+K.1^13+K.1^14+2*K.1^17-K.1^20-K.1^22-K.1^23+K.1^25+3*K.1^26-K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+2*K.1^-28]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(63: Sparse := true); S := [ K |3969,-231,189,-15,21,9,378,27,0,0,0,0,0,0,-27,-3,-6,0,27,3,-6,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,-49,0,0,0,0,0,0,0,54,-27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,-7,-1,0,0,0,0,0,0,0,0,0,6,0,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-7,-1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,-1,7*K.1+21*K.1^2-7*K.1^4-7*K.1^5+14*K.1^10+7*K.1^11-14*K.1^13-7*K.1^14-7*K.1^17+14*K.1^20-7*K.1^22+14*K.1^23-14*K.1^25-21*K.1^26+7*K.1^28+14*K.1^29+7*K.1^31+7*K.1^-31-7*K.1^-29-14*K.1^-28,-14*K.1-21*K.1^2-7*K.1^4+14*K.1^5+7*K.1^7-7*K.1^10-14*K.1^11+7*K.1^13+7*K.1^14+14*K.1^17-7*K.1^20-7*K.1^22-7*K.1^23+7*K.1^25+21*K.1^26-7*K.1^29-14*K.1^31-14*K.1^-31+14*K.1^-29+14*K.1^-28,7*K.1+14*K.1^4-7*K.1^5-7*K.1^7-7*K.1^10+7*K.1^11+7*K.1^13-7*K.1^17-7*K.1^20+14*K.1^22-7*K.1^23+7*K.1^25-7*K.1^28-7*K.1^29+7*K.1^31+7*K.1^-31-7*K.1^-29,-2-K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,-2-K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,-2+2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,0,0,0,1-K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,1-K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,1+2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,-2*K.1-3*K.1^2-K.1^4+2*K.1^5+K.1^7-K.1^10-2*K.1^11+K.1^13+K.1^14+2*K.1^17-K.1^20-K.1^22-K.1^23+K.1^25+3*K.1^26-K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+2*K.1^-28,K.1+3*K.1^2-K.1^4-K.1^5+2*K.1^10+K.1^11-2*K.1^13-K.1^14-K.1^17+2*K.1^20-K.1^22+2*K.1^23-2*K.1^25-3*K.1^26+K.1^28+2*K.1^29+K.1^31+K.1^-31-K.1^-29-2*K.1^-28,K.1+2*K.1^4-K.1^5-K.1^7-K.1^10+K.1^11+K.1^13-K.1^17-K.1^20+2*K.1^22-K.1^23+K.1^25-K.1^28-K.1^29+K.1^31+K.1^-31-K.1^-29,0,0,0,-1*K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,-1*K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,0,0,0,K.1+3*K.1^2-K.1^4-K.1^5+2*K.1^10+K.1^11-2*K.1^13-K.1^14-K.1^17+2*K.1^20-K.1^22+2*K.1^23-2*K.1^25-3*K.1^26+K.1^28+2*K.1^29+K.1^31+K.1^-31-K.1^-29-2*K.1^-28,-2*K.1-3*K.1^2-K.1^4+2*K.1^5+K.1^7-K.1^10-2*K.1^11+K.1^13+K.1^14+2*K.1^17-K.1^20-K.1^22-K.1^23+K.1^25+3*K.1^26-K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+2*K.1^-28,K.1+2*K.1^4-K.1^5-K.1^7-K.1^10+K.1^11+K.1^13-K.1^17-K.1^20+2*K.1^22-K.1^23+K.1^25-K.1^28-K.1^29+K.1^31+K.1^-31-K.1^-29]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(63: Sparse := true); S := [ K |3969,-231,-189,-15,-21,9,378,27,0,0,0,0,0,0,27,3,-6,0,-27,3,-6,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,-49,0,0,0,0,0,0,0,54,-27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,7,-1,0,0,0,0,0,0,0,0,0,6,0,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-7,-1,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,1,-14*K.1-21*K.1^2-7*K.1^4+14*K.1^5+7*K.1^7-7*K.1^10-14*K.1^11+7*K.1^13+7*K.1^14+14*K.1^17-7*K.1^20-7*K.1^22-7*K.1^23+7*K.1^25+21*K.1^26-7*K.1^29-14*K.1^31-14*K.1^-31+14*K.1^-29+14*K.1^-28,7*K.1+14*K.1^4-7*K.1^5-7*K.1^7-7*K.1^10+7*K.1^11+7*K.1^13-7*K.1^17-7*K.1^20+14*K.1^22-7*K.1^23+7*K.1^25-7*K.1^28-7*K.1^29+7*K.1^31+7*K.1^-31-7*K.1^-29,7*K.1+21*K.1^2-7*K.1^4-7*K.1^5+14*K.1^10+7*K.1^11-14*K.1^13-7*K.1^14-7*K.1^17+14*K.1^20-7*K.1^22+14*K.1^23-14*K.1^25-21*K.1^26+7*K.1^28+14*K.1^29+7*K.1^31+7*K.1^-31-7*K.1^-29-14*K.1^-28,-2-K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,-2+2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,-2-K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,0,0,0,1+2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,1-K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,1-K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,K.1+2*K.1^4-K.1^5-K.1^7-K.1^10+K.1^11+K.1^13-K.1^17-K.1^20+2*K.1^22-K.1^23+K.1^25-K.1^28-K.1^29+K.1^31+K.1^-31-K.1^-29,-2*K.1-3*K.1^2-K.1^4+2*K.1^5+K.1^7-K.1^10-2*K.1^11+K.1^13+K.1^14+2*K.1^17-K.1^20-K.1^22-K.1^23+K.1^25+3*K.1^26-K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+2*K.1^-28,K.1+3*K.1^2-K.1^4-K.1^5+2*K.1^10+K.1^11-2*K.1^13-K.1^14-K.1^17+2*K.1^20-K.1^22+2*K.1^23-2*K.1^25-3*K.1^26+K.1^28+2*K.1^29+K.1^31+K.1^-31-K.1^-29-2*K.1^-28,0,0,0,2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,-1*K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,-1*K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,0,0,0,2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,-1*K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,-1*K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(63: Sparse := true); S := [ K |3969,-231,-189,-15,-21,9,378,27,0,0,0,0,0,0,27,3,-6,0,-27,3,-6,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,-49,0,0,0,0,0,0,0,54,-27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,7,-1,0,0,0,0,0,0,0,0,0,6,0,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-7,-1,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,1,7*K.1+14*K.1^4-7*K.1^5-7*K.1^7-7*K.1^10+7*K.1^11+7*K.1^13-7*K.1^17-7*K.1^20+14*K.1^22-7*K.1^23+7*K.1^25-7*K.1^28-7*K.1^29+7*K.1^31+7*K.1^-31-7*K.1^-29,7*K.1+21*K.1^2-7*K.1^4-7*K.1^5+14*K.1^10+7*K.1^11-14*K.1^13-7*K.1^14-7*K.1^17+14*K.1^20-7*K.1^22+14*K.1^23-14*K.1^25-21*K.1^26+7*K.1^28+14*K.1^29+7*K.1^31+7*K.1^-31-7*K.1^-29-14*K.1^-28,-14*K.1-21*K.1^2-7*K.1^4+14*K.1^5+7*K.1^7-7*K.1^10-14*K.1^11+7*K.1^13+7*K.1^14+14*K.1^17-7*K.1^20-7*K.1^22-7*K.1^23+7*K.1^25+21*K.1^26-7*K.1^29-14*K.1^31-14*K.1^-31+14*K.1^-29+14*K.1^-28,-2+2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,-2-K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,-2-K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,0,0,0,1-K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,1+2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,1-K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,K.1+3*K.1^2-K.1^4-K.1^5+2*K.1^10+K.1^11-2*K.1^13-K.1^14-K.1^17+2*K.1^20-K.1^22+2*K.1^23-2*K.1^25-3*K.1^26+K.1^28+2*K.1^29+K.1^31+K.1^-31-K.1^-29-2*K.1^-28,K.1+2*K.1^4-K.1^5-K.1^7-K.1^10+K.1^11+K.1^13-K.1^17-K.1^20+2*K.1^22-K.1^23+K.1^25-K.1^28-K.1^29+K.1^31+K.1^-31-K.1^-29,-2*K.1-3*K.1^2-K.1^4+2*K.1^5+K.1^7-K.1^10-2*K.1^11+K.1^13+K.1^14+2*K.1^17-K.1^20-K.1^22-K.1^23+K.1^25+3*K.1^26-K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+2*K.1^-28,0,0,0,-1*K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,-1*K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,0,0,0,-1*K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,-1*K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(63: Sparse := true); S := [ K |3969,-231,-189,-15,-21,9,378,27,0,0,0,0,0,0,27,3,-6,0,-27,3,-6,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,-49,0,0,0,0,0,0,0,54,-27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,7,-1,0,0,0,0,0,0,0,0,0,6,0,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-7,-1,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,1,7*K.1+21*K.1^2-7*K.1^4-7*K.1^5+14*K.1^10+7*K.1^11-14*K.1^13-7*K.1^14-7*K.1^17+14*K.1^20-7*K.1^22+14*K.1^23-14*K.1^25-21*K.1^26+7*K.1^28+14*K.1^29+7*K.1^31+7*K.1^-31-7*K.1^-29-14*K.1^-28,-14*K.1-21*K.1^2-7*K.1^4+14*K.1^5+7*K.1^7-7*K.1^10-14*K.1^11+7*K.1^13+7*K.1^14+14*K.1^17-7*K.1^20-7*K.1^22-7*K.1^23+7*K.1^25+21*K.1^26-7*K.1^29-14*K.1^31-14*K.1^-31+14*K.1^-29+14*K.1^-28,7*K.1+14*K.1^4-7*K.1^5-7*K.1^7-7*K.1^10+7*K.1^11+7*K.1^13-7*K.1^17-7*K.1^20+14*K.1^22-7*K.1^23+7*K.1^25-7*K.1^28-7*K.1^29+7*K.1^31+7*K.1^-31-7*K.1^-29,-2-K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,-2-K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,-2+2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,0,0,0,1-K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,1-K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,1+2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,-2*K.1-3*K.1^2-K.1^4+2*K.1^5+K.1^7-K.1^10-2*K.1^11+K.1^13+K.1^14+2*K.1^17-K.1^20-K.1^22-K.1^23+K.1^25+3*K.1^26-K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+2*K.1^-28,K.1+3*K.1^2-K.1^4-K.1^5+2*K.1^10+K.1^11-2*K.1^13-K.1^14-K.1^17+2*K.1^20-K.1^22+2*K.1^23-2*K.1^25-3*K.1^26+K.1^28+2*K.1^29+K.1^31+K.1^-31-K.1^-29-2*K.1^-28,K.1+2*K.1^4-K.1^5-K.1^7-K.1^10+K.1^11+K.1^13-K.1^17-K.1^20+2*K.1^22-K.1^23+K.1^25-K.1^28-K.1^29+K.1^31+K.1^-31-K.1^-29,0,0,0,-1*K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,-1*K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,0,0,0,-1*K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,-1*K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4032, -192, -168, 0, 24, 0, -144, -27, 9, 0, 0, 0, 0, 0, 0, 0, 24, -24, 21, -3, 0, 3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 336, 21, 21, 0, 0, 0, 0, -336, 21, 21, -3, 0, 0, 0, 6, 3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -24, -21, 0, 0, -3, -3, 3, 0, 0, 0, 24, 0, 21, -3, 0, -3, -3, 0, 0, 0, 3, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, -6, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, -3, 0, -21, -21, -21, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4032, -192, 168, 0, -24, 0, -144, -27, 9, 0, 0, 0, 0, 0, 0, 0, 24, 24, -21, -3, 0, -3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 336, 21, 21, 0, 0, 0, 0, -336, 21, 21, -3, 0, 0, 0, 6, 3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -24, 21, 0, 0, -3, -3, -3, 0, 0, 0, 24, 0, -21, -3, 0, -3, -3, 0, 0, 0, -3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, -6, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, -21, -21, -21, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4374, 486, 0, 54, 0, 6, 0, 0, 0, 0, 27, 27, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, -162, -36, 27, 6, -1, -8, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -18, 0, 0, -2, -4, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4374, 486, 0, 54, 0, 6, 0, 0, 0, -27, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, -162, 90, -36, -8, 6, -8, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -18, 0, 0, -2, 10, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4374,486,0,54,0,6,0,0,0,0,27*K.1^-1,27*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1,3*K.1^-1,0,0,-162,-36,27,6,-1,-8,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-18,0,0,-2,-4,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4374,486,0,54,0,6,0,0,0,0,27*K.1,27*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-1,3*K.1,0,0,-162,-36,27,6,-1,-8,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-18,0,0,-2,-4,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[5103, 135, -189, -33, 27, -9, -486, 0, 0, 0, 0, 0, 0, 0, -21, 3, -54, 54, 0, 0, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -126, 35, -14, 0, 0, 0, 0, 243, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 2, 7, 0, 2, -5, 2, -1, 0, 0, 0, 27, -27, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, -10, 4, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 2, -2, 0, -9, -9, -9, 0, 0, 0, 5, 5, 5, 0, 0, 0, 0, 0, 0, -2, -2, -2, -1, -1, -1, 1, 1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[5103, 135, 189, -33, -27, -9, -486, 0, 0, 0, 0, 0, 0, 0, 21, -3, -54, -54, 0, 0, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -126, 35, -14, 0, 0, 0, 0, 243, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, 0, 0, 0, 0, 2, -7, 0, 2, -5, 2, 1, 0, 0, 0, 27, 27, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, -10, 4, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 2, 2, 0, -9, -9, -9, 0, 0, 0, 5, 5, 5, 0, 0, 0, 0, 0, 0, -2, -2, -2, -1, -1, -1, -1, -1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(63: Sparse := true); S := [ K |5103,135,-189,-33,27,-9,243,0,0,0,0,0,0,0,-21,3,27,-27,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-126,35,-14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,0,0,0,0,2,7,0,2,-5,2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-9,0,5,-2,0,0,0,0,0,0,0,0,0,0,-1,1,0,-18*K.1-27*K.1^2-9*K.1^4+18*K.1^5+9*K.1^7-9*K.1^10-18*K.1^11+9*K.1^13+9*K.1^14+18*K.1^17-9*K.1^20-9*K.1^22-9*K.1^23+9*K.1^25+27*K.1^26-9*K.1^29-18*K.1^31-18*K.1^-31+18*K.1^-29+18*K.1^-28,9*K.1+18*K.1^4-9*K.1^5-9*K.1^7-9*K.1^10+9*K.1^11+9*K.1^13-9*K.1^17-9*K.1^20+18*K.1^22-9*K.1^23+9*K.1^25-9*K.1^28-9*K.1^29+9*K.1^31+9*K.1^-31-9*K.1^-29,9*K.1+27*K.1^2-9*K.1^4-9*K.1^5+18*K.1^10+9*K.1^11-18*K.1^13-9*K.1^14-9*K.1^17+18*K.1^20-9*K.1^22+18*K.1^23-18*K.1^25-27*K.1^26+9*K.1^28+18*K.1^29+9*K.1^31+9*K.1^-31-9*K.1^-29-18*K.1^-28,0,0,0,K.1+2*K.1^4-K.1^5-K.1^7-K.1^10+K.1^11+K.1^13-K.1^17-K.1^20+2*K.1^22-K.1^23+K.1^25-K.1^28-K.1^29+K.1^31+K.1^-31-K.1^-29,K.1+3*K.1^2-K.1^4-K.1^5+2*K.1^10+K.1^11-2*K.1^13-K.1^14-K.1^17+2*K.1^20-K.1^22+2*K.1^23-2*K.1^25-3*K.1^26+K.1^28+2*K.1^29+K.1^31+K.1^-31-K.1^-29-2*K.1^-28,-2*K.1-3*K.1^2-K.1^4+2*K.1^5+K.1^7-K.1^10-2*K.1^11+K.1^13+K.1^14+2*K.1^17-K.1^20-K.1^22-K.1^23+K.1^25+3*K.1^26-K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+2*K.1^-28,0,0,0,0,0,0,-1*K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,-1*K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,-2*K.1-3*K.1^2-K.1^4+2*K.1^5+K.1^7-K.1^10-2*K.1^11+K.1^13+K.1^14+2*K.1^17-K.1^20-K.1^22-K.1^23+K.1^25+3*K.1^26-K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+2*K.1^-28,K.1+2*K.1^4-K.1^5-K.1^7-K.1^10+K.1^11+K.1^13-K.1^17-K.1^20+2*K.1^22-K.1^23+K.1^25-K.1^28-K.1^29+K.1^31+K.1^-31-K.1^-29,K.1+3*K.1^2-K.1^4-K.1^5+2*K.1^10+K.1^11-2*K.1^13-K.1^14-K.1^17+2*K.1^20-K.1^22+2*K.1^23-2*K.1^25-3*K.1^26+K.1^28+2*K.1^29+K.1^31+K.1^-31-K.1^-29-2*K.1^-28,-1*K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,-1*K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(63: Sparse := true); S := [ K |5103,135,-189,-33,27,-9,243,0,0,0,0,0,0,0,-21,3,27,-27,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-126,35,-14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,0,0,0,0,2,7,0,2,-5,2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-9,0,5,-2,0,0,0,0,0,0,0,0,0,0,-1,1,0,9*K.1+18*K.1^4-9*K.1^5-9*K.1^7-9*K.1^10+9*K.1^11+9*K.1^13-9*K.1^17-9*K.1^20+18*K.1^22-9*K.1^23+9*K.1^25-9*K.1^28-9*K.1^29+9*K.1^31+9*K.1^-31-9*K.1^-29,9*K.1+27*K.1^2-9*K.1^4-9*K.1^5+18*K.1^10+9*K.1^11-18*K.1^13-9*K.1^14-9*K.1^17+18*K.1^20-9*K.1^22+18*K.1^23-18*K.1^25-27*K.1^26+9*K.1^28+18*K.1^29+9*K.1^31+9*K.1^-31-9*K.1^-29-18*K.1^-28,-18*K.1-27*K.1^2-9*K.1^4+18*K.1^5+9*K.1^7-9*K.1^10-18*K.1^11+9*K.1^13+9*K.1^14+18*K.1^17-9*K.1^20-9*K.1^22-9*K.1^23+9*K.1^25+27*K.1^26-9*K.1^29-18*K.1^31-18*K.1^-31+18*K.1^-29+18*K.1^-28,0,0,0,K.1+3*K.1^2-K.1^4-K.1^5+2*K.1^10+K.1^11-2*K.1^13-K.1^14-K.1^17+2*K.1^20-K.1^22+2*K.1^23-2*K.1^25-3*K.1^26+K.1^28+2*K.1^29+K.1^31+K.1^-31-K.1^-29-2*K.1^-28,-2*K.1-3*K.1^2-K.1^4+2*K.1^5+K.1^7-K.1^10-2*K.1^11+K.1^13+K.1^14+2*K.1^17-K.1^20-K.1^22-K.1^23+K.1^25+3*K.1^26-K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+2*K.1^-28,K.1+2*K.1^4-K.1^5-K.1^7-K.1^10+K.1^11+K.1^13-K.1^17-K.1^20+2*K.1^22-K.1^23+K.1^25-K.1^28-K.1^29+K.1^31+K.1^-31-K.1^-29,0,0,0,0,0,0,-1*K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,-1*K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,K.1+2*K.1^4-K.1^5-K.1^7-K.1^10+K.1^11+K.1^13-K.1^17-K.1^20+2*K.1^22-K.1^23+K.1^25-K.1^28-K.1^29+K.1^31+K.1^-31-K.1^-29,K.1+3*K.1^2-K.1^4-K.1^5+2*K.1^10+K.1^11-2*K.1^13-K.1^14-K.1^17+2*K.1^20-K.1^22+2*K.1^23-2*K.1^25-3*K.1^26+K.1^28+2*K.1^29+K.1^31+K.1^-31-K.1^-29-2*K.1^-28,-2*K.1-3*K.1^2-K.1^4+2*K.1^5+K.1^7-K.1^10-2*K.1^11+K.1^13+K.1^14+2*K.1^17-K.1^20-K.1^22-K.1^23+K.1^25+3*K.1^26-K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+2*K.1^-28,2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,-1*K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,-1*K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(63: Sparse := true); S := [ K |5103,135,-189,-33,27,-9,243,0,0,0,0,0,0,0,-21,3,27,-27,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-126,35,-14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,0,0,0,0,2,7,0,2,-5,2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-9,0,5,-2,0,0,0,0,0,0,0,0,0,0,-1,1,0,9*K.1+27*K.1^2-9*K.1^4-9*K.1^5+18*K.1^10+9*K.1^11-18*K.1^13-9*K.1^14-9*K.1^17+18*K.1^20-9*K.1^22+18*K.1^23-18*K.1^25-27*K.1^26+9*K.1^28+18*K.1^29+9*K.1^31+9*K.1^-31-9*K.1^-29-18*K.1^-28,-18*K.1-27*K.1^2-9*K.1^4+18*K.1^5+9*K.1^7-9*K.1^10-18*K.1^11+9*K.1^13+9*K.1^14+18*K.1^17-9*K.1^20-9*K.1^22-9*K.1^23+9*K.1^25+27*K.1^26-9*K.1^29-18*K.1^31-18*K.1^-31+18*K.1^-29+18*K.1^-28,9*K.1+18*K.1^4-9*K.1^5-9*K.1^7-9*K.1^10+9*K.1^11+9*K.1^13-9*K.1^17-9*K.1^20+18*K.1^22-9*K.1^23+9*K.1^25-9*K.1^28-9*K.1^29+9*K.1^31+9*K.1^-31-9*K.1^-29,0,0,0,-2*K.1-3*K.1^2-K.1^4+2*K.1^5+K.1^7-K.1^10-2*K.1^11+K.1^13+K.1^14+2*K.1^17-K.1^20-K.1^22-K.1^23+K.1^25+3*K.1^26-K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+2*K.1^-28,K.1+2*K.1^4-K.1^5-K.1^7-K.1^10+K.1^11+K.1^13-K.1^17-K.1^20+2*K.1^22-K.1^23+K.1^25-K.1^28-K.1^29+K.1^31+K.1^-31-K.1^-29,K.1+3*K.1^2-K.1^4-K.1^5+2*K.1^10+K.1^11-2*K.1^13-K.1^14-K.1^17+2*K.1^20-K.1^22+2*K.1^23-2*K.1^25-3*K.1^26+K.1^28+2*K.1^29+K.1^31+K.1^-31-K.1^-29-2*K.1^-28,0,0,0,0,0,0,2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,-1*K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,-1*K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,K.1+3*K.1^2-K.1^4-K.1^5+2*K.1^10+K.1^11-2*K.1^13-K.1^14-K.1^17+2*K.1^20-K.1^22+2*K.1^23-2*K.1^25-3*K.1^26+K.1^28+2*K.1^29+K.1^31+K.1^-31-K.1^-29-2*K.1^-28,-2*K.1-3*K.1^2-K.1^4+2*K.1^5+K.1^7-K.1^10-2*K.1^11+K.1^13+K.1^14+2*K.1^17-K.1^20-K.1^22-K.1^23+K.1^25+3*K.1^26-K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+2*K.1^-28,K.1+2*K.1^4-K.1^5-K.1^7-K.1^10+K.1^11+K.1^13-K.1^17-K.1^20+2*K.1^22-K.1^23+K.1^25-K.1^28-K.1^29+K.1^31+K.1^-31-K.1^-29,-1*K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,-1*K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(63: Sparse := true); S := [ K |5103,135,189,-33,-27,-9,243,0,0,0,0,0,0,0,21,-3,27,27,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-126,35,-14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,2,-7,0,2,-5,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-9,0,5,-2,0,0,0,0,0,0,0,0,0,0,-1,-1,0,-18*K.1-27*K.1^2-9*K.1^4+18*K.1^5+9*K.1^7-9*K.1^10-18*K.1^11+9*K.1^13+9*K.1^14+18*K.1^17-9*K.1^20-9*K.1^22-9*K.1^23+9*K.1^25+27*K.1^26-9*K.1^29-18*K.1^31-18*K.1^-31+18*K.1^-29+18*K.1^-28,9*K.1+18*K.1^4-9*K.1^5-9*K.1^7-9*K.1^10+9*K.1^11+9*K.1^13-9*K.1^17-9*K.1^20+18*K.1^22-9*K.1^23+9*K.1^25-9*K.1^28-9*K.1^29+9*K.1^31+9*K.1^-31-9*K.1^-29,9*K.1+27*K.1^2-9*K.1^4-9*K.1^5+18*K.1^10+9*K.1^11-18*K.1^13-9*K.1^14-9*K.1^17+18*K.1^20-9*K.1^22+18*K.1^23-18*K.1^25-27*K.1^26+9*K.1^28+18*K.1^29+9*K.1^31+9*K.1^-31-9*K.1^-29-18*K.1^-28,0,0,0,K.1+2*K.1^4-K.1^5-K.1^7-K.1^10+K.1^11+K.1^13-K.1^17-K.1^20+2*K.1^22-K.1^23+K.1^25-K.1^28-K.1^29+K.1^31+K.1^-31-K.1^-29,K.1+3*K.1^2-K.1^4-K.1^5+2*K.1^10+K.1^11-2*K.1^13-K.1^14-K.1^17+2*K.1^20-K.1^22+2*K.1^23-2*K.1^25-3*K.1^26+K.1^28+2*K.1^29+K.1^31+K.1^-31-K.1^-29-2*K.1^-28,-2*K.1-3*K.1^2-K.1^4+2*K.1^5+K.1^7-K.1^10-2*K.1^11+K.1^13+K.1^14+2*K.1^17-K.1^20-K.1^22-K.1^23+K.1^25+3*K.1^26-K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+2*K.1^-28,0,0,0,0,0,0,-1*K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,-1*K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,-2*K.1-3*K.1^2-K.1^4+2*K.1^5+K.1^7-K.1^10-2*K.1^11+K.1^13+K.1^14+2*K.1^17-K.1^20-K.1^22-K.1^23+K.1^25+3*K.1^26-K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+2*K.1^-28,K.1+2*K.1^4-K.1^5-K.1^7-K.1^10+K.1^11+K.1^13-K.1^17-K.1^20+2*K.1^22-K.1^23+K.1^25-K.1^28-K.1^29+K.1^31+K.1^-31-K.1^-29,K.1+3*K.1^2-K.1^4-K.1^5+2*K.1^10+K.1^11-2*K.1^13-K.1^14-K.1^17+2*K.1^20-K.1^22+2*K.1^23-2*K.1^25-3*K.1^26+K.1^28+2*K.1^29+K.1^31+K.1^-31-K.1^-29-2*K.1^-28,K.1+3*K.1^2-K.1^4-K.1^5+2*K.1^10+K.1^11-2*K.1^13-K.1^14-K.1^17+2*K.1^20-K.1^22+2*K.1^23-2*K.1^25-3*K.1^26+K.1^28+2*K.1^29+K.1^31+K.1^-31-K.1^-29-2*K.1^-28,-2*K.1-3*K.1^2-K.1^4+2*K.1^5+K.1^7-K.1^10-2*K.1^11+K.1^13+K.1^14+2*K.1^17-K.1^20-K.1^22-K.1^23+K.1^25+3*K.1^26-K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+2*K.1^-28,K.1+2*K.1^4-K.1^5-K.1^7-K.1^10+K.1^11+K.1^13-K.1^17-K.1^20+2*K.1^22-K.1^23+K.1^25-K.1^28-K.1^29+K.1^31+K.1^-31-K.1^-29,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(63: Sparse := true); S := [ K |5103,135,189,-33,-27,-9,243,0,0,0,0,0,0,0,21,-3,27,27,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-126,35,-14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,2,-7,0,2,-5,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-9,0,5,-2,0,0,0,0,0,0,0,0,0,0,-1,-1,0,9*K.1+18*K.1^4-9*K.1^5-9*K.1^7-9*K.1^10+9*K.1^11+9*K.1^13-9*K.1^17-9*K.1^20+18*K.1^22-9*K.1^23+9*K.1^25-9*K.1^28-9*K.1^29+9*K.1^31+9*K.1^-31-9*K.1^-29,9*K.1+27*K.1^2-9*K.1^4-9*K.1^5+18*K.1^10+9*K.1^11-18*K.1^13-9*K.1^14-9*K.1^17+18*K.1^20-9*K.1^22+18*K.1^23-18*K.1^25-27*K.1^26+9*K.1^28+18*K.1^29+9*K.1^31+9*K.1^-31-9*K.1^-29-18*K.1^-28,-18*K.1-27*K.1^2-9*K.1^4+18*K.1^5+9*K.1^7-9*K.1^10-18*K.1^11+9*K.1^13+9*K.1^14+18*K.1^17-9*K.1^20-9*K.1^22-9*K.1^23+9*K.1^25+27*K.1^26-9*K.1^29-18*K.1^31-18*K.1^-31+18*K.1^-29+18*K.1^-28,0,0,0,K.1+3*K.1^2-K.1^4-K.1^5+2*K.1^10+K.1^11-2*K.1^13-K.1^14-K.1^17+2*K.1^20-K.1^22+2*K.1^23-2*K.1^25-3*K.1^26+K.1^28+2*K.1^29+K.1^31+K.1^-31-K.1^-29-2*K.1^-28,-2*K.1-3*K.1^2-K.1^4+2*K.1^5+K.1^7-K.1^10-2*K.1^11+K.1^13+K.1^14+2*K.1^17-K.1^20-K.1^22-K.1^23+K.1^25+3*K.1^26-K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+2*K.1^-28,K.1+2*K.1^4-K.1^5-K.1^7-K.1^10+K.1^11+K.1^13-K.1^17-K.1^20+2*K.1^22-K.1^23+K.1^25-K.1^28-K.1^29+K.1^31+K.1^-31-K.1^-29,0,0,0,0,0,0,-1*K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,-1*K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,K.1+2*K.1^4-K.1^5-K.1^7-K.1^10+K.1^11+K.1^13-K.1^17-K.1^20+2*K.1^22-K.1^23+K.1^25-K.1^28-K.1^29+K.1^31+K.1^-31-K.1^-29,K.1+3*K.1^2-K.1^4-K.1^5+2*K.1^10+K.1^11-2*K.1^13-K.1^14-K.1^17+2*K.1^20-K.1^22+2*K.1^23-2*K.1^25-3*K.1^26+K.1^28+2*K.1^29+K.1^31+K.1^-31-K.1^-29-2*K.1^-28,-2*K.1-3*K.1^2-K.1^4+2*K.1^5+K.1^7-K.1^10-2*K.1^11+K.1^13+K.1^14+2*K.1^17-K.1^20-K.1^22-K.1^23+K.1^25+3*K.1^26-K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+2*K.1^-28,-2*K.1-3*K.1^2-K.1^4+2*K.1^5+K.1^7-K.1^10-2*K.1^11+K.1^13+K.1^14+2*K.1^17-K.1^20-K.1^22-K.1^23+K.1^25+3*K.1^26-K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+2*K.1^-28,K.1+2*K.1^4-K.1^5-K.1^7-K.1^10+K.1^11+K.1^13-K.1^17-K.1^20+2*K.1^22-K.1^23+K.1^25-K.1^28-K.1^29+K.1^31+K.1^-31-K.1^-29,K.1+3*K.1^2-K.1^4-K.1^5+2*K.1^10+K.1^11-2*K.1^13-K.1^14-K.1^17+2*K.1^20-K.1^22+2*K.1^23-2*K.1^25-3*K.1^26+K.1^28+2*K.1^29+K.1^31+K.1^-31-K.1^-29-2*K.1^-28,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(63: Sparse := true); S := [ K |5103,135,189,-33,-27,-9,243,0,0,0,0,0,0,0,21,-3,27,27,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-126,35,-14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,2,-7,0,2,-5,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-9,0,5,-2,0,0,0,0,0,0,0,0,0,0,-1,-1,0,9*K.1+27*K.1^2-9*K.1^4-9*K.1^5+18*K.1^10+9*K.1^11-18*K.1^13-9*K.1^14-9*K.1^17+18*K.1^20-9*K.1^22+18*K.1^23-18*K.1^25-27*K.1^26+9*K.1^28+18*K.1^29+9*K.1^31+9*K.1^-31-9*K.1^-29-18*K.1^-28,-18*K.1-27*K.1^2-9*K.1^4+18*K.1^5+9*K.1^7-9*K.1^10-18*K.1^11+9*K.1^13+9*K.1^14+18*K.1^17-9*K.1^20-9*K.1^22-9*K.1^23+9*K.1^25+27*K.1^26-9*K.1^29-18*K.1^31-18*K.1^-31+18*K.1^-29+18*K.1^-28,9*K.1+18*K.1^4-9*K.1^5-9*K.1^7-9*K.1^10+9*K.1^11+9*K.1^13-9*K.1^17-9*K.1^20+18*K.1^22-9*K.1^23+9*K.1^25-9*K.1^28-9*K.1^29+9*K.1^31+9*K.1^-31-9*K.1^-29,0,0,0,-2*K.1-3*K.1^2-K.1^4+2*K.1^5+K.1^7-K.1^10-2*K.1^11+K.1^13+K.1^14+2*K.1^17-K.1^20-K.1^22-K.1^23+K.1^25+3*K.1^26-K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+2*K.1^-28,K.1+2*K.1^4-K.1^5-K.1^7-K.1^10+K.1^11+K.1^13-K.1^17-K.1^20+2*K.1^22-K.1^23+K.1^25-K.1^28-K.1^29+K.1^31+K.1^-31-K.1^-29,K.1+3*K.1^2-K.1^4-K.1^5+2*K.1^10+K.1^11-2*K.1^13-K.1^14-K.1^17+2*K.1^20-K.1^22+2*K.1^23-2*K.1^25-3*K.1^26+K.1^28+2*K.1^29+K.1^31+K.1^-31-K.1^-29-2*K.1^-28,0,0,0,0,0,0,2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,-1*K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,-1*K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,K.1+3*K.1^2-K.1^4-K.1^5+2*K.1^10+K.1^11-2*K.1^13-K.1^14-K.1^17+2*K.1^20-K.1^22+2*K.1^23-2*K.1^25-3*K.1^26+K.1^28+2*K.1^29+K.1^31+K.1^-31-K.1^-29-2*K.1^-28,-2*K.1-3*K.1^2-K.1^4+2*K.1^5+K.1^7-K.1^10-2*K.1^11+K.1^13+K.1^14+2*K.1^17-K.1^20-K.1^22-K.1^23+K.1^25+3*K.1^26-K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+2*K.1^-28,K.1+2*K.1^4-K.1^5-K.1^7-K.1^10+K.1^11+K.1^13-K.1^17-K.1^20+2*K.1^22-K.1^23+K.1^25-K.1^28-K.1^29+K.1^31+K.1^-31-K.1^-29,K.1+2*K.1^4-K.1^5-K.1^7-K.1^10+K.1^11+K.1^13-K.1^17-K.1^20+2*K.1^22-K.1^23+K.1^25-K.1^28-K.1^29+K.1^31+K.1^-31-K.1^-29,K.1+3*K.1^2-K.1^4-K.1^5+2*K.1^10+K.1^11-2*K.1^13-K.1^14-K.1^17+2*K.1^20-K.1^22+2*K.1^23-2*K.1^25-3*K.1^26+K.1^28+2*K.1^29+K.1^31+K.1^-31-K.1^-29-2*K.1^-28,-2*K.1-3*K.1^2-K.1^4+2*K.1^5+K.1^7-K.1^10-2*K.1^11+K.1^13+K.1^14+2*K.1^17-K.1^20-K.1^22-K.1^23+K.1^25+3*K.1^26-K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+2*K.1^-28,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[5184, 192, 216, 0, 24, 0, -432, 27, 0, 0, 0, 0, 0, 0, 0, 0, -24, 0, -27, 3, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 368, 11, 11, -3, -3, -3, -3, -432, 27, 27, 27, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 27, -8, 0, 3, 3, 3, -1, -1, -1, -24, 0, -27, 3, 0, 3, 3, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -19, -1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 1, -19, -19, -19, -1, -1, -1, 2, 2, 2, -1, -1, -1, -1, -1, -1, 2, 2, 2, -3, -3, -3, 0, 0, 0, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[5184, 192, -216, 0, -24, 0, -432, 27, 0, 0, 0, 0, 0, 0, 0, 0, -24, 0, 27, 3, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 368, 11, 11, -3, -3, -3, -3, -432, 27, 27, 27, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, -27, 8, 0, 3, 3, -3, 1, 1, 1, -24, 0, 27, 3, 0, 3, 3, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -19, -1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, -1, -19, -19, -19, -1, -1, -1, 2, 2, 2, -1, -1, -1, -1, -1, -1, 2, 2, 2, -3, -3, -3, 0, 0, 0, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[5832, 432, 216, 24, 0, 0, -243, 0, 0, 0, 0, 0, 0, 0, 24, 0, -27, -27, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 99, 22, -34, 15, -6, 1, 1, -243, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 19, -8, 27, 3, -2, -2, 0, -1, -1, -1, -27, -27, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, -5, 2, 0, 0, 0, 0, 0, 0, 3, -3, 0, 0, 1, 1, 0, 9, 9, 9, 0, 0, 0, -5, -5, -5, 0, 0, 0, 0, 0, 0, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[5832, 432, -216, 24, 0, 0, -243, 0, 0, 0, 0, 0, 0, 0, -24, 0, -27, 27, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 99, 22, -34, 15, -6, 1, 1, -243, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 19, 8, -27, 3, -2, -2, 0, 1, 1, 1, -27, 27, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, -5, 2, 0, 0, 0, 0, 0, 0, -3, 3, 0, 0, 1, -1, 0, 9, 9, 9, 0, 0, 0, -5, -5, -5, 0, 0, 0, 0, 0, 0, 2, 2, 2, 1, 1, 1, -1, -1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6174, -882, 0, 126, 0, -18, 0, -126, -36, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 294, -42, 21, 42, -18, 9, 0, 6, 12, 0, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -42, 0, 0, 6, 6, -6, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6561, 729, 243, 81, 27, 9, 0, 0, 0, 0, 0, 0, 0, 0, 27, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -243, 9, 9, -12, -12, 9, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -27, -9, -9, -3, 1, 1, -1, 5, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6561, 729, 243, 81, 27, 9, 0, 0, 0, 0, 0, 0, 0, 0, 27, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -243, 9, 9, 9, 9, 2, -12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -27, -9, -9, -3, 1, 1, -1, -2, -2, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6561, 729, -243, 81, -27, 9, 0, 0, 0, 0, 0, 0, 0, 0, -27, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -243, 9, 9, -12, -12, 9, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -27, 9, 9, -3, 1, 1, 1, -5, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6561, 729, -243, 81, -27, 9, 0, 0, 0, 0, 0, 0, 0, 0, -27, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -243, 9, 9, 9, 9, 2, -12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -27, 9, 9, -3, 1, 1, 1, 2, 2, -5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[7056, -672, 0, 48, 0, 0, 378, -36, -18, 0, 0, 0, 0, 0, 0, 0, -6, 0, 0, 12, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 294, 0, 0, 0, 0, 0, 0, -294, -48, 24, -42, 18, -9, 0, -6, 6, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -42, 0, 0, 6, 0, 0, 0, 0, 0, 0, 42, 0, 0, 0, -6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 42, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, 0, 0, 0, 0, 0, -6, -6, -6, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[7056, -672, 0, 48, 0, 0, -630, -54, 36, 0, 0, 0, 0, 0, 0, 0, 66, 0, 0, -6, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 294, 0, 0, 0, 0, 0, 0, 42, -42, -42, 24, 0, 0, 0, 6, -6, 0, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -42, 0, 0, 6, 0, 0, 0, 0, 0, 0, 18, 0, 0, 6, -6, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -21, -12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 21, 21, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0, -3, -3, -3, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(63: Sparse := true); S := [ K |7938,-462,0,-30,0,18,756,54,0,0,0,0,0,0,0,0,-12,0,0,6,-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-98,0,0,0,0,0,0,0,-54,27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,14,0,0,-2,0,0,0,0,0,0,0,0,0,-6,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-14,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,-7*K.1-21*K.1^2+7*K.1^4+7*K.1^5-14*K.1^10-7*K.1^11+14*K.1^13+7*K.1^14+7*K.1^17-14*K.1^20+7*K.1^22-14*K.1^23+14*K.1^25+21*K.1^26-7*K.1^28-14*K.1^29-7*K.1^31-7*K.1^-31+7*K.1^-29+14*K.1^-28,14*K.1+21*K.1^2+7*K.1^4-14*K.1^5-7*K.1^7+7*K.1^10+14*K.1^11-7*K.1^13-7*K.1^14-14*K.1^17+7*K.1^20+7*K.1^22+7*K.1^23-7*K.1^25-21*K.1^26+7*K.1^29+14*K.1^31+14*K.1^-31-14*K.1^-29-14*K.1^-28,-7*K.1-14*K.1^4+7*K.1^5+7*K.1^7+7*K.1^10-7*K.1^11-7*K.1^13+7*K.1^17+7*K.1^20-14*K.1^22+7*K.1^23-7*K.1^25+7*K.1^28+7*K.1^29-7*K.1^31-7*K.1^-31+7*K.1^-29,2-2*K.1-4*K.1^4+2*K.1^5+2*K.1^7+2*K.1^10-2*K.1^11-2*K.1^13+2*K.1^17+2*K.1^20-4*K.1^22+2*K.1^23-2*K.1^25+2*K.1^28+2*K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29,2-2*K.1-6*K.1^2+2*K.1^4+2*K.1^5-4*K.1^10-2*K.1^11+4*K.1^13+2*K.1^14+2*K.1^17-4*K.1^20+2*K.1^22-4*K.1^23+4*K.1^25+6*K.1^26-2*K.1^28-4*K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+4*K.1^-28,2+4*K.1+6*K.1^2+2*K.1^4-4*K.1^5-2*K.1^7+2*K.1^10+4*K.1^11-2*K.1^13-2*K.1^14-4*K.1^17+2*K.1^20+2*K.1^22+2*K.1^23-2*K.1^25-6*K.1^26+2*K.1^29+4*K.1^31+4*K.1^-31-4*K.1^-29-4*K.1^-28,0,0,0,-1-2*K.1-6*K.1^2+2*K.1^4+2*K.1^5-4*K.1^10-2*K.1^11+4*K.1^13+2*K.1^14+2*K.1^17-4*K.1^20+2*K.1^22-4*K.1^23+4*K.1^25+6*K.1^26-2*K.1^28-4*K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+4*K.1^-28,-1-2*K.1-4*K.1^4+2*K.1^5+2*K.1^7+2*K.1^10-2*K.1^11-2*K.1^13+2*K.1^17+2*K.1^20-4*K.1^22+2*K.1^23-2*K.1^25+2*K.1^28+2*K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29,-1+4*K.1+6*K.1^2+2*K.1^4-4*K.1^5-2*K.1^7+2*K.1^10+4*K.1^11-2*K.1^13-2*K.1^14-4*K.1^17+2*K.1^20+2*K.1^22+2*K.1^23-2*K.1^25-6*K.1^26+2*K.1^29+4*K.1^31+4*K.1^-31-4*K.1^-29-4*K.1^-28,2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,-1*K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,-1*K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,0,0,0,K.1+3*K.1^2-K.1^4-K.1^5+2*K.1^10+K.1^11-2*K.1^13-K.1^14-K.1^17+2*K.1^20-K.1^22+2*K.1^23-2*K.1^25-3*K.1^26+K.1^28+2*K.1^29+K.1^31+K.1^-31-K.1^-29-2*K.1^-28,-2*K.1-3*K.1^2-K.1^4+2*K.1^5+K.1^7-K.1^10-2*K.1^11+K.1^13+K.1^14+2*K.1^17-K.1^20-K.1^22-K.1^23+K.1^25+3*K.1^26-K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+2*K.1^-28,K.1+2*K.1^4-K.1^5-K.1^7-K.1^10+K.1^11+K.1^13-K.1^17-K.1^20+2*K.1^22-K.1^23+K.1^25-K.1^28-K.1^29+K.1^31+K.1^-31-K.1^-29,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(63: Sparse := true); S := [ K |7938,-462,0,-30,0,18,756,54,0,0,0,0,0,0,0,0,-12,0,0,6,-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-98,0,0,0,0,0,0,0,-54,27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,14,0,0,-2,0,0,0,0,0,0,0,0,0,-6,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-14,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,-7*K.1-14*K.1^4+7*K.1^5+7*K.1^7+7*K.1^10-7*K.1^11-7*K.1^13+7*K.1^17+7*K.1^20-14*K.1^22+7*K.1^23-7*K.1^25+7*K.1^28+7*K.1^29-7*K.1^31-7*K.1^-31+7*K.1^-29,-7*K.1-21*K.1^2+7*K.1^4+7*K.1^5-14*K.1^10-7*K.1^11+14*K.1^13+7*K.1^14+7*K.1^17-14*K.1^20+7*K.1^22-14*K.1^23+14*K.1^25+21*K.1^26-7*K.1^28-14*K.1^29-7*K.1^31-7*K.1^-31+7*K.1^-29+14*K.1^-28,14*K.1+21*K.1^2+7*K.1^4-14*K.1^5-7*K.1^7+7*K.1^10+14*K.1^11-7*K.1^13-7*K.1^14-14*K.1^17+7*K.1^20+7*K.1^22+7*K.1^23-7*K.1^25-21*K.1^26+7*K.1^29+14*K.1^31+14*K.1^-31-14*K.1^-29-14*K.1^-28,2+4*K.1+6*K.1^2+2*K.1^4-4*K.1^5-2*K.1^7+2*K.1^10+4*K.1^11-2*K.1^13-2*K.1^14-4*K.1^17+2*K.1^20+2*K.1^22+2*K.1^23-2*K.1^25-6*K.1^26+2*K.1^29+4*K.1^31+4*K.1^-31-4*K.1^-29-4*K.1^-28,2-2*K.1-4*K.1^4+2*K.1^5+2*K.1^7+2*K.1^10-2*K.1^11-2*K.1^13+2*K.1^17+2*K.1^20-4*K.1^22+2*K.1^23-2*K.1^25+2*K.1^28+2*K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29,2-2*K.1-6*K.1^2+2*K.1^4+2*K.1^5-4*K.1^10-2*K.1^11+4*K.1^13+2*K.1^14+2*K.1^17-4*K.1^20+2*K.1^22-4*K.1^23+4*K.1^25+6*K.1^26-2*K.1^28-4*K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+4*K.1^-28,0,0,0,-1-2*K.1-4*K.1^4+2*K.1^5+2*K.1^7+2*K.1^10-2*K.1^11-2*K.1^13+2*K.1^17+2*K.1^20-4*K.1^22+2*K.1^23-2*K.1^25+2*K.1^28+2*K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29,-1+4*K.1+6*K.1^2+2*K.1^4-4*K.1^5-2*K.1^7+2*K.1^10+4*K.1^11-2*K.1^13-2*K.1^14-4*K.1^17+2*K.1^20+2*K.1^22+2*K.1^23-2*K.1^25-6*K.1^26+2*K.1^29+4*K.1^31+4*K.1^-31-4*K.1^-29-4*K.1^-28,-1-2*K.1-6*K.1^2+2*K.1^4+2*K.1^5-4*K.1^10-2*K.1^11+4*K.1^13+2*K.1^14+2*K.1^17-4*K.1^20+2*K.1^22-4*K.1^23+4*K.1^25+6*K.1^26-2*K.1^28-4*K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+4*K.1^-28,-1*K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,-1*K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,0,0,0,K.1+2*K.1^4-K.1^5-K.1^7-K.1^10+K.1^11+K.1^13-K.1^17-K.1^20+2*K.1^22-K.1^23+K.1^25-K.1^28-K.1^29+K.1^31+K.1^-31-K.1^-29,K.1+3*K.1^2-K.1^4-K.1^5+2*K.1^10+K.1^11-2*K.1^13-K.1^14-K.1^17+2*K.1^20-K.1^22+2*K.1^23-2*K.1^25-3*K.1^26+K.1^28+2*K.1^29+K.1^31+K.1^-31-K.1^-29-2*K.1^-28,-2*K.1-3*K.1^2-K.1^4+2*K.1^5+K.1^7-K.1^10-2*K.1^11+K.1^13+K.1^14+2*K.1^17-K.1^20-K.1^22-K.1^23+K.1^25+3*K.1^26-K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+2*K.1^-28,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(63: Sparse := true); S := [ K |7938,-462,0,-30,0,18,756,54,0,0,0,0,0,0,0,0,-12,0,0,6,-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-98,0,0,0,0,0,0,0,-54,27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,14,0,0,-2,0,0,0,0,0,0,0,0,0,-6,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-14,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,14*K.1+21*K.1^2+7*K.1^4-14*K.1^5-7*K.1^7+7*K.1^10+14*K.1^11-7*K.1^13-7*K.1^14-14*K.1^17+7*K.1^20+7*K.1^22+7*K.1^23-7*K.1^25-21*K.1^26+7*K.1^29+14*K.1^31+14*K.1^-31-14*K.1^-29-14*K.1^-28,-7*K.1-14*K.1^4+7*K.1^5+7*K.1^7+7*K.1^10-7*K.1^11-7*K.1^13+7*K.1^17+7*K.1^20-14*K.1^22+7*K.1^23-7*K.1^25+7*K.1^28+7*K.1^29-7*K.1^31-7*K.1^-31+7*K.1^-29,-7*K.1-21*K.1^2+7*K.1^4+7*K.1^5-14*K.1^10-7*K.1^11+14*K.1^13+7*K.1^14+7*K.1^17-14*K.1^20+7*K.1^22-14*K.1^23+14*K.1^25+21*K.1^26-7*K.1^28-14*K.1^29-7*K.1^31-7*K.1^-31+7*K.1^-29+14*K.1^-28,2-2*K.1-6*K.1^2+2*K.1^4+2*K.1^5-4*K.1^10-2*K.1^11+4*K.1^13+2*K.1^14+2*K.1^17-4*K.1^20+2*K.1^22-4*K.1^23+4*K.1^25+6*K.1^26-2*K.1^28-4*K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+4*K.1^-28,2+4*K.1+6*K.1^2+2*K.1^4-4*K.1^5-2*K.1^7+2*K.1^10+4*K.1^11-2*K.1^13-2*K.1^14-4*K.1^17+2*K.1^20+2*K.1^22+2*K.1^23-2*K.1^25-6*K.1^26+2*K.1^29+4*K.1^31+4*K.1^-31-4*K.1^-29-4*K.1^-28,2-2*K.1-4*K.1^4+2*K.1^5+2*K.1^7+2*K.1^10-2*K.1^11-2*K.1^13+2*K.1^17+2*K.1^20-4*K.1^22+2*K.1^23-2*K.1^25+2*K.1^28+2*K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29,0,0,0,-1+4*K.1+6*K.1^2+2*K.1^4-4*K.1^5-2*K.1^7+2*K.1^10+4*K.1^11-2*K.1^13-2*K.1^14-4*K.1^17+2*K.1^20+2*K.1^22+2*K.1^23-2*K.1^25-6*K.1^26+2*K.1^29+4*K.1^31+4*K.1^-31-4*K.1^-29-4*K.1^-28,-1-2*K.1-6*K.1^2+2*K.1^4+2*K.1^5-4*K.1^10-2*K.1^11+4*K.1^13+2*K.1^14+2*K.1^17-4*K.1^20+2*K.1^22-4*K.1^23+4*K.1^25+6*K.1^26-2*K.1^28-4*K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+4*K.1^-28,-1-2*K.1-4*K.1^4+2*K.1^5+2*K.1^7+2*K.1^10-2*K.1^11-2*K.1^13+2*K.1^17+2*K.1^20-4*K.1^22+2*K.1^23-2*K.1^25+2*K.1^28+2*K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29,-1*K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,-1*K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,0,0,0,-2*K.1-3*K.1^2-K.1^4+2*K.1^5+K.1^7-K.1^10-2*K.1^11+K.1^13+K.1^14+2*K.1^17-K.1^20-K.1^22-K.1^23+K.1^25+3*K.1^26-K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+2*K.1^-28,K.1+2*K.1^4-K.1^5-K.1^7-K.1^10+K.1^11+K.1^13-K.1^17-K.1^20+2*K.1^22-K.1^23+K.1^25-K.1^28-K.1^29+K.1^31+K.1^-31-K.1^-29,K.1+3*K.1^2-K.1^4-K.1^5+2*K.1^10+K.1^11-2*K.1^13-K.1^14-K.1^17+2*K.1^20-K.1^22+2*K.1^23-2*K.1^25-3*K.1^26+K.1^28+2*K.1^29+K.1^31+K.1^-31-K.1^-29-2*K.1^-28,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(63: Sparse := true); S := [ K |7938,-462,0,-30,0,18,-378,-108,0,0,0,0,0,0,0,0,6,0,0,-12,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-98,0,0,0,0,0,0,378,0,0,27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,14,0,0,-2,0,0,0,0,0,0,-6,0,0,0,-6,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,4,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-7-14*K.1-21*K.1^2-7*K.1^4+14*K.1^5+7*K.1^7-7*K.1^10-14*K.1^11+7*K.1^13+7*K.1^14+14*K.1^17-7*K.1^20-7*K.1^22-7*K.1^23+7*K.1^25+21*K.1^26-7*K.1^29-14*K.1^31-14*K.1^-31+14*K.1^-29+14*K.1^-28,-7+7*K.1+14*K.1^4-7*K.1^5-7*K.1^7-7*K.1^10+7*K.1^11+7*K.1^13-7*K.1^17-7*K.1^20+14*K.1^22-7*K.1^23+7*K.1^25-7*K.1^28-7*K.1^29+7*K.1^31+7*K.1^-31-7*K.1^-29,-7+7*K.1+21*K.1^2-7*K.1^4-7*K.1^5+14*K.1^10+7*K.1^11-14*K.1^13-7*K.1^14-7*K.1^17+14*K.1^20-7*K.1^22+14*K.1^23-14*K.1^25-21*K.1^26+7*K.1^28+14*K.1^29+7*K.1^31+7*K.1^-31-7*K.1^-29-14*K.1^-28,2*K.1+4*K.1^4-2*K.1^5-2*K.1^7-2*K.1^10+2*K.1^11+2*K.1^13-2*K.1^17-2*K.1^20+4*K.1^22-2*K.1^23+2*K.1^25-2*K.1^28-2*K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29,2*K.1+6*K.1^2-2*K.1^4-2*K.1^5+4*K.1^10+2*K.1^11-4*K.1^13-2*K.1^14-2*K.1^17+4*K.1^20-2*K.1^22+4*K.1^23-4*K.1^25-6*K.1^26+2*K.1^28+4*K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-4*K.1^-28,-4*K.1-6*K.1^2-2*K.1^4+4*K.1^5+2*K.1^7-2*K.1^10-4*K.1^11+2*K.1^13+2*K.1^14+4*K.1^17-2*K.1^20-2*K.1^22-2*K.1^23+2*K.1^25+6*K.1^26-2*K.1^29-4*K.1^31-4*K.1^-31+4*K.1^-29+4*K.1^-28,0,0,0,-1*K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,-1*K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,-1-2*K.1-4*K.1^4+2*K.1^5+2*K.1^7+2*K.1^10-2*K.1^11-2*K.1^13+2*K.1^17+2*K.1^20-4*K.1^22+2*K.1^23-2*K.1^25+2*K.1^28+2*K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29,-1+4*K.1+6*K.1^2+2*K.1^4-4*K.1^5-2*K.1^7+2*K.1^10+4*K.1^11-2*K.1^13-2*K.1^14-4*K.1^17+2*K.1^20+2*K.1^22+2*K.1^23-2*K.1^25-6*K.1^26+2*K.1^29+4*K.1^31+4*K.1^-31-4*K.1^-29-4*K.1^-28,-1-2*K.1-6*K.1^2+2*K.1^4+2*K.1^5-4*K.1^10-2*K.1^11+4*K.1^13+2*K.1^14+2*K.1^17-4*K.1^20+2*K.1^22-4*K.1^23+4*K.1^25+6*K.1^26-2*K.1^28-4*K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+4*K.1^-28,0,0,0,1+2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,1-K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,1-K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(63: Sparse := true); S := [ K |7938,-462,0,-30,0,18,-378,-108,0,0,0,0,0,0,0,0,6,0,0,-12,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-98,0,0,0,0,0,0,378,0,0,27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,14,0,0,-2,0,0,0,0,0,0,-6,0,0,0,-6,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,4,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-7+7*K.1+14*K.1^4-7*K.1^5-7*K.1^7-7*K.1^10+7*K.1^11+7*K.1^13-7*K.1^17-7*K.1^20+14*K.1^22-7*K.1^23+7*K.1^25-7*K.1^28-7*K.1^29+7*K.1^31+7*K.1^-31-7*K.1^-29,-7+7*K.1+21*K.1^2-7*K.1^4-7*K.1^5+14*K.1^10+7*K.1^11-14*K.1^13-7*K.1^14-7*K.1^17+14*K.1^20-7*K.1^22+14*K.1^23-14*K.1^25-21*K.1^26+7*K.1^28+14*K.1^29+7*K.1^31+7*K.1^-31-7*K.1^-29-14*K.1^-28,-7-14*K.1-21*K.1^2-7*K.1^4+14*K.1^5+7*K.1^7-7*K.1^10-14*K.1^11+7*K.1^13+7*K.1^14+14*K.1^17-7*K.1^20-7*K.1^22-7*K.1^23+7*K.1^25+21*K.1^26-7*K.1^29-14*K.1^31-14*K.1^-31+14*K.1^-29+14*K.1^-28,2*K.1+6*K.1^2-2*K.1^4-2*K.1^5+4*K.1^10+2*K.1^11-4*K.1^13-2*K.1^14-2*K.1^17+4*K.1^20-2*K.1^22+4*K.1^23-4*K.1^25-6*K.1^26+2*K.1^28+4*K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-4*K.1^-28,-4*K.1-6*K.1^2-2*K.1^4+4*K.1^5+2*K.1^7-2*K.1^10-4*K.1^11+2*K.1^13+2*K.1^14+4*K.1^17-2*K.1^20-2*K.1^22-2*K.1^23+2*K.1^25+6*K.1^26-2*K.1^29-4*K.1^31-4*K.1^-31+4*K.1^-29+4*K.1^-28,2*K.1+4*K.1^4-2*K.1^5-2*K.1^7-2*K.1^10+2*K.1^11+2*K.1^13-2*K.1^17-2*K.1^20+4*K.1^22-2*K.1^23+2*K.1^25-2*K.1^28-2*K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29,0,0,0,2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,-1*K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,-1*K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,-1-2*K.1-6*K.1^2+2*K.1^4+2*K.1^5-4*K.1^10-2*K.1^11+4*K.1^13+2*K.1^14+2*K.1^17-4*K.1^20+2*K.1^22-4*K.1^23+4*K.1^25+6*K.1^26-2*K.1^28-4*K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+4*K.1^-28,-1-2*K.1-4*K.1^4+2*K.1^5+2*K.1^7+2*K.1^10-2*K.1^11-2*K.1^13+2*K.1^17+2*K.1^20-4*K.1^22+2*K.1^23-2*K.1^25+2*K.1^28+2*K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29,-1+4*K.1+6*K.1^2+2*K.1^4-4*K.1^5-2*K.1^7+2*K.1^10+4*K.1^11-2*K.1^13-2*K.1^14-4*K.1^17+2*K.1^20+2*K.1^22+2*K.1^23-2*K.1^25-6*K.1^26+2*K.1^29+4*K.1^31+4*K.1^-31-4*K.1^-29-4*K.1^-28,0,0,0,1-K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,1-K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,1+2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(63: Sparse := true); S := [ K |7938,-462,0,-30,0,18,-378,-108,0,0,0,0,0,0,0,0,6,0,0,-12,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-98,0,0,0,0,0,0,378,0,0,27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,14,0,0,-2,0,0,0,0,0,0,-6,0,0,0,-6,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,4,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-7+7*K.1+21*K.1^2-7*K.1^4-7*K.1^5+14*K.1^10+7*K.1^11-14*K.1^13-7*K.1^14-7*K.1^17+14*K.1^20-7*K.1^22+14*K.1^23-14*K.1^25-21*K.1^26+7*K.1^28+14*K.1^29+7*K.1^31+7*K.1^-31-7*K.1^-29-14*K.1^-28,-7-14*K.1-21*K.1^2-7*K.1^4+14*K.1^5+7*K.1^7-7*K.1^10-14*K.1^11+7*K.1^13+7*K.1^14+14*K.1^17-7*K.1^20-7*K.1^22-7*K.1^23+7*K.1^25+21*K.1^26-7*K.1^29-14*K.1^31-14*K.1^-31+14*K.1^-29+14*K.1^-28,-7+7*K.1+14*K.1^4-7*K.1^5-7*K.1^7-7*K.1^10+7*K.1^11+7*K.1^13-7*K.1^17-7*K.1^20+14*K.1^22-7*K.1^23+7*K.1^25-7*K.1^28-7*K.1^29+7*K.1^31+7*K.1^-31-7*K.1^-29,-4*K.1-6*K.1^2-2*K.1^4+4*K.1^5+2*K.1^7-2*K.1^10-4*K.1^11+2*K.1^13+2*K.1^14+4*K.1^17-2*K.1^20-2*K.1^22-2*K.1^23+2*K.1^25+6*K.1^26-2*K.1^29-4*K.1^31-4*K.1^-31+4*K.1^-29+4*K.1^-28,2*K.1+4*K.1^4-2*K.1^5-2*K.1^7-2*K.1^10+2*K.1^11+2*K.1^13-2*K.1^17-2*K.1^20+4*K.1^22-2*K.1^23+2*K.1^25-2*K.1^28-2*K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29,2*K.1+6*K.1^2-2*K.1^4-2*K.1^5+4*K.1^10+2*K.1^11-4*K.1^13-2*K.1^14-2*K.1^17+4*K.1^20-2*K.1^22+4*K.1^23-4*K.1^25-6*K.1^26+2*K.1^28+4*K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-4*K.1^-28,0,0,0,-1*K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,-1*K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,-1+4*K.1+6*K.1^2+2*K.1^4-4*K.1^5-2*K.1^7+2*K.1^10+4*K.1^11-2*K.1^13-2*K.1^14-4*K.1^17+2*K.1^20+2*K.1^22+2*K.1^23-2*K.1^25-6*K.1^26+2*K.1^29+4*K.1^31+4*K.1^-31-4*K.1^-29-4*K.1^-28,-1-2*K.1-6*K.1^2+2*K.1^4+2*K.1^5-4*K.1^10-2*K.1^11+4*K.1^13+2*K.1^14+2*K.1^17-4*K.1^20+2*K.1^22-4*K.1^23+4*K.1^25+6*K.1^26-2*K.1^28-4*K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+4*K.1^-28,-1-2*K.1-4*K.1^4+2*K.1^5+2*K.1^7+2*K.1^10-2*K.1^11-2*K.1^13+2*K.1^17+2*K.1^20-4*K.1^22+2*K.1^23-2*K.1^25+2*K.1^28+2*K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29,0,0,0,1-K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,1+2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,1-K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[9072, -96, 0, -48, 0, 0, -1242, 108, 0, 0, 0, 0, 0, 0, 0, 0, -42, 0, 0, 12, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 266, -14, -14, 0, 0, 0, 0, 54, -54, -54, 27, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, -6, 2, 2, 0, 0, 0, 0, 30, 0, 0, -6, 6, 3, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -31, -4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -7, 0, 0, 26, 26, 26, 2, 2, 2, -2, -2, -2, 2, 2, 2, -1, -1, -1, -2, -2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(63: Sparse := true); S := [ K |9072,-96,0,-48,0,0,54,-54,0,0,0,0,0,0,0,0,30,0,0,-6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,266,-14,-14,0,0,0,0,-378,0,0,-27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,-6,2,2,0,0,0,0,6,0,0,0,6,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,26,2,-2,-2,0,0,0,0,0,0,0,0,0,0,2,0,0,7-16*K.1-24*K.1^2-8*K.1^4+16*K.1^5+8*K.1^7-8*K.1^10-16*K.1^11+8*K.1^13+8*K.1^14+16*K.1^17-8*K.1^20-8*K.1^22-8*K.1^23+8*K.1^25+24*K.1^26-8*K.1^29-16*K.1^31-16*K.1^-31+16*K.1^-29+16*K.1^-28,7+8*K.1+16*K.1^4-8*K.1^5-8*K.1^7-8*K.1^10+8*K.1^11+8*K.1^13-8*K.1^17-8*K.1^20+16*K.1^22-8*K.1^23+8*K.1^25-8*K.1^28-8*K.1^29+8*K.1^31+8*K.1^-31-8*K.1^-29,7+8*K.1+24*K.1^2-8*K.1^4-8*K.1^5+16*K.1^10+8*K.1^11-16*K.1^13-8*K.1^14-8*K.1^17+16*K.1^20-8*K.1^22+16*K.1^23-16*K.1^25-24*K.1^26+8*K.1^28+16*K.1^29+8*K.1^31+8*K.1^-31-8*K.1^-29-16*K.1^-28,-2*K.1-4*K.1^4+2*K.1^5+2*K.1^7+2*K.1^10-2*K.1^11-2*K.1^13+2*K.1^17+2*K.1^20-4*K.1^22+2*K.1^23-2*K.1^25+2*K.1^28+2*K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29,-2*K.1-6*K.1^2+2*K.1^4+2*K.1^5-4*K.1^10-2*K.1^11+4*K.1^13+2*K.1^14+2*K.1^17-4*K.1^20+2*K.1^22-4*K.1^23+4*K.1^25+6*K.1^26-2*K.1^28-4*K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+4*K.1^-28,4*K.1+6*K.1^2+2*K.1^4-4*K.1^5-2*K.1^7+2*K.1^10+4*K.1^11-2*K.1^13-2*K.1^14-4*K.1^17+2*K.1^20+2*K.1^22+2*K.1^23-2*K.1^25-6*K.1^26+2*K.1^29+4*K.1^31+4*K.1^-31-4*K.1^-29-4*K.1^-28,2*K.1+6*K.1^2-2*K.1^4-2*K.1^5+4*K.1^10+2*K.1^11-4*K.1^13-2*K.1^14-2*K.1^17+4*K.1^20-2*K.1^22+4*K.1^23-4*K.1^25-6*K.1^26+2*K.1^28+4*K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-4*K.1^-28,-4*K.1-6*K.1^2-2*K.1^4+4*K.1^5+2*K.1^7-2*K.1^10-4*K.1^11+2*K.1^13+2*K.1^14+4*K.1^17-2*K.1^20-2*K.1^22-2*K.1^23+2*K.1^25+6*K.1^26-2*K.1^29-4*K.1^31-4*K.1^-31+4*K.1^-29+4*K.1^-28,2*K.1+4*K.1^4-2*K.1^5-2*K.1^7-2*K.1^10+2*K.1^11+2*K.1^13-2*K.1^17-2*K.1^20+4*K.1^22-2*K.1^23+2*K.1^25-2*K.1^28-2*K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29,K.1+3*K.1^2-K.1^4-K.1^5+2*K.1^10+K.1^11-2*K.1^13-K.1^14-K.1^17+2*K.1^20-K.1^22+2*K.1^23-2*K.1^25-3*K.1^26+K.1^28+2*K.1^29+K.1^31+K.1^-31-K.1^-29-2*K.1^-28,K.1+2*K.1^4-K.1^5-K.1^7-K.1^10+K.1^11+K.1^13-K.1^17-K.1^20+2*K.1^22-K.1^23+K.1^25-K.1^28-K.1^29+K.1^31+K.1^-31-K.1^-29,-2*K.1-3*K.1^2-K.1^4+2*K.1^5+K.1^7-K.1^10-2*K.1^11+K.1^13+K.1^14+2*K.1^17-K.1^20-K.1^22-K.1^23+K.1^25+3*K.1^26-K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+2*K.1^-28,1-K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,1+2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,1-K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,-1*K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,-1*K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,-1,-1,-1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(63: Sparse := true); S := [ K |9072,-96,0,-48,0,0,54,-54,0,0,0,0,0,0,0,0,30,0,0,-6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,266,-14,-14,0,0,0,0,-378,0,0,-27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,-6,2,2,0,0,0,0,6,0,0,0,6,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,26,2,-2,-2,0,0,0,0,0,0,0,0,0,0,2,0,0,7+8*K.1+16*K.1^4-8*K.1^5-8*K.1^7-8*K.1^10+8*K.1^11+8*K.1^13-8*K.1^17-8*K.1^20+16*K.1^22-8*K.1^23+8*K.1^25-8*K.1^28-8*K.1^29+8*K.1^31+8*K.1^-31-8*K.1^-29,7+8*K.1+24*K.1^2-8*K.1^4-8*K.1^5+16*K.1^10+8*K.1^11-16*K.1^13-8*K.1^14-8*K.1^17+16*K.1^20-8*K.1^22+16*K.1^23-16*K.1^25-24*K.1^26+8*K.1^28+16*K.1^29+8*K.1^31+8*K.1^-31-8*K.1^-29-16*K.1^-28,7-16*K.1-24*K.1^2-8*K.1^4+16*K.1^5+8*K.1^7-8*K.1^10-16*K.1^11+8*K.1^13+8*K.1^14+16*K.1^17-8*K.1^20-8*K.1^22-8*K.1^23+8*K.1^25+24*K.1^26-8*K.1^29-16*K.1^31-16*K.1^-31+16*K.1^-29+16*K.1^-28,-2*K.1-6*K.1^2+2*K.1^4+2*K.1^5-4*K.1^10-2*K.1^11+4*K.1^13+2*K.1^14+2*K.1^17-4*K.1^20+2*K.1^22-4*K.1^23+4*K.1^25+6*K.1^26-2*K.1^28-4*K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+4*K.1^-28,4*K.1+6*K.1^2+2*K.1^4-4*K.1^5-2*K.1^7+2*K.1^10+4*K.1^11-2*K.1^13-2*K.1^14-4*K.1^17+2*K.1^20+2*K.1^22+2*K.1^23-2*K.1^25-6*K.1^26+2*K.1^29+4*K.1^31+4*K.1^-31-4*K.1^-29-4*K.1^-28,-2*K.1-4*K.1^4+2*K.1^5+2*K.1^7+2*K.1^10-2*K.1^11-2*K.1^13+2*K.1^17+2*K.1^20-4*K.1^22+2*K.1^23-2*K.1^25+2*K.1^28+2*K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29,-4*K.1-6*K.1^2-2*K.1^4+4*K.1^5+2*K.1^7-2*K.1^10-4*K.1^11+2*K.1^13+2*K.1^14+4*K.1^17-2*K.1^20-2*K.1^22-2*K.1^23+2*K.1^25+6*K.1^26-2*K.1^29-4*K.1^31-4*K.1^-31+4*K.1^-29+4*K.1^-28,2*K.1+4*K.1^4-2*K.1^5-2*K.1^7-2*K.1^10+2*K.1^11+2*K.1^13-2*K.1^17-2*K.1^20+4*K.1^22-2*K.1^23+2*K.1^25-2*K.1^28-2*K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29,2*K.1+6*K.1^2-2*K.1^4-2*K.1^5+4*K.1^10+2*K.1^11-4*K.1^13-2*K.1^14-2*K.1^17+4*K.1^20-2*K.1^22+4*K.1^23-4*K.1^25-6*K.1^26+2*K.1^28+4*K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-4*K.1^-28,-2*K.1-3*K.1^2-K.1^4+2*K.1^5+K.1^7-K.1^10-2*K.1^11+K.1^13+K.1^14+2*K.1^17-K.1^20-K.1^22-K.1^23+K.1^25+3*K.1^26-K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+2*K.1^-28,K.1+3*K.1^2-K.1^4-K.1^5+2*K.1^10+K.1^11-2*K.1^13-K.1^14-K.1^17+2*K.1^20-K.1^22+2*K.1^23-2*K.1^25-3*K.1^26+K.1^28+2*K.1^29+K.1^31+K.1^-31-K.1^-29-2*K.1^-28,K.1+2*K.1^4-K.1^5-K.1^7-K.1^10+K.1^11+K.1^13-K.1^17-K.1^20+2*K.1^22-K.1^23+K.1^25-K.1^28-K.1^29+K.1^31+K.1^-31-K.1^-29,1-K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,1-K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,1+2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,-1*K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,-1*K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,-1,-1,-1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(63: Sparse := true); S := [ K |9072,-96,0,-48,0,0,54,-54,0,0,0,0,0,0,0,0,30,0,0,-6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,266,-14,-14,0,0,0,0,-378,0,0,-27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,-6,2,2,0,0,0,0,6,0,0,0,6,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,26,2,-2,-2,0,0,0,0,0,0,0,0,0,0,2,0,0,7+8*K.1+24*K.1^2-8*K.1^4-8*K.1^5+16*K.1^10+8*K.1^11-16*K.1^13-8*K.1^14-8*K.1^17+16*K.1^20-8*K.1^22+16*K.1^23-16*K.1^25-24*K.1^26+8*K.1^28+16*K.1^29+8*K.1^31+8*K.1^-31-8*K.1^-29-16*K.1^-28,7-16*K.1-24*K.1^2-8*K.1^4+16*K.1^5+8*K.1^7-8*K.1^10-16*K.1^11+8*K.1^13+8*K.1^14+16*K.1^17-8*K.1^20-8*K.1^22-8*K.1^23+8*K.1^25+24*K.1^26-8*K.1^29-16*K.1^31-16*K.1^-31+16*K.1^-29+16*K.1^-28,7+8*K.1+16*K.1^4-8*K.1^5-8*K.1^7-8*K.1^10+8*K.1^11+8*K.1^13-8*K.1^17-8*K.1^20+16*K.1^22-8*K.1^23+8*K.1^25-8*K.1^28-8*K.1^29+8*K.1^31+8*K.1^-31-8*K.1^-29,4*K.1+6*K.1^2+2*K.1^4-4*K.1^5-2*K.1^7+2*K.1^10+4*K.1^11-2*K.1^13-2*K.1^14-4*K.1^17+2*K.1^20+2*K.1^22+2*K.1^23-2*K.1^25-6*K.1^26+2*K.1^29+4*K.1^31+4*K.1^-31-4*K.1^-29-4*K.1^-28,-2*K.1-4*K.1^4+2*K.1^5+2*K.1^7+2*K.1^10-2*K.1^11-2*K.1^13+2*K.1^17+2*K.1^20-4*K.1^22+2*K.1^23-2*K.1^25+2*K.1^28+2*K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29,-2*K.1-6*K.1^2+2*K.1^4+2*K.1^5-4*K.1^10-2*K.1^11+4*K.1^13+2*K.1^14+2*K.1^17-4*K.1^20+2*K.1^22-4*K.1^23+4*K.1^25+6*K.1^26-2*K.1^28-4*K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+4*K.1^-28,2*K.1+4*K.1^4-2*K.1^5-2*K.1^7-2*K.1^10+2*K.1^11+2*K.1^13-2*K.1^17-2*K.1^20+4*K.1^22-2*K.1^23+2*K.1^25-2*K.1^28-2*K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29,2*K.1+6*K.1^2-2*K.1^4-2*K.1^5+4*K.1^10+2*K.1^11-4*K.1^13-2*K.1^14-2*K.1^17+4*K.1^20-2*K.1^22+4*K.1^23-4*K.1^25-6*K.1^26+2*K.1^28+4*K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-4*K.1^-28,-4*K.1-6*K.1^2-2*K.1^4+4*K.1^5+2*K.1^7-2*K.1^10-4*K.1^11+2*K.1^13+2*K.1^14+4*K.1^17-2*K.1^20-2*K.1^22-2*K.1^23+2*K.1^25+6*K.1^26-2*K.1^29-4*K.1^31-4*K.1^-31+4*K.1^-29+4*K.1^-28,K.1+2*K.1^4-K.1^5-K.1^7-K.1^10+K.1^11+K.1^13-K.1^17-K.1^20+2*K.1^22-K.1^23+K.1^25-K.1^28-K.1^29+K.1^31+K.1^-31-K.1^-29,-2*K.1-3*K.1^2-K.1^4+2*K.1^5+K.1^7-K.1^10-2*K.1^11+K.1^13+K.1^14+2*K.1^17-K.1^20-K.1^22-K.1^23+K.1^25+3*K.1^26-K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+2*K.1^-28,K.1+3*K.1^2-K.1^4-K.1^5+2*K.1^10+K.1^11-2*K.1^13-K.1^14-K.1^17+2*K.1^20-K.1^22+2*K.1^23-2*K.1^25-3*K.1^26+K.1^28+2*K.1^29+K.1^31+K.1^-31-K.1^-29-2*K.1^-28,1+2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,1-K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,1-K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,-1*K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,-1*K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,-1,-1,-1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[10206, 270, 0, -66, 0, -18, -972, 0, 0, 0, 0, 0, 0, 0, 0, 0, -108, 0, 0, 0, -12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -252, -28, 21, 0, 0, 0, 0, 486, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 4, -3, 0, 0, 0, 0, 54, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 0, 8, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, -18, -18, -18, 0, 0, 0, -4, -4, -4, 0, 0, 0, 0, 0, 0, 3, 3, 3, -2, -2, -2, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(63: Sparse := true); S := [ K |10206,270,0,-66,0,-18,486,0,0,0,0,0,0,0,0,0,54,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-252,-28,21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,4,4,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-18,0,-4,3,0,0,0,0,0,0,0,0,0,0,-2,0,0,-9*K.1-27*K.1^2+9*K.1^4+9*K.1^5-18*K.1^10-9*K.1^11+18*K.1^13+9*K.1^14+9*K.1^17-18*K.1^20+9*K.1^22-18*K.1^23+18*K.1^25+27*K.1^26-9*K.1^28-18*K.1^29-9*K.1^31-9*K.1^-31+9*K.1^-29+18*K.1^-28,18*K.1+27*K.1^2+9*K.1^4-18*K.1^5-9*K.1^7+9*K.1^10+18*K.1^11-9*K.1^13-9*K.1^14-18*K.1^17+9*K.1^20+9*K.1^22+9*K.1^23-9*K.1^25-27*K.1^26+9*K.1^29+18*K.1^31+18*K.1^-31-18*K.1^-29-18*K.1^-28,-9*K.1-18*K.1^4+9*K.1^5+9*K.1^7+9*K.1^10-9*K.1^11-9*K.1^13+9*K.1^17+9*K.1^20-18*K.1^22+9*K.1^23-9*K.1^25+9*K.1^28+9*K.1^29-9*K.1^31-9*K.1^-31+9*K.1^-29,0,0,0,-2*K.1-6*K.1^2+2*K.1^4+2*K.1^5-4*K.1^10-2*K.1^11+4*K.1^13+2*K.1^14+2*K.1^17-4*K.1^20+2*K.1^22-4*K.1^23+4*K.1^25+6*K.1^26-2*K.1^28-4*K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+4*K.1^-28,4*K.1+6*K.1^2+2*K.1^4-4*K.1^5-2*K.1^7+2*K.1^10+4*K.1^11-2*K.1^13-2*K.1^14-4*K.1^17+2*K.1^20+2*K.1^22+2*K.1^23-2*K.1^25-6*K.1^26+2*K.1^29+4*K.1^31+4*K.1^-31-4*K.1^-29-4*K.1^-28,-2*K.1-4*K.1^4+2*K.1^5+2*K.1^7+2*K.1^10-2*K.1^11-2*K.1^13+2*K.1^17+2*K.1^20-4*K.1^22+2*K.1^23-2*K.1^25+2*K.1^28+2*K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29,0,0,0,0,0,0,3*K.1+3*K.1^2+3*K.1^4-3*K.1^5-2*K.1^7+3*K.1^11-K.1^14-3*K.1^17+3*K.1^22-3*K.1^26-K.1^28+3*K.1^31+3*K.1^-31-3*K.1^-29-2*K.1^-28,3*K.1^2-3*K.1^4+K.1^7+3*K.1^10-3*K.1^13-K.1^14+3*K.1^20-3*K.1^22+3*K.1^23-3*K.1^25-3*K.1^26+2*K.1^28+3*K.1^29-2*K.1^-28,-3*K.1-6*K.1^2+3*K.1^5+K.1^7-3*K.1^10-3*K.1^11+3*K.1^13+2*K.1^14+3*K.1^17-3*K.1^20-3*K.1^23+3*K.1^25+6*K.1^26-K.1^28-3*K.1^29-3*K.1^31-3*K.1^-31+3*K.1^-29+4*K.1^-28,-1*K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,-1*K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(63: Sparse := true); S := [ K |10206,270,0,-66,0,-18,486,0,0,0,0,0,0,0,0,0,54,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-252,-28,21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,4,4,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-18,0,-4,3,0,0,0,0,0,0,0,0,0,0,-2,0,0,-9*K.1-18*K.1^4+9*K.1^5+9*K.1^7+9*K.1^10-9*K.1^11-9*K.1^13+9*K.1^17+9*K.1^20-18*K.1^22+9*K.1^23-9*K.1^25+9*K.1^28+9*K.1^29-9*K.1^31-9*K.1^-31+9*K.1^-29,-9*K.1-27*K.1^2+9*K.1^4+9*K.1^5-18*K.1^10-9*K.1^11+18*K.1^13+9*K.1^14+9*K.1^17-18*K.1^20+9*K.1^22-18*K.1^23+18*K.1^25+27*K.1^26-9*K.1^28-18*K.1^29-9*K.1^31-9*K.1^-31+9*K.1^-29+18*K.1^-28,18*K.1+27*K.1^2+9*K.1^4-18*K.1^5-9*K.1^7+9*K.1^10+18*K.1^11-9*K.1^13-9*K.1^14-18*K.1^17+9*K.1^20+9*K.1^22+9*K.1^23-9*K.1^25-27*K.1^26+9*K.1^29+18*K.1^31+18*K.1^-31-18*K.1^-29-18*K.1^-28,0,0,0,-2*K.1-4*K.1^4+2*K.1^5+2*K.1^7+2*K.1^10-2*K.1^11-2*K.1^13+2*K.1^17+2*K.1^20-4*K.1^22+2*K.1^23-2*K.1^25+2*K.1^28+2*K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29,-2*K.1-6*K.1^2+2*K.1^4+2*K.1^5-4*K.1^10-2*K.1^11+4*K.1^13+2*K.1^14+2*K.1^17-4*K.1^20+2*K.1^22-4*K.1^23+4*K.1^25+6*K.1^26-2*K.1^28-4*K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+4*K.1^-28,4*K.1+6*K.1^2+2*K.1^4-4*K.1^5-2*K.1^7+2*K.1^10+4*K.1^11-2*K.1^13-2*K.1^14-4*K.1^17+2*K.1^20+2*K.1^22+2*K.1^23-2*K.1^25-6*K.1^26+2*K.1^29+4*K.1^31+4*K.1^-31-4*K.1^-29-4*K.1^-28,0,0,0,0,0,0,-3*K.1-6*K.1^2+3*K.1^5+K.1^7-3*K.1^10-3*K.1^11+3*K.1^13+2*K.1^14+3*K.1^17-3*K.1^20-3*K.1^23+3*K.1^25+6*K.1^26-K.1^28-3*K.1^29-3*K.1^31-3*K.1^-31+3*K.1^-29+4*K.1^-28,3*K.1+3*K.1^2+3*K.1^4-3*K.1^5-2*K.1^7+3*K.1^11-K.1^14-3*K.1^17+3*K.1^22-3*K.1^26-K.1^28+3*K.1^31+3*K.1^-31-3*K.1^-29-2*K.1^-28,3*K.1^2-3*K.1^4+K.1^7+3*K.1^10-3*K.1^13-K.1^14+3*K.1^20-3*K.1^22+3*K.1^23-3*K.1^25-3*K.1^26+2*K.1^28+3*K.1^29-2*K.1^-28,-1*K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,-1*K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(63: Sparse := true); S := [ K |10206,270,0,-66,0,-18,486,0,0,0,0,0,0,0,0,0,54,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-252,-28,21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,4,4,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-18,0,-4,3,0,0,0,0,0,0,0,0,0,0,-2,0,0,18*K.1+27*K.1^2+9*K.1^4-18*K.1^5-9*K.1^7+9*K.1^10+18*K.1^11-9*K.1^13-9*K.1^14-18*K.1^17+9*K.1^20+9*K.1^22+9*K.1^23-9*K.1^25-27*K.1^26+9*K.1^29+18*K.1^31+18*K.1^-31-18*K.1^-29-18*K.1^-28,-9*K.1-18*K.1^4+9*K.1^5+9*K.1^7+9*K.1^10-9*K.1^11-9*K.1^13+9*K.1^17+9*K.1^20-18*K.1^22+9*K.1^23-9*K.1^25+9*K.1^28+9*K.1^29-9*K.1^31-9*K.1^-31+9*K.1^-29,-9*K.1-27*K.1^2+9*K.1^4+9*K.1^5-18*K.1^10-9*K.1^11+18*K.1^13+9*K.1^14+9*K.1^17-18*K.1^20+9*K.1^22-18*K.1^23+18*K.1^25+27*K.1^26-9*K.1^28-18*K.1^29-9*K.1^31-9*K.1^-31+9*K.1^-29+18*K.1^-28,0,0,0,4*K.1+6*K.1^2+2*K.1^4-4*K.1^5-2*K.1^7+2*K.1^10+4*K.1^11-2*K.1^13-2*K.1^14-4*K.1^17+2*K.1^20+2*K.1^22+2*K.1^23-2*K.1^25-6*K.1^26+2*K.1^29+4*K.1^31+4*K.1^-31-4*K.1^-29-4*K.1^-28,-2*K.1-4*K.1^4+2*K.1^5+2*K.1^7+2*K.1^10-2*K.1^11-2*K.1^13+2*K.1^17+2*K.1^20-4*K.1^22+2*K.1^23-2*K.1^25+2*K.1^28+2*K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29,-2*K.1-6*K.1^2+2*K.1^4+2*K.1^5-4*K.1^10-2*K.1^11+4*K.1^13+2*K.1^14+2*K.1^17-4*K.1^20+2*K.1^22-4*K.1^23+4*K.1^25+6*K.1^26-2*K.1^28-4*K.1^29-2*K.1^31-2*K.1^-31+2*K.1^-29+4*K.1^-28,0,0,0,0,0,0,3*K.1^2-3*K.1^4+K.1^7+3*K.1^10-3*K.1^13-K.1^14+3*K.1^20-3*K.1^22+3*K.1^23-3*K.1^25-3*K.1^26+2*K.1^28+3*K.1^29-2*K.1^-28,-3*K.1-6*K.1^2+3*K.1^5+K.1^7-3*K.1^10-3*K.1^11+3*K.1^13+2*K.1^14+3*K.1^17-3*K.1^20-3*K.1^23+3*K.1^25+6*K.1^26-K.1^28-3*K.1^29-3*K.1^31-3*K.1^-31+3*K.1^-29+4*K.1^-28,3*K.1+3*K.1^2+3*K.1^4-3*K.1^5-2*K.1^7+3*K.1^11-K.1^14-3*K.1^17+3*K.1^22-3*K.1^26-K.1^28+3*K.1^31+3*K.1^-31-3*K.1^-29-2*K.1^-28,2*K.1+3*K.1^2+K.1^4-2*K.1^5-K.1^7+K.1^10+2*K.1^11-K.1^13-K.1^14-2*K.1^17+K.1^20+K.1^22+K.1^23-K.1^25-3*K.1^26+K.1^29+2*K.1^31+2*K.1^-31-2*K.1^-29-2*K.1^-28,-1*K.1-2*K.1^4+K.1^5+K.1^7+K.1^10-K.1^11-K.1^13+K.1^17+K.1^20-2*K.1^22+K.1^23-K.1^25+K.1^28+K.1^29-K.1^31-K.1^-31+K.1^-29,-1*K.1-3*K.1^2+K.1^4+K.1^5-2*K.1^10-K.1^11+2*K.1^13+K.1^14+K.1^17-2*K.1^20+K.1^22-2*K.1^23+2*K.1^25+3*K.1^26-K.1^28-2*K.1^29-K.1^31-K.1^-31+K.1^-29+2*K.1^-28,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[11664, 864, 0, 48, 0, 0, -486, 0, 0, 0, 0, 0, 0, 0, 0, 0, -54, 0, 0, 0, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 198, -68, -12, -12, 9, 2, 2, -486, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 38, 0, 0, 6, -4, -4, 0, 0, 0, 0, -54, 0, 0, 0, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, 4, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 18, 18, 18, 0, 0, 0, 4, 4, 4, 0, 0, 0, 0, 0, 0, -3, -3, -3, 2, 2, 2, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_2304433152_a:= KnownIrreducibles(CR);