/* Group 19440.bf downloaded from the LMFDB on 24 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPerm := PermutationGroup< 15 | (1,2,3,4,5)(7,11,14)(8,10,15)(9,12,13), (10,11,12)(13,14,15), (5,6)(7,11,14)(8,10,15)(9,12,13), (7,14,11)(8,15,10)(9,13,12), (7,9,8)(10,12,11) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_19440_bf := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := false, metacyclic := false, monomial := false, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := false, supersolvable := false>; /* Character Table */ G:= GPerm; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 15, G!(5,6)>,< 2, 15, G!(1,2)(3,4)(5,6)>,< 2, 45, G!(3,5)(4,6)>,< 3, 1, G!(7,9,8)(10,11,12)(13,15,14)>,< 3, 1, G!(7,8,9)(10,12,11)(13,14,15)>,< 3, 3, G!(10,12,11)(13,15,14)>,< 3, 3, G!(10,11,12)(13,14,15)>,< 3, 3, G!(7,13,10)(8,14,12)(9,15,11)>,< 3, 3, G!(7,10,13)(8,12,14)(9,11,15)>,< 3, 3, G!(7,14,10)(8,15,12)(9,13,11)>,< 3, 3, G!(7,10,14)(8,12,15)(9,11,13)>,< 3, 3, G!(7,15,10)(8,13,12)(9,14,11)>,< 3, 3, G!(7,10,15)(8,12,13)(9,11,14)>,< 3, 40, G!(4,6,5)>,< 3, 40, G!(1,3,5)(2,4,6)>,< 3, 40, G!(4,6,5)(7,9,8)(10,11,12)(13,15,14)>,< 3, 40, G!(4,5,6)(7,8,9)(10,12,11)(13,14,15)>,< 3, 40, G!(1,3,5)(2,4,6)(7,9,8)(10,11,12)(13,15,14)>,< 3, 40, G!(1,5,3)(2,6,4)(7,8,9)(10,12,11)(13,14,15)>,< 3, 120, G!(1,6,4)(2,3,5)(7,13,11)(8,14,10)(9,15,12)>,< 3, 120, G!(1,4,6)(2,5,3)(7,11,13)(8,10,14)(9,12,15)>,< 3, 120, G!(1,2,3)(7,12,14)(8,11,15)(9,10,13)>,< 3, 120, G!(1,3,2)(7,14,12)(8,15,11)(9,13,10)>,< 3, 120, G!(1,3,2)(4,6,5)(7,14,11)(8,15,10)(9,13,12)>,< 3, 120, G!(1,2,3)(4,5,6)(7,11,14)(8,10,15)(9,12,13)>,< 3, 120, G!(1,5,4)(10,11,12)(13,14,15)>,< 3, 120, G!(1,4,5)(10,12,11)(13,15,14)>,< 3, 120, G!(1,5,2)(7,12,13)(8,11,14)(9,10,15)>,< 3, 120, G!(1,2,5)(7,13,12)(8,14,11)(9,15,10)>,< 3, 120, G!(1,6,3)(2,4,5)(7,12,13)(8,11,14)(9,10,15)>,< 3, 120, G!(1,3,6)(2,5,4)(7,13,12)(8,14,11)(9,15,10)>,< 3, 120, G!(2,5,4)(7,13,10)(8,14,12)(9,15,11)>,< 3, 120, G!(2,4,5)(7,10,13)(8,12,14)(9,11,15)>,< 3, 120, G!(1,4,3)(2,6,5)(7,9,8)(10,12,11)>,< 3, 120, G!(1,3,4)(2,5,6)(7,8,9)(10,11,12)>,< 4, 90, G!(3,6,5,4)>,< 4, 90, G!(1,2)(3,6,5,4)>,< 5, 144, G!(1,4,2,5,3)>,< 6, 15, G!(5,6)(7,8,9)(10,12,11)(13,14,15)>,< 6, 15, G!(5,6)(7,9,8)(10,11,12)(13,15,14)>,< 6, 15, G!(1,2)(3,4)(5,6)(7,8,9)(10,12,11)(13,14,15)>,< 6, 15, G!(1,2)(3,4)(5,6)(7,9,8)(10,11,12)(13,15,14)>,< 6, 45, G!(5,6)(10,11,12)(13,14,15)>,< 6, 45, G!(5,6)(10,12,11)(13,15,14)>,< 6, 45, G!(5,6)(7,10,13)(8,12,14)(9,11,15)>,< 6, 45, G!(5,6)(7,13,10)(8,14,12)(9,15,11)>,< 6, 45, G!(5,6)(7,10,14)(8,12,15)(9,11,13)>,< 6, 45, G!(5,6)(7,13,12)(8,14,11)(9,15,10)>,< 6, 45, G!(5,6)(7,10,15)(8,12,13)(9,11,14)>,< 6, 45, G!(5,6)(7,13,11)(8,14,10)(9,15,12)>,< 6, 45, G!(1,2)(3,4)(5,6)(10,11,12)(13,14,15)>,< 6, 45, G!(1,2)(3,4)(5,6)(10,12,11)(13,15,14)>,< 6, 45, G!(1,2)(3,4)(5,6)(7,10,13)(8,12,14)(9,11,15)>,< 6, 45, G!(1,2)(3,4)(5,6)(7,13,10)(8,14,12)(9,15,11)>,< 6, 45, G!(1,2)(3,4)(5,6)(7,10,14)(8,12,15)(9,11,13)>,< 6, 45, G!(1,2)(3,4)(5,6)(7,13,12)(8,14,11)(9,15,10)>,< 6, 45, G!(1,2)(3,4)(5,6)(7,10,15)(8,12,13)(9,11,14)>,< 6, 45, G!(1,2)(3,4)(5,6)(7,13,11)(8,14,10)(9,15,12)>,< 6, 45, G!(3,5)(4,6)(7,9,8)(10,11,12)(13,15,14)>,< 6, 45, G!(3,5)(4,6)(7,8,9)(10,12,11)(13,14,15)>,< 6, 120, G!(2,3)(4,5,6)>,< 6, 120, G!(1,2,3,4,5,6)>,< 6, 120, G!(2,3)(4,5,6)(7,8,9)(10,12,11)(13,14,15)>,< 6, 120, G!(2,3)(4,5,6)(7,9,8)(10,11,12)(13,15,14)>,< 6, 120, G!(1,2,3,4,5,6)(7,8,9)(10,12,11)(13,14,15)>,< 6, 120, G!(1,2,3,4,5,6)(7,9,8)(10,11,12)(13,15,14)>,< 6, 135, G!(1,5)(3,4)(7,10,15)(8,12,13)(9,11,14)>,< 6, 135, G!(1,5)(3,4)(7,15,10)(8,13,12)(9,14,11)>,< 6, 135, G!(1,2)(4,5)(7,13,12)(8,14,11)(9,15,10)>,< 6, 135, G!(1,2)(4,5)(7,12,13)(8,11,14)(9,10,15)>,< 6, 135, G!(1,2)(5,6)(10,12,11)(13,15,14)>,< 6, 135, G!(1,2)(5,6)(10,11,12)(13,14,15)>,< 6, 135, G!(2,4)(3,6)(7,15,12)(8,13,11)(9,14,10)>,< 6, 135, G!(2,4)(3,6)(7,12,15)(8,11,13)(9,10,14)>,< 6, 360, G!(1,2,6,3,4,5)(7,11,13)(8,10,14)(9,12,15)>,< 6, 360, G!(1,5,4,3,6,2)(7,13,11)(8,14,10)(9,15,12)>,< 6, 360, G!(1,3,2)(4,6)(7,14,12)(8,15,11)(9,13,10)>,< 6, 360, G!(1,2,3)(4,6)(7,12,14)(8,11,15)(9,10,13)>,< 6, 360, G!(1,6,3,5,2,4)(7,11,14)(8,10,15)(9,12,13)>,< 6, 360, G!(1,4,2,5,3,6)(7,14,11)(8,15,10)(9,13,12)>,< 6, 360, G!(1,4,5)(2,3)(10,12,11)(13,15,14)>,< 6, 360, G!(1,5,4)(2,3)(10,11,12)(13,14,15)>,< 6, 360, G!(1,2,5)(3,6)(7,13,12)(8,14,11)(9,15,10)>,< 6, 360, G!(1,5,2)(3,6)(7,12,13)(8,11,14)(9,10,15)>,< 6, 360, G!(1,5,6,2,3,4)(7,13,12)(8,14,11)(9,15,10)>,< 6, 360, G!(1,4,3,2,6,5)(7,12,13)(8,11,14)(9,10,15)>,< 6, 360, G!(1,3)(2,4,5)(7,10,13)(8,12,14)(9,11,15)>,< 6, 360, G!(1,3)(2,5,4)(7,13,10)(8,14,12)(9,15,11)>,< 6, 360, G!(1,5,4,2,3,6)(7,8,9)(10,11,12)>,< 6, 360, G!(1,6,3,2,4,5)(7,9,8)(10,12,11)>,< 12, 90, G!(3,4,5,6)(7,8,9)(10,12,11)(13,14,15)>,< 12, 90, G!(3,4,5,6)(7,9,8)(10,11,12)(13,15,14)>,< 12, 90, G!(1,2)(3,4,5,6)(7,8,9)(10,12,11)(13,14,15)>,< 12, 90, G!(1,2)(3,4,5,6)(7,9,8)(10,11,12)(13,15,14)>,< 12, 270, G!(1,3,5,4)(2,6)(7,15,10)(8,13,12)(9,14,11)>,< 12, 270, G!(1,4,5,3)(2,6)(7,10,15)(8,12,13)(9,11,14)>,< 12, 270, G!(1,2,6,3)(7,11,13)(8,10,14)(9,12,15)>,< 12, 270, G!(1,3,6,2)(7,13,11)(8,14,10)(9,15,12)>,< 12, 270, G!(1,5,2,4)(7,12,13)(8,11,14)(9,10,15)>,< 12, 270, G!(1,4,2,5)(7,13,12)(8,14,11)(9,15,10)>,< 12, 270, G!(1,4,5,3)(2,6)(7,13,12)(8,14,11)(9,15,10)>,< 12, 270, G!(1,3,5,4)(2,6)(7,12,13)(8,11,14)(9,10,15)>,< 12, 270, G!(1,5,2,6)(10,11,12)(13,14,15)>,< 12, 270, G!(1,6,2,5)(10,12,11)(13,15,14)>,< 12, 270, G!(1,2,6,4)(3,5)(10,12,11)(13,15,14)>,< 12, 270, G!(1,4,6,2)(3,5)(10,11,12)(13,14,15)>,< 12, 270, G!(1,5)(2,6,4,3)(7,12,15)(8,11,13)(9,10,14)>,< 12, 270, G!(1,5)(2,3,4,6)(7,15,12)(8,13,11)(9,14,10)>,< 12, 270, G!(2,5,3,4)(7,11,14)(8,10,15)(9,12,13)>,< 12, 270, G!(2,4,3,5)(7,14,11)(8,15,10)(9,13,12)>,< 15, 144, G!(1,2,4,5,6)(7,8,9)(10,12,11)(13,14,15)>,< 15, 144, G!(1,6,5,4,2)(7,9,8)(10,11,12)(13,15,14)>,< 15, 432, G!(1,2,3,4,5)(7,13,11)(8,14,10)(9,15,12)>,< 15, 432, G!(1,5,4,3,2)(7,11,13)(8,10,14)(9,12,15)>,< 15, 432, G!(1,6,5,2,4)(7,12,13)(8,11,14)(9,10,15)>,< 15, 432, G!(1,4,2,5,6)(7,13,12)(8,14,11)(9,15,10)>,< 15, 432, G!(1,2,6,5,3)(10,11,12)(13,14,15)>,< 15, 432, G!(1,3,5,6,2)(10,12,11)(13,15,14)>,< 15, 432, G!(1,2,3,6,4)(7,10,13)(8,12,14)(9,11,15)>,< 15, 432, G!(1,4,6,3,2)(7,13,10)(8,14,12)(9,15,11)>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1,1,K.1^-1,K.1^-1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1^-1,1,K.1^-1,1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,K.1,1,1,1,1,1,1,1,1,K.1^-1,1,K.1^-1,K.1^-1,1,K.1,K.1^-1,1,1,K.1,K.1,K.1,1,K.1^-1,1,K.1,K.1,K.1^-1,1,1,1,1,1,1,K.1,K.1,K.1^-1,1,1,K.1^-1,K.1^-1,K.1,1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,1,K.1,K.1^-1,K.1,K.1,1,K.1,1,K.1^-1,K.1,K.1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1^-1,1,K.1,1,1,K.1,K.1,K.1^-1,1,K.1,K.1,K.1^-1,K.1^-1,1,1,K.1,1,K.1,1,K.1^-1,K.1^-1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1^-1,1,K.1,K.1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1,1,K.1,1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,K.1^-1,1,1,1,1,1,1,1,1,K.1,1,K.1,K.1,1,K.1^-1,K.1,1,1,K.1^-1,K.1^-1,K.1^-1,1,K.1,1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,K.1^-1,K.1^-1,K.1,1,1,K.1,K.1,K.1^-1,1,K.1,K.1,K.1,K.1,1,K.1^-1,K.1,K.1^-1,K.1^-1,1,K.1^-1,1,K.1,K.1^-1,K.1^-1,1,1,1,1,K.1^-1,K.1,K.1,K.1,1,K.1^-1,1,1,K.1^-1,K.1^-1,K.1,1,K.1^-1,K.1^-1,K.1,K.1,1,1,K.1^-1,1,K.1^-1,1,K.1,K.1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,K.1^-1,K.1^-1,K.1,1,K.1,K.1,1,K.1^-1,1,1,1,1,1,1,1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,1,1,1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,1,1,1,1,1,1,1,K.1^-1,K.1^-1,1,1,K.1,K.1,K.1^-1,1,K.1^-1,K.1,1,K.1^-1,K.1,K.1,1,K.1^-1,1,K.1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,1,K.1,1,K.1,K.1,1,1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,1,K.1^-1,K.1^-1,K.1,K.1,1,K.1,1,1,1,1,K.1^-1,K.1^-1,1,K.1,K.1,K.1,K.1^-1,K.1,1,1,K.1^-1,K.1^-1,K.1^-1,K.1,1,K.1,1,1,K.1^-1,K.1,1,K.1^-1,K.1^-1,1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,K.1,K.1,K.1^-1,1,K.1^-1,K.1^-1,1,K.1,1,1,1,1,1,1,1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,1,1,1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,1,1,1,1,1,1,1,K.1,K.1,1,1,K.1^-1,K.1^-1,K.1,1,K.1,K.1^-1,1,K.1,K.1^-1,K.1^-1,1,K.1,1,K.1^-1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1,K.1^-1,1,K.1^-1,1,K.1^-1,K.1^-1,1,1,K.1,K.1,K.1,K.1,K.1^-1,1,K.1,K.1,K.1^-1,K.1^-1,1,K.1^-1,1,1,1,1,K.1,K.1,1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,1,1,K.1,K.1,K.1,K.1^-1,1,K.1^-1,1,1,K.1,K.1^-1,1,K.1,K.1,1,K.1^-1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,K.1^-1,1,K.1,K.1^-1,K.1^-1,1,K.1,K.1,1,1,1,1,1,1,K.1,1,K.1^-1,K.1^-1,1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,1,1,K.1,K.1,K.1^-1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,K.1,K.1,K.1^-1,1,K.1^-1,1,1,1,K.1^-1,1,1,1,1,1,1,1,K.1,1,K.1^-1,K.1,K.1^-1,K.1,1,K.1^-1,K.1^-1,1,K.1,K.1,K.1^-1,K.1,1,K.1^-1,K.1,K.1^-1,K.1,1,K.1^-1,1,K.1^-1,K.1,1,1,1,1,1,K.1^-1,K.1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,1,K.1,K.1,1,1,1,1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,K.1,1,K.1^-1,K.1,K.1,1,K.1^-1,K.1^-1,1,1,1,1,1,1,K.1^-1,1,K.1,K.1,1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,1,1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,K.1^-1,K.1^-1,K.1,1,K.1,1,1,1,K.1,1,1,1,1,1,1,1,K.1^-1,1,K.1,K.1^-1,K.1,K.1^-1,1,K.1,K.1,1,K.1^-1,K.1^-1,K.1,K.1^-1,1,K.1,K.1^-1,K.1,K.1^-1,1,K.1,1,K.1,K.1^-1,1,1,1,1,1,K.1,K.1^-1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1,K.1^-1,1,K.1^-1,K.1^-1,1,1,1,1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,K.1^-1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,1,1,K.1^-1,K.1^-1,1,K.1^-1,K.1,K.1,1,K.1^-1,K.1,K.1,1,K.1^-1,K.1,K.1,1,K.1^-1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1^-1,1,1,1,K.1,1,K.1,K.1^-1,K.1^-1,K.1,1,K.1^-1,K.1,K.1,1,1,1,1,1,1,1,K.1^-1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,1,K.1,K.1^-1,1,1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,1,1,1,1,1,K.1^-1,1,K.1^-1,K.1,K.1^-1,1,K.1,K.1^-1,K.1,K.1,1,K.1,K.1^-1,1,K.1^-1,K.1,1,1,K.1^-1,K.1^-1,K.1,K.1,1,K.1^-1,K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,K.1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,1,1,K.1,K.1,1,K.1,K.1^-1,K.1^-1,1,K.1,K.1^-1,K.1^-1,1,K.1,K.1^-1,K.1^-1,1,K.1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1,1,1,1,K.1^-1,1,K.1^-1,K.1,K.1,K.1^-1,1,K.1,K.1^-1,K.1^-1,1,1,1,1,1,1,1,K.1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,1,K.1^-1,K.1,1,1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,1,1,1,1,1,K.1,1,K.1,K.1^-1,K.1,1,K.1^-1,K.1,K.1^-1,K.1^-1,1,K.1^-1,K.1,1,K.1,K.1^-1,1,1,K.1,K.1,K.1^-1,K.1^-1,1,K.1,K.1^-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,-1,1,1,1,K.1^-1,K.1,K.1,K.1,1,K.1^-1,K.1^-1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1^-1,1,K.1^-1,1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,K.1,1,-1,1,1,-1,-1,-1,-1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,1,-1,-1*K.1,-1*K.1,-1*K.1,-1,-1*K.1^-1,1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1,-1,-1,-1,-1,K.1,K.1,K.1^-1,1,1,K.1^-1,K.1^-1,K.1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1,-1,1,1,K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1,-1*K.1,1,1,-1*K.1,K.1,K.1^-1,-1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,1,1,K.1,1,K.1,1,K.1^-1,K.1^-1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,-1,1,1,1,K.1,K.1^-1,K.1^-1,K.1^-1,1,K.1,K.1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1,1,K.1,1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,K.1^-1,1,-1,1,1,-1,-1,-1,-1,-1*K.1,-1,-1*K.1,-1*K.1,-1,-1*K.1^-1,-1*K.1,1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,-1,-1,-1,-1,K.1^-1,K.1^-1,K.1,1,1,K.1,K.1,K.1^-1,-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1,-1,1,1,K.1^-1,-1*K.1,-1*K.1,K.1,-1,-1*K.1^-1,1,1,-1*K.1^-1,K.1^-1,K.1,-1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,1,1,K.1^-1,1,K.1^-1,1,K.1,K.1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,-1,1,1,1,K.1^-1,K.1^-1,K.1,1,K.1,K.1,1,K.1^-1,1,1,1,1,1,1,1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,1,1,1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,-1,1,1,-1,-1,-1,-1,-1*K.1^-1,-1*K.1^-1,-1,-1,-1*K.1,-1*K.1,-1*K.1^-1,1,-1*K.1^-1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1*K.1,1,-1*K.1^-1,-1,-1*K.1,-1,-1,-1,-1,-1,-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,1,K.1,1,-1*K.1,-1*K.1,-1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1,-1*K.1,-1,-1,1,1,K.1^-1,-1*K.1^-1,-1,K.1,-1*K.1,-1*K.1,K.1^-1,K.1,-1,1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,1,-1*K.1,1,1,K.1^-1,K.1,1,K.1^-1,K.1^-1,1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,-1,1,1,1,K.1,K.1,K.1^-1,1,K.1^-1,K.1^-1,1,K.1,1,1,1,1,1,1,1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,1,1,1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,-1,1,1,-1,-1,-1,-1,-1*K.1,-1*K.1,-1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,1,-1*K.1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,1,-1*K.1,-1,-1*K.1^-1,-1,-1,-1,-1,-1,-1,K.1^-1,K.1,K.1,K.1,K.1^-1,1,K.1^-1,1,-1*K.1^-1,-1*K.1^-1,-1,-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1^-1,-1,-1,1,1,K.1,-1*K.1,-1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,K.1^-1,-1,1,K.1,-1*K.1,-1*K.1,K.1^-1,1,-1*K.1^-1,1,1,K.1,K.1^-1,1,K.1,K.1,1,K.1^-1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,-1,1,1,1,K.1^-1,1,K.1,K.1^-1,K.1^-1,1,K.1,K.1,1,1,1,1,1,1,K.1,1,K.1^-1,K.1^-1,1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,1,1,K.1,K.1,K.1^-1,-1,1,1,-1,-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1,1,-1,-1*K.1^-1,-1,-1,-1,-1,-1,-1,-1,K.1,1,K.1^-1,K.1,K.1^-1,K.1,1,K.1^-1,-1*K.1^-1,-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,-1,-1,1,1,1,-1*K.1^-1,-1*K.1,1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1,-1,K.1,K.1,-1,1,1,1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,-1,1,1,1,K.1,1,K.1^-1,K.1,K.1,1,K.1^-1,K.1^-1,1,1,1,1,1,1,K.1^-1,1,K.1,K.1,1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,1,1,K.1^-1,K.1^-1,K.1,-1,1,1,-1,-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1,1,-1,-1*K.1,-1,-1,-1,-1,-1,-1,-1,K.1^-1,1,K.1,K.1^-1,K.1,K.1^-1,1,K.1,-1*K.1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1*K.1,-1,-1*K.1,-1*K.1^-1,-1,-1,1,1,1,-1*K.1,-1*K.1^-1,1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,K.1,K.1,-1*K.1^-1,-1,K.1^-1,K.1^-1,-1,1,1,1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,-1,1,1,1,1,K.1^-1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,1,1,K.1^-1,K.1^-1,1,K.1^-1,K.1,K.1,1,K.1^-1,K.1,K.1,1,K.1^-1,K.1,K.1,1,K.1^-1,-1,1,1,-1,-1,-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1,-1,1,-1*K.1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,1,-1*K.1^-1,-1*K.1,-1*K.1,-1,-1,-1,-1,-1,-1,1,K.1^-1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1,-1,-1,1,1,K.1^-1,-1,-1*K.1^-1,K.1,-1*K.1^-1,-1,K.1,K.1^-1,-1*K.1,K.1,1,-1*K.1,-1*K.1^-1,1,K.1^-1,-1*K.1,1,1,K.1^-1,K.1^-1,K.1,K.1,1,K.1^-1,K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,-1,1,1,1,1,K.1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,1,1,K.1,K.1,1,K.1,K.1^-1,K.1^-1,1,K.1,K.1^-1,K.1^-1,1,K.1,K.1^-1,K.1^-1,1,K.1,-1,1,1,-1,-1,-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1,-1,1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1,-1,-1,-1,-1,-1,1,K.1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1,-1,-1,1,1,K.1,-1,-1*K.1,K.1^-1,-1*K.1,-1,K.1^-1,K.1,-1*K.1^-1,K.1^-1,1,-1*K.1^-1,-1*K.1,1,K.1,-1*K.1^-1,1,1,K.1,K.1,K.1^-1,K.1^-1,1,K.1,K.1^-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,0,3,3*K.1,3*K.1,3*K.1^-1,3,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,3*K.1^-1,0,0,0,0,0,0,3*K.1,0,0,0,3*K.1,3,3,3*K.1,3*K.1^-1,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,3,3,3,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,0,3,3*K.1^-1,3*K.1^-1,3*K.1,3,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,3*K.1,0,0,0,0,0,0,3*K.1^-1,0,0,0,3*K.1^-1,3,3,3*K.1^-1,3*K.1,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,-3,-3,3,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,0,3,3*K.1,3*K.1,3*K.1^-1,3,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3,3,-3*K.1^-1,-3*K.1,-3*K.1,-3*K.1^-1,0,0,0,0,0,0,0,3*K.1^-1,0,0,0,0,0,0,3*K.1,0,0,0,-3*K.1,-3,-3,-3*K.1,-3*K.1^-1,-3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1,-3*K.1^-1,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,-3,-3,3,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,0,3,3*K.1^-1,3*K.1^-1,3*K.1,3,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3,3,-3*K.1,-3*K.1^-1,-3*K.1^-1,-3*K.1,0,0,0,0,0,0,0,3*K.1,0,0,0,0,0,0,3*K.1^-1,0,0,0,-3*K.1^-1,-3,-3,-3*K.1^-1,-3*K.1,-3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1^-1,-3*K.1,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[5, -1, 3, 1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, -1, -1, 2, -1, 2, 2, 2, -1, 2, 2, -1, -1, 2, -1, -1, 2, -1, 2, 2, 2, -1, -1, 1, -1, 0, 3, -1, 3, -1, 3, 3, 3, -1, -1, -1, -1, 1, -1, 3, -1, -1, 3, -1, 1, 3, 3, 3, 0, 0, -1, -1, 0, -1, 1, 1, 1, 1, 1, 1, 1, 1, 0, -1, -1, 0, 0, 0, 0, -1, -1, 0, -1, -1, -1, 0, -1, 0, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[5, 3, -1, 1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2, 2, -1, 2, -1, -1, -1, 2, -1, -1, 2, 2, -1, 2, 2, -1, 2, -1, -1, -1, 2, 2, 1, -1, 0, -1, 3, -1, 3, -1, -1, -1, 3, 3, 3, 3, 1, 3, -1, 3, 3, -1, 3, 1, -1, -1, -1, -1, -1, 0, 0, -1, 0, 1, 1, 1, 1, 1, 1, 1, 1, -1, 0, 0, -1, -1, -1, -1, 0, 0, -1, 0, 0, 0, -1, 0, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[5, -3, 1, 1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2, 2, -1, 2, -1, -1, -1, 2, -1, -1, 2, 2, -1, 2, 2, -1, 2, -1, -1, -1, 2, 2, -1, -1, 0, 1, -3, 1, -3, 1, 1, 1, -3, -3, -3, -3, 1, -3, 1, -3, -3, 1, -3, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[5, 1, -3, 1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, -1, -1, 2, -1, 2, 2, 2, -1, 2, 2, -1, -1, 2, -1, -1, 2, -1, 2, 2, 2, -1, -1, -1, -1, 0, -3, 1, -3, 1, -3, -3, -3, 1, 1, 1, 1, 1, 1, -3, 1, 1, -3, 1, 1, -3, -3, -3, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,-1,3,1,5,5,5*K.1^-1,5*K.1,5*K.1,5*K.1,5,5*K.1^-1,5*K.1^-1,5,-1,-1,2,-1,2,2,2*K.1^-1,-1*K.1,2*K.1^-1,2,-1*K.1^-1,-1,2*K.1,-1*K.1^-1,-1*K.1,2*K.1,-1*K.1^-1,2*K.1,2*K.1^-1,2,-1*K.1,-1,1,-1,0,3,-1,3,-1,3*K.1^-1,3,3*K.1^-1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,1,-1,3*K.1,-1*K.1,-1*K.1,3,-1*K.1^-1,1,3*K.1,3*K.1,3*K.1^-1,0,0,-1,-1,0,-1,K.1,K.1,K.1^-1,1,1,K.1^-1,K.1^-1,K.1,0,-1*K.1^-1,-1*K.1^-1,0,0,0,0,-1*K.1^-1,-1*K.1,0,-1,-1*K.1,-1,0,-1*K.1,0,1,1,-1,-1,-1*K.1,K.1^-1,K.1^-1,-1*K.1^-1,1,K.1,-1,-1,K.1,-1*K.1,-1*K.1^-1,1,K.1,-1*K.1,-1*K.1^-1,K.1^-1,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,-1,3,1,5,5,5*K.1,5*K.1^-1,5*K.1^-1,5*K.1^-1,5,5*K.1,5*K.1,5,-1,-1,2,-1,2,2,2*K.1,-1*K.1^-1,2*K.1,2,-1*K.1,-1,2*K.1^-1,-1*K.1,-1*K.1^-1,2*K.1^-1,-1*K.1,2*K.1^-1,2*K.1,2,-1*K.1^-1,-1,1,-1,0,3,-1,3,-1,3*K.1,3,3*K.1,-1*K.1,-1,-1*K.1^-1,-1*K.1,1,-1,3*K.1^-1,-1*K.1^-1,-1*K.1^-1,3,-1*K.1,1,3*K.1^-1,3*K.1^-1,3*K.1,0,0,-1,-1,0,-1,K.1^-1,K.1^-1,K.1,1,1,K.1,K.1,K.1^-1,0,-1*K.1,-1*K.1,0,0,0,0,-1*K.1,-1*K.1^-1,0,-1,-1*K.1^-1,-1,0,-1*K.1^-1,0,1,1,-1,-1,-1*K.1^-1,K.1,K.1,-1*K.1,1,K.1^-1,-1,-1,K.1^-1,-1*K.1^-1,-1*K.1,1,K.1^-1,-1*K.1^-1,-1*K.1,K.1,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,-1,3,1,5,5,5*K.1^-1,5*K.1^-1,5*K.1,5,5*K.1,5*K.1,5,5*K.1^-1,-1,-1,2,-1,2,2,2,-1*K.1^-1,2*K.1^-1,2*K.1,-1*K.1,-1*K.1^-1,2*K.1,-1,-1,2,-1*K.1^-1,2*K.1^-1,2*K.1,2*K.1^-1,-1*K.1,-1*K.1,1,-1,0,3,-1,3,-1,3*K.1^-1,3*K.1^-1,3,-1,-1*K.1,-1*K.1,-1*K.1^-1,1,-1*K.1^-1,3*K.1,-1,-1*K.1^-1,3*K.1,-1*K.1,1,3*K.1^-1,3,3*K.1,0,0,-1,-1,0,-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,1,K.1,1,0,-1*K.1,-1,0,0,0,0,-1*K.1^-1,-1*K.1,0,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,-1,0,1,1,-1,-1,-1*K.1^-1,K.1^-1,1,-1*K.1,K.1,K.1,-1*K.1^-1,-1*K.1,1,-1,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1,-1,K.1,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,-1,3,1,5,5,5*K.1,5*K.1,5*K.1^-1,5,5*K.1^-1,5*K.1^-1,5,5*K.1,-1,-1,2,-1,2,2,2,-1*K.1,2*K.1,2*K.1^-1,-1*K.1^-1,-1*K.1,2*K.1^-1,-1,-1,2,-1*K.1,2*K.1,2*K.1^-1,2*K.1,-1*K.1^-1,-1*K.1^-1,1,-1,0,3,-1,3,-1,3*K.1,3*K.1,3,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,1,-1*K.1,3*K.1^-1,-1,-1*K.1,3*K.1^-1,-1*K.1^-1,1,3*K.1,3,3*K.1^-1,0,0,-1,-1,0,-1,K.1^-1,K.1,K.1,K.1,K.1^-1,1,K.1^-1,1,0,-1*K.1^-1,-1,0,0,0,0,-1*K.1,-1*K.1^-1,0,-1*K.1,-1*K.1,-1*K.1^-1,0,-1,0,1,1,-1,-1,-1*K.1,K.1,1,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,1,-1,-1*K.1,K.1,K.1,-1*K.1^-1,-1,K.1^-1,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,-1,3,1,5,5,5*K.1^-1,5,5*K.1,5*K.1^-1,5*K.1^-1,5,5*K.1,5*K.1,-1,-1,2,-1,2,2,2*K.1,-1,2*K.1^-1,2*K.1^-1,-1,-1*K.1,2*K.1,-1*K.1,-1*K.1^-1,2*K.1^-1,-1*K.1^-1,2,2,2*K.1,-1*K.1,-1*K.1^-1,1,-1,0,3,-1,3,-1,3*K.1^-1,3*K.1,3*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,1,-1*K.1,3*K.1,-1*K.1^-1,-1,3*K.1^-1,-1,1,3,3*K.1^-1,3,0,0,-1,-1,0,-1,K.1,1,K.1^-1,K.1,K.1^-1,K.1,1,K.1^-1,0,-1,-1*K.1,0,0,0,0,-1*K.1^-1,-1*K.1,0,-1*K.1,-1,-1*K.1^-1,0,-1*K.1^-1,0,1,1,-1,-1,-1,K.1^-1,K.1,-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,1,-1*K.1,-1*K.1,1,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,-1,3,1,5,5,5*K.1,5,5*K.1^-1,5*K.1,5*K.1,5,5*K.1^-1,5*K.1^-1,-1,-1,2,-1,2,2,2*K.1^-1,-1,2*K.1,2*K.1,-1,-1*K.1^-1,2*K.1^-1,-1*K.1^-1,-1*K.1,2*K.1,-1*K.1,2,2,2*K.1^-1,-1*K.1^-1,-1*K.1,1,-1,0,3,-1,3,-1,3*K.1,3*K.1^-1,3*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,1,-1*K.1^-1,3*K.1^-1,-1*K.1,-1,3*K.1,-1,1,3,3*K.1,3,0,0,-1,-1,0,-1,K.1^-1,1,K.1,K.1^-1,K.1,K.1^-1,1,K.1,0,-1,-1*K.1^-1,0,0,0,0,-1*K.1,-1*K.1^-1,0,-1*K.1^-1,-1,-1*K.1,0,-1*K.1,0,1,1,-1,-1,-1,K.1,K.1^-1,-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1^-1,1,-1*K.1^-1,-1*K.1^-1,1,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,-1,3,1,5,5,5,5*K.1^-1,5,5*K.1,5*K.1^-1,5*K.1,5*K.1^-1,5*K.1,-1,-1,2,-1,2,2,2*K.1^-1,-1*K.1^-1,2,2*K.1^-1,-1*K.1,-1*K.1,2,-1*K.1^-1,-1*K.1,2*K.1,-1,2*K.1^-1,2*K.1,2*K.1,-1,-1*K.1^-1,1,-1,0,3,-1,3,-1,3,3*K.1,3*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1,-1,1,-1*K.1,3,-1*K.1,-1*K.1^-1,3*K.1^-1,-1*K.1,1,3*K.1^-1,3*K.1,3*K.1,0,0,-1,-1,0,-1,1,K.1^-1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,0,-1*K.1,-1*K.1^-1,0,0,0,0,-1,-1,0,-1*K.1,-1*K.1^-1,-1*K.1^-1,0,-1*K.1,0,1,1,-1,-1,-1*K.1^-1,1,K.1^-1,-1*K.1,K.1^-1,1,-1*K.1,-1*K.1^-1,K.1,-1*K.1,-1,K.1,K.1^-1,-1,-1*K.1^-1,K.1,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,-1,3,1,5,5,5,5*K.1,5,5*K.1^-1,5*K.1,5*K.1^-1,5*K.1,5*K.1^-1,-1,-1,2,-1,2,2,2*K.1,-1*K.1,2,2*K.1,-1*K.1^-1,-1*K.1^-1,2,-1*K.1,-1*K.1^-1,2*K.1^-1,-1,2*K.1,2*K.1^-1,2*K.1^-1,-1,-1*K.1,1,-1,0,3,-1,3,-1,3,3*K.1^-1,3*K.1,-1*K.1,-1*K.1,-1,-1,1,-1*K.1^-1,3,-1*K.1^-1,-1*K.1,3*K.1,-1*K.1^-1,1,3*K.1,3*K.1^-1,3*K.1^-1,0,0,-1,-1,0,-1,1,K.1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,0,-1*K.1^-1,-1*K.1,0,0,0,0,-1,-1,0,-1*K.1^-1,-1*K.1,-1*K.1,0,-1*K.1^-1,0,1,1,-1,-1,-1*K.1,1,K.1,-1*K.1^-1,K.1,1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,-1,K.1^-1,K.1,-1,-1*K.1,K.1^-1,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,3,-1,1,5,5,5*K.1^-1,5*K.1,5*K.1,5*K.1,5,5*K.1^-1,5*K.1^-1,5,2,2,-1,2,-1,-1,-1*K.1^-1,2*K.1,-1*K.1^-1,-1,2*K.1^-1,2,-1*K.1,2*K.1^-1,2*K.1,-1*K.1,2*K.1^-1,-1*K.1,-1*K.1^-1,-1,2*K.1,2,1,-1,0,-1,3,-1,3,-1*K.1^-1,-1,-1*K.1^-1,3*K.1^-1,3,3*K.1,3*K.1^-1,1,3,-1*K.1,3*K.1,3*K.1,-1,3*K.1^-1,1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1,0,0,-1,0,K.1,K.1,K.1^-1,1,1,K.1^-1,K.1^-1,K.1,-1,0,0,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,0,0,-1*K.1,0,0,0,-1*K.1^-1,0,-1*K.1,1,1,-1,-1,-1*K.1,K.1^-1,K.1^-1,-1*K.1^-1,1,K.1,-1,-1,K.1,-1*K.1,-1*K.1^-1,1,K.1,-1*K.1,-1*K.1^-1,K.1^-1,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,3,-1,1,5,5,5*K.1,5*K.1^-1,5*K.1^-1,5*K.1^-1,5,5*K.1,5*K.1,5,2,2,-1,2,-1,-1,-1*K.1,2*K.1^-1,-1*K.1,-1,2*K.1,2,-1*K.1^-1,2*K.1,2*K.1^-1,-1*K.1^-1,2*K.1,-1*K.1^-1,-1*K.1,-1,2*K.1^-1,2,1,-1,0,-1,3,-1,3,-1*K.1,-1,-1*K.1,3*K.1,3,3*K.1^-1,3*K.1,1,3,-1*K.1^-1,3*K.1^-1,3*K.1^-1,-1,3*K.1,1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,0,0,-1,0,K.1^-1,K.1^-1,K.1,1,1,K.1,K.1,K.1^-1,-1,0,0,-1*K.1,-1*K.1,-1,-1*K.1^-1,0,0,-1*K.1^-1,0,0,0,-1*K.1,0,-1*K.1^-1,1,1,-1,-1,-1*K.1^-1,K.1,K.1,-1*K.1,1,K.1^-1,-1,-1,K.1^-1,-1*K.1^-1,-1*K.1,1,K.1^-1,-1*K.1^-1,-1*K.1,K.1,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,3,-1,1,5,5,5*K.1^-1,5*K.1^-1,5*K.1,5,5*K.1,5*K.1,5,5*K.1^-1,2,2,-1,2,-1,-1,-1,2*K.1^-1,-1*K.1^-1,-1*K.1,2*K.1,2*K.1^-1,-1*K.1,2,2,-1,2*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,2*K.1,2*K.1,1,-1,0,-1,3,-1,3,-1*K.1^-1,-1*K.1^-1,-1,3,3*K.1,3*K.1,3*K.1^-1,1,3*K.1^-1,-1*K.1,3,3*K.1^-1,-1*K.1,3*K.1,1,-1*K.1^-1,-1,-1*K.1,-1,-1,0,0,-1,0,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,1,K.1,1,-1*K.1,0,0,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,0,0,-1,0,0,0,-1*K.1,0,-1*K.1,1,1,-1,-1,-1*K.1^-1,K.1^-1,1,-1*K.1,K.1,K.1,-1*K.1^-1,-1*K.1,1,-1,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1,-1,K.1,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,3,-1,1,5,5,5*K.1,5*K.1,5*K.1^-1,5,5*K.1^-1,5*K.1^-1,5,5*K.1,2,2,-1,2,-1,-1,-1,2*K.1,-1*K.1,-1*K.1^-1,2*K.1^-1,2*K.1,-1*K.1^-1,2,2,-1,2*K.1,-1*K.1,-1*K.1^-1,-1*K.1,2*K.1^-1,2*K.1^-1,1,-1,0,-1,3,-1,3,-1*K.1,-1*K.1,-1,3,3*K.1^-1,3*K.1^-1,3*K.1,1,3*K.1,-1*K.1^-1,3,3*K.1,-1*K.1^-1,3*K.1^-1,1,-1*K.1,-1,-1*K.1^-1,-1,-1,0,0,-1,0,K.1^-1,K.1,K.1,K.1,K.1^-1,1,K.1^-1,1,-1*K.1^-1,0,0,-1,-1*K.1,-1*K.1,-1*K.1,0,0,-1,0,0,0,-1*K.1^-1,0,-1*K.1^-1,1,1,-1,-1,-1*K.1,K.1,1,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,1,-1,-1*K.1,K.1,K.1,-1*K.1^-1,-1,K.1^-1,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,3,-1,1,5,5,5*K.1^-1,5,5*K.1,5*K.1^-1,5*K.1^-1,5,5*K.1,5*K.1,2,2,-1,2,-1,-1,-1*K.1,2,-1*K.1^-1,-1*K.1^-1,2,2*K.1,-1*K.1,2*K.1,2*K.1^-1,-1*K.1^-1,2*K.1^-1,-1,-1,-1*K.1,2*K.1,2*K.1^-1,1,-1,0,-1,3,-1,3,-1*K.1^-1,-1*K.1,-1*K.1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,1,3*K.1,-1*K.1,3*K.1^-1,3,-1*K.1^-1,3,1,-1,-1*K.1^-1,-1,-1,-1,0,0,-1,0,K.1,1,K.1^-1,K.1,K.1^-1,K.1,1,K.1^-1,-1*K.1^-1,0,0,-1*K.1,-1*K.1^-1,-1*K.1,-1,0,0,-1*K.1^-1,0,0,0,-1,0,-1*K.1,1,1,-1,-1,-1,K.1^-1,K.1,-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,1,-1*K.1,-1*K.1,1,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,3,-1,1,5,5,5*K.1,5,5*K.1^-1,5*K.1,5*K.1,5,5*K.1^-1,5*K.1^-1,2,2,-1,2,-1,-1,-1*K.1^-1,2,-1*K.1,-1*K.1,2,2*K.1^-1,-1*K.1^-1,2*K.1^-1,2*K.1,-1*K.1,2*K.1,-1,-1,-1*K.1^-1,2*K.1^-1,2*K.1,1,-1,0,-1,3,-1,3,-1*K.1,-1*K.1^-1,-1*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,1,3*K.1^-1,-1*K.1^-1,3*K.1,3,-1*K.1,3,1,-1,-1*K.1,-1,-1,-1,0,0,-1,0,K.1^-1,1,K.1,K.1^-1,K.1,K.1^-1,1,K.1,-1*K.1,0,0,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,0,0,-1*K.1,0,0,0,-1,0,-1*K.1^-1,1,1,-1,-1,-1,K.1,K.1^-1,-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1^-1,1,-1*K.1^-1,-1*K.1^-1,1,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,3,-1,1,5,5,5,5*K.1^-1,5,5*K.1,5*K.1^-1,5*K.1,5*K.1^-1,5*K.1,2,2,-1,2,-1,-1,-1*K.1^-1,2*K.1^-1,-1,-1*K.1^-1,2*K.1,2*K.1,-1,2*K.1^-1,2*K.1,-1*K.1,2,-1*K.1^-1,-1*K.1,-1*K.1,2,2*K.1^-1,1,-1,0,-1,3,-1,3,-1,-1*K.1,-1*K.1^-1,3*K.1^-1,3*K.1^-1,3,3,1,3*K.1,-1,3*K.1,3*K.1^-1,-1*K.1^-1,3*K.1,1,-1*K.1^-1,-1*K.1,-1*K.1,-1,-1,0,0,-1,0,1,K.1^-1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,-1*K.1^-1,0,0,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,0,0,-1*K.1,0,0,0,-1*K.1,0,-1,1,1,-1,-1,-1*K.1^-1,1,K.1^-1,-1*K.1,K.1^-1,1,-1*K.1,-1*K.1^-1,K.1,-1*K.1,-1,K.1,K.1^-1,-1,-1*K.1^-1,K.1,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,3,-1,1,5,5,5,5*K.1,5,5*K.1^-1,5*K.1,5*K.1^-1,5*K.1,5*K.1^-1,2,2,-1,2,-1,-1,-1*K.1,2*K.1,-1,-1*K.1,2*K.1^-1,2*K.1^-1,-1,2*K.1,2*K.1^-1,-1*K.1^-1,2,-1*K.1,-1*K.1^-1,-1*K.1^-1,2,2*K.1,1,-1,0,-1,3,-1,3,-1,-1*K.1^-1,-1*K.1,3*K.1,3*K.1,3,3,1,3*K.1^-1,-1,3*K.1^-1,3*K.1,-1*K.1,3*K.1^-1,1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1,-1,0,0,-1,0,1,K.1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,-1*K.1,0,0,-1*K.1,-1,-1*K.1^-1,-1*K.1,0,0,-1*K.1^-1,0,0,0,-1*K.1^-1,0,-1,1,1,-1,-1,-1*K.1,1,K.1,-1*K.1^-1,K.1,1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,-1,K.1^-1,K.1,-1,-1*K.1,K.1^-1,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,-3,1,1,5,5,5*K.1^-1,5*K.1,5*K.1,5*K.1,5,5*K.1^-1,5*K.1^-1,5,2,2,-1,2,-1,-1,-1*K.1^-1,2*K.1,-1*K.1^-1,-1,2*K.1^-1,2,-1*K.1,2*K.1^-1,2*K.1,-1*K.1,2*K.1^-1,-1*K.1,-1*K.1^-1,-1,2*K.1,2,-1,-1,0,1,-3,1,-3,K.1^-1,1,K.1^-1,-3*K.1^-1,-3,-3*K.1,-3*K.1^-1,1,-3,K.1,-3*K.1,-3*K.1,1,-3*K.1^-1,1,K.1,K.1,K.1^-1,1,1,0,0,1,0,K.1,K.1,K.1^-1,1,1,K.1^-1,K.1^-1,K.1,1,0,0,K.1^-1,K.1^-1,1,K.1,0,0,K.1,0,0,0,K.1^-1,0,K.1,-1,-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,-1,-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,-3,1,1,5,5,5*K.1,5*K.1^-1,5*K.1^-1,5*K.1^-1,5,5*K.1,5*K.1,5,2,2,-1,2,-1,-1,-1*K.1,2*K.1^-1,-1*K.1,-1,2*K.1,2,-1*K.1^-1,2*K.1,2*K.1^-1,-1*K.1^-1,2*K.1,-1*K.1^-1,-1*K.1,-1,2*K.1^-1,2,-1,-1,0,1,-3,1,-3,K.1,1,K.1,-3*K.1,-3,-3*K.1^-1,-3*K.1,1,-3,K.1^-1,-3*K.1^-1,-3*K.1^-1,1,-3*K.1,1,K.1^-1,K.1^-1,K.1,1,1,0,0,1,0,K.1^-1,K.1^-1,K.1,1,1,K.1,K.1,K.1^-1,1,0,0,K.1,K.1,1,K.1^-1,0,0,K.1^-1,0,0,0,K.1,0,K.1^-1,-1,-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1,-1*K.1^-1,-1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,-3,1,1,5,5,5*K.1^-1,5*K.1^-1,5*K.1,5,5*K.1,5*K.1,5,5*K.1^-1,2,2,-1,2,-1,-1,-1,2*K.1^-1,-1*K.1^-1,-1*K.1,2*K.1,2*K.1^-1,-1*K.1,2,2,-1,2*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,2*K.1,2*K.1,-1,-1,0,1,-3,1,-3,K.1^-1,K.1^-1,1,-3,-3*K.1,-3*K.1,-3*K.1^-1,1,-3*K.1^-1,K.1,-3,-3*K.1^-1,K.1,-3*K.1,1,K.1^-1,1,K.1,1,1,0,0,1,0,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,1,K.1,1,K.1,0,0,1,K.1^-1,K.1^-1,K.1^-1,0,0,1,0,0,0,K.1,0,K.1,-1,-1,-1,-1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,-3,1,1,5,5,5*K.1,5*K.1,5*K.1^-1,5,5*K.1^-1,5*K.1^-1,5,5*K.1,2,2,-1,2,-1,-1,-1,2*K.1,-1*K.1,-1*K.1^-1,2*K.1^-1,2*K.1,-1*K.1^-1,2,2,-1,2*K.1,-1*K.1,-1*K.1^-1,-1*K.1,2*K.1^-1,2*K.1^-1,-1,-1,0,1,-3,1,-3,K.1,K.1,1,-3,-3*K.1^-1,-3*K.1^-1,-3*K.1,1,-3*K.1,K.1^-1,-3,-3*K.1,K.1^-1,-3*K.1^-1,1,K.1,1,K.1^-1,1,1,0,0,1,0,K.1^-1,K.1,K.1,K.1,K.1^-1,1,K.1^-1,1,K.1^-1,0,0,1,K.1,K.1,K.1,0,0,1,0,0,0,K.1^-1,0,K.1^-1,-1,-1,-1,-1,-1*K.1,-1*K.1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,-3,1,1,5,5,5*K.1^-1,5,5*K.1,5*K.1^-1,5*K.1^-1,5,5*K.1,5*K.1,2,2,-1,2,-1,-1,-1*K.1,2,-1*K.1^-1,-1*K.1^-1,2,2*K.1,-1*K.1,2*K.1,2*K.1^-1,-1*K.1^-1,2*K.1^-1,-1,-1,-1*K.1,2*K.1,2*K.1^-1,-1,-1,0,1,-3,1,-3,K.1^-1,K.1,K.1,-3*K.1,-3*K.1^-1,-3*K.1,-3*K.1^-1,1,-3*K.1,K.1,-3*K.1^-1,-3,K.1^-1,-3,1,1,K.1^-1,1,1,1,0,0,1,0,K.1,1,K.1^-1,K.1,K.1^-1,K.1,1,K.1^-1,K.1^-1,0,0,K.1,K.1^-1,K.1,1,0,0,K.1^-1,0,0,0,1,0,K.1,-1,-1,-1,-1,-1,-1*K.1^-1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1*K.1,-1,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,-3,1,1,5,5,5*K.1,5,5*K.1^-1,5*K.1,5*K.1,5,5*K.1^-1,5*K.1^-1,2,2,-1,2,-1,-1,-1*K.1^-1,2,-1*K.1,-1*K.1,2,2*K.1^-1,-1*K.1^-1,2*K.1^-1,2*K.1,-1*K.1,2*K.1,-1,-1,-1*K.1^-1,2*K.1^-1,2*K.1,-1,-1,0,1,-3,1,-3,K.1,K.1^-1,K.1^-1,-3*K.1^-1,-3*K.1,-3*K.1^-1,-3*K.1,1,-3*K.1^-1,K.1^-1,-3*K.1,-3,K.1,-3,1,1,K.1,1,1,1,0,0,1,0,K.1^-1,1,K.1,K.1^-1,K.1,K.1^-1,1,K.1,K.1,0,0,K.1^-1,K.1,K.1^-1,1,0,0,K.1,0,0,0,1,0,K.1^-1,-1,-1,-1,-1,-1,-1*K.1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1^-1,-1,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,-3,1,1,5,5,5,5*K.1^-1,5,5*K.1,5*K.1^-1,5*K.1,5*K.1^-1,5*K.1,2,2,-1,2,-1,-1,-1*K.1^-1,2*K.1^-1,-1,-1*K.1^-1,2*K.1,2*K.1,-1,2*K.1^-1,2*K.1,-1*K.1,2,-1*K.1^-1,-1*K.1,-1*K.1,2,2*K.1^-1,-1,-1,0,1,-3,1,-3,1,K.1,K.1^-1,-3*K.1^-1,-3*K.1^-1,-3,-3,1,-3*K.1,1,-3*K.1,-3*K.1^-1,K.1^-1,-3*K.1,1,K.1^-1,K.1,K.1,1,1,0,0,1,0,1,K.1^-1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,0,0,K.1^-1,1,K.1,K.1^-1,0,0,K.1,0,0,0,K.1,0,1,-1,-1,-1,-1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,-3,1,1,5,5,5,5*K.1,5,5*K.1^-1,5*K.1,5*K.1^-1,5*K.1,5*K.1^-1,2,2,-1,2,-1,-1,-1*K.1,2*K.1,-1,-1*K.1,2*K.1^-1,2*K.1^-1,-1,2*K.1,2*K.1^-1,-1*K.1^-1,2,-1*K.1,-1*K.1^-1,-1*K.1^-1,2,2*K.1,-1,-1,0,1,-3,1,-3,1,K.1^-1,K.1,-3*K.1,-3*K.1,-3,-3,1,-3*K.1^-1,1,-3*K.1^-1,-3*K.1,K.1,-3*K.1^-1,1,K.1,K.1^-1,K.1^-1,1,1,0,0,1,0,1,K.1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,0,0,K.1,1,K.1^-1,K.1,0,0,K.1^-1,0,0,0,K.1^-1,0,1,-1,-1,-1,-1,-1*K.1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,1,-3,1,5,5,5*K.1^-1,5*K.1,5*K.1,5*K.1,5,5*K.1^-1,5*K.1^-1,5,-1,-1,2,-1,2,2,2*K.1^-1,-1*K.1,2*K.1^-1,2,-1*K.1^-1,-1,2*K.1,-1*K.1^-1,-1*K.1,2*K.1,-1*K.1^-1,2*K.1,2*K.1^-1,2,-1*K.1,-1,-1,-1,0,-3,1,-3,1,-3*K.1^-1,-3,-3*K.1^-1,K.1^-1,1,K.1,K.1^-1,1,1,-3*K.1,K.1,K.1,-3,K.1^-1,1,-3*K.1,-3*K.1,-3*K.1^-1,0,0,1,1,0,1,K.1,K.1,K.1^-1,1,1,K.1^-1,K.1^-1,K.1,0,K.1^-1,K.1^-1,0,0,0,0,K.1^-1,K.1,0,1,K.1,1,0,K.1,0,-1,-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,-1,-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,1,-3,1,5,5,5*K.1,5*K.1^-1,5*K.1^-1,5*K.1^-1,5,5*K.1,5*K.1,5,-1,-1,2,-1,2,2,2*K.1,-1*K.1^-1,2*K.1,2,-1*K.1,-1,2*K.1^-1,-1*K.1,-1*K.1^-1,2*K.1^-1,-1*K.1,2*K.1^-1,2*K.1,2,-1*K.1^-1,-1,-1,-1,0,-3,1,-3,1,-3*K.1,-3,-3*K.1,K.1,1,K.1^-1,K.1,1,1,-3*K.1^-1,K.1^-1,K.1^-1,-3,K.1,1,-3*K.1^-1,-3*K.1^-1,-3*K.1,0,0,1,1,0,1,K.1^-1,K.1^-1,K.1,1,1,K.1,K.1,K.1^-1,0,K.1,K.1,0,0,0,0,K.1,K.1^-1,0,1,K.1^-1,1,0,K.1^-1,0,-1,-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1,-1*K.1^-1,-1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,1,-3,1,5,5,5*K.1^-1,5*K.1^-1,5*K.1,5,5*K.1,5*K.1,5,5*K.1^-1,-1,-1,2,-1,2,2,2,-1*K.1^-1,2*K.1^-1,2*K.1,-1*K.1,-1*K.1^-1,2*K.1,-1,-1,2,-1*K.1^-1,2*K.1^-1,2*K.1,2*K.1^-1,-1*K.1,-1*K.1,-1,-1,0,-3,1,-3,1,-3*K.1^-1,-3*K.1^-1,-3,1,K.1,K.1,K.1^-1,1,K.1^-1,-3*K.1,1,K.1^-1,-3*K.1,K.1,1,-3*K.1^-1,-3,-3*K.1,0,0,1,1,0,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,1,K.1,1,0,K.1,1,0,0,0,0,K.1^-1,K.1,0,K.1^-1,K.1^-1,K.1,0,1,0,-1,-1,-1,-1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,1,-3,1,5,5,5*K.1,5*K.1,5*K.1^-1,5,5*K.1^-1,5*K.1^-1,5,5*K.1,-1,-1,2,-1,2,2,2,-1*K.1,2*K.1,2*K.1^-1,-1*K.1^-1,-1*K.1,2*K.1^-1,-1,-1,2,-1*K.1,2*K.1,2*K.1^-1,2*K.1,-1*K.1^-1,-1*K.1^-1,-1,-1,0,-3,1,-3,1,-3*K.1,-3*K.1,-3,1,K.1^-1,K.1^-1,K.1,1,K.1,-3*K.1^-1,1,K.1,-3*K.1^-1,K.1^-1,1,-3*K.1,-3,-3*K.1^-1,0,0,1,1,0,1,K.1^-1,K.1,K.1,K.1,K.1^-1,1,K.1^-1,1,0,K.1^-1,1,0,0,0,0,K.1,K.1^-1,0,K.1,K.1,K.1^-1,0,1,0,-1,-1,-1,-1,-1*K.1,-1*K.1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,1,-3,1,5,5,5*K.1^-1,5,5*K.1,5*K.1^-1,5*K.1^-1,5,5*K.1,5*K.1,-1,-1,2,-1,2,2,2*K.1,-1,2*K.1^-1,2*K.1^-1,-1,-1*K.1,2*K.1,-1*K.1,-1*K.1^-1,2*K.1^-1,-1*K.1^-1,2,2,2*K.1,-1*K.1,-1*K.1^-1,-1,-1,0,-3,1,-3,1,-3*K.1^-1,-3*K.1,-3*K.1,K.1,K.1^-1,K.1,K.1^-1,1,K.1,-3*K.1,K.1^-1,1,-3*K.1^-1,1,1,-3,-3*K.1^-1,-3,0,0,1,1,0,1,K.1,1,K.1^-1,K.1,K.1^-1,K.1,1,K.1^-1,0,1,K.1,0,0,0,0,K.1^-1,K.1,0,K.1,1,K.1^-1,0,K.1^-1,0,-1,-1,-1,-1,-1,-1*K.1^-1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1*K.1,-1,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,1,-3,1,5,5,5*K.1,5,5*K.1^-1,5*K.1,5*K.1,5,5*K.1^-1,5*K.1^-1,-1,-1,2,-1,2,2,2*K.1^-1,-1,2*K.1,2*K.1,-1,-1*K.1^-1,2*K.1^-1,-1*K.1^-1,-1*K.1,2*K.1,-1*K.1,2,2,2*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,0,-3,1,-3,1,-3*K.1,-3*K.1^-1,-3*K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,K.1^-1,-3*K.1^-1,K.1,1,-3*K.1,1,1,-3,-3*K.1,-3,0,0,1,1,0,1,K.1^-1,1,K.1,K.1^-1,K.1,K.1^-1,1,K.1,0,1,K.1^-1,0,0,0,0,K.1,K.1^-1,0,K.1^-1,1,K.1,0,K.1,0,-1,-1,-1,-1,-1,-1*K.1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1^-1,-1,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,1,-3,1,5,5,5,5*K.1^-1,5,5*K.1,5*K.1^-1,5*K.1,5*K.1^-1,5*K.1,-1,-1,2,-1,2,2,2*K.1^-1,-1*K.1^-1,2,2*K.1^-1,-1*K.1,-1*K.1,2,-1*K.1^-1,-1*K.1,2*K.1,-1,2*K.1^-1,2*K.1,2*K.1,-1,-1*K.1^-1,-1,-1,0,-3,1,-3,1,-3,-3*K.1,-3*K.1^-1,K.1^-1,K.1^-1,1,1,1,K.1,-3,K.1,K.1^-1,-3*K.1^-1,K.1,1,-3*K.1^-1,-3*K.1,-3*K.1,0,0,1,1,0,1,1,K.1^-1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,0,K.1,K.1^-1,0,0,0,0,1,1,0,K.1,K.1^-1,K.1^-1,0,K.1,0,-1,-1,-1,-1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |5,1,-3,1,5,5,5,5*K.1,5,5*K.1^-1,5*K.1,5*K.1^-1,5*K.1,5*K.1^-1,-1,-1,2,-1,2,2,2*K.1,-1*K.1,2,2*K.1,-1*K.1^-1,-1*K.1^-1,2,-1*K.1,-1*K.1^-1,2*K.1^-1,-1,2*K.1,2*K.1^-1,2*K.1^-1,-1,-1*K.1,-1,-1,0,-3,1,-3,1,-3,-3*K.1^-1,-3*K.1,K.1,K.1,1,1,1,K.1^-1,-3,K.1^-1,K.1,-3*K.1,K.1^-1,1,-3*K.1,-3*K.1^-1,-3*K.1^-1,0,0,1,1,0,1,1,K.1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,0,K.1^-1,K.1,0,0,0,0,1,1,0,K.1^-1,K.1,K.1,0,K.1^-1,0,-1,-1,-1,-1,-1*K.1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[9, 3, 3, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 3, 3, 3, 3, 3, 3, 1, 3, 3, 3, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[9, -3, -3, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, 1, -3, -3, -3, -3, -3, -3, 1, -3, -3, -3, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,3,3,1,9,9,9*K.1^-1,9*K.1,9*K.1,9*K.1,9,9*K.1^-1,9*K.1^-1,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,3,3,3,3,3*K.1^-1,3,3*K.1^-1,3*K.1^-1,3,3*K.1,3*K.1^-1,1,3,3*K.1,3*K.1,3*K.1,3,3*K.1^-1,1,3*K.1,3*K.1,3*K.1^-1,0,0,0,0,0,0,K.1,K.1,K.1^-1,1,1,K.1^-1,K.1^-1,K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,1,K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1,-1*K.1,1,1,-1*K.1,K.1,K.1^-1,-1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,-1,-1,-1*K.1,-1,-1*K.1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,3,3,1,9,9,9*K.1,9*K.1^-1,9*K.1^-1,9*K.1^-1,9,9*K.1,9*K.1,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,3,3,3,3,3*K.1,3,3*K.1,3*K.1,3,3*K.1^-1,3*K.1,1,3,3*K.1^-1,3*K.1^-1,3*K.1^-1,3,3*K.1,1,3*K.1^-1,3*K.1^-1,3*K.1,0,0,0,0,0,0,K.1^-1,K.1^-1,K.1,1,1,K.1,K.1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,1,K.1^-1,-1*K.1,-1*K.1,K.1,-1,-1*K.1^-1,1,1,-1*K.1^-1,K.1^-1,K.1,-1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,-1,-1,-1*K.1^-1,-1,-1*K.1^-1,-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,3,3,1,9,9,9*K.1^-1,9*K.1^-1,9*K.1,9,9*K.1,9*K.1,9,9*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,3,3,3,3,3*K.1^-1,3*K.1^-1,3,3,3*K.1,3*K.1,3*K.1^-1,1,3*K.1^-1,3*K.1,3,3*K.1^-1,3*K.1,3*K.1,1,3*K.1^-1,3,3*K.1,0,0,0,0,0,0,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,1,K.1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,1,K.1^-1,-1*K.1^-1,-1,K.1,-1*K.1,-1*K.1,K.1^-1,K.1,-1,1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,1,-1*K.1,-1,-1,-1*K.1^-1,-1*K.1,-1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,3,3,1,9,9,9*K.1,9*K.1,9*K.1^-1,9,9*K.1^-1,9*K.1^-1,9,9*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,3,3,3,3,3*K.1,3*K.1,3,3,3*K.1^-1,3*K.1^-1,3*K.1,1,3*K.1,3*K.1^-1,3,3*K.1,3*K.1^-1,3*K.1^-1,1,3*K.1,3,3*K.1^-1,0,0,0,0,0,0,K.1^-1,K.1,K.1,K.1,K.1^-1,1,K.1^-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,1,K.1,-1*K.1,-1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,K.1^-1,-1,1,K.1,-1*K.1,-1*K.1,K.1^-1,1,-1*K.1^-1,-1,-1,-1*K.1,-1*K.1^-1,-1,-1*K.1,-1*K.1,-1,-1*K.1^-1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,3,3,1,9,9,9*K.1^-1,9,9*K.1,9*K.1^-1,9*K.1^-1,9,9*K.1,9*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,3,3,3,3,3*K.1^-1,3*K.1,3*K.1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,1,3*K.1,3*K.1,3*K.1^-1,3,3*K.1^-1,3,1,3,3*K.1^-1,3,0,0,0,0,0,0,K.1,1,K.1^-1,K.1,K.1^-1,K.1,1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,1,1,-1*K.1^-1,-1*K.1,1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1,-1,K.1,K.1,-1,-1,-1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,3,3,1,9,9,9*K.1,9,9*K.1^-1,9*K.1,9*K.1,9,9*K.1^-1,9*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,3,3,3,3,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,1,3*K.1^-1,3*K.1^-1,3*K.1,3,3*K.1,3,1,3,3*K.1,3,0,0,0,0,0,0,K.1^-1,1,K.1,K.1^-1,K.1,K.1^-1,1,K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,1,1,-1*K.1,-1*K.1^-1,1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,K.1,K.1,-1*K.1^-1,-1,K.1^-1,K.1^-1,-1,-1,-1,-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,3,3,1,9,9,9,9*K.1^-1,9,9*K.1,9*K.1^-1,9*K.1,9*K.1^-1,9*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,3,3,3,3,3,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1^-1,3,3,1,3*K.1,3,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,1,3*K.1^-1,3*K.1,3*K.1,0,0,0,0,0,0,1,K.1^-1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,1,K.1^-1,-1,-1*K.1^-1,K.1,-1*K.1^-1,-1,K.1,K.1^-1,-1*K.1,K.1,1,-1*K.1,-1*K.1^-1,1,K.1^-1,-1*K.1,-1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,3,3,1,9,9,9,9*K.1,9,9*K.1^-1,9*K.1,9*K.1^-1,9*K.1,9*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,3,3,3,3,3,3*K.1^-1,3*K.1,3*K.1,3*K.1,3,3,1,3*K.1^-1,3,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,1,3*K.1,3*K.1^-1,3*K.1^-1,0,0,0,0,0,0,1,K.1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,1,K.1,-1,-1*K.1,K.1^-1,-1*K.1,-1,K.1^-1,K.1,-1*K.1^-1,K.1^-1,1,-1*K.1^-1,-1*K.1,1,K.1,-1*K.1^-1,-1,-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,-3,-3,1,9,9,9*K.1^-1,9*K.1,9*K.1,9*K.1,9,9*K.1^-1,9*K.1^-1,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,-3,-3,-3,-3,-3*K.1^-1,-3,-3*K.1^-1,-3*K.1^-1,-3,-3*K.1,-3*K.1^-1,1,-3,-3*K.1,-3*K.1,-3*K.1,-3,-3*K.1^-1,1,-3*K.1,-3*K.1,-3*K.1^-1,0,0,0,0,0,0,K.1,K.1,K.1^-1,1,1,K.1^-1,K.1^-1,K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1^-1,1,K.1,1,1,K.1,K.1,K.1^-1,1,K.1,K.1,K.1^-1,K.1^-1,-1,-1,-1*K.1,-1,-1*K.1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,-3,-3,1,9,9,9*K.1,9*K.1^-1,9*K.1^-1,9*K.1^-1,9,9*K.1,9*K.1,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,-3,-3,-3,-3,-3*K.1,-3,-3*K.1,-3*K.1,-3,-3*K.1^-1,-3*K.1,1,-3,-3*K.1^-1,-3*K.1^-1,-3*K.1^-1,-3,-3*K.1,1,-3*K.1^-1,-3*K.1^-1,-3*K.1,0,0,0,0,0,0,K.1^-1,K.1^-1,K.1,1,1,K.1,K.1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,K.1^-1,K.1,K.1,K.1,1,K.1^-1,1,1,K.1^-1,K.1^-1,K.1,1,K.1^-1,K.1^-1,K.1,K.1,-1,-1,-1*K.1^-1,-1,-1*K.1^-1,-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,-3,-3,1,9,9,9*K.1^-1,9*K.1^-1,9*K.1,9,9*K.1,9*K.1,9,9*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,-3,-3,-3,-3,-3*K.1^-1,-3*K.1^-1,-3,-3,-3*K.1,-3*K.1,-3*K.1^-1,1,-3*K.1^-1,-3*K.1,-3,-3*K.1^-1,-3*K.1,-3*K.1,1,-3*K.1^-1,-3,-3*K.1,0,0,0,0,0,0,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,1,K.1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,K.1^-1,K.1^-1,1,K.1,K.1,K.1,K.1^-1,K.1,1,1,K.1^-1,K.1^-1,K.1^-1,K.1,1,K.1,-1,-1,-1*K.1^-1,-1*K.1,-1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,-3,-3,1,9,9,9*K.1,9*K.1,9*K.1^-1,9,9*K.1^-1,9*K.1^-1,9,9*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,-3,-3,-3,-3,-3*K.1,-3*K.1,-3,-3,-3*K.1^-1,-3*K.1^-1,-3*K.1,1,-3*K.1,-3*K.1^-1,-3,-3*K.1,-3*K.1^-1,-3*K.1^-1,1,-3*K.1,-3,-3*K.1^-1,0,0,0,0,0,0,K.1^-1,K.1,K.1,K.1,K.1^-1,1,K.1^-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,K.1,K.1,1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,1,1,K.1,K.1,K.1,K.1^-1,1,K.1^-1,-1,-1,-1*K.1,-1*K.1^-1,-1,-1*K.1,-1*K.1,-1,-1*K.1^-1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,-3,-3,1,9,9,9*K.1^-1,9,9*K.1,9*K.1^-1,9*K.1^-1,9,9*K.1,9*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,-3,-3,-3,-3,-3*K.1^-1,-3*K.1,-3*K.1,-3*K.1,-3*K.1^-1,-3*K.1,-3*K.1^-1,1,-3*K.1,-3*K.1,-3*K.1^-1,-3,-3*K.1^-1,-3,1,-3,-3*K.1^-1,-3,0,0,0,0,0,0,K.1,1,K.1^-1,K.1,K.1^-1,K.1,1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,K.1^-1,K.1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,1,K.1,K.1,1,-1,-1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,-3,-3,1,9,9,9*K.1,9,9*K.1^-1,9*K.1,9*K.1,9,9*K.1^-1,9*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,-3,-3,-3,-3,-3*K.1,-3*K.1^-1,-3*K.1^-1,-3*K.1^-1,-3*K.1,-3*K.1^-1,-3*K.1,1,-3*K.1^-1,-3*K.1^-1,-3*K.1,-3,-3*K.1,-3,1,-3,-3*K.1,-3,0,0,0,0,0,0,K.1^-1,1,K.1,K.1^-1,K.1,K.1^-1,1,K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,K.1,K.1^-1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1,K.1^-1,1,K.1^-1,K.1^-1,1,-1,-1,-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,-3,-3,1,9,9,9,9*K.1^-1,9,9*K.1,9*K.1^-1,9*K.1,9*K.1^-1,9*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,-3,-3,-3,-3,-3,-3*K.1,-3*K.1^-1,-3*K.1^-1,-3*K.1^-1,-3,-3,1,-3*K.1,-3,-3*K.1,-3*K.1^-1,-3*K.1^-1,-3*K.1,1,-3*K.1^-1,-3*K.1,-3*K.1,0,0,0,0,0,0,1,K.1^-1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,K.1^-1,1,K.1^-1,K.1,K.1^-1,1,K.1,K.1^-1,K.1,K.1,1,K.1,K.1^-1,1,K.1^-1,K.1,-1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1,-1*K.1^-1,-1*K.1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |9,-3,-3,1,9,9,9,9*K.1,9,9*K.1^-1,9*K.1,9*K.1^-1,9*K.1,9*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,-3,-3,-3,-3,-3,-3*K.1^-1,-3*K.1,-3*K.1,-3*K.1,-3,-3,1,-3*K.1^-1,-3,-3*K.1^-1,-3*K.1,-3*K.1,-3*K.1^-1,1,-3*K.1,-3*K.1^-1,-3*K.1^-1,0,0,0,0,0,0,1,K.1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,K.1,1,K.1,K.1^-1,K.1,1,K.1^-1,K.1,K.1^-1,K.1^-1,1,K.1^-1,K.1,1,K.1,K.1^-1,-1,-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[10, -2, 2, -2, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 2, -2, 2, -2, 2, 2, 2, -2, -2, -2, -2, -2, -2, 2, -2, -2, 2, -2, -2, 2, 2, 2, -1, -1, 1, 1, -1, 1, -2, -2, -2, -2, -2, -2, -2, -2, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[10, 2, -2, -2, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, -2, 2, -2, 2, -2, -2, -2, 2, 2, 2, 2, -2, 2, -2, 2, 2, -2, 2, -2, -2, -2, -2, 1, 1, -1, -1, 1, -1, -2, -2, -2, -2, -2, -2, -2, -2, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,-2,2,-2,10,10,10*K.1^-1,10*K.1,10*K.1,10*K.1,10,10*K.1^-1,10*K.1^-1,10,1,1,1,1,1,1,K.1^-1,K.1,K.1^-1,1,K.1^-1,1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,K.1,1,0,0,0,2,-2,2,-2,2*K.1^-1,2,2*K.1^-1,-2*K.1^-1,-2,-2*K.1,-2*K.1^-1,-2,-2,2*K.1,-2*K.1,-2*K.1,2,-2*K.1^-1,-2,2*K.1,2*K.1,2*K.1^-1,-1,-1,1,1,-1,1,-2*K.1,-2*K.1,-2*K.1^-1,-2,-2,-2*K.1^-1,-2*K.1^-1,-2*K.1,-1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,K.1^-1,K.1,-1*K.1,1,K.1,1,-1*K.1^-1,K.1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,-2,2,-2,10,10,10*K.1,10*K.1^-1,10*K.1^-1,10*K.1^-1,10,10*K.1,10*K.1,10,1,1,1,1,1,1,K.1,K.1^-1,K.1,1,K.1,1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,K.1^-1,1,0,0,0,2,-2,2,-2,2*K.1,2,2*K.1,-2*K.1,-2,-2*K.1^-1,-2*K.1,-2,-2,2*K.1^-1,-2*K.1^-1,-2*K.1^-1,2,-2*K.1,-2,2*K.1^-1,2*K.1^-1,2*K.1,-1,-1,1,1,-1,1,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2,-2,-2*K.1,-2*K.1,-2*K.1^-1,-1,K.1,K.1,-1*K.1,-1*K.1,-1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-1,1,K.1^-1,1,-1*K.1,K.1^-1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,-2,2,-2,10,10,10*K.1^-1,10*K.1^-1,10*K.1,10,10*K.1,10*K.1,10,10*K.1^-1,1,1,1,1,1,1,1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,1,1,1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,0,0,0,2,-2,2,-2,2*K.1^-1,2*K.1^-1,2,-2,-2*K.1,-2*K.1,-2*K.1^-1,-2,-2*K.1^-1,2*K.1,-2,-2*K.1^-1,2*K.1,-2*K.1,-2,2*K.1^-1,2,2*K.1,-1,-1,1,1,-1,1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2,-2*K.1,-2,-1*K.1,K.1,1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,-1,K.1^-1,K.1^-1,K.1,-1*K.1,1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,-2,2,-2,10,10,10*K.1,10*K.1,10*K.1^-1,10,10*K.1^-1,10*K.1^-1,10,10*K.1,1,1,1,1,1,1,1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,1,1,1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,0,0,0,2,-2,2,-2,2*K.1,2*K.1,2,-2,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2,-2*K.1,2*K.1^-1,-2,-2*K.1,2*K.1^-1,-2*K.1^-1,-2,2*K.1,2,2*K.1^-1,-1,-1,1,1,-1,1,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1,-2*K.1^-1,-2,-2*K.1^-1,-2,-1*K.1^-1,K.1^-1,1,-1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1^-1,-1,K.1,K.1,K.1^-1,-1*K.1^-1,1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,-2,2,-2,10,10,10*K.1^-1,10,10*K.1,10*K.1^-1,10*K.1^-1,10,10*K.1,10*K.1,1,1,1,1,1,1,K.1,1,K.1^-1,K.1^-1,1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,1,1,K.1,K.1,K.1^-1,0,0,0,2,-2,2,-2,2*K.1^-1,2*K.1,2*K.1,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2,-2*K.1,2*K.1,-2*K.1^-1,-2,2*K.1^-1,-2,-2,2,2*K.1^-1,2,-1,-1,1,1,-1,1,-2*K.1,-2,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,-2,-2*K.1^-1,-1*K.1^-1,1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1,K.1^-1,K.1,-1*K.1^-1,K.1,1,K.1^-1,-1,K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,-2,2,-2,10,10,10*K.1,10,10*K.1^-1,10*K.1,10*K.1,10,10*K.1^-1,10*K.1^-1,1,1,1,1,1,1,K.1^-1,1,K.1,K.1,1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,1,1,K.1^-1,K.1^-1,K.1,0,0,0,2,-2,2,-2,2*K.1,2*K.1^-1,2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,-2,-2*K.1^-1,2*K.1^-1,-2*K.1,-2,2*K.1,-2,-2,2,2*K.1,2,-1,-1,1,1,-1,1,-2*K.1^-1,-2,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2,-2*K.1,-1*K.1,1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,K.1,K.1^-1,-1*K.1,K.1^-1,1,K.1,-1,K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,-2,2,-2,10,10,10,10*K.1^-1,10,10*K.1,10*K.1^-1,10*K.1,10*K.1^-1,10*K.1,1,1,1,1,1,1,K.1^-1,K.1^-1,1,K.1^-1,K.1,K.1,1,K.1^-1,K.1,K.1,1,K.1^-1,K.1,K.1,1,K.1^-1,0,0,0,2,-2,2,-2,2,2*K.1,2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2,-2,-2,-2*K.1,2,-2*K.1,-2*K.1^-1,2*K.1^-1,-2*K.1,-2,2*K.1^-1,2*K.1,2*K.1,-1,-1,1,1,-1,1,-2,-2*K.1^-1,-2,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,1,1,-1*K.1,K.1,K.1^-1,K.1^-1,-1*K.1,K.1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,-2,2,-2,10,10,10,10*K.1,10,10*K.1^-1,10*K.1,10*K.1^-1,10*K.1,10*K.1^-1,1,1,1,1,1,1,K.1,K.1,1,K.1,K.1^-1,K.1^-1,1,K.1,K.1^-1,K.1^-1,1,K.1,K.1^-1,K.1^-1,1,K.1,0,0,0,2,-2,2,-2,2,2*K.1^-1,2*K.1,-2*K.1,-2*K.1,-2,-2,-2,-2*K.1^-1,2,-2*K.1^-1,-2*K.1,2*K.1,-2*K.1^-1,-2,2*K.1,2*K.1^-1,2*K.1^-1,-1,-1,1,1,-1,1,-2,-2*K.1,-2,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1,-1,-1*K.1^-1,-1*K.1,1,1,-1*K.1^-1,K.1^-1,K.1,K.1,-1*K.1^-1,K.1^-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,2,-2,-2,10,10,10*K.1^-1,10*K.1,10*K.1,10*K.1,10,10*K.1^-1,10*K.1^-1,10,1,1,1,1,1,1,K.1^-1,K.1,K.1^-1,1,K.1^-1,1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,K.1,1,0,0,0,-2,2,-2,2,-2*K.1^-1,-2,-2*K.1^-1,2*K.1^-1,2,2*K.1,2*K.1^-1,-2,2,-2*K.1,2*K.1,2*K.1,-2,2*K.1^-1,-2,-2*K.1,-2*K.1,-2*K.1^-1,1,1,-1,-1,1,-1,-2*K.1,-2*K.1,-2*K.1^-1,-2,-2,-2*K.1^-1,-2*K.1^-1,-2*K.1,1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1^-1,1,K.1,-1*K.1^-1,-1*K.1,K.1,-1,-1*K.1,-1,K.1^-1,-1*K.1,K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,2,-2,-2,10,10,10*K.1,10*K.1^-1,10*K.1^-1,10*K.1^-1,10,10*K.1,10*K.1,10,1,1,1,1,1,1,K.1,K.1^-1,K.1,1,K.1,1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,K.1^-1,1,0,0,0,-2,2,-2,2,-2*K.1,-2,-2*K.1,2*K.1,2,2*K.1^-1,2*K.1,-2,2,-2*K.1^-1,2*K.1^-1,2*K.1^-1,-2,2*K.1,-2,-2*K.1^-1,-2*K.1^-1,-2*K.1,1,1,-1,-1,1,-1,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2,-2,-2*K.1,-2*K.1,-2*K.1^-1,1,-1*K.1,-1*K.1,K.1,K.1,1,K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,-1,-1*K.1^-1,-1,K.1,-1*K.1^-1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,2,-2,-2,10,10,10*K.1^-1,10*K.1^-1,10*K.1,10,10*K.1,10*K.1,10,10*K.1^-1,1,1,1,1,1,1,1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,1,1,1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,0,0,0,-2,2,-2,2,-2*K.1^-1,-2*K.1^-1,-2,2,2*K.1,2*K.1,2*K.1^-1,-2,2*K.1^-1,-2*K.1,2,2*K.1^-1,-2*K.1,2*K.1,-2,-2*K.1^-1,-2,-2*K.1,1,1,-1,-1,1,-1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2,-2*K.1,-2,K.1,-1*K.1,-1,1,K.1^-1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1,K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,2,-2,-2,10,10,10*K.1,10*K.1,10*K.1^-1,10,10*K.1^-1,10*K.1^-1,10,10*K.1,1,1,1,1,1,1,1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,1,1,1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,0,0,0,-2,2,-2,2,-2*K.1,-2*K.1,-2,2,2*K.1^-1,2*K.1^-1,2*K.1,-2,2*K.1,-2*K.1^-1,2,2*K.1,-2*K.1^-1,2*K.1^-1,-2,-2*K.1,-2,-2*K.1^-1,1,1,-1,-1,1,-1,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1,-2*K.1^-1,-2,-2*K.1^-1,-2,K.1^-1,-1*K.1^-1,-1,1,K.1,K.1,K.1,-1*K.1,-1*K.1^-1,1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,2,-2,-2,10,10,10*K.1^-1,10,10*K.1,10*K.1^-1,10*K.1^-1,10,10*K.1,10*K.1,1,1,1,1,1,1,K.1,1,K.1^-1,K.1^-1,1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,1,1,K.1,K.1,K.1^-1,0,0,0,-2,2,-2,2,-2*K.1^-1,-2*K.1,-2*K.1,2*K.1,2*K.1^-1,2*K.1,2*K.1^-1,-2,2*K.1,-2*K.1,2*K.1^-1,2,-2*K.1^-1,2,-2,-2,-2*K.1^-1,-2,1,1,-1,-1,1,-1,-2*K.1,-2,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,-2,-2*K.1^-1,K.1^-1,-1,-1*K.1,K.1,K.1^-1,K.1,1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1,-1,-1*K.1^-1,1,-1*K.1^-1,K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,2,-2,-2,10,10,10*K.1,10,10*K.1^-1,10*K.1,10*K.1,10,10*K.1^-1,10*K.1^-1,1,1,1,1,1,1,K.1^-1,1,K.1,K.1,1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,1,1,K.1^-1,K.1^-1,K.1,0,0,0,-2,2,-2,2,-2*K.1,-2*K.1^-1,-2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1,-2,2*K.1^-1,-2*K.1^-1,2*K.1,2,-2*K.1,2,-2,-2,-2*K.1,-2,1,1,-1,-1,1,-1,-2*K.1^-1,-2,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2,-2*K.1,K.1,-1,-1*K.1^-1,K.1^-1,K.1,K.1^-1,1,-1*K.1,-1*K.1^-1,K.1,-1*K.1^-1,-1,-1*K.1,1,-1*K.1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,2,-2,-2,10,10,10,10*K.1^-1,10,10*K.1,10*K.1^-1,10*K.1,10*K.1^-1,10*K.1,1,1,1,1,1,1,K.1^-1,K.1^-1,1,K.1^-1,K.1,K.1,1,K.1^-1,K.1,K.1,1,K.1^-1,K.1,K.1,1,K.1^-1,0,0,0,-2,2,-2,2,-2,-2*K.1,-2*K.1^-1,2*K.1^-1,2*K.1^-1,2,2,-2,2*K.1,-2,2*K.1,2*K.1^-1,-2*K.1^-1,2*K.1,-2,-2*K.1^-1,-2*K.1,-2*K.1,1,1,-1,-1,1,-1,-2,-2*K.1^-1,-2,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,1,K.1,K.1^-1,-1,-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,2,-2,-2,10,10,10,10*K.1,10,10*K.1^-1,10*K.1,10*K.1^-1,10*K.1,10*K.1^-1,1,1,1,1,1,1,K.1,K.1,1,K.1,K.1^-1,K.1^-1,1,K.1,K.1^-1,K.1^-1,1,K.1,K.1^-1,K.1^-1,1,K.1,0,0,0,-2,2,-2,2,-2,-2*K.1^-1,-2*K.1,2*K.1,2*K.1,2,2,-2,2*K.1^-1,-2,2*K.1^-1,2*K.1,-2*K.1,2*K.1^-1,-2,-2*K.1,-2*K.1^-1,-2*K.1^-1,1,1,-1,-1,1,-1,-2,-2*K.1,-2,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1,1,K.1^-1,K.1,-1,-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1^-1,-1*K.1^-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,-3,9,3,15*K.1^-1,15*K.1,0,0,0,0,0,0,0,0,-3,-3*K.1,6*K.1,-3*K.1^-1,6,6*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3,0,9*K.1^-1,-3*K.1,9*K.1,-3*K.1^-1,0,0,0,0,0,0,0,3*K.1^-1,0,0,0,0,0,0,3*K.1,0,0,0,0,0,-3,-3*K.1,0,-3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1,3*K.1^-1,-3*K.1,-3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,-3,9,3,15*K.1,15*K.1^-1,0,0,0,0,0,0,0,0,-3,-3*K.1^-1,6*K.1^-1,-3*K.1,6,6*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3,0,9*K.1,-3*K.1^-1,9*K.1^-1,-3*K.1,0,0,0,0,0,0,0,3*K.1,0,0,0,0,0,0,3*K.1^-1,0,0,0,0,0,-3,-3*K.1^-1,0,-3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-1,3*K.1,-3*K.1^-1,-3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,9,-3,3,15*K.1^-1,15*K.1,0,0,0,0,0,0,0,0,6,6*K.1,-3*K.1,6*K.1^-1,-3,-3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3,0,-3*K.1^-1,9*K.1,-3*K.1,9*K.1^-1,0,0,0,0,0,0,0,3*K.1^-1,0,0,0,0,0,0,3*K.1,0,0,0,-3*K.1,-3,0,0,-3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1,3*K.1^-1,-3*K.1,-3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,9,-3,3,15*K.1,15*K.1^-1,0,0,0,0,0,0,0,0,6,6*K.1^-1,-3*K.1^-1,6*K.1,-3,-3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3,0,-3*K.1,9*K.1^-1,-3*K.1^-1,9*K.1,0,0,0,0,0,0,0,3*K.1,0,0,0,0,0,0,3*K.1^-1,0,0,0,-3*K.1^-1,-3,0,0,-3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-1,3*K.1,-3*K.1^-1,-3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,-9,3,3,15*K.1^-1,15*K.1,0,0,0,0,0,0,0,0,6,6*K.1,-3*K.1,6*K.1^-1,-3,-3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,0,3*K.1^-1,-9*K.1,3*K.1,-9*K.1^-1,0,0,0,0,0,0,0,3*K.1^-1,0,0,0,0,0,0,3*K.1,0,0,0,3*K.1,3,0,0,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1,-3*K.1^-1,-3*K.1,-3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,-9,3,3,15*K.1,15*K.1^-1,0,0,0,0,0,0,0,0,6,6*K.1^-1,-3*K.1^-1,6*K.1,-3,-3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,0,3*K.1,-9*K.1^-1,3*K.1^-1,-9*K.1,0,0,0,0,0,0,0,3*K.1,0,0,0,0,0,0,3*K.1^-1,0,0,0,3*K.1^-1,3,0,0,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1^-1,-3*K.1,-3*K.1^-1,-3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,3,-9,3,15*K.1^-1,15*K.1,0,0,0,0,0,0,0,0,-3,-3*K.1,6*K.1,-3*K.1^-1,6,6*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,0,-9*K.1^-1,3*K.1,-9*K.1,3*K.1^-1,0,0,0,0,0,0,0,3*K.1^-1,0,0,0,0,0,0,3*K.1,0,0,0,0,0,3,3*K.1,0,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1,-3*K.1^-1,-3*K.1,-3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |15,3,-9,3,15*K.1,15*K.1^-1,0,0,0,0,0,0,0,0,-3,-3*K.1^-1,6*K.1^-1,-3*K.1,6,6*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,0,-9*K.1,3*K.1^-1,-9*K.1^-1,3*K.1,0,0,0,0,0,0,0,3*K.1,0,0,0,0,0,0,3*K.1^-1,0,0,0,0,0,3,3*K.1^-1,0,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1^-1,-3*K.1,-3*K.1^-1,-3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[16, 0, 0, 0, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |16,0,0,0,16,16,16*K.1^-1,16*K.1,16*K.1,16*K.1,16,16*K.1^-1,16*K.1^-1,16,-2,-2,-2,-2,-2,-2,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2,-2*K.1^-1,-2,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2,-2*K.1,-2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,K.1,1,K.1,1,K.1^-1,K.1^-1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |16,0,0,0,16,16,16*K.1,16*K.1^-1,16*K.1^-1,16*K.1^-1,16,16*K.1,16*K.1,16,-2,-2,-2,-2,-2,-2,-2*K.1,-2*K.1^-1,-2*K.1,-2,-2*K.1,-2,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,-2,-2*K.1^-1,-2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,K.1^-1,1,K.1^-1,1,K.1,K.1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |16,0,0,0,16,16,16*K.1^-1,16*K.1^-1,16*K.1,16,16*K.1,16*K.1,16,16*K.1^-1,-2,-2,-2,-2,-2,-2,-2,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1,-2,-2,-2,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,K.1^-1,K.1,1,K.1^-1,K.1^-1,1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |16,0,0,0,16,16,16*K.1,16*K.1,16*K.1^-1,16,16*K.1^-1,16*K.1^-1,16,16*K.1,-2,-2,-2,-2,-2,-2,-2,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2,-2,-2,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,K.1,K.1^-1,1,K.1,K.1,1,K.1^-1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |16,0,0,0,16,16,16*K.1^-1,16,16*K.1,16*K.1^-1,16*K.1^-1,16,16*K.1,16*K.1,-2,-2,-2,-2,-2,-2,-2*K.1,-2,-2*K.1^-1,-2*K.1^-1,-2,-2*K.1,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2,-2,-2*K.1,-2*K.1,-2*K.1^-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |16,0,0,0,16,16,16*K.1,16,16*K.1^-1,16*K.1,16*K.1,16,16*K.1^-1,16*K.1^-1,-2,-2,-2,-2,-2,-2,-2*K.1^-1,-2,-2*K.1,-2*K.1,-2,-2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1,-2,-2,-2*K.1^-1,-2*K.1^-1,-2*K.1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |16,0,0,0,16,16,16,16*K.1^-1,16,16*K.1,16*K.1^-1,16*K.1,16*K.1^-1,16*K.1,-2,-2,-2,-2,-2,-2,-2*K.1^-1,-2*K.1^-1,-2,-2*K.1^-1,-2*K.1,-2*K.1,-2,-2*K.1^-1,-2*K.1,-2*K.1,-2,-2*K.1^-1,-2*K.1,-2*K.1,-2,-2*K.1^-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,K.1^-1,K.1^-1,K.1,K.1,1,K.1^-1,K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |16,0,0,0,16,16,16,16*K.1,16,16*K.1^-1,16*K.1,16*K.1^-1,16*K.1,16*K.1^-1,-2,-2,-2,-2,-2,-2,-2*K.1,-2*K.1,-2,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2,-2*K.1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,K.1,K.1,K.1^-1,K.1^-1,1,K.1,K.1^-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |27,9,9,3,27*K.1^-1,27*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3,-3,9*K.1^-1,9*K.1,9*K.1,9*K.1^-1,0,0,0,0,0,0,0,3*K.1^-1,0,0,0,0,0,0,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1,-3*K.1^-1,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1,-3*K.1^-1,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |27,9,9,3,27*K.1,27*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3,-3,9*K.1,9*K.1^-1,9*K.1^-1,9*K.1,0,0,0,0,0,0,0,3*K.1,0,0,0,0,0,0,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1^-1,-3*K.1,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1^-1,-3*K.1,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |27,-9,-9,3,27*K.1^-1,27*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,-3,-9*K.1^-1,-9*K.1,-9*K.1,-9*K.1^-1,0,0,0,0,0,0,0,3*K.1^-1,0,0,0,0,0,0,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1,-3*K.1^-1,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |27,-9,-9,3,27*K.1,27*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,-3,-9*K.1,-9*K.1^-1,-9*K.1^-1,-9*K.1,0,0,0,0,0,0,0,3*K.1,0,0,0,0,0,0,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3*K.1^-1,-3*K.1,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |30,-6,6,-6,30*K.1^-1,30*K.1,0,0,0,0,0,0,0,0,3,3*K.1,3*K.1,3*K.1^-1,3,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6*K.1^-1,-6*K.1,6*K.1,-6*K.1^-1,0,0,0,0,0,0,0,-6*K.1^-1,0,0,0,0,0,0,-6*K.1,0,0,0,-3*K.1,-3,3,3*K.1,-3*K.1^-1,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |30,-6,6,-6,30*K.1,30*K.1^-1,0,0,0,0,0,0,0,0,3,3*K.1^-1,3*K.1^-1,3*K.1,3,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6*K.1,-6*K.1^-1,6*K.1^-1,-6*K.1,0,0,0,0,0,0,0,-6*K.1,0,0,0,0,0,0,-6*K.1^-1,0,0,0,-3*K.1^-1,-3,3,3*K.1^-1,-3*K.1,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |30,6,-6,-6,30*K.1^-1,30*K.1,0,0,0,0,0,0,0,0,3,3*K.1,3*K.1,3*K.1^-1,3,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-6*K.1^-1,6*K.1,-6*K.1,6*K.1^-1,0,0,0,0,0,0,0,-6*K.1^-1,0,0,0,0,0,0,-6*K.1,0,0,0,3*K.1,3,-3,-3*K.1,3*K.1^-1,-3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |30,6,-6,-6,30*K.1,30*K.1^-1,0,0,0,0,0,0,0,0,3,3*K.1^-1,3*K.1^-1,3*K.1,3,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-6*K.1,6*K.1^-1,-6*K.1^-1,6*K.1,0,0,0,0,0,0,0,-6*K.1,0,0,0,0,0,0,-6*K.1^-1,0,0,0,3*K.1^-1,3,-3,-3*K.1^-1,3*K.1,-3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |48,0,0,0,48*K.1^-1,48*K.1,0,0,0,0,0,0,0,0,-6,-6*K.1,-6*K.1,-6*K.1^-1,-6,-6*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |48,0,0,0,48*K.1,48*K.1^-1,0,0,0,0,0,0,0,0,-6,-6*K.1^-1,-6*K.1^-1,-6*K.1,-6,-6*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_19440_bf:= KnownIrreducibles(CR);