Properties

Label 2064384.p
Order \( 2^{15} \cdot 3^{2} \cdot 7 \)
Exponent \( 2^{3} \cdot 3 \cdot 7 \)
Nilpotent no
Solvable no
$\card{G^{\mathrm{ab}}}$ \( 2 \)
$\card{Z(G)}$ \( 2^{2} \)
$\card{\Aut(G)}$ \( 2^{16} \cdot 3^{3} \cdot 7 \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \cdot 3 \)
Perm deg. $35$
Trans deg. $96$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 35 | (18,19)(20,21)(22,23)(24,25)(26,28)(27,29)(30,32)(31,33)(34,35), (1,2)(3,6)(4,7)(5,8)(9,10)(11,13)(12,14)(15,16)(18,19)(20,21)(22,23)(24,25)(26,28)(27,29)(30,32)(31,33)(34,35), (17,18,19), (1,3)(2,6)(4,10)(5,11)(7,9)(8,13)(12,16)(14,15)(18,19)(22,23)(24,25)(27,29)(31,33), (1,2)(3,6)(4,7)(5,8)(9,10)(11,13)(12,14)(15,16)(18,19)(20,22)(21,23)(24,26)(25,28)(27,30)(29,32)(31,34)(33,35), (1,2)(3,9)(4,7)(5,8)(6,10)(11,15)(12,14)(13,16)(18,19)(27,30)(29,32)(31,34)(33,35), (1,2)(3,6)(4,7)(5,8)(9,10)(11,13)(12,14)(15,16)(18,19), (1,2)(4,7)(5,8)(12,14)(18,19), (1,3)(2,6)(4,10)(5,8)(7,9)(11,13)(12,14)(15,16)(18,19)(22,24)(23,25)(27,31)(29,33), (1,4)(2,7)(3,10)(5,12)(6,9)(8,14)(11,16)(13,15)(18,19)(27,29)(30,32)(31,33)(34,35), (1,2)(3,6)(4,12)(5,8)(7,14)(9,15)(10,16)(11,13)(18,19)(24,27)(25,29)(26,30)(28,32), (1,5)(2,8)(3,11)(4,12)(6,13)(7,14)(9,15)(10,16)(18,19)(24,25)(26,28)(27,29)(30,32) >;
 
Copy content gap:G := Group( (18,19)(20,21)(22,23)(24,25)(26,28)(27,29)(30,32)(31,33)(34,35), (1,2)(3,6)(4,7)(5,8)(9,10)(11,13)(12,14)(15,16)(18,19)(20,21)(22,23)(24,25)(26,28)(27,29)(30,32)(31,33)(34,35), (17,18,19), (1,3)(2,6)(4,10)(5,11)(7,9)(8,13)(12,16)(14,15)(18,19)(22,23)(24,25)(27,29)(31,33), (1,2)(3,6)(4,7)(5,8)(9,10)(11,13)(12,14)(15,16)(18,19)(20,22)(21,23)(24,26)(25,28)(27,30)(29,32)(31,34)(33,35), (1,2)(3,9)(4,7)(5,8)(6,10)(11,15)(12,14)(13,16)(18,19)(27,30)(29,32)(31,34)(33,35), (1,2)(3,6)(4,7)(5,8)(9,10)(11,13)(12,14)(15,16)(18,19), (1,2)(4,7)(5,8)(12,14)(18,19), (1,3)(2,6)(4,10)(5,8)(7,9)(11,13)(12,14)(15,16)(18,19)(22,24)(23,25)(27,31)(29,33), (1,4)(2,7)(3,10)(5,12)(6,9)(8,14)(11,16)(13,15)(18,19)(27,29)(30,32)(31,33)(34,35), (1,2)(3,6)(4,12)(5,8)(7,14)(9,15)(10,16)(11,13)(18,19)(24,27)(25,29)(26,30)(28,32), (1,5)(2,8)(3,11)(4,12)(6,13)(7,14)(9,15)(10,16)(18,19)(24,25)(26,28)(27,29)(30,32) );
 
Copy content sage:G = PermutationGroup(['(18,19)(20,21)(22,23)(24,25)(26,28)(27,29)(30,32)(31,33)(34,35)', '(1,2)(3,6)(4,7)(5,8)(9,10)(11,13)(12,14)(15,16)(18,19)(20,21)(22,23)(24,25)(26,28)(27,29)(30,32)(31,33)(34,35)', '(17,18,19)', '(1,3)(2,6)(4,10)(5,11)(7,9)(8,13)(12,16)(14,15)(18,19)(22,23)(24,25)(27,29)(31,33)', '(1,2)(3,6)(4,7)(5,8)(9,10)(11,13)(12,14)(15,16)(18,19)(20,22)(21,23)(24,26)(25,28)(27,30)(29,32)(31,34)(33,35)', '(1,2)(3,9)(4,7)(5,8)(6,10)(11,15)(12,14)(13,16)(18,19)(27,30)(29,32)(31,34)(33,35)', '(1,2)(3,6)(4,7)(5,8)(9,10)(11,13)(12,14)(15,16)(18,19)', '(1,2)(4,7)(5,8)(12,14)(18,19)', '(1,3)(2,6)(4,10)(5,8)(7,9)(11,13)(12,14)(15,16)(18,19)(22,24)(23,25)(27,31)(29,33)', '(1,4)(2,7)(3,10)(5,12)(6,9)(8,14)(11,16)(13,15)(18,19)(27,29)(30,32)(31,33)(34,35)', '(1,2)(3,6)(4,12)(5,8)(7,14)(9,15)(10,16)(11,13)(18,19)(24,27)(25,29)(26,30)(28,32)', '(1,5)(2,8)(3,11)(4,12)(6,13)(7,14)(9,15)(10,16)(18,19)(24,25)(26,28)(27,29)(30,32)'])
 

Group information

Description:$C_2^8.(S_3\times C_2^3:\GL(3,2))$
Order: \(2064384\)\(\medspace = 2^{15} \cdot 3^{2} \cdot 7 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2^8.C_3^2.C_2^5.\PSL(2,7)$, of order \(12386304\)\(\medspace = 2^{16} \cdot 3^{3} \cdot 7 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 12, $C_3$, $\PSL(2,7)$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$2$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and nonsolvable.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 7 8 12 14 21 24 42
Elements 1 16255 10754 379008 427454 24576 129024 447552 368640 49152 64512 147456 2064384
Conjugacy classes   1 53 3 90 57 2 6 54 14 2 3 6 291
Divisions 1 53 3 90 57 1 6 54 7 1 3 3 279
Autjugacy classes 1 21 3 31 23 2 2 20 4 2 1 2 112

Minimal presentations

Permutation degree:$35$
Transitive degree:$96$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible none not computed none
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Permutation group:Degree $35$ $\langle(18,19)(20,21)(22,23)(24,25)(26,28)(27,29)(30,32)(31,33)(34,35), (1,2)(3,6) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 35 | (18,19)(20,21)(22,23)(24,25)(26,28)(27,29)(30,32)(31,33)(34,35), (1,2)(3,6)(4,7)(5,8)(9,10)(11,13)(12,14)(15,16)(18,19)(20,21)(22,23)(24,25)(26,28)(27,29)(30,32)(31,33)(34,35), (17,18,19), (1,3)(2,6)(4,10)(5,11)(7,9)(8,13)(12,16)(14,15)(18,19)(22,23)(24,25)(27,29)(31,33), (1,2)(3,6)(4,7)(5,8)(9,10)(11,13)(12,14)(15,16)(18,19)(20,22)(21,23)(24,26)(25,28)(27,30)(29,32)(31,34)(33,35), (1,2)(3,9)(4,7)(5,8)(6,10)(11,15)(12,14)(13,16)(18,19)(27,30)(29,32)(31,34)(33,35), (1,2)(3,6)(4,7)(5,8)(9,10)(11,13)(12,14)(15,16)(18,19), (1,2)(4,7)(5,8)(12,14)(18,19), (1,3)(2,6)(4,10)(5,8)(7,9)(11,13)(12,14)(15,16)(18,19)(22,24)(23,25)(27,31)(29,33), (1,4)(2,7)(3,10)(5,12)(6,9)(8,14)(11,16)(13,15)(18,19)(27,29)(30,32)(31,33)(34,35), (1,2)(3,6)(4,12)(5,8)(7,14)(9,15)(10,16)(11,13)(18,19)(24,27)(25,29)(26,30)(28,32), (1,5)(2,8)(3,11)(4,12)(6,13)(7,14)(9,15)(10,16)(18,19)(24,25)(26,28)(27,29)(30,32) >;
 
Copy content gap:G := Group( (18,19)(20,21)(22,23)(24,25)(26,28)(27,29)(30,32)(31,33)(34,35), (1,2)(3,6)(4,7)(5,8)(9,10)(11,13)(12,14)(15,16)(18,19)(20,21)(22,23)(24,25)(26,28)(27,29)(30,32)(31,33)(34,35), (17,18,19), (1,3)(2,6)(4,10)(5,11)(7,9)(8,13)(12,16)(14,15)(18,19)(22,23)(24,25)(27,29)(31,33), (1,2)(3,6)(4,7)(5,8)(9,10)(11,13)(12,14)(15,16)(18,19)(20,22)(21,23)(24,26)(25,28)(27,30)(29,32)(31,34)(33,35), (1,2)(3,9)(4,7)(5,8)(6,10)(11,15)(12,14)(13,16)(18,19)(27,30)(29,32)(31,34)(33,35), (1,2)(3,6)(4,7)(5,8)(9,10)(11,13)(12,14)(15,16)(18,19), (1,2)(4,7)(5,8)(12,14)(18,19), (1,3)(2,6)(4,10)(5,8)(7,9)(11,13)(12,14)(15,16)(18,19)(22,24)(23,25)(27,31)(29,33), (1,4)(2,7)(3,10)(5,12)(6,9)(8,14)(11,16)(13,15)(18,19)(27,29)(30,32)(31,33)(34,35), (1,2)(3,6)(4,12)(5,8)(7,14)(9,15)(10,16)(11,13)(18,19)(24,27)(25,29)(26,30)(28,32), (1,5)(2,8)(3,11)(4,12)(6,13)(7,14)(9,15)(10,16)(18,19)(24,25)(26,28)(27,29)(30,32) );
 
Copy content sage:G = PermutationGroup(['(18,19)(20,21)(22,23)(24,25)(26,28)(27,29)(30,32)(31,33)(34,35)', '(1,2)(3,6)(4,7)(5,8)(9,10)(11,13)(12,14)(15,16)(18,19)(20,21)(22,23)(24,25)(26,28)(27,29)(30,32)(31,33)(34,35)', '(17,18,19)', '(1,3)(2,6)(4,10)(5,11)(7,9)(8,13)(12,16)(14,15)(18,19)(22,23)(24,25)(27,29)(31,33)', '(1,2)(3,6)(4,7)(5,8)(9,10)(11,13)(12,14)(15,16)(18,19)(20,22)(21,23)(24,26)(25,28)(27,30)(29,32)(31,34)(33,35)', '(1,2)(3,9)(4,7)(5,8)(6,10)(11,15)(12,14)(13,16)(18,19)(27,30)(29,32)(31,34)(33,35)', '(1,2)(3,6)(4,7)(5,8)(9,10)(11,13)(12,14)(15,16)(18,19)', '(1,2)(4,7)(5,8)(12,14)(18,19)', '(1,3)(2,6)(4,10)(5,8)(7,9)(11,13)(12,14)(15,16)(18,19)(22,24)(23,25)(27,31)(29,33)', '(1,4)(2,7)(3,10)(5,12)(6,9)(8,14)(11,16)(13,15)(18,19)(27,29)(30,32)(31,33)(34,35)', '(1,2)(3,6)(4,12)(5,8)(7,14)(9,15)(10,16)(11,13)(18,19)(24,27)(25,29)(26,30)(28,32)', '(1,5)(2,8)(3,11)(4,12)(6,13)(7,14)(9,15)(10,16)(18,19)(24,25)(26,28)(27,29)(30,32)'])
 
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_2^8$ . $(S_3\times C_2^3:\GL(3,2))$ $C_2^4$ . $(C_6.C_2^7:\GL(3,2))$ $(C_2^8.C_2^3.\PSL(2,7))$ . $S_3$ $S_3$ . $(C_2^5.C_2^6.\PSL(2,7))$ all 27
Aut. group: $\Aut(C_{12}:C_2^4)$ $\Aut(D_6:C_2^4)$

Elements of the group are displayed as permutations of degree 35.

Homology

Abelianization: $C_{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{4}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $2$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 63 normal subgroups (17 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2^2$ $G/Z \simeq$ $(C_2^3\times S_3).C_2^6.\PSL(2,7)$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $(C_2^4\times C_6).C_2^6.\PSL(2,7)$ $G/G' \simeq$ $C_2$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2^2$ $G/\Phi \simeq$ $(C_2^3\times S_3).C_2^6.\PSL(2,7)$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_3:(C_2^5.C_2^6)$ $G/\operatorname{Fit} \simeq$ $C_2\times \GL(3,2)$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_3:(C_2^5.C_2^6.C_2)$ $G/R \simeq$ $\PSL(2,7)$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2\times C_6$ $G/\operatorname{soc} \simeq$ $C_2^{10}.\PSL(2,7)$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^5.C_2^6.C_2^4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^2$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7$

Subgroup diagram and profile

Series

Derived series $C_2^8.(S_3\times C_2^3:\GL(3,2))$ $\rhd$ $(C_2^4\times C_6).C_2^6.\PSL(2,7)$ $\rhd$ $C_2^8.C_2^3.\PSL(2,7)$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_2^8.(S_3\times C_2^3:\GL(3,2))$ $\rhd$ $C_3:(C_2^5.C_2^6.C_2)$ $\rhd$ $C_3:(C_2^5.C_2^6)$ $\rhd$ $C_6\times C_2.C_2^6$ $\rhd$ $C_2^4\times C_6$ $\rhd$ $C_2\times C_6$ $\rhd$ $C_6$ $\rhd$ $C_3$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_2^8.(S_3\times C_2^3:\GL(3,2))$ $\rhd$ $(C_2^4\times C_6).C_2^6.\PSL(2,7)$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2^2$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 1 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $291 \times 291$ character table is not available for this group.

Rational character table

The $279 \times 279$ rational character table is not available for this group.