/* Group 23.1 downloaded from the LMFDB on 18 September 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([1, -23]); a := Explode([GPC.1]); AssignNames(~GPC, ["a"]); GPerm := PermutationGroup< 23 | (1,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2) >; GLFp := MatrixGroup< 2, GF(23) | [[1, 1, 0, 1]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_23_1 := rec< RF | Agroup := true, Zgroup := true, abelian := true, almost_simple := false, cyclic := true, metabelian := true, metacyclic := true, monomial := true, nilpotent := true, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 23, 1, a>,< 23, 1, a^22>,< 23, 1, a^2>,< 23, 1, a^21>,< 23, 1, a^3>,< 23, 1, a^20>,< 23, 1, a^4>,< 23, 1, a^19>,< 23, 1, a^5>,< 23, 1, a^18>,< 23, 1, a^6>,< 23, 1, a^17>,< 23, 1, a^7>,< 23, 1, a^16>,< 23, 1, a^8>,< 23, 1, a^15>,< 23, 1, a^9>,< 23, 1, a^14>,< 23, 1, a^10>,< 23, 1, a^13>,< 23, 1, a^11>,< 23, 1, a^12>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(23: Sparse := true); S := [ K |1,K.1^-11,K.1^-5,K.1^7,K.1^-4,K.1^8,K.1^-3,K.1^9,K.1^-2,K.1^10,K.1^-1,K.1^11,K.1^6,K.1^5,K.1^-7,K.1^4,K.1^-8,K.1^3,K.1^-9,K.1^2,K.1^-10,K.1,K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(23: Sparse := true); S := [ K |1,K.1^11,K.1^5,K.1^-7,K.1^4,K.1^-8,K.1^3,K.1^-9,K.1^2,K.1^-10,K.1,K.1^-11,K.1^-6,K.1^-5,K.1^7,K.1^-4,K.1^8,K.1^-3,K.1^9,K.1^-2,K.1^10,K.1^-1,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(23: Sparse := true); S := [ K |1,K.1^-10,K.1^8,K.1^-2,K.1^11,K.1,K.1^-9,K.1^4,K.1^-6,K.1^7,K.1^-3,K.1^10,K.1^-5,K.1^-8,K.1^2,K.1^-11,K.1^-1,K.1^9,K.1^-4,K.1^6,K.1^-7,K.1^3,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(23: Sparse := true); S := [ K |1,K.1^10,K.1^-8,K.1^2,K.1^-11,K.1^-1,K.1^9,K.1^-4,K.1^6,K.1^-7,K.1^3,K.1^-10,K.1^5,K.1^8,K.1^-2,K.1^11,K.1,K.1^-9,K.1^4,K.1^-6,K.1^7,K.1^-3,K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(23: Sparse := true); S := [ K |1,K.1^-9,K.1^-2,K.1^-11,K.1^3,K.1^-6,K.1^8,K.1^-1,K.1^-10,K.1^4,K.1^-5,K.1^9,K.1^7,K.1^2,K.1^11,K.1^-3,K.1^6,K.1^-8,K.1,K.1^10,K.1^-4,K.1^5,K.1^-7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(23: Sparse := true); S := [ K |1,K.1^9,K.1^2,K.1^11,K.1^-3,K.1^6,K.1^-8,K.1,K.1^10,K.1^-4,K.1^5,K.1^-9,K.1^-7,K.1^-2,K.1^-11,K.1^3,K.1^-6,K.1^8,K.1^-1,K.1^-10,K.1^4,K.1^-5,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(23: Sparse := true); S := [ K |1,K.1^-8,K.1^11,K.1^3,K.1^-5,K.1^10,K.1^2,K.1^-6,K.1^9,K.1,K.1^-7,K.1^8,K.1^-4,K.1^-11,K.1^-3,K.1^5,K.1^-10,K.1^-2,K.1^6,K.1^-9,K.1^-1,K.1^7,K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(23: Sparse := true); S := [ K |1,K.1^8,K.1^-11,K.1^-3,K.1^5,K.1^-10,K.1^-2,K.1^6,K.1^-9,K.1^-1,K.1^7,K.1^-8,K.1^4,K.1^11,K.1^3,K.1^-5,K.1^10,K.1^2,K.1^-6,K.1^9,K.1,K.1^-7,K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(23: Sparse := true); S := [ K |1,K.1^-7,K.1,K.1^-6,K.1^10,K.1^3,K.1^-4,K.1^-11,K.1^5,K.1^-2,K.1^-9,K.1^7,K.1^8,K.1^-1,K.1^6,K.1^-10,K.1^-3,K.1^4,K.1^11,K.1^-5,K.1^2,K.1^9,K.1^-8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(23: Sparse := true); S := [ K |1,K.1^7,K.1^-1,K.1^6,K.1^-10,K.1^-3,K.1^4,K.1^11,K.1^-5,K.1^2,K.1^9,K.1^-7,K.1^-8,K.1,K.1^-6,K.1^10,K.1^3,K.1^-4,K.1^-11,K.1^5,K.1^-2,K.1^-9,K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(23: Sparse := true); S := [ K |1,K.1^-6,K.1^-9,K.1^8,K.1^2,K.1^-4,K.1^-10,K.1^7,K.1,K.1^-5,K.1^-11,K.1^6,K.1^-3,K.1^9,K.1^-8,K.1^-2,K.1^4,K.1^10,K.1^-7,K.1^-1,K.1^5,K.1^11,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(23: Sparse := true); S := [ K |1,K.1^6,K.1^9,K.1^-8,K.1^-2,K.1^4,K.1^10,K.1^-7,K.1^-1,K.1^5,K.1^11,K.1^-6,K.1^3,K.1^-9,K.1^8,K.1^2,K.1^-4,K.1^-10,K.1^7,K.1,K.1^-5,K.1^-11,K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(23: Sparse := true); S := [ K |1,K.1^-5,K.1^4,K.1^-1,K.1^-6,K.1^-11,K.1^7,K.1^2,K.1^-3,K.1^-8,K.1^10,K.1^5,K.1^9,K.1^-4,K.1,K.1^6,K.1^11,K.1^-7,K.1^-2,K.1^3,K.1^8,K.1^-10,K.1^-9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(23: Sparse := true); S := [ K |1,K.1^5,K.1^-4,K.1,K.1^6,K.1^11,K.1^-7,K.1^-2,K.1^3,K.1^8,K.1^-10,K.1^-5,K.1^-9,K.1^4,K.1^-1,K.1^-6,K.1^-11,K.1^7,K.1^2,K.1^-3,K.1^-8,K.1^10,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(23: Sparse := true); S := [ K |1,K.1^-4,K.1^-6,K.1^-10,K.1^9,K.1^5,K.1,K.1^-3,K.1^-7,K.1^-11,K.1^8,K.1^4,K.1^-2,K.1^6,K.1^10,K.1^-9,K.1^-5,K.1^-1,K.1^3,K.1^7,K.1^11,K.1^-8,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(23: Sparse := true); S := [ K |1,K.1^4,K.1^6,K.1^10,K.1^-9,K.1^-5,K.1^-1,K.1^3,K.1^7,K.1^11,K.1^-8,K.1^-4,K.1^2,K.1^-6,K.1^-10,K.1^9,K.1^5,K.1,K.1^-3,K.1^-7,K.1^-11,K.1^8,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(23: Sparse := true); S := [ K |1,K.1^-3,K.1^7,K.1^4,K.1,K.1^-2,K.1^-5,K.1^-8,K.1^-11,K.1^9,K.1^6,K.1^3,K.1^10,K.1^-7,K.1^-4,K.1^-1,K.1^2,K.1^5,K.1^8,K.1^11,K.1^-9,K.1^-6,K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(23: Sparse := true); S := [ K |1,K.1^3,K.1^-7,K.1^-4,K.1^-1,K.1^2,K.1^5,K.1^8,K.1^11,K.1^-9,K.1^-6,K.1^-3,K.1^-10,K.1^7,K.1^4,K.1,K.1^-2,K.1^-5,K.1^-8,K.1^-11,K.1^9,K.1^6,K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(23: Sparse := true); S := [ K |1,K.1^-2,K.1^-3,K.1^-5,K.1^-7,K.1^-9,K.1^-11,K.1^10,K.1^8,K.1^6,K.1^4,K.1^2,K.1^-1,K.1^3,K.1^5,K.1^7,K.1^9,K.1^11,K.1^-10,K.1^-8,K.1^-6,K.1^-4,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(23: Sparse := true); S := [ K |1,K.1^2,K.1^3,K.1^5,K.1^7,K.1^9,K.1^11,K.1^-10,K.1^-8,K.1^-6,K.1^-4,K.1^-2,K.1,K.1^-3,K.1^-5,K.1^-7,K.1^-9,K.1^-11,K.1^10,K.1^8,K.1^6,K.1^4,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(23: Sparse := true); S := [ K |1,K.1^-1,K.1^10,K.1^9,K.1^8,K.1^7,K.1^6,K.1^5,K.1^4,K.1^3,K.1^2,K.1,K.1^11,K.1^-10,K.1^-9,K.1^-8,K.1^-7,K.1^-6,K.1^-5,K.1^-4,K.1^-3,K.1^-2,K.1^-11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(23: Sparse := true); S := [ K |1,K.1,K.1^-10,K.1^-9,K.1^-8,K.1^-7,K.1^-6,K.1^-5,K.1^-4,K.1^-3,K.1^-2,K.1^-1,K.1^-11,K.1^10,K.1^9,K.1^8,K.1^7,K.1^6,K.1^5,K.1^4,K.1^3,K.1^2,K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_23_1:= KnownIrreducibles(CR);